Rename `rejected_by_dest` -> `payment_failed_permanently`
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
126         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
127         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
128         genesis_hash: BlockHash,
129         logger: L,
130         // Lock order: channels -> nodes
131         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
132         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
133 }
134
135 /// A read-only view of [`NetworkGraph`].
136 pub struct ReadOnlyNetworkGraph<'a> {
137         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
138         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
139 }
140
141 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
142 /// return packet by a node along the route. See [BOLT #4] for details.
143 ///
144 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
145 #[derive(Clone, Debug, PartialEq)]
146 pub enum NetworkUpdate {
147         /// An error indicating a `channel_update` messages should be applied via
148         /// [`NetworkGraph::update_channel`].
149         ChannelUpdateMessage {
150                 /// The update to apply via [`NetworkGraph::update_channel`].
151                 msg: ChannelUpdate,
152         },
153         /// An error indicating that a channel failed to route a payment, which should be applied via
154         /// [`NetworkGraph::channel_failed`].
155         ChannelFailure {
156                 /// The short channel id of the closed channel.
157                 short_channel_id: u64,
158                 /// Whether the channel should be permanently removed or temporarily disabled until a new
159                 /// `channel_update` message is received.
160                 is_permanent: bool,
161         },
162         /// An error indicating that a node failed to route a payment, which should be applied via
163         /// [`NetworkGraph::node_failed`].
164         NodeFailure {
165                 /// The node id of the failed node.
166                 node_id: PublicKey,
167                 /// Whether the node should be permanently removed from consideration or can be restored
168                 /// when a new `channel_update` message is received.
169                 is_permanent: bool,
170         }
171 }
172
173 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
174         (0, ChannelUpdateMessage) => {
175                 (0, msg, required),
176         },
177         (2, ChannelFailure) => {
178                 (0, short_channel_id, required),
179                 (2, is_permanent, required),
180         },
181         (4, NodeFailure) => {
182                 (0, node_id, required),
183                 (2, is_permanent, required),
184         },
185 );
186
187 /// Receives and validates network updates from peers,
188 /// stores authentic and relevant data as a network graph.
189 /// This network graph is then used for routing payments.
190 /// Provides interface to help with initial routing sync by
191 /// serving historical announcements.
192 ///
193 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
194 /// [`NetworkGraph`].
195 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
196 where C::Target: chain::Access, L::Target: Logger
197 {
198         network_graph: G,
199         chain_access: Option<C>,
200         full_syncs_requested: AtomicUsize,
201         pending_events: Mutex<Vec<MessageSendEvent>>,
202         logger: L,
203 }
204
205 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
206 where C::Target: chain::Access, L::Target: Logger
207 {
208         /// Creates a new tracker of the actual state of the network of channels and nodes,
209         /// assuming an existing Network Graph.
210         /// Chain monitor is used to make sure announced channels exist on-chain,
211         /// channel data is correct, and that the announcement is signed with
212         /// channel owners' keys.
213         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
214                 P2PGossipSync {
215                         network_graph,
216                         full_syncs_requested: AtomicUsize::new(0),
217                         chain_access,
218                         pending_events: Mutex::new(vec![]),
219                         logger,
220                 }
221         }
222
223         /// Adds a provider used to check new announcements. Does not affect
224         /// existing announcements unless they are updated.
225         /// Add, update or remove the provider would replace the current one.
226         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
227                 self.chain_access = chain_access;
228         }
229
230         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
231         /// [`P2PGossipSync::new`].
232         ///
233         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
234         pub fn network_graph(&self) -> &G {
235                 &self.network_graph
236         }
237
238         /// Returns true when a full routing table sync should be performed with a peer.
239         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
240                 //TODO: Determine whether to request a full sync based on the network map.
241                 const FULL_SYNCS_TO_REQUEST: usize = 5;
242                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
243                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
244                         true
245                 } else {
246                         false
247                 }
248         }
249 }
250
251 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
252         fn handle_event(&self, event: &Event) {
253                 if let Event::PaymentPathFailed { network_update, .. } = event {
254                         if let Some(network_update) = network_update {
255                                 match *network_update {
256                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
257                                                 let short_channel_id = msg.contents.short_channel_id;
258                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
259                                                 let status = if is_enabled { "enabled" } else { "disabled" };
260                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
261                                                 let _ = self.update_channel(msg);
262                                         },
263                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
264                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
265                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
266                                                 self.channel_failed(short_channel_id, is_permanent);
267                                         },
268                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
269                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
270                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
271                                                 self.node_failed(node_id, is_permanent);
272                                         },
273                                 }
274                         }
275                 }
276         }
277 }
278
279 macro_rules! secp_verify_sig {
280         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
281                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
282                         Ok(_) => {},
283                         Err(_) => {
284                                 return Err(LightningError {
285                                         err: format!("Invalid signature on {} message", $msg_type),
286                                         action: ErrorAction::SendWarningMessage {
287                                                 msg: msgs::WarningMessage {
288                                                         channel_id: [0; 32],
289                                                         data: format!("Invalid signature on {} message", $msg_type),
290                                                 },
291                                                 log_level: Level::Trace,
292                                         },
293                                 });
294                         },
295                 }
296         };
297 }
298
299 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
300 where C::Target: chain::Access, L::Target: Logger
301 {
302         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
303                 self.network_graph.update_node_from_announcement(msg)?;
304                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
305                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
306                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
307         }
308
309         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
310                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
311                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
312                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
313         }
314
315         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
316                 self.network_graph.update_channel(msg)?;
317                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
318         }
319
320         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
321                 let channels = self.network_graph.channels.read().unwrap();
322                 for (_, ref chan) in channels.range(starting_point..) {
323                         if chan.announcement_message.is_some() {
324                                 let chan_announcement = chan.announcement_message.clone().unwrap();
325                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
326                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
327                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
328                                         one_to_two_announcement = one_to_two.last_update_message.clone();
329                                 }
330                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
331                                         two_to_one_announcement = two_to_one.last_update_message.clone();
332                                 }
333                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
334                         } else {
335                                 // TODO: We may end up sending un-announced channel_updates if we are sending
336                                 // initial sync data while receiving announce/updates for this channel.
337                         }
338                 }
339                 None
340         }
341
342         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
343                 let nodes = self.network_graph.nodes.read().unwrap();
344                 let iter = if let Some(pubkey) = starting_point {
345                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
346                         } else {
347                                 nodes.range(..)
348                         };
349                 for (_, ref node) in iter {
350                         if let Some(node_info) = node.announcement_info.as_ref() {
351                                 if let Some(msg) = node_info.announcement_message.clone() {
352                                         return Some(msg);
353                                 }
354                         }
355                 }
356                 None
357         }
358
359         /// Initiates a stateless sync of routing gossip information with a peer
360         /// using gossip_queries. The default strategy used by this implementation
361         /// is to sync the full block range with several peers.
362         ///
363         /// We should expect one or more reply_channel_range messages in response
364         /// to our query_channel_range. Each reply will enqueue a query_scid message
365         /// to request gossip messages for each channel. The sync is considered complete
366         /// when the final reply_scids_end message is received, though we are not
367         /// tracking this directly.
368         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
369                 // We will only perform a sync with peers that support gossip_queries.
370                 if !init_msg.features.supports_gossip_queries() {
371                         return ();
372                 }
373
374                 // The lightning network's gossip sync system is completely broken in numerous ways.
375                 //
376                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
377                 // to do a full sync from the first few peers we connect to, and then receive gossip
378                 // updates from all our peers normally.
379                 //
380                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
381                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
382                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
383                 // seen.
384                 //
385                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
386                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
387                 // channel data which you are missing. Except there was no way at all to identify which
388                 // `channel_update`s you were missing, so you still had to request everything, just in a
389                 // very complicated way with some queries instead of just getting the dump.
390                 //
391                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
392                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
393                 // relying on it useless.
394                 //
395                 // After gossip queries were introduced, support for receiving a full gossip table dump on
396                 // connection was removed from several nodes, making it impossible to get a full sync
397                 // without using the "gossip queries" messages.
398                 //
399                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
400                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
401                 // message, as the name implies, tells the peer to not forward any gossip messages with a
402                 // timestamp older than a given value (not the time the peer received the filter, but the
403                 // timestamp in the update message, which is often hours behind when the peer received the
404                 // message).
405                 //
406                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
407                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
408                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
409                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
410                 // will simply not forward any new updates they see to you which were generated some time
411                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
412                 // ago), you will always get the full routing graph from all your peers.
413                 //
414                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
415                 // propagated some time after it was generated, and, worse, often disable gossiping with
416                 // several peers after their first connection. The second behavior can cause gossip to not
417                 // propagate fully if there are cuts in the gossiping subgraph.
418                 //
419                 // In an attempt to cut a middle ground between always fetching the full graph from all of
420                 // our peers and never receiving gossip from peers at all, we send all of our peers a
421                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
422                 //
423                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
424                 let should_request_full_sync = self.should_request_full_sync(&their_node_id);
425                 #[allow(unused_mut, unused_assignments)]
426                 let mut gossip_start_time = 0;
427                 #[cfg(feature = "std")]
428                 {
429                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
430                         if should_request_full_sync {
431                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
432                         } else {
433                                 gossip_start_time -= 60 * 60; // an hour ago
434                         }
435                 }
436
437                 let mut pending_events = self.pending_events.lock().unwrap();
438                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
439                         node_id: their_node_id.clone(),
440                         msg: GossipTimestampFilter {
441                                 chain_hash: self.network_graph.genesis_hash,
442                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
443                                 timestamp_range: u32::max_value(),
444                         },
445                 });
446         }
447
448         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
449                 // We don't make queries, so should never receive replies. If, in the future, the set
450                 // reconciliation extensions to gossip queries become broadly supported, we should revert
451                 // this code to its state pre-0.0.106.
452                 Ok(())
453         }
454
455         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
456                 // We don't make queries, so should never receive replies. If, in the future, the set
457                 // reconciliation extensions to gossip queries become broadly supported, we should revert
458                 // this code to its state pre-0.0.106.
459                 Ok(())
460         }
461
462         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
463         /// are in the specified block range. Due to message size limits, large range
464         /// queries may result in several reply messages. This implementation enqueues
465         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
466         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
467         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
468         /// memory constrained systems.
469         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
470                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
471
472                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
473
474                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
475                 // If so, we manually cap the ending block to avoid this overflow.
476                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
477
478                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
479                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
480                         let mut pending_events = self.pending_events.lock().unwrap();
481                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
482                                 node_id: their_node_id.clone(),
483                                 msg: ReplyChannelRange {
484                                         chain_hash: msg.chain_hash.clone(),
485                                         first_blocknum: msg.first_blocknum,
486                                         number_of_blocks: msg.number_of_blocks,
487                                         sync_complete: true,
488                                         short_channel_ids: vec![],
489                                 }
490                         });
491                         return Err(LightningError {
492                                 err: String::from("query_channel_range could not be processed"),
493                                 action: ErrorAction::IgnoreError,
494                         });
495                 }
496
497                 // Creates channel batches. We are not checking if the channel is routable
498                 // (has at least one update). A peer may still want to know the channel
499                 // exists even if its not yet routable.
500                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
501                 let channels = self.network_graph.channels.read().unwrap();
502                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
503                         if let Some(chan_announcement) = &chan.announcement_message {
504                                 // Construct a new batch if last one is full
505                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
506                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
507                                 }
508
509                                 let batch = batches.last_mut().unwrap();
510                                 batch.push(chan_announcement.contents.short_channel_id);
511                         }
512                 }
513                 drop(channels);
514
515                 let mut pending_events = self.pending_events.lock().unwrap();
516                 let batch_count = batches.len();
517                 let mut prev_batch_endblock = msg.first_blocknum;
518                 for (batch_index, batch) in batches.into_iter().enumerate() {
519                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
520                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
521                         //
522                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
523                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
524                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
525                         // significant diversion from the requirements set by the spec, and, in case of blocks
526                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
527                         // and *not* derive the first_blocknum from the actual first block of the reply.
528                         let first_blocknum = prev_batch_endblock;
529
530                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
531                         // fit in. Though there is no requirement that we use exactly the number of blocks its
532                         // contents are from, except for the bogus requirements c-lightning enforces, above.
533                         //
534                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
535                         // >= the query's end block. Thus, for the last reply, we calculate the difference
536                         // between the query's end block and the start of the reply.
537                         //
538                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
539                         // first_blocknum will be either msg.first_blocknum or a higher block height.
540                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
541                                 (true, msg.end_blocknum() - first_blocknum)
542                         }
543                         // Prior replies should use the number of blocks that fit into the reply. Overflow
544                         // safe since first_blocknum is always <= last SCID's block.
545                         else {
546                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
547                         };
548
549                         prev_batch_endblock = first_blocknum + number_of_blocks;
550
551                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
552                                 node_id: their_node_id.clone(),
553                                 msg: ReplyChannelRange {
554                                         chain_hash: msg.chain_hash.clone(),
555                                         first_blocknum,
556                                         number_of_blocks,
557                                         sync_complete,
558                                         short_channel_ids: batch,
559                                 }
560                         });
561                 }
562
563                 Ok(())
564         }
565
566         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
567                 // TODO
568                 Err(LightningError {
569                         err: String::from("Not implemented"),
570                         action: ErrorAction::IgnoreError,
571                 })
572         }
573 }
574
575 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
576 where
577         C::Target: chain::Access,
578         L::Target: Logger,
579 {
580         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
581                 let mut ret = Vec::new();
582                 let mut pending_events = self.pending_events.lock().unwrap();
583                 core::mem::swap(&mut ret, &mut pending_events);
584                 ret
585         }
586 }
587
588 #[derive(Clone, Debug, PartialEq)]
589 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
590 pub struct ChannelUpdateInfo {
591         /// When the last update to the channel direction was issued.
592         /// Value is opaque, as set in the announcement.
593         pub last_update: u32,
594         /// Whether the channel can be currently used for payments (in this one direction).
595         pub enabled: bool,
596         /// The difference in CLTV values that you must have when routing through this channel.
597         pub cltv_expiry_delta: u16,
598         /// The minimum value, which must be relayed to the next hop via the channel
599         pub htlc_minimum_msat: u64,
600         /// The maximum value which may be relayed to the next hop via the channel.
601         pub htlc_maximum_msat: u64,
602         /// Fees charged when the channel is used for routing
603         pub fees: RoutingFees,
604         /// Most recent update for the channel received from the network
605         /// Mostly redundant with the data we store in fields explicitly.
606         /// Everything else is useful only for sending out for initial routing sync.
607         /// Not stored if contains excess data to prevent DoS.
608         pub last_update_message: Option<ChannelUpdate>,
609 }
610
611 impl fmt::Display for ChannelUpdateInfo {
612         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
613                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
614                 Ok(())
615         }
616 }
617
618 impl Writeable for ChannelUpdateInfo {
619         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
620                 write_tlv_fields!(writer, {
621                         (0, self.last_update, required),
622                         (2, self.enabled, required),
623                         (4, self.cltv_expiry_delta, required),
624                         (6, self.htlc_minimum_msat, required),
625                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
626                         // compatibility with LDK versions prior to v0.0.110.
627                         (8, Some(self.htlc_maximum_msat), required),
628                         (10, self.fees, required),
629                         (12, self.last_update_message, required),
630                 });
631                 Ok(())
632         }
633 }
634
635 impl Readable for ChannelUpdateInfo {
636         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
637                 init_tlv_field_var!(last_update, required);
638                 init_tlv_field_var!(enabled, required);
639                 init_tlv_field_var!(cltv_expiry_delta, required);
640                 init_tlv_field_var!(htlc_minimum_msat, required);
641                 init_tlv_field_var!(htlc_maximum_msat, option);
642                 init_tlv_field_var!(fees, required);
643                 init_tlv_field_var!(last_update_message, required);
644
645                 read_tlv_fields!(reader, {
646                         (0, last_update, required),
647                         (2, enabled, required),
648                         (4, cltv_expiry_delta, required),
649                         (6, htlc_minimum_msat, required),
650                         (8, htlc_maximum_msat, required),
651                         (10, fees, required),
652                         (12, last_update_message, required)
653                 });
654
655                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
656                         Ok(ChannelUpdateInfo {
657                                 last_update: init_tlv_based_struct_field!(last_update, required),
658                                 enabled: init_tlv_based_struct_field!(enabled, required),
659                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
660                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
661                                 htlc_maximum_msat,
662                                 fees: init_tlv_based_struct_field!(fees, required),
663                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
664                         })
665                 } else {
666                         Err(DecodeError::InvalidValue)
667                 }
668         }
669 }
670
671 #[derive(Clone, Debug, PartialEq)]
672 /// Details about a channel (both directions).
673 /// Received within a channel announcement.
674 pub struct ChannelInfo {
675         /// Protocol features of a channel communicated during its announcement
676         pub features: ChannelFeatures,
677         /// Source node of the first direction of a channel
678         pub node_one: NodeId,
679         /// Details about the first direction of a channel
680         pub one_to_two: Option<ChannelUpdateInfo>,
681         /// Source node of the second direction of a channel
682         pub node_two: NodeId,
683         /// Details about the second direction of a channel
684         pub two_to_one: Option<ChannelUpdateInfo>,
685         /// The channel capacity as seen on-chain, if chain lookup is available.
686         pub capacity_sats: Option<u64>,
687         /// An initial announcement of the channel
688         /// Mostly redundant with the data we store in fields explicitly.
689         /// Everything else is useful only for sending out for initial routing sync.
690         /// Not stored if contains excess data to prevent DoS.
691         pub announcement_message: Option<ChannelAnnouncement>,
692         /// The timestamp when we received the announcement, if we are running with feature = "std"
693         /// (which we can probably assume we are - no-std environments probably won't have a full
694         /// network graph in memory!).
695         announcement_received_time: u64,
696 }
697
698 impl ChannelInfo {
699         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
700         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
701         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
702                 let (direction, source) = {
703                         if target == &self.node_one {
704                                 (self.two_to_one.as_ref(), &self.node_two)
705                         } else if target == &self.node_two {
706                                 (self.one_to_two.as_ref(), &self.node_one)
707                         } else {
708                                 return None;
709                         }
710                 };
711                 Some((DirectedChannelInfo::new(self, direction), source))
712         }
713
714         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
715         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
716         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
717                 let (direction, target) = {
718                         if source == &self.node_one {
719                                 (self.one_to_two.as_ref(), &self.node_two)
720                         } else if source == &self.node_two {
721                                 (self.two_to_one.as_ref(), &self.node_one)
722                         } else {
723                                 return None;
724                         }
725                 };
726                 Some((DirectedChannelInfo::new(self, direction), target))
727         }
728
729         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
730         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
731                 let direction = channel_flags & 1u8;
732                 if direction == 0 {
733                         self.one_to_two.as_ref()
734                 } else {
735                         self.two_to_one.as_ref()
736                 }
737         }
738 }
739
740 impl fmt::Display for ChannelInfo {
741         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
742                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
743                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
744                 Ok(())
745         }
746 }
747
748 impl Writeable for ChannelInfo {
749         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
750                 write_tlv_fields!(writer, {
751                         (0, self.features, required),
752                         (1, self.announcement_received_time, (default_value, 0)),
753                         (2, self.node_one, required),
754                         (4, self.one_to_two, required),
755                         (6, self.node_two, required),
756                         (8, self.two_to_one, required),
757                         (10, self.capacity_sats, required),
758                         (12, self.announcement_message, required),
759                 });
760                 Ok(())
761         }
762 }
763
764 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
765 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
766 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
767 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
768 // channel updates via the gossip network.
769 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
770
771 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
772         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
773                 match ::util::ser::Readable::read(reader) {
774                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
775                         Err(DecodeError::ShortRead) => Ok(None),
776                         Err(DecodeError::InvalidValue) => Ok(None),
777                         Err(err) => Err(err),
778                 }
779         }
780 }
781
782 impl Readable for ChannelInfo {
783         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
784                 init_tlv_field_var!(features, required);
785                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
786                 init_tlv_field_var!(node_one, required);
787                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
788                 init_tlv_field_var!(node_two, required);
789                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
790                 init_tlv_field_var!(capacity_sats, required);
791                 init_tlv_field_var!(announcement_message, required);
792                 read_tlv_fields!(reader, {
793                         (0, features, required),
794                         (1, announcement_received_time, (default_value, 0)),
795                         (2, node_one, required),
796                         (4, one_to_two_wrap, ignorable),
797                         (6, node_two, required),
798                         (8, two_to_one_wrap, ignorable),
799                         (10, capacity_sats, required),
800                         (12, announcement_message, required),
801                 });
802
803                 Ok(ChannelInfo {
804                         features: init_tlv_based_struct_field!(features, required),
805                         node_one: init_tlv_based_struct_field!(node_one, required),
806                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
807                         node_two: init_tlv_based_struct_field!(node_two, required),
808                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
809                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
810                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
811                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
812                 })
813         }
814 }
815
816 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
817 /// source node to a target node.
818 #[derive(Clone)]
819 pub struct DirectedChannelInfo<'a> {
820         channel: &'a ChannelInfo,
821         direction: Option<&'a ChannelUpdateInfo>,
822         htlc_maximum_msat: u64,
823         effective_capacity: EffectiveCapacity,
824 }
825
826 impl<'a> DirectedChannelInfo<'a> {
827         #[inline]
828         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
829                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
830                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
831
832                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
833                         (Some(amount_msat), Some(capacity_msat)) => {
834                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
835                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
836                         },
837                         (Some(amount_msat), None) => {
838                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
839                         },
840                         (None, Some(capacity_msat)) => {
841                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
842                         },
843                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
844                 };
845
846                 Self {
847                         channel, direction, htlc_maximum_msat, effective_capacity
848                 }
849         }
850
851         /// Returns information for the channel.
852         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
853
854         /// Returns information for the direction.
855         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
856
857         /// Returns the maximum HTLC amount allowed over the channel in the direction.
858         pub fn htlc_maximum_msat(&self) -> u64 {
859                 self.htlc_maximum_msat
860         }
861
862         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
863         ///
864         /// This is either the total capacity from the funding transaction, if known, or the
865         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
866         /// otherwise.
867         pub fn effective_capacity(&self) -> EffectiveCapacity {
868                 self.effective_capacity
869         }
870
871         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
872         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
873                 match self.direction {
874                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
875                         None => None,
876                 }
877         }
878 }
879
880 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
881         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
882                 f.debug_struct("DirectedChannelInfo")
883                         .field("channel", &self.channel)
884                         .finish()
885         }
886 }
887
888 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
889 #[derive(Clone)]
890 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
891         inner: DirectedChannelInfo<'a>,
892 }
893
894 impl<'a> DirectedChannelInfoWithUpdate<'a> {
895         /// Returns information for the channel.
896         #[inline]
897         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
898
899         /// Returns information for the direction.
900         #[inline]
901         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
902
903         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
904         #[inline]
905         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
906 }
907
908 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
909         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
910                 self.inner.fmt(f)
911         }
912 }
913
914 /// The effective capacity of a channel for routing purposes.
915 ///
916 /// While this may be smaller than the actual channel capacity, amounts greater than
917 /// [`Self::as_msat`] should not be routed through the channel.
918 #[derive(Clone, Copy, Debug)]
919 pub enum EffectiveCapacity {
920         /// The available liquidity in the channel known from being a channel counterparty, and thus a
921         /// direct hop.
922         ExactLiquidity {
923                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
924                 /// millisatoshi.
925                 liquidity_msat: u64,
926         },
927         /// The maximum HTLC amount in one direction as advertised on the gossip network.
928         MaximumHTLC {
929                 /// The maximum HTLC amount denominated in millisatoshi.
930                 amount_msat: u64,
931         },
932         /// The total capacity of the channel as determined by the funding transaction.
933         Total {
934                 /// The funding amount denominated in millisatoshi.
935                 capacity_msat: u64,
936                 /// The maximum HTLC amount denominated in millisatoshi.
937                 htlc_maximum_msat: Option<u64>
938         },
939         /// A capacity sufficient to route any payment, typically used for private channels provided by
940         /// an invoice.
941         Infinite,
942         /// A capacity that is unknown possibly because either the chain state is unavailable to know
943         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
944         Unknown,
945 }
946
947 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
948 /// use when making routing decisions.
949 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
950
951 impl EffectiveCapacity {
952         /// Returns the effective capacity denominated in millisatoshi.
953         pub fn as_msat(&self) -> u64 {
954                 match self {
955                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
956                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
957                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
958                         EffectiveCapacity::Infinite => u64::max_value(),
959                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
960                 }
961         }
962 }
963
964 /// Fees for routing via a given channel or a node
965 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
966 pub struct RoutingFees {
967         /// Flat routing fee in satoshis
968         pub base_msat: u32,
969         /// Liquidity-based routing fee in millionths of a routed amount.
970         /// In other words, 10000 is 1%.
971         pub proportional_millionths: u32,
972 }
973
974 impl_writeable_tlv_based!(RoutingFees, {
975         (0, base_msat, required),
976         (2, proportional_millionths, required)
977 });
978
979 #[derive(Clone, Debug, PartialEq)]
980 /// Information received in the latest node_announcement from this node.
981 pub struct NodeAnnouncementInfo {
982         /// Protocol features the node announced support for
983         pub features: NodeFeatures,
984         /// When the last known update to the node state was issued.
985         /// Value is opaque, as set in the announcement.
986         pub last_update: u32,
987         /// Color assigned to the node
988         pub rgb: [u8; 3],
989         /// Moniker assigned to the node.
990         /// May be invalid or malicious (eg control chars),
991         /// should not be exposed to the user.
992         pub alias: NodeAlias,
993         /// Internet-level addresses via which one can connect to the node
994         pub addresses: Vec<NetAddress>,
995         /// An initial announcement of the node
996         /// Mostly redundant with the data we store in fields explicitly.
997         /// Everything else is useful only for sending out for initial routing sync.
998         /// Not stored if contains excess data to prevent DoS.
999         pub announcement_message: Option<NodeAnnouncement>
1000 }
1001
1002 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1003         (0, features, required),
1004         (2, last_update, required),
1005         (4, rgb, required),
1006         (6, alias, required),
1007         (8, announcement_message, option),
1008         (10, addresses, vec_type),
1009 });
1010
1011 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1012 ///
1013 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1014 /// attacks. Care must be taken when processing.
1015 #[derive(Clone, Debug, PartialEq)]
1016 pub struct NodeAlias(pub [u8; 32]);
1017
1018 impl fmt::Display for NodeAlias {
1019         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1020                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1021                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1022                 let bytes = self.0.split_at(first_null).0;
1023                 match core::str::from_utf8(bytes) {
1024                         Ok(alias) => {
1025                                 for c in alias.chars() {
1026                                         let mut bytes = [0u8; 4];
1027                                         let c = if !c.is_control() { c } else { control_symbol };
1028                                         f.write_str(c.encode_utf8(&mut bytes))?;
1029                                 }
1030                         },
1031                         Err(_) => {
1032                                 for c in bytes.iter().map(|b| *b as char) {
1033                                         // Display printable ASCII characters
1034                                         let mut bytes = [0u8; 4];
1035                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1036                                         f.write_str(c.encode_utf8(&mut bytes))?;
1037                                 }
1038                         },
1039                 };
1040                 Ok(())
1041         }
1042 }
1043
1044 impl Writeable for NodeAlias {
1045         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1046                 self.0.write(w)
1047         }
1048 }
1049
1050 impl Readable for NodeAlias {
1051         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1052                 Ok(NodeAlias(Readable::read(r)?))
1053         }
1054 }
1055
1056 #[derive(Clone, Debug, PartialEq)]
1057 /// Details about a node in the network, known from the network announcement.
1058 pub struct NodeInfo {
1059         /// All valid channels a node has announced
1060         pub channels: Vec<u64>,
1061         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1062         /// The two fields (flat and proportional fee) are independent,
1063         /// meaning they don't have to refer to the same channel.
1064         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1065         /// More information about a node from node_announcement.
1066         /// Optional because we store a Node entry after learning about it from
1067         /// a channel announcement, but before receiving a node announcement.
1068         pub announcement_info: Option<NodeAnnouncementInfo>
1069 }
1070
1071 impl fmt::Display for NodeInfo {
1072         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1073                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1074                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1075                 Ok(())
1076         }
1077 }
1078
1079 impl Writeable for NodeInfo {
1080         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1081                 write_tlv_fields!(writer, {
1082                         (0, self.lowest_inbound_channel_fees, option),
1083                         (2, self.announcement_info, option),
1084                         (4, self.channels, vec_type),
1085                 });
1086                 Ok(())
1087         }
1088 }
1089
1090 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1091 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1092 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1093 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1094 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1095
1096 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1097         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1098                 match ::util::ser::Readable::read(reader) {
1099                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1100                         Err(_) => {
1101                                 copy(reader, &mut sink()).unwrap();
1102                                 return Ok(None)
1103                         },
1104                 };
1105         }
1106 }
1107
1108 impl Readable for NodeInfo {
1109         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1110                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1111                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1112                 init_tlv_field_var!(channels, vec_type);
1113
1114                 read_tlv_fields!(reader, {
1115                         (0, lowest_inbound_channel_fees, option),
1116                         (2, announcement_info_wrap, ignorable),
1117                         (4, channels, vec_type),
1118                 });
1119
1120                 Ok(NodeInfo {
1121                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1122                         announcement_info: announcement_info_wrap.map(|w| w.0),
1123                         channels: init_tlv_based_struct_field!(channels, vec_type),
1124                 })
1125         }
1126 }
1127
1128 const SERIALIZATION_VERSION: u8 = 1;
1129 const MIN_SERIALIZATION_VERSION: u8 = 1;
1130
1131 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1132         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1133                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1134
1135                 self.genesis_hash.write(writer)?;
1136                 let channels = self.channels.read().unwrap();
1137                 (channels.len() as u64).write(writer)?;
1138                 for (ref chan_id, ref chan_info) in channels.iter() {
1139                         (*chan_id).write(writer)?;
1140                         chan_info.write(writer)?;
1141                 }
1142                 let nodes = self.nodes.read().unwrap();
1143                 (nodes.len() as u64).write(writer)?;
1144                 for (ref node_id, ref node_info) in nodes.iter() {
1145                         node_id.write(writer)?;
1146                         node_info.write(writer)?;
1147                 }
1148
1149                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1150                 write_tlv_fields!(writer, {
1151                         (1, last_rapid_gossip_sync_timestamp, option),
1152                 });
1153                 Ok(())
1154         }
1155 }
1156
1157 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1158         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1159                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1160
1161                 let genesis_hash: BlockHash = Readable::read(reader)?;
1162                 let channels_count: u64 = Readable::read(reader)?;
1163                 let mut channels = BTreeMap::new();
1164                 for _ in 0..channels_count {
1165                         let chan_id: u64 = Readable::read(reader)?;
1166                         let chan_info = Readable::read(reader)?;
1167                         channels.insert(chan_id, chan_info);
1168                 }
1169                 let nodes_count: u64 = Readable::read(reader)?;
1170                 let mut nodes = BTreeMap::new();
1171                 for _ in 0..nodes_count {
1172                         let node_id = Readable::read(reader)?;
1173                         let node_info = Readable::read(reader)?;
1174                         nodes.insert(node_id, node_info);
1175                 }
1176
1177                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1178                 read_tlv_fields!(reader, {
1179                         (1, last_rapid_gossip_sync_timestamp, option),
1180                 });
1181
1182                 Ok(NetworkGraph {
1183                         secp_ctx: Secp256k1::verification_only(),
1184                         genesis_hash,
1185                         logger,
1186                         channels: RwLock::new(channels),
1187                         nodes: RwLock::new(nodes),
1188                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1189                 })
1190         }
1191 }
1192
1193 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1194         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1195                 writeln!(f, "Network map\n[Channels]")?;
1196                 for (key, val) in self.channels.read().unwrap().iter() {
1197                         writeln!(f, " {}: {}", key, val)?;
1198                 }
1199                 writeln!(f, "[Nodes]")?;
1200                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1201                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1202                 }
1203                 Ok(())
1204         }
1205 }
1206
1207 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1208         fn eq(&self, other: &Self) -> bool {
1209                 self.genesis_hash == other.genesis_hash &&
1210                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1211                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1212         }
1213 }
1214
1215 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1216         /// Creates a new, empty, network graph.
1217         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1218                 Self {
1219                         secp_ctx: Secp256k1::verification_only(),
1220                         genesis_hash,
1221                         logger,
1222                         channels: RwLock::new(BTreeMap::new()),
1223                         nodes: RwLock::new(BTreeMap::new()),
1224                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1225                 }
1226         }
1227
1228         /// Returns a read-only view of the network graph.
1229         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1230                 let channels = self.channels.read().unwrap();
1231                 let nodes = self.nodes.read().unwrap();
1232                 ReadOnlyNetworkGraph {
1233                         channels,
1234                         nodes,
1235                 }
1236         }
1237
1238         /// The unix timestamp provided by the most recent rapid gossip sync.
1239         /// It will be set by the rapid sync process after every sync completion.
1240         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1241                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1242         }
1243
1244         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1245         /// This should be done automatically by the rapid sync process after every sync completion.
1246         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1247                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1248         }
1249
1250         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1251         /// purposes.
1252         #[cfg(test)]
1253         pub fn clear_nodes_announcement_info(&self) {
1254                 for node in self.nodes.write().unwrap().iter_mut() {
1255                         node.1.announcement_info = None;
1256                 }
1257         }
1258
1259         /// For an already known node (from channel announcements), update its stored properties from a
1260         /// given node announcement.
1261         ///
1262         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1263         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1264         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1265         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1266                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1267                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1268                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1269         }
1270
1271         /// For an already known node (from channel announcements), update its stored properties from a
1272         /// given node announcement without verifying the associated signatures. Because we aren't
1273         /// given the associated signatures here we cannot relay the node announcement to any of our
1274         /// peers.
1275         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1276                 self.update_node_from_announcement_intern(msg, None)
1277         }
1278
1279         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1280                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1281                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1282                         Some(node) => {
1283                                 if let Some(node_info) = node.announcement_info.as_ref() {
1284                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1285                                         // updates to ensure you always have the latest one, only vaguely suggesting
1286                                         // that it be at least the current time.
1287                                         if node_info.last_update  > msg.timestamp {
1288                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1289                                         } else if node_info.last_update  == msg.timestamp {
1290                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1291                                         }
1292                                 }
1293
1294                                 let should_relay =
1295                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1296                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1297                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1298                                 node.announcement_info = Some(NodeAnnouncementInfo {
1299                                         features: msg.features.clone(),
1300                                         last_update: msg.timestamp,
1301                                         rgb: msg.rgb,
1302                                         alias: NodeAlias(msg.alias),
1303                                         addresses: msg.addresses.clone(),
1304                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1305                                 });
1306
1307                                 Ok(())
1308                         }
1309                 }
1310         }
1311
1312         /// Store or update channel info from a channel announcement.
1313         ///
1314         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1315         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1316         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1317         ///
1318         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1319         /// the corresponding UTXO exists on chain and is correctly-formatted.
1320         pub fn update_channel_from_announcement<C: Deref>(
1321                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1322         ) -> Result<(), LightningError>
1323         where
1324                 C::Target: chain::Access,
1325         {
1326                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1327                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1328                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1329                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1330                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1331                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1332         }
1333
1334         /// Store or update channel info from a channel announcement without verifying the associated
1335         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1336         /// channel announcement to any of our peers.
1337         ///
1338         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1339         /// the corresponding UTXO exists on chain and is correctly-formatted.
1340         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1341                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1342         ) -> Result<(), LightningError>
1343         where
1344                 C::Target: chain::Access,
1345         {
1346                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1347         }
1348
1349         /// Update channel from partial announcement data received via rapid gossip sync
1350         ///
1351         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1352         /// rapid gossip sync server)
1353         ///
1354         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1355         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1356                 if node_id_1 == node_id_2 {
1357                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1358                 };
1359
1360                 let node_1 = NodeId::from_pubkey(&node_id_1);
1361                 let node_2 = NodeId::from_pubkey(&node_id_2);
1362                 let channel_info = ChannelInfo {
1363                         features,
1364                         node_one: node_1.clone(),
1365                         one_to_two: None,
1366                         node_two: node_2.clone(),
1367                         two_to_one: None,
1368                         capacity_sats: None,
1369                         announcement_message: None,
1370                         announcement_received_time: timestamp,
1371                 };
1372
1373                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1374         }
1375
1376         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1377                 let mut channels = self.channels.write().unwrap();
1378                 let mut nodes = self.nodes.write().unwrap();
1379
1380                 let node_id_a = channel_info.node_one.clone();
1381                 let node_id_b = channel_info.node_two.clone();
1382
1383                 match channels.entry(short_channel_id) {
1384                         BtreeEntry::Occupied(mut entry) => {
1385                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1386                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1387                                 //exactly how...
1388                                 if utxo_value.is_some() {
1389                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1390                                         // only sometimes returns results. In any case remove the previous entry. Note
1391                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1392                                         // do that because
1393                                         // a) we don't *require* a UTXO provider that always returns results.
1394                                         // b) we don't track UTXOs of channels we know about and remove them if they
1395                                         //    get reorg'd out.
1396                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1397                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1398                                         *entry.get_mut() = channel_info;
1399                                 } else {
1400                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1401                                 }
1402                         },
1403                         BtreeEntry::Vacant(entry) => {
1404                                 entry.insert(channel_info);
1405                         }
1406                 };
1407
1408                 for current_node_id in [node_id_a, node_id_b].iter() {
1409                         match nodes.entry(current_node_id.clone()) {
1410                                 BtreeEntry::Occupied(node_entry) => {
1411                                         node_entry.into_mut().channels.push(short_channel_id);
1412                                 },
1413                                 BtreeEntry::Vacant(node_entry) => {
1414                                         node_entry.insert(NodeInfo {
1415                                                 channels: vec!(short_channel_id),
1416                                                 lowest_inbound_channel_fees: None,
1417                                                 announcement_info: None,
1418                                         });
1419                                 }
1420                         };
1421                 };
1422
1423                 Ok(())
1424         }
1425
1426         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1427                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1428         ) -> Result<(), LightningError>
1429         where
1430                 C::Target: chain::Access,
1431         {
1432                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1433                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1434                 }
1435
1436                 {
1437                         let channels = self.channels.read().unwrap();
1438
1439                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1440                                 if chan.capacity_sats.is_some() {
1441                                         // If we'd previously looked up the channel on-chain and checked the script
1442                                         // against what appears on-chain, ignore the duplicate announcement.
1443                                         //
1444                                         // Because a reorg could replace one channel with another at the same SCID, if
1445                                         // the channel appears to be different, we re-validate. This doesn't expose us
1446                                         // to any more DoS risk than not, as a peer can always flood us with
1447                                         // randomly-generated SCID values anyway.
1448                                         //
1449                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1450                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1451                                         // if the peers on the channel changed anyway.
1452                                         if NodeId::from_pubkey(&msg.node_id_1) == chan.node_one && NodeId::from_pubkey(&msg.node_id_2) == chan.node_two {
1453                                                 return Err(LightningError {
1454                                                         err: "Already have chain-validated channel".to_owned(),
1455                                                         action: ErrorAction::IgnoreDuplicateGossip
1456                                                 });
1457                                         }
1458                                 } else if chain_access.is_none() {
1459                                         // Similarly, if we can't check the chain right now anyway, ignore the
1460                                         // duplicate announcement without bothering to take the channels write lock.
1461                                         return Err(LightningError {
1462                                                 err: "Already have non-chain-validated channel".to_owned(),
1463                                                 action: ErrorAction::IgnoreDuplicateGossip
1464                                         });
1465                                 }
1466                         }
1467                 }
1468
1469                 let utxo_value = match &chain_access {
1470                         &None => {
1471                                 // Tentatively accept, potentially exposing us to DoS attacks
1472                                 None
1473                         },
1474                         &Some(ref chain_access) => {
1475                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1476                                         Ok(TxOut { value, script_pubkey }) => {
1477                                                 let expected_script =
1478                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1479                                                 if script_pubkey != expected_script {
1480                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1481                                                 }
1482                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1483                                                 //to the new HTLC max field in channel_update
1484                                                 Some(value)
1485                                         },
1486                                         Err(chain::AccessError::UnknownChain) => {
1487                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1488                                         },
1489                                         Err(chain::AccessError::UnknownTx) => {
1490                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1491                                         },
1492                                 }
1493                         },
1494                 };
1495
1496                 #[allow(unused_mut, unused_assignments)]
1497                 let mut announcement_received_time = 0;
1498                 #[cfg(feature = "std")]
1499                 {
1500                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1501                 }
1502
1503                 let chan_info = ChannelInfo {
1504                         features: msg.features.clone(),
1505                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1506                         one_to_two: None,
1507                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1508                         two_to_one: None,
1509                         capacity_sats: utxo_value,
1510                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1511                                 { full_msg.cloned() } else { None },
1512                         announcement_received_time,
1513                 };
1514
1515                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1516         }
1517
1518         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1519         /// If permanent, removes a channel from the local storage.
1520         /// May cause the removal of nodes too, if this was their last channel.
1521         /// If not permanent, makes channels unavailable for routing.
1522         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1523                 let mut channels = self.channels.write().unwrap();
1524                 if is_permanent {
1525                         if let Some(chan) = channels.remove(&short_channel_id) {
1526                                 let mut nodes = self.nodes.write().unwrap();
1527                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1528                         }
1529                 } else {
1530                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1531                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1532                                         one_to_two.enabled = false;
1533                                 }
1534                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1535                                         two_to_one.enabled = false;
1536                                 }
1537                         }
1538                 }
1539         }
1540
1541         /// Marks a node in the graph as failed.
1542         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1543                 if is_permanent {
1544                         // TODO: Wholly remove the node
1545                 } else {
1546                         // TODO: downgrade the node
1547                 }
1548         }
1549
1550         #[cfg(feature = "std")]
1551         /// Removes information about channels that we haven't heard any updates about in some time.
1552         /// This can be used regularly to prune the network graph of channels that likely no longer
1553         /// exist.
1554         ///
1555         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1556         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1557         /// pruning occur for updates which are at least two weeks old, which we implement here.
1558         ///
1559         /// Note that for users of the `lightning-background-processor` crate this method may be
1560         /// automatically called regularly for you.
1561         ///
1562         /// This method is only available with the `std` feature. See
1563         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1564         pub fn remove_stale_channels(&self) {
1565                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1566                 self.remove_stale_channels_with_time(time);
1567         }
1568
1569         /// Removes information about channels that we haven't heard any updates about in some time.
1570         /// This can be used regularly to prune the network graph of channels that likely no longer
1571         /// exist.
1572         ///
1573         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1574         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1575         /// pruning occur for updates which are at least two weeks old, which we implement here.
1576         ///
1577         /// This function takes the current unix time as an argument. For users with the `std` feature
1578         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1579         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1580                 let mut channels = self.channels.write().unwrap();
1581                 // Time out if we haven't received an update in at least 14 days.
1582                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1583                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1584                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1585                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1586                 // time.
1587                 let mut scids_to_remove = Vec::new();
1588                 for (scid, info) in channels.iter_mut() {
1589                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1590                                 info.one_to_two = None;
1591                         }
1592                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1593                                 info.two_to_one = None;
1594                         }
1595                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1596                                 // We check the announcement_received_time here to ensure we don't drop
1597                                 // announcements that we just received and are just waiting for our peer to send a
1598                                 // channel_update for.
1599                                 if info.announcement_received_time < min_time_unix as u64 {
1600                                         scids_to_remove.push(*scid);
1601                                 }
1602                         }
1603                 }
1604                 if !scids_to_remove.is_empty() {
1605                         let mut nodes = self.nodes.write().unwrap();
1606                         for scid in scids_to_remove {
1607                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1608                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1609                         }
1610                 }
1611         }
1612
1613         /// For an already known (from announcement) channel, update info about one of the directions
1614         /// of the channel.
1615         ///
1616         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1617         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1618         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1619         ///
1620         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1621         /// materially in the future will be rejected.
1622         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1623                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1624         }
1625
1626         /// For an already known (from announcement) channel, update info about one of the directions
1627         /// of the channel without verifying the associated signatures. Because we aren't given the
1628         /// associated signatures here we cannot relay the channel update to any of our peers.
1629         ///
1630         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1631         /// materially in the future will be rejected.
1632         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1633                 self.update_channel_intern(msg, None, None)
1634         }
1635
1636         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1637                 let dest_node_id;
1638                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1639                 let chan_was_enabled;
1640
1641                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1642                 {
1643                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1644                         // disable this check during tests!
1645                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1646                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1647                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1648                         }
1649                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1650                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1651                         }
1652                 }
1653
1654                 let mut channels = self.channels.write().unwrap();
1655                 match channels.get_mut(&msg.short_channel_id) {
1656                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1657                         Some(channel) => {
1658                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1659                                         return Err(LightningError{err:
1660                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1661                                                 action: ErrorAction::IgnoreError});
1662                                 }
1663
1664                                 if let Some(capacity_sats) = channel.capacity_sats {
1665                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1666                                         // Don't query UTXO set here to reduce DoS risks.
1667                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1668                                                 return Err(LightningError{err:
1669                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1670                                                         action: ErrorAction::IgnoreError});
1671                                         }
1672                                 }
1673                                 macro_rules! check_update_latest {
1674                                         ($target: expr) => {
1675                                                 if let Some(existing_chan_info) = $target.as_ref() {
1676                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1677                                                         // order updates to ensure you always have the latest one, only
1678                                                         // suggesting  that it be at least the current time. For
1679                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1680                                                         // pruning based on the timestamp field being more than two weeks old,
1681                                                         // but only in the non-normative section.
1682                                                         if existing_chan_info.last_update > msg.timestamp {
1683                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1684                                                         } else if existing_chan_info.last_update == msg.timestamp {
1685                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1686                                                         }
1687                                                         chan_was_enabled = existing_chan_info.enabled;
1688                                                 } else {
1689                                                         chan_was_enabled = false;
1690                                                 }
1691                                         }
1692                                 }
1693
1694                                 macro_rules! get_new_channel_info {
1695                                         () => { {
1696                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1697                                                         { full_msg.cloned() } else { None };
1698
1699                                                 let updated_channel_update_info = ChannelUpdateInfo {
1700                                                         enabled: chan_enabled,
1701                                                         last_update: msg.timestamp,
1702                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1703                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1704                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1705                                                         fees: RoutingFees {
1706                                                                 base_msat: msg.fee_base_msat,
1707                                                                 proportional_millionths: msg.fee_proportional_millionths,
1708                                                         },
1709                                                         last_update_message
1710                                                 };
1711                                                 Some(updated_channel_update_info)
1712                                         } }
1713                                 }
1714
1715                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1716                                 if msg.flags & 1 == 1 {
1717                                         dest_node_id = channel.node_one.clone();
1718                                         check_update_latest!(channel.two_to_one);
1719                                         if let Some(sig) = sig {
1720                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1721                                                         err: "Couldn't parse source node pubkey".to_owned(),
1722                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1723                                                 })?, "channel_update");
1724                                         }
1725                                         channel.two_to_one = get_new_channel_info!();
1726                                 } else {
1727                                         dest_node_id = channel.node_two.clone();
1728                                         check_update_latest!(channel.one_to_two);
1729                                         if let Some(sig) = sig {
1730                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1731                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1732                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1733                                                 })?, "channel_update");
1734                                         }
1735                                         channel.one_to_two = get_new_channel_info!();
1736                                 }
1737                         }
1738                 }
1739
1740                 let mut nodes = self.nodes.write().unwrap();
1741                 if chan_enabled {
1742                         let node = nodes.get_mut(&dest_node_id).unwrap();
1743                         let mut base_msat = msg.fee_base_msat;
1744                         let mut proportional_millionths = msg.fee_proportional_millionths;
1745                         if let Some(fees) = node.lowest_inbound_channel_fees {
1746                                 base_msat = cmp::min(base_msat, fees.base_msat);
1747                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1748                         }
1749                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1750                                 base_msat,
1751                                 proportional_millionths
1752                         });
1753                 } else if chan_was_enabled {
1754                         let node = nodes.get_mut(&dest_node_id).unwrap();
1755                         let mut lowest_inbound_channel_fees = None;
1756
1757                         for chan_id in node.channels.iter() {
1758                                 let chan = channels.get(chan_id).unwrap();
1759                                 let chan_info_opt;
1760                                 if chan.node_one == dest_node_id {
1761                                         chan_info_opt = chan.two_to_one.as_ref();
1762                                 } else {
1763                                         chan_info_opt = chan.one_to_two.as_ref();
1764                                 }
1765                                 if let Some(chan_info) = chan_info_opt {
1766                                         if chan_info.enabled {
1767                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1768                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1769                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1770                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1771                                         }
1772                                 }
1773                         }
1774
1775                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1776                 }
1777
1778                 Ok(())
1779         }
1780
1781         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1782                 macro_rules! remove_from_node {
1783                         ($node_id: expr) => {
1784                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1785                                         entry.get_mut().channels.retain(|chan_id| {
1786                                                 short_channel_id != *chan_id
1787                                         });
1788                                         if entry.get().channels.is_empty() {
1789                                                 entry.remove_entry();
1790                                         }
1791                                 } else {
1792                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1793                                 }
1794                         }
1795                 }
1796
1797                 remove_from_node!(chan.node_one);
1798                 remove_from_node!(chan.node_two);
1799         }
1800 }
1801
1802 impl ReadOnlyNetworkGraph<'_> {
1803         /// Returns all known valid channels' short ids along with announced channel info.
1804         ///
1805         /// (C-not exported) because we have no mapping for `BTreeMap`s
1806         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1807                 &*self.channels
1808         }
1809
1810         /// Returns information on a channel with the given id.
1811         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1812                 self.channels.get(&short_channel_id)
1813         }
1814
1815         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1816         /// Returns the list of channels in the graph
1817         pub fn list_channels(&self) -> Vec<u64> {
1818                 self.channels.keys().map(|c| *c).collect()
1819         }
1820
1821         /// Returns all known nodes' public keys along with announced node info.
1822         ///
1823         /// (C-not exported) because we have no mapping for `BTreeMap`s
1824         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1825                 &*self.nodes
1826         }
1827
1828         /// Returns information on a node with the given id.
1829         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1830                 self.nodes.get(node_id)
1831         }
1832
1833         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1834         /// Returns the list of nodes in the graph
1835         pub fn list_nodes(&self) -> Vec<NodeId> {
1836                 self.nodes.keys().map(|n| *n).collect()
1837         }
1838
1839         /// Get network addresses by node id.
1840         /// Returns None if the requested node is completely unknown,
1841         /// or if node announcement for the node was never received.
1842         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1843                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1844                         if let Some(node_info) = node.announcement_info.as_ref() {
1845                                 return Some(node_info.addresses.clone())
1846                         }
1847                 }
1848                 None
1849         }
1850 }
1851
1852 #[cfg(test)]
1853 mod tests {
1854         use chain;
1855         use ln::chan_utils::make_funding_redeemscript;
1856         use ln::PaymentHash;
1857         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1858         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1859         use ln::msgs::{Init, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1860                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1861                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1862         use util::test_utils;
1863         use util::ser::{ReadableArgs, Writeable};
1864         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1865         use util::scid_utils::scid_from_parts;
1866
1867         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1868
1869         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1870         use bitcoin::hashes::Hash;
1871         use bitcoin::network::constants::Network;
1872         use bitcoin::blockdata::constants::genesis_block;
1873         use bitcoin::blockdata::script::Script;
1874         use bitcoin::blockdata::transaction::TxOut;
1875
1876         use hex;
1877
1878         use bitcoin::secp256k1::{PublicKey, SecretKey};
1879         use bitcoin::secp256k1::{All, Secp256k1};
1880
1881         use io;
1882         use bitcoin::secp256k1;
1883         use prelude::*;
1884         use sync::Arc;
1885
1886         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1887                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1888                 let logger = Arc::new(test_utils::TestLogger::new());
1889                 NetworkGraph::new(genesis_hash, logger)
1890         }
1891
1892         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1893                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1894                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1895         ) {
1896                 let secp_ctx = Secp256k1::new();
1897                 let logger = Arc::new(test_utils::TestLogger::new());
1898                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1899                 (secp_ctx, gossip_sync)
1900         }
1901
1902         #[test]
1903         fn request_full_sync_finite_times() {
1904                 let network_graph = create_network_graph();
1905                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1906                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1907
1908                 assert!(gossip_sync.should_request_full_sync(&node_id));
1909                 assert!(gossip_sync.should_request_full_sync(&node_id));
1910                 assert!(gossip_sync.should_request_full_sync(&node_id));
1911                 assert!(gossip_sync.should_request_full_sync(&node_id));
1912                 assert!(gossip_sync.should_request_full_sync(&node_id));
1913                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1914         }
1915
1916         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1917                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1918                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1919                         features: NodeFeatures::known(),
1920                         timestamp: 100,
1921                         node_id: node_id,
1922                         rgb: [0; 3],
1923                         alias: [0; 32],
1924                         addresses: Vec::new(),
1925                         excess_address_data: Vec::new(),
1926                         excess_data: Vec::new(),
1927                 };
1928                 f(&mut unsigned_announcement);
1929                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1930                 NodeAnnouncement {
1931                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1932                         contents: unsigned_announcement
1933                 }
1934         }
1935
1936         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1937                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1938                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1939                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1940                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1941
1942                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1943                         features: ChannelFeatures::known(),
1944                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1945                         short_channel_id: 0,
1946                         node_id_1,
1947                         node_id_2,
1948                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1949                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1950                         excess_data: Vec::new(),
1951                 };
1952                 f(&mut unsigned_announcement);
1953                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1954                 ChannelAnnouncement {
1955                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1956                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1957                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1958                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1959                         contents: unsigned_announcement,
1960                 }
1961         }
1962
1963         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1964                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1965                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1966                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1967                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
1968         }
1969
1970         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1971                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1972                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1973                         short_channel_id: 0,
1974                         timestamp: 100,
1975                         flags: 0,
1976                         cltv_expiry_delta: 144,
1977                         htlc_minimum_msat: 1_000_000,
1978                         htlc_maximum_msat: 1_000_000,
1979                         fee_base_msat: 10_000,
1980                         fee_proportional_millionths: 20,
1981                         excess_data: Vec::new()
1982                 };
1983                 f(&mut unsigned_channel_update);
1984                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1985                 ChannelUpdate {
1986                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1987                         contents: unsigned_channel_update
1988                 }
1989         }
1990
1991         #[test]
1992         fn handling_node_announcements() {
1993                 let network_graph = create_network_graph();
1994                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1995
1996                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1997                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1998                 let zero_hash = Sha256dHash::hash(&[0; 32]);
1999
2000                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2001                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2002                         Ok(_) => panic!(),
2003                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2004                 };
2005
2006                 {
2007                         // Announce a channel to add a corresponding node.
2008                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2009                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2010                                 Ok(res) => assert!(res),
2011                                 _ => panic!()
2012                         };
2013                 }
2014
2015                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2016                         Ok(res) => assert!(res),
2017                         Err(_) => panic!()
2018                 };
2019
2020                 let fake_msghash = hash_to_message!(&zero_hash);
2021                 match gossip_sync.handle_node_announcement(
2022                         &NodeAnnouncement {
2023                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2024                                 contents: valid_announcement.contents.clone()
2025                 }) {
2026                         Ok(_) => panic!(),
2027                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2028                 };
2029
2030                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2031                         unsigned_announcement.timestamp += 1000;
2032                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2033                 }, node_1_privkey, &secp_ctx);
2034                 // Return false because contains excess data.
2035                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2036                         Ok(res) => assert!(!res),
2037                         Err(_) => panic!()
2038                 };
2039
2040                 // Even though previous announcement was not relayed further, we still accepted it,
2041                 // so we now won't accept announcements before the previous one.
2042                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2043                         unsigned_announcement.timestamp += 1000 - 10;
2044                 }, node_1_privkey, &secp_ctx);
2045                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2046                         Ok(_) => panic!(),
2047                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2048                 };
2049         }
2050
2051         #[test]
2052         fn handling_channel_announcements() {
2053                 let secp_ctx = Secp256k1::new();
2054                 let logger = test_utils::TestLogger::new();
2055
2056                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2057                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2058
2059                 let good_script = get_channel_script(&secp_ctx);
2060                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2061
2062                 // Test if the UTXO lookups were not supported
2063                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2064                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2065                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2066                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2067                         Ok(res) => assert!(res),
2068                         _ => panic!()
2069                 };
2070
2071                 {
2072                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2073                                 None => panic!(),
2074                                 Some(_) => ()
2075                         };
2076                 }
2077
2078                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2079                 // drop new one on the floor, since we can't see any changes.
2080                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2081                         Ok(_) => panic!(),
2082                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2083                 };
2084
2085                 // Test if an associated transaction were not on-chain (or not confirmed).
2086                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2087                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2088                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2089                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2090
2091                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2092                         unsigned_announcement.short_channel_id += 1;
2093                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2094                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2095                         Ok(_) => panic!(),
2096                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2097                 };
2098
2099                 // Now test if the transaction is found in the UTXO set and the script is correct.
2100                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2101                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2102                         unsigned_announcement.short_channel_id += 2;
2103                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2104                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2105                         Ok(res) => assert!(res),
2106                         _ => panic!()
2107                 };
2108
2109                 {
2110                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2111                                 None => panic!(),
2112                                 Some(_) => ()
2113                         };
2114                 }
2115
2116                 // If we receive announcement for the same channel, once we've validated it against the
2117                 // chain, we simply ignore all new (duplicate) announcements.
2118                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2119                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2120                         Ok(_) => panic!(),
2121                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2122                 };
2123
2124                 // Don't relay valid channels with excess data
2125                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2126                         unsigned_announcement.short_channel_id += 3;
2127                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2128                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2129                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2130                         Ok(res) => assert!(!res),
2131                         _ => panic!()
2132                 };
2133
2134                 let mut invalid_sig_announcement = valid_announcement.clone();
2135                 invalid_sig_announcement.contents.excess_data = Vec::new();
2136                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2137                         Ok(_) => panic!(),
2138                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2139                 };
2140
2141                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2142                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2143                         Ok(_) => panic!(),
2144                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2145                 };
2146         }
2147
2148         #[test]
2149         fn handling_channel_update() {
2150                 let secp_ctx = Secp256k1::new();
2151                 let logger = test_utils::TestLogger::new();
2152                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2153                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2154                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2155                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2156
2157                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2158                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2159
2160                 let amount_sats = 1000_000;
2161                 let short_channel_id;
2162
2163                 {
2164                         // Announce a channel we will update
2165                         let good_script = get_channel_script(&secp_ctx);
2166                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2167
2168                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2169                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2170                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2171                                 Ok(_) => (),
2172                                 Err(_) => panic!()
2173                         };
2174
2175                 }
2176
2177                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2178                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2179                         Ok(res) => assert!(res),
2180                         _ => panic!(),
2181                 };
2182
2183                 {
2184                         match network_graph.read_only().channels().get(&short_channel_id) {
2185                                 None => panic!(),
2186                                 Some(channel_info) => {
2187                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2188                                         assert!(channel_info.two_to_one.is_none());
2189                                 }
2190                         };
2191                 }
2192
2193                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2194                         unsigned_channel_update.timestamp += 100;
2195                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2196                 }, node_1_privkey, &secp_ctx);
2197                 // Return false because contains excess data
2198                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2199                         Ok(res) => assert!(!res),
2200                         _ => panic!()
2201                 };
2202
2203                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2204                         unsigned_channel_update.timestamp += 110;
2205                         unsigned_channel_update.short_channel_id += 1;
2206                 }, node_1_privkey, &secp_ctx);
2207                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2208                         Ok(_) => panic!(),
2209                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2210                 };
2211
2212                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2213                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2214                         unsigned_channel_update.timestamp += 110;
2215                 }, node_1_privkey, &secp_ctx);
2216                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2217                         Ok(_) => panic!(),
2218                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2219                 };
2220
2221                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2222                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2223                         unsigned_channel_update.timestamp += 110;
2224                 }, node_1_privkey, &secp_ctx);
2225                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2226                         Ok(_) => panic!(),
2227                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2228                 };
2229
2230                 // Even though previous update was not relayed further, we still accepted it,
2231                 // so we now won't accept update before the previous one.
2232                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2233                         unsigned_channel_update.timestamp += 100;
2234                 }, node_1_privkey, &secp_ctx);
2235                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2236                         Ok(_) => panic!(),
2237                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2238                 };
2239
2240                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2241                         unsigned_channel_update.timestamp += 500;
2242                 }, node_1_privkey, &secp_ctx);
2243                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2244                 let fake_msghash = hash_to_message!(&zero_hash);
2245                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2246                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2247                         Ok(_) => panic!(),
2248                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2249                 };
2250         }
2251
2252         #[test]
2253         fn handling_network_update() {
2254                 let logger = test_utils::TestLogger::new();
2255                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2256                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2257                 let secp_ctx = Secp256k1::new();
2258
2259                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2260                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2261
2262                 {
2263                         // There is no nodes in the table at the beginning.
2264                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2265                 }
2266
2267                 let short_channel_id;
2268                 {
2269                         // Announce a channel we will update
2270                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2271                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2272                         let chain_source: Option<&test_utils::TestChainSource> = None;
2273                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2274                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2275
2276                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2277                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2278
2279                         network_graph.handle_event(&Event::PaymentPathFailed {
2280                                 payment_id: None,
2281                                 payment_hash: PaymentHash([0; 32]),
2282                                 payment_failed_permanently: false,
2283                                 all_paths_failed: true,
2284                                 path: vec![],
2285                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2286                                         msg: valid_channel_update,
2287                                 }),
2288                                 short_channel_id: None,
2289                                 retry: None,
2290                                 error_code: None,
2291                                 error_data: None,
2292                         });
2293
2294                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2295                 }
2296
2297                 // Non-permanent closing just disables a channel
2298                 {
2299                         match network_graph.read_only().channels().get(&short_channel_id) {
2300                                 None => panic!(),
2301                                 Some(channel_info) => {
2302                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2303                                 }
2304                         };
2305
2306                         network_graph.handle_event(&Event::PaymentPathFailed {
2307                                 payment_id: None,
2308                                 payment_hash: PaymentHash([0; 32]),
2309                                 payment_failed_permanently: false,
2310                                 all_paths_failed: true,
2311                                 path: vec![],
2312                                 network_update: Some(NetworkUpdate::ChannelFailure {
2313                                         short_channel_id,
2314                                         is_permanent: false,
2315                                 }),
2316                                 short_channel_id: None,
2317                                 retry: None,
2318                                 error_code: None,
2319                                 error_data: None,
2320                         });
2321
2322                         match network_graph.read_only().channels().get(&short_channel_id) {
2323                                 None => panic!(),
2324                                 Some(channel_info) => {
2325                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2326                                 }
2327                         };
2328                 }
2329
2330                 // Permanent closing deletes a channel
2331                 network_graph.handle_event(&Event::PaymentPathFailed {
2332                         payment_id: None,
2333                         payment_hash: PaymentHash([0; 32]),
2334                         payment_failed_permanently: false,
2335                         all_paths_failed: true,
2336                         path: vec![],
2337                         network_update: Some(NetworkUpdate::ChannelFailure {
2338                                 short_channel_id,
2339                                 is_permanent: true,
2340                         }),
2341                         short_channel_id: None,
2342                         retry: None,
2343                         error_code: None,
2344                         error_data: None,
2345                 });
2346
2347                 assert_eq!(network_graph.read_only().channels().len(), 0);
2348                 // Nodes are also deleted because there are no associated channels anymore
2349                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2350                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2351         }
2352
2353         #[test]
2354         fn test_channel_timeouts() {
2355                 // Test the removal of channels with `remove_stale_channels`.
2356                 let logger = test_utils::TestLogger::new();
2357                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2358                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2359                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2360                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2361                 let secp_ctx = Secp256k1::new();
2362
2363                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2364                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2365
2366                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2367                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2368                 let chain_source: Option<&test_utils::TestChainSource> = None;
2369                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2370                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2371
2372                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2373                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2374                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2375
2376                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2377                 assert_eq!(network_graph.read_only().channels().len(), 1);
2378                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2379
2380                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2381                 #[cfg(feature = "std")]
2382                 {
2383                         // In std mode, a further check is performed before fully removing the channel -
2384                         // the channel_announcement must have been received at least two weeks ago. We
2385                         // fudge that here by indicating the time has jumped two weeks. Note that the
2386                         // directional channel information will have been removed already..
2387                         assert_eq!(network_graph.read_only().channels().len(), 1);
2388                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2389                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2390
2391                         use std::time::{SystemTime, UNIX_EPOCH};
2392                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2393                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2394                 }
2395
2396                 assert_eq!(network_graph.read_only().channels().len(), 0);
2397                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2398         }
2399
2400         #[test]
2401         fn getting_next_channel_announcements() {
2402                 let network_graph = create_network_graph();
2403                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2404                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2405                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2406
2407                 // Channels were not announced yet.
2408                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2409                 assert!(channels_with_announcements.is_none());
2410
2411                 let short_channel_id;
2412                 {
2413                         // Announce a channel we will update
2414                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2415                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2416                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2417                                 Ok(_) => (),
2418                                 Err(_) => panic!()
2419                         };
2420                 }
2421
2422                 // Contains initial channel announcement now.
2423                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2424                 if let Some(channel_announcements) = channels_with_announcements {
2425                         let (_, ref update_1, ref update_2) = channel_announcements;
2426                         assert_eq!(update_1, &None);
2427                         assert_eq!(update_2, &None);
2428                 } else {
2429                         panic!();
2430                 }
2431
2432                 {
2433                         // Valid channel update
2434                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2435                                 unsigned_channel_update.timestamp = 101;
2436                         }, node_1_privkey, &secp_ctx);
2437                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2438                                 Ok(_) => (),
2439                                 Err(_) => panic!()
2440                         };
2441                 }
2442
2443                 // Now contains an initial announcement and an update.
2444                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2445                 if let Some(channel_announcements) = channels_with_announcements {
2446                         let (_, ref update_1, ref update_2) = channel_announcements;
2447                         assert_ne!(update_1, &None);
2448                         assert_eq!(update_2, &None);
2449                 } else {
2450                         panic!();
2451                 }
2452
2453                 {
2454                         // Channel update with excess data.
2455                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2456                                 unsigned_channel_update.timestamp = 102;
2457                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2458                         }, node_1_privkey, &secp_ctx);
2459                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2460                                 Ok(_) => (),
2461                                 Err(_) => panic!()
2462                         };
2463                 }
2464
2465                 // Test that announcements with excess data won't be returned
2466                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2467                 if let Some(channel_announcements) = channels_with_announcements {
2468                         let (_, ref update_1, ref update_2) = channel_announcements;
2469                         assert_eq!(update_1, &None);
2470                         assert_eq!(update_2, &None);
2471                 } else {
2472                         panic!();
2473                 }
2474
2475                 // Further starting point have no channels after it
2476                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2477                 assert!(channels_with_announcements.is_none());
2478         }
2479
2480         #[test]
2481         fn getting_next_node_announcements() {
2482                 let network_graph = create_network_graph();
2483                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2484                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2485                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2486                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2487
2488                 // No nodes yet.
2489                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2490                 assert!(next_announcements.is_none());
2491
2492                 {
2493                         // Announce a channel to add 2 nodes
2494                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2495                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2496                                 Ok(_) => (),
2497                                 Err(_) => panic!()
2498                         };
2499                 }
2500
2501                 // Nodes were never announced
2502                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2503                 assert!(next_announcements.is_none());
2504
2505                 {
2506                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2507                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2508                                 Ok(_) => (),
2509                                 Err(_) => panic!()
2510                         };
2511
2512                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2513                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2514                                 Ok(_) => (),
2515                                 Err(_) => panic!()
2516                         };
2517                 }
2518
2519                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2520                 assert!(next_announcements.is_some());
2521
2522                 // Skip the first node.
2523                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2524                 assert!(next_announcements.is_some());
2525
2526                 {
2527                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2528                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2529                                 unsigned_announcement.timestamp += 10;
2530                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2531                         }, node_2_privkey, &secp_ctx);
2532                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2533                                 Ok(res) => assert!(!res),
2534                                 Err(_) => panic!()
2535                         };
2536                 }
2537
2538                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2539                 assert!(next_announcements.is_none());
2540         }
2541
2542         #[test]
2543         fn network_graph_serialization() {
2544                 let network_graph = create_network_graph();
2545                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2546
2547                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2548                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2549
2550                 // Announce a channel to add a corresponding node.
2551                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2552                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2553                         Ok(res) => assert!(res),
2554                         _ => panic!()
2555                 };
2556
2557                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2558                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2559                         Ok(_) => (),
2560                         Err(_) => panic!()
2561                 };
2562
2563                 let mut w = test_utils::TestVecWriter(Vec::new());
2564                 assert!(!network_graph.read_only().nodes().is_empty());
2565                 assert!(!network_graph.read_only().channels().is_empty());
2566                 network_graph.write(&mut w).unwrap();
2567
2568                 let logger = Arc::new(test_utils::TestLogger::new());
2569                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2570         }
2571
2572         #[test]
2573         fn network_graph_tlv_serialization() {
2574                 let network_graph = create_network_graph();
2575                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2576
2577                 let mut w = test_utils::TestVecWriter(Vec::new());
2578                 network_graph.write(&mut w).unwrap();
2579
2580                 let logger = Arc::new(test_utils::TestLogger::new());
2581                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2582                 assert!(reassembled_network_graph == network_graph);
2583                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2584         }
2585
2586         #[test]
2587         #[cfg(feature = "std")]
2588         fn calling_sync_routing_table() {
2589                 use std::time::{SystemTime, UNIX_EPOCH};
2590
2591                 let network_graph = create_network_graph();
2592                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2593                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2594                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2595
2596                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2597
2598                 // It should ignore if gossip_queries feature is not enabled
2599                 {
2600                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries(), remote_network_address: None };
2601                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2602                         let events = gossip_sync.get_and_clear_pending_msg_events();
2603                         assert_eq!(events.len(), 0);
2604                 }
2605
2606                 // It should send a gossip_timestamp_filter with the correct information
2607                 {
2608                         let init_msg = Init { features: InitFeatures::known(), remote_network_address: None };
2609                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2610                         let events = gossip_sync.get_and_clear_pending_msg_events();
2611                         assert_eq!(events.len(), 1);
2612                         match &events[0] {
2613                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2614                                         assert_eq!(node_id, &node_id_1);
2615                                         assert_eq!(msg.chain_hash, chain_hash);
2616                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2617                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2618                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2619                                         assert_eq!(msg.timestamp_range, u32::max_value());
2620                                 },
2621                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2622                         };
2623                 }
2624         }
2625
2626         #[test]
2627         fn handling_query_channel_range() {
2628                 let network_graph = create_network_graph();
2629                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2630
2631                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2632                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2633                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2634                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2635
2636                 let mut scids: Vec<u64> = vec![
2637                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2638                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2639                 ];
2640
2641                 // used for testing multipart reply across blocks
2642                 for block in 100000..=108001 {
2643                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2644                 }
2645
2646                 // used for testing resumption on same block
2647                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2648
2649                 for scid in scids {
2650                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2651                                 unsigned_announcement.short_channel_id = scid;
2652                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2653                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2654                                 Ok(_) => (),
2655                                 _ => panic!()
2656                         };
2657                 }
2658
2659                 // Error when number_of_blocks=0
2660                 do_handling_query_channel_range(
2661                         &gossip_sync,
2662                         &node_id_2,
2663                         QueryChannelRange {
2664                                 chain_hash: chain_hash.clone(),
2665                                 first_blocknum: 0,
2666                                 number_of_blocks: 0,
2667                         },
2668                         false,
2669                         vec![ReplyChannelRange {
2670                                 chain_hash: chain_hash.clone(),
2671                                 first_blocknum: 0,
2672                                 number_of_blocks: 0,
2673                                 sync_complete: true,
2674                                 short_channel_ids: vec![]
2675                         }]
2676                 );
2677
2678                 // Error when wrong chain
2679                 do_handling_query_channel_range(
2680                         &gossip_sync,
2681                         &node_id_2,
2682                         QueryChannelRange {
2683                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2684                                 first_blocknum: 0,
2685                                 number_of_blocks: 0xffff_ffff,
2686                         },
2687                         false,
2688                         vec![ReplyChannelRange {
2689                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2690                                 first_blocknum: 0,
2691                                 number_of_blocks: 0xffff_ffff,
2692                                 sync_complete: true,
2693                                 short_channel_ids: vec![],
2694                         }]
2695                 );
2696
2697                 // Error when first_blocknum > 0xffffff
2698                 do_handling_query_channel_range(
2699                         &gossip_sync,
2700                         &node_id_2,
2701                         QueryChannelRange {
2702                                 chain_hash: chain_hash.clone(),
2703                                 first_blocknum: 0x01000000,
2704                                 number_of_blocks: 0xffff_ffff,
2705                         },
2706                         false,
2707                         vec![ReplyChannelRange {
2708                                 chain_hash: chain_hash.clone(),
2709                                 first_blocknum: 0x01000000,
2710                                 number_of_blocks: 0xffff_ffff,
2711                                 sync_complete: true,
2712                                 short_channel_ids: vec![]
2713                         }]
2714                 );
2715
2716                 // Empty reply when max valid SCID block num
2717                 do_handling_query_channel_range(
2718                         &gossip_sync,
2719                         &node_id_2,
2720                         QueryChannelRange {
2721                                 chain_hash: chain_hash.clone(),
2722                                 first_blocknum: 0xffffff,
2723                                 number_of_blocks: 1,
2724                         },
2725                         true,
2726                         vec![
2727                                 ReplyChannelRange {
2728                                         chain_hash: chain_hash.clone(),
2729                                         first_blocknum: 0xffffff,
2730                                         number_of_blocks: 1,
2731                                         sync_complete: true,
2732                                         short_channel_ids: vec![]
2733                                 },
2734                         ]
2735                 );
2736
2737                 // No results in valid query range
2738                 do_handling_query_channel_range(
2739                         &gossip_sync,
2740                         &node_id_2,
2741                         QueryChannelRange {
2742                                 chain_hash: chain_hash.clone(),
2743                                 first_blocknum: 1000,
2744                                 number_of_blocks: 1000,
2745                         },
2746                         true,
2747                         vec![
2748                                 ReplyChannelRange {
2749                                         chain_hash: chain_hash.clone(),
2750                                         first_blocknum: 1000,
2751                                         number_of_blocks: 1000,
2752                                         sync_complete: true,
2753                                         short_channel_ids: vec![],
2754                                 }
2755                         ]
2756                 );
2757
2758                 // Overflow first_blocknum + number_of_blocks
2759                 do_handling_query_channel_range(
2760                         &gossip_sync,
2761                         &node_id_2,
2762                         QueryChannelRange {
2763                                 chain_hash: chain_hash.clone(),
2764                                 first_blocknum: 0xfe0000,
2765                                 number_of_blocks: 0xffffffff,
2766                         },
2767                         true,
2768                         vec![
2769                                 ReplyChannelRange {
2770                                         chain_hash: chain_hash.clone(),
2771                                         first_blocknum: 0xfe0000,
2772                                         number_of_blocks: 0xffffffff - 0xfe0000,
2773                                         sync_complete: true,
2774                                         short_channel_ids: vec![
2775                                                 0xfffffe_ffffff_ffff, // max
2776                                         ]
2777                                 }
2778                         ]
2779                 );
2780
2781                 // Single block exactly full
2782                 do_handling_query_channel_range(
2783                         &gossip_sync,
2784                         &node_id_2,
2785                         QueryChannelRange {
2786                                 chain_hash: chain_hash.clone(),
2787                                 first_blocknum: 100000,
2788                                 number_of_blocks: 8000,
2789                         },
2790                         true,
2791                         vec![
2792                                 ReplyChannelRange {
2793                                         chain_hash: chain_hash.clone(),
2794                                         first_blocknum: 100000,
2795                                         number_of_blocks: 8000,
2796                                         sync_complete: true,
2797                                         short_channel_ids: (100000..=107999)
2798                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2799                                                 .collect(),
2800                                 },
2801                         ]
2802                 );
2803
2804                 // Multiple split on new block
2805                 do_handling_query_channel_range(
2806                         &gossip_sync,
2807                         &node_id_2,
2808                         QueryChannelRange {
2809                                 chain_hash: chain_hash.clone(),
2810                                 first_blocknum: 100000,
2811                                 number_of_blocks: 8001,
2812                         },
2813                         true,
2814                         vec![
2815                                 ReplyChannelRange {
2816                                         chain_hash: chain_hash.clone(),
2817                                         first_blocknum: 100000,
2818                                         number_of_blocks: 7999,
2819                                         sync_complete: false,
2820                                         short_channel_ids: (100000..=107999)
2821                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2822                                                 .collect(),
2823                                 },
2824                                 ReplyChannelRange {
2825                                         chain_hash: chain_hash.clone(),
2826                                         first_blocknum: 107999,
2827                                         number_of_blocks: 2,
2828                                         sync_complete: true,
2829                                         short_channel_ids: vec![
2830                                                 scid_from_parts(108000, 0, 0).unwrap(),
2831                                         ],
2832                                 }
2833                         ]
2834                 );
2835
2836                 // Multiple split on same block
2837                 do_handling_query_channel_range(
2838                         &gossip_sync,
2839                         &node_id_2,
2840                         QueryChannelRange {
2841                                 chain_hash: chain_hash.clone(),
2842                                 first_blocknum: 100002,
2843                                 number_of_blocks: 8000,
2844                         },
2845                         true,
2846                         vec![
2847                                 ReplyChannelRange {
2848                                         chain_hash: chain_hash.clone(),
2849                                         first_blocknum: 100002,
2850                                         number_of_blocks: 7999,
2851                                         sync_complete: false,
2852                                         short_channel_ids: (100002..=108001)
2853                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2854                                                 .collect(),
2855                                 },
2856                                 ReplyChannelRange {
2857                                         chain_hash: chain_hash.clone(),
2858                                         first_blocknum: 108001,
2859                                         number_of_blocks: 1,
2860                                         sync_complete: true,
2861                                         short_channel_ids: vec![
2862                                                 scid_from_parts(108001, 1, 0).unwrap(),
2863                                         ],
2864                                 }
2865                         ]
2866                 );
2867         }
2868
2869         fn do_handling_query_channel_range(
2870                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2871                 test_node_id: &PublicKey,
2872                 msg: QueryChannelRange,
2873                 expected_ok: bool,
2874                 expected_replies: Vec<ReplyChannelRange>
2875         ) {
2876                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2877                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2878                 let query_end_blocknum = msg.end_blocknum();
2879                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2880
2881                 if expected_ok {
2882                         assert!(result.is_ok());
2883                 } else {
2884                         assert!(result.is_err());
2885                 }
2886
2887                 let events = gossip_sync.get_and_clear_pending_msg_events();
2888                 assert_eq!(events.len(), expected_replies.len());
2889
2890                 for i in 0..events.len() {
2891                         let expected_reply = &expected_replies[i];
2892                         match &events[i] {
2893                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2894                                         assert_eq!(node_id, test_node_id);
2895                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2896                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2897                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2898                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2899                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2900
2901                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2902                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2903                                         assert!(msg.first_blocknum >= max_firstblocknum);
2904                                         max_firstblocknum = msg.first_blocknum;
2905                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2906
2907                                         // Check that the last block count is >= the query's end_blocknum
2908                                         if i == events.len() - 1 {
2909                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2910                                         }
2911                                 },
2912                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2913                         }
2914                 }
2915         }
2916
2917         #[test]
2918         fn handling_query_short_channel_ids() {
2919                 let network_graph = create_network_graph();
2920                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2921                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2922                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2923
2924                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2925
2926                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2927                         chain_hash,
2928                         short_channel_ids: vec![0x0003e8_000000_0000],
2929                 });
2930                 assert!(result.is_err());
2931         }
2932
2933         #[test]
2934         fn displays_node_alias() {
2935                 let format_str_alias = |alias: &str| {
2936                         let mut bytes = [0u8; 32];
2937                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2938                         format!("{}", NodeAlias(bytes))
2939                 };
2940
2941                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2942                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2943                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2944
2945                 let format_bytes_alias = |alias: &[u8]| {
2946                         let mut bytes = [0u8; 32];
2947                         bytes[..alias.len()].copy_from_slice(alias);
2948                         format!("{}", NodeAlias(bytes))
2949                 };
2950
2951                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2952                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2953                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2954         }
2955
2956         #[test]
2957         fn channel_info_is_readable() {
2958                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2959                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2960                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2961                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2962
2963                 // 1. Test encoding/decoding of ChannelUpdateInfo
2964                 let chan_update_info = ChannelUpdateInfo {
2965                         last_update: 23,
2966                         enabled: true,
2967                         cltv_expiry_delta: 42,
2968                         htlc_minimum_msat: 1234,
2969                         htlc_maximum_msat: 5678,
2970                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2971                         last_update_message: None,
2972                 };
2973
2974                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2975                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2976
2977                 // First make sure we can read ChannelUpdateInfos we just wrote
2978                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
2979                 assert_eq!(chan_update_info, read_chan_update_info);
2980
2981                 // Check the serialization hasn't changed.
2982                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
2983                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
2984
2985                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
2986                 // or the ChannelUpdate enclosed with `last_update_message`.
2987                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
2988                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
2989                 assert!(read_chan_update_info_res.is_err());
2990
2991                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
2992                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
2993                 assert!(read_chan_update_info_res.is_err());
2994
2995                 // 2. Test encoding/decoding of ChannelInfo
2996                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
2997                 let chan_info_none_updates = ChannelInfo {
2998                         features: ChannelFeatures::known(),
2999                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3000                         one_to_two: None,
3001                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3002                         two_to_one: None,
3003                         capacity_sats: None,
3004                         announcement_message: None,
3005                         announcement_received_time: 87654,
3006                 };
3007
3008                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3009                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3010
3011                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3012                 assert_eq!(chan_info_none_updates, read_chan_info);
3013
3014                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3015                 let chan_info_some_updates = ChannelInfo {
3016                         features: ChannelFeatures::known(),
3017                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3018                         one_to_two: Some(chan_update_info.clone()),
3019                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3020                         two_to_one: Some(chan_update_info.clone()),
3021                         capacity_sats: None,
3022                         announcement_message: None,
3023                         announcement_received_time: 87654,
3024                 };
3025
3026                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3027                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3028
3029                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3030                 assert_eq!(chan_info_some_updates, read_chan_info);
3031
3032                 // Check the serialization hasn't changed.
3033                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3034                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3035
3036                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3037                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3038                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3039                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3040                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3041                 assert_eq!(read_chan_info.one_to_two, None);
3042                 assert_eq!(read_chan_info.two_to_one, None);
3043
3044                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3045                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3046                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3047                 assert_eq!(read_chan_info.one_to_two, None);
3048                 assert_eq!(read_chan_info.two_to_one, None);
3049         }
3050
3051         #[test]
3052         fn node_info_is_readable() {
3053                 use std::convert::TryFrom;
3054
3055                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3056                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3057                 let valid_node_ann_info = NodeAnnouncementInfo {
3058                         features: NodeFeatures::known(),
3059                         last_update: 0,
3060                         rgb: [0u8; 3],
3061                         alias: NodeAlias([0u8; 32]),
3062                         addresses: vec![valid_netaddr],
3063                         announcement_message: None,
3064                 };
3065
3066                 let mut encoded_valid_node_ann_info = Vec::new();
3067                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3068                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3069                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3070
3071                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3072                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3073                 assert!(read_invalid_node_ann_info_res.is_err());
3074
3075                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3076                 let valid_node_info = NodeInfo {
3077                         channels: Vec::new(),
3078                         lowest_inbound_channel_fees: None,
3079                         announcement_info: Some(valid_node_ann_info),
3080                 };
3081
3082                 let mut encoded_valid_node_info = Vec::new();
3083                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3084                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3085                 assert_eq!(read_valid_node_info, valid_node_info);
3086
3087                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3088                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3089                 assert_eq!(read_invalid_node_info.announcement_info, None);
3090         }
3091 }
3092
3093 #[cfg(all(test, feature = "_bench_unstable"))]
3094 mod benches {
3095         use super::*;
3096
3097         use test::Bencher;
3098         use std::io::Read;
3099
3100         #[bench]
3101         fn read_network_graph(bench: &mut Bencher) {
3102                 let logger = ::util::test_utils::TestLogger::new();
3103                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3104                 let mut v = Vec::new();
3105                 d.read_to_end(&mut v).unwrap();
3106                 bench.iter(|| {
3107                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3108                 });
3109         }
3110
3111         #[bench]
3112         fn write_network_graph(bench: &mut Bencher) {
3113                 let logger = ::util::test_utils::TestLogger::new();
3114                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3115                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3116                 bench.iter(|| {
3117                         let _ = net_graph.encode();
3118                 });
3119         }
3120 }