Use a real (probing-generated) scorer in benchmarks
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::blockdata::constants::ChainHash;
13
14 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
15 use bitcoin::secp256k1::{PublicKey, Verification};
16 use bitcoin::secp256k1::Secp256k1;
17 use bitcoin::secp256k1;
18
19 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
20 use bitcoin::hashes::Hash;
21 use bitcoin::network::constants::Network;
22
23 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
24 use crate::ln::ChannelId;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, SocketAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use core::convert::TryFrom;
42 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46 use core::str::FromStr;
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy, PartialEq, Eq)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80
81         /// Get the public key as an array from this NodeId
82         pub fn as_array(&self) -> &[u8; PUBLIC_KEY_SIZE] {
83                 &self.0
84         }
85
86         /// Get the public key from this NodeId
87         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
88                 PublicKey::from_slice(&self.0)
89         }
90 }
91
92 impl fmt::Debug for NodeId {
93         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
94                 write!(f, "NodeId({})", crate::util::logger::DebugBytes(&self.0))
95         }
96 }
97 impl fmt::Display for NodeId {
98         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
99                 crate::util::logger::DebugBytes(&self.0).fmt(f)
100         }
101 }
102
103 impl core::hash::Hash for NodeId {
104         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
105                 self.0.hash(hasher);
106         }
107 }
108
109 impl cmp::PartialOrd for NodeId {
110         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
111                 Some(self.cmp(other))
112         }
113 }
114
115 impl Ord for NodeId {
116         fn cmp(&self, other: &Self) -> cmp::Ordering {
117                 self.0[..].cmp(&other.0[..])
118         }
119 }
120
121 impl Writeable for NodeId {
122         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
123                 writer.write_all(&self.0)?;
124                 Ok(())
125         }
126 }
127
128 impl Readable for NodeId {
129         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
130                 let mut buf = [0; PUBLIC_KEY_SIZE];
131                 reader.read_exact(&mut buf)?;
132                 Ok(Self(buf))
133         }
134 }
135
136 impl From<PublicKey> for NodeId {
137         fn from(pubkey: PublicKey) -> Self {
138                 Self::from_pubkey(&pubkey)
139         }
140 }
141
142 impl TryFrom<NodeId> for PublicKey {
143         type Error = secp256k1::Error;
144
145         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
146                 node_id.as_pubkey()
147         }
148 }
149
150 impl FromStr for NodeId {
151         type Err = hex::parse::HexToArrayError;
152
153         fn from_str(s: &str) -> Result<Self, Self::Err> {
154                 let data: [u8; PUBLIC_KEY_SIZE] = hex::FromHex::from_hex(s)?;
155                 Ok(NodeId(data))
156         }
157 }
158
159 /// Represents the network as nodes and channels between them
160 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
161         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
162         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
163         chain_hash: ChainHash,
164         logger: L,
165         // Lock order: channels -> nodes
166         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
167         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
168         removed_node_counters: Mutex<Vec<u32>>,
169         next_node_counter: AtomicUsize,
170         // Lock order: removed_channels -> removed_nodes
171         //
172         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
173         // of `std::time::Instant`s for a few reasons:
174         //   * We want it to be possible to do tracking in no-std environments where we can compare
175         //     a provided current UNIX timestamp with the time at which we started tracking.
176         //   * In the future, if we decide to persist these maps, they will already be serializable.
177         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
178         //     environment should be practical over the time period we are considering (on the order of a
179         //     week).
180         //
181         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
182         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
183         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
184         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
185         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
186         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
187         /// that once some time passes, we can potentially resync it from gossip again.
188         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
189         /// Announcement messages which are awaiting an on-chain lookup to be processed.
190         pub(super) pending_checks: utxo::PendingChecks,
191 }
192
193 /// A read-only view of [`NetworkGraph`].
194 pub struct ReadOnlyNetworkGraph<'a> {
195         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
196         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
197         max_node_counter: u32,
198 }
199
200 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
201 /// return packet by a node along the route. See [BOLT #4] for details.
202 ///
203 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
204 #[derive(Clone, Debug, PartialEq, Eq)]
205 pub enum NetworkUpdate {
206         /// An error indicating a `channel_update` messages should be applied via
207         /// [`NetworkGraph::update_channel`].
208         ChannelUpdateMessage {
209                 /// The update to apply via [`NetworkGraph::update_channel`].
210                 msg: ChannelUpdate,
211         },
212         /// An error indicating that a channel failed to route a payment, which should be applied via
213         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
214         ChannelFailure {
215                 /// The short channel id of the closed channel.
216                 short_channel_id: u64,
217                 /// Whether the channel should be permanently removed or temporarily disabled until a new
218                 /// `channel_update` message is received.
219                 is_permanent: bool,
220         },
221         /// An error indicating that a node failed to route a payment, which should be applied via
222         /// [`NetworkGraph::node_failed_permanent`] if permanent.
223         NodeFailure {
224                 /// The node id of the failed node.
225                 node_id: PublicKey,
226                 /// Whether the node should be permanently removed from consideration or can be restored
227                 /// when a new `channel_update` message is received.
228                 is_permanent: bool,
229         }
230 }
231
232 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
233         (0, ChannelUpdateMessage) => {
234                 (0, msg, required),
235         },
236         (2, ChannelFailure) => {
237                 (0, short_channel_id, required),
238                 (2, is_permanent, required),
239         },
240         (4, NodeFailure) => {
241                 (0, node_id, required),
242                 (2, is_permanent, required),
243         },
244 );
245
246 /// Receives and validates network updates from peers,
247 /// stores authentic and relevant data as a network graph.
248 /// This network graph is then used for routing payments.
249 /// Provides interface to help with initial routing sync by
250 /// serving historical announcements.
251 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
252 where U::Target: UtxoLookup, L::Target: Logger
253 {
254         network_graph: G,
255         utxo_lookup: RwLock<Option<U>>,
256         #[cfg(feature = "std")]
257         full_syncs_requested: AtomicUsize,
258         pending_events: Mutex<Vec<MessageSendEvent>>,
259         logger: L,
260 }
261
262 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
263 where U::Target: UtxoLookup, L::Target: Logger
264 {
265         /// Creates a new tracker of the actual state of the network of channels and nodes,
266         /// assuming an existing [`NetworkGraph`].
267         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
268         /// correct, and the announcement is signed with channel owners' keys.
269         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
270                 P2PGossipSync {
271                         network_graph,
272                         #[cfg(feature = "std")]
273                         full_syncs_requested: AtomicUsize::new(0),
274                         utxo_lookup: RwLock::new(utxo_lookup),
275                         pending_events: Mutex::new(vec![]),
276                         logger,
277                 }
278         }
279
280         /// Adds a provider used to check new announcements. Does not affect
281         /// existing announcements unless they are updated.
282         /// Add, update or remove the provider would replace the current one.
283         pub fn add_utxo_lookup(&self, utxo_lookup: Option<U>) {
284                 *self.utxo_lookup.write().unwrap() = utxo_lookup;
285         }
286
287         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
288         /// [`P2PGossipSync::new`].
289         ///
290         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
291         pub fn network_graph(&self) -> &G {
292                 &self.network_graph
293         }
294
295         #[cfg(feature = "std")]
296         /// Returns true when a full routing table sync should be performed with a peer.
297         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
298                 //TODO: Determine whether to request a full sync based on the network map.
299                 const FULL_SYNCS_TO_REQUEST: usize = 5;
300                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
301                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
302                         true
303                 } else {
304                         false
305                 }
306         }
307
308         /// Used to broadcast forward gossip messages which were validated async.
309         ///
310         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
311         /// data.
312         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
313                 match &mut ev {
314                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
315                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
316                                 if update_msg.as_ref()
317                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
318                                 {
319                                         *update_msg = None;
320                                 }
321                         },
322                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
323                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
324                         },
325                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
326                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
327                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
328                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
329                                 {
330                                         return;
331                                 }
332                         },
333                         _ => return,
334                 }
335                 self.pending_events.lock().unwrap().push(ev);
336         }
337 }
338
339 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
340         /// Handles any network updates originating from [`Event`]s.
341         //
342         /// Note that this will skip applying any [`NetworkUpdate::ChannelUpdateMessage`] to avoid
343         /// leaking possibly identifying information of the sender to the public network.
344         ///
345         /// [`Event`]: crate::events::Event
346         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
347                 match *network_update {
348                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
349                                 let short_channel_id = msg.contents.short_channel_id;
350                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
351                                 let status = if is_enabled { "enabled" } else { "disabled" };
352                                 log_debug!(self.logger, "Skipping application of a channel update from a payment failure. Channel {} is {}.", short_channel_id, status);
353                         },
354                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
355                                 if is_permanent {
356                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
357                                         self.channel_failed_permanent(short_channel_id);
358                                 }
359                         },
360                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
361                                 if is_permanent {
362                                         log_debug!(self.logger,
363                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
364                                         self.node_failed_permanent(node_id);
365                                 };
366                         },
367                 }
368         }
369
370         /// Gets the chain hash for this network graph.
371         pub fn get_chain_hash(&self) -> ChainHash {
372                 self.chain_hash
373         }
374 }
375
376 macro_rules! secp_verify_sig {
377         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
378                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
379                         Ok(_) => {},
380                         Err(_) => {
381                                 return Err(LightningError {
382                                         err: format!("Invalid signature on {} message", $msg_type),
383                                         action: ErrorAction::SendWarningMessage {
384                                                 msg: msgs::WarningMessage {
385                                                         channel_id: ChannelId::new_zero(),
386                                                         data: format!("Invalid signature on {} message", $msg_type),
387                                                 },
388                                                 log_level: Level::Trace,
389                                         },
390                                 });
391                         },
392                 }
393         };
394 }
395
396 macro_rules! get_pubkey_from_node_id {
397         ( $node_id: expr, $msg_type: expr ) => {
398                 PublicKey::from_slice($node_id.as_slice())
399                         .map_err(|_| LightningError {
400                                 err: format!("Invalid public key on {} message", $msg_type),
401                                 action: ErrorAction::SendWarningMessage {
402                                         msg: msgs::WarningMessage {
403                                                 channel_id: ChannelId::new_zero(),
404                                                 data: format!("Invalid public key on {} message", $msg_type),
405                                         },
406                                         log_level: Level::Trace
407                                 }
408                         })?
409         }
410 }
411
412 fn message_sha256d_hash<M: Writeable>(msg: &M) -> Sha256dHash {
413         let mut engine = Sha256dHash::engine();
414         msg.write(&mut engine).expect("In-memory structs should not fail to serialize");
415         Sha256dHash::from_engine(engine)
416 }
417
418 /// Verifies the signature of a [`NodeAnnouncement`].
419 ///
420 /// Returns an error if it is invalid.
421 pub fn verify_node_announcement<C: Verification>(msg: &NodeAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
422         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
423         secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
424
425         Ok(())
426 }
427
428 /// Verifies all signatures included in a [`ChannelAnnouncement`].
429 ///
430 /// Returns an error if one of the signatures is invalid.
431 pub fn verify_channel_announcement<C: Verification>(msg: &ChannelAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
432         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
433         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
434         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
435         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
436         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
437
438         Ok(())
439 }
440
441 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
442 where U::Target: UtxoLookup, L::Target: Logger
443 {
444         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
445                 self.network_graph.update_node_from_announcement(msg)?;
446                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
447                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
448                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
449         }
450
451         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
452                 self.network_graph.update_channel_from_announcement(msg, &*self.utxo_lookup.read().unwrap())?;
453                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
454         }
455
456         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
457                 self.network_graph.update_channel(msg)?;
458                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
459         }
460
461         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
462                 let mut channels = self.network_graph.channels.write().unwrap();
463                 for (_, ref chan) in channels.range(starting_point..) {
464                         if chan.announcement_message.is_some() {
465                                 let chan_announcement = chan.announcement_message.clone().unwrap();
466                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
467                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
468                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
469                                         one_to_two_announcement = one_to_two.last_update_message.clone();
470                                 }
471                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
472                                         two_to_one_announcement = two_to_one.last_update_message.clone();
473                                 }
474                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
475                         } else {
476                                 // TODO: We may end up sending un-announced channel_updates if we are sending
477                                 // initial sync data while receiving announce/updates for this channel.
478                         }
479                 }
480                 None
481         }
482
483         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
484                 let mut nodes = self.network_graph.nodes.write().unwrap();
485                 let iter = if let Some(node_id) = starting_point {
486                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
487                         } else {
488                                 nodes.range(..)
489                         };
490                 for (_, ref node) in iter {
491                         if let Some(node_info) = node.announcement_info.as_ref() {
492                                 if let Some(msg) = node_info.announcement_message.clone() {
493                                         return Some(msg);
494                                 }
495                         }
496                 }
497                 None
498         }
499
500         /// Initiates a stateless sync of routing gossip information with a peer
501         /// using [`gossip_queries`]. The default strategy used by this implementation
502         /// is to sync the full block range with several peers.
503         ///
504         /// We should expect one or more [`reply_channel_range`] messages in response
505         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
506         /// to request gossip messages for each channel. The sync is considered complete
507         /// when the final [`reply_scids_end`] message is received, though we are not
508         /// tracking this directly.
509         ///
510         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
511         /// [`reply_channel_range`]: msgs::ReplyChannelRange
512         /// [`query_channel_range`]: msgs::QueryChannelRange
513         /// [`query_scid`]: msgs::QueryShortChannelIds
514         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
515         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
516                 // We will only perform a sync with peers that support gossip_queries.
517                 if !init_msg.features.supports_gossip_queries() {
518                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
519                         // channels with peers even without being able to exchange gossip.
520                         return Ok(());
521                 }
522
523                 // The lightning network's gossip sync system is completely broken in numerous ways.
524                 //
525                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
526                 // to do a full sync from the first few peers we connect to, and then receive gossip
527                 // updates from all our peers normally.
528                 //
529                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
530                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
531                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
532                 // seen.
533                 //
534                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
535                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
536                 // channel data which you are missing. Except there was no way at all to identify which
537                 // `channel_update`s you were missing, so you still had to request everything, just in a
538                 // very complicated way with some queries instead of just getting the dump.
539                 //
540                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
541                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
542                 // relying on it useless.
543                 //
544                 // After gossip queries were introduced, support for receiving a full gossip table dump on
545                 // connection was removed from several nodes, making it impossible to get a full sync
546                 // without using the "gossip queries" messages.
547                 //
548                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
549                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
550                 // message, as the name implies, tells the peer to not forward any gossip messages with a
551                 // timestamp older than a given value (not the time the peer received the filter, but the
552                 // timestamp in the update message, which is often hours behind when the peer received the
553                 // message).
554                 //
555                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
556                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
557                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
558                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
559                 // will simply not forward any new updates they see to you which were generated some time
560                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
561                 // ago), you will always get the full routing graph from all your peers.
562                 //
563                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
564                 // propagated some time after it was generated, and, worse, often disable gossiping with
565                 // several peers after their first connection. The second behavior can cause gossip to not
566                 // propagate fully if there are cuts in the gossiping subgraph.
567                 //
568                 // In an attempt to cut a middle ground between always fetching the full graph from all of
569                 // our peers and never receiving gossip from peers at all, we send all of our peers a
570                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
571                 //
572                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
573                 #[allow(unused_mut, unused_assignments)]
574                 let mut gossip_start_time = 0;
575                 #[cfg(feature = "std")]
576                 {
577                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
578                         if self.should_request_full_sync(&their_node_id) {
579                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
580                         } else {
581                                 gossip_start_time -= 60 * 60; // an hour ago
582                         }
583                 }
584
585                 let mut pending_events = self.pending_events.lock().unwrap();
586                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
587                         node_id: their_node_id.clone(),
588                         msg: GossipTimestampFilter {
589                                 chain_hash: self.network_graph.chain_hash,
590                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
591                                 timestamp_range: u32::max_value(),
592                         },
593                 });
594                 Ok(())
595         }
596
597         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
598                 // We don't make queries, so should never receive replies. If, in the future, the set
599                 // reconciliation extensions to gossip queries become broadly supported, we should revert
600                 // this code to its state pre-0.0.106.
601                 Ok(())
602         }
603
604         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
605                 // We don't make queries, so should never receive replies. If, in the future, the set
606                 // reconciliation extensions to gossip queries become broadly supported, we should revert
607                 // this code to its state pre-0.0.106.
608                 Ok(())
609         }
610
611         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
612         /// are in the specified block range. Due to message size limits, large range
613         /// queries may result in several reply messages. This implementation enqueues
614         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
615         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
616         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
617         /// memory constrained systems.
618         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
619                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
620
621                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
622
623                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
624                 // If so, we manually cap the ending block to avoid this overflow.
625                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
626
627                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
628                 if msg.chain_hash != self.network_graph.chain_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
629                         let mut pending_events = self.pending_events.lock().unwrap();
630                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
631                                 node_id: their_node_id.clone(),
632                                 msg: ReplyChannelRange {
633                                         chain_hash: msg.chain_hash.clone(),
634                                         first_blocknum: msg.first_blocknum,
635                                         number_of_blocks: msg.number_of_blocks,
636                                         sync_complete: true,
637                                         short_channel_ids: vec![],
638                                 }
639                         });
640                         return Err(LightningError {
641                                 err: String::from("query_channel_range could not be processed"),
642                                 action: ErrorAction::IgnoreError,
643                         });
644                 }
645
646                 // Creates channel batches. We are not checking if the channel is routable
647                 // (has at least one update). A peer may still want to know the channel
648                 // exists even if its not yet routable.
649                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
650                 let mut channels = self.network_graph.channels.write().unwrap();
651                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
652                         if let Some(chan_announcement) = &chan.announcement_message {
653                                 // Construct a new batch if last one is full
654                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
655                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
656                                 }
657
658                                 let batch = batches.last_mut().unwrap();
659                                 batch.push(chan_announcement.contents.short_channel_id);
660                         }
661                 }
662                 drop(channels);
663
664                 let mut pending_events = self.pending_events.lock().unwrap();
665                 let batch_count = batches.len();
666                 let mut prev_batch_endblock = msg.first_blocknum;
667                 for (batch_index, batch) in batches.into_iter().enumerate() {
668                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
669                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
670                         //
671                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
672                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
673                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
674                         // significant diversion from the requirements set by the spec, and, in case of blocks
675                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
676                         // and *not* derive the first_blocknum from the actual first block of the reply.
677                         let first_blocknum = prev_batch_endblock;
678
679                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
680                         // fit in. Though there is no requirement that we use exactly the number of blocks its
681                         // contents are from, except for the bogus requirements c-lightning enforces, above.
682                         //
683                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
684                         // >= the query's end block. Thus, for the last reply, we calculate the difference
685                         // between the query's end block and the start of the reply.
686                         //
687                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
688                         // first_blocknum will be either msg.first_blocknum or a higher block height.
689                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
690                                 (true, msg.end_blocknum() - first_blocknum)
691                         }
692                         // Prior replies should use the number of blocks that fit into the reply. Overflow
693                         // safe since first_blocknum is always <= last SCID's block.
694                         else {
695                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
696                         };
697
698                         prev_batch_endblock = first_blocknum + number_of_blocks;
699
700                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
701                                 node_id: their_node_id.clone(),
702                                 msg: ReplyChannelRange {
703                                         chain_hash: msg.chain_hash.clone(),
704                                         first_blocknum,
705                                         number_of_blocks,
706                                         sync_complete,
707                                         short_channel_ids: batch,
708                                 }
709                         });
710                 }
711
712                 Ok(())
713         }
714
715         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
716                 // TODO
717                 Err(LightningError {
718                         err: String::from("Not implemented"),
719                         action: ErrorAction::IgnoreError,
720                 })
721         }
722
723         fn provided_node_features(&self) -> NodeFeatures {
724                 let mut features = NodeFeatures::empty();
725                 features.set_gossip_queries_optional();
726                 features
727         }
728
729         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
730                 let mut features = InitFeatures::empty();
731                 features.set_gossip_queries_optional();
732                 features
733         }
734
735         fn processing_queue_high(&self) -> bool {
736                 self.network_graph.pending_checks.too_many_checks_pending()
737         }
738 }
739
740 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
741 where
742         U::Target: UtxoLookup,
743         L::Target: Logger,
744 {
745         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
746                 let mut ret = Vec::new();
747                 let mut pending_events = self.pending_events.lock().unwrap();
748                 core::mem::swap(&mut ret, &mut pending_events);
749                 ret
750         }
751 }
752
753 // Fetching values from this struct is very performance sensitive during routefinding. Thus, we
754 // want to ensure that all of the fields we care about (all of them except `last_update_message`)
755 // sit on the same cache line.
756 //
757 // We do this by using `repr(C)`, which forces the struct to be laid out in memory the way we write
758 // it (ensuring `last_update_message` hangs off the end and no fields are reordered after it), and
759 // `align(32)`, ensuring the struct starts either at the start, or in the middle, of a 64b x86-64
760 // cache line. This ensures the beginning fields (which are 31 bytes) all sit in the same cache
761 // line.
762 #[repr(C, align(32))]
763 #[derive(Clone, Debug, PartialEq, Eq)]
764 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
765 pub struct ChannelUpdateInfo {
766         /// The minimum value, which must be relayed to the next hop via the channel
767         pub htlc_minimum_msat: u64,
768         /// The maximum value which may be relayed to the next hop via the channel.
769         pub htlc_maximum_msat: u64,
770         /// Fees charged when the channel is used for routing
771         pub fees: RoutingFees,
772         /// When the last update to the channel direction was issued.
773         /// Value is opaque, as set in the announcement.
774         pub last_update: u32,
775         /// The difference in CLTV values that you must have when routing through this channel.
776         pub cltv_expiry_delta: u16,
777         /// Whether the channel can be currently used for payments (in this one direction).
778         pub enabled: bool,
779         /// Most recent update for the channel received from the network
780         /// Mostly redundant with the data we store in fields explicitly.
781         /// Everything else is useful only for sending out for initial routing sync.
782         /// Not stored if contains excess data to prevent DoS.
783         pub last_update_message: Option<ChannelUpdate>,
784 }
785
786 impl fmt::Display for ChannelUpdateInfo {
787         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
788                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
789                 Ok(())
790         }
791 }
792
793 impl Writeable for ChannelUpdateInfo {
794         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
795                 write_tlv_fields!(writer, {
796                         (0, self.last_update, required),
797                         (2, self.enabled, required),
798                         (4, self.cltv_expiry_delta, required),
799                         (6, self.htlc_minimum_msat, required),
800                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
801                         // compatibility with LDK versions prior to v0.0.110.
802                         (8, Some(self.htlc_maximum_msat), required),
803                         (10, self.fees, required),
804                         (12, self.last_update_message, required),
805                 });
806                 Ok(())
807         }
808 }
809
810 impl Readable for ChannelUpdateInfo {
811         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
812                 _init_tlv_field_var!(last_update, required);
813                 _init_tlv_field_var!(enabled, required);
814                 _init_tlv_field_var!(cltv_expiry_delta, required);
815                 _init_tlv_field_var!(htlc_minimum_msat, required);
816                 _init_tlv_field_var!(htlc_maximum_msat, option);
817                 _init_tlv_field_var!(fees, required);
818                 _init_tlv_field_var!(last_update_message, required);
819
820                 read_tlv_fields!(reader, {
821                         (0, last_update, required),
822                         (2, enabled, required),
823                         (4, cltv_expiry_delta, required),
824                         (6, htlc_minimum_msat, required),
825                         (8, htlc_maximum_msat, required),
826                         (10, fees, required),
827                         (12, last_update_message, required)
828                 });
829
830                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
831                         Ok(ChannelUpdateInfo {
832                                 last_update: _init_tlv_based_struct_field!(last_update, required),
833                                 enabled: _init_tlv_based_struct_field!(enabled, required),
834                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
835                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
836                                 htlc_maximum_msat,
837                                 fees: _init_tlv_based_struct_field!(fees, required),
838                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
839                         })
840                 } else {
841                         Err(DecodeError::InvalidValue)
842                 }
843         }
844 }
845
846 // Fetching values from this struct is very performance sensitive during routefinding. Thus, we
847 // want to ensure that all of the fields we care about (all of them except `last_update_message`
848 // and `announcement_received_time`) sit on the same cache line.
849 //
850 // Sadly, this is not possible, however we can still do okay - all of the fields before
851 // `one_to_two` and `two_to_one` are just under 128 bytes long, so we can ensure they sit on
852 // adjacent cache lines (which are generally fetched together in x86_64 processors).
853 //
854 // This leaves only the two directional channel info structs on separate cache lines.
855 //
856 // We accomplish this using `repr(C)`, which forces the struct to be laid out in memory the way we
857 // write it (ensuring the fields we care about are at the start of the struct) and `align(128)`,
858 // ensuring the struct starts at the beginning of two adjacent 64b x86-64 cache lines.
859 #[repr(align(128), C)]
860 #[derive(Clone, Debug, Eq)]
861 /// Details about a channel (both directions).
862 /// Received within a channel announcement.
863 pub struct ChannelInfo {
864         /// Protocol features of a channel communicated during its announcement
865         pub features: ChannelFeatures,
866
867         /// Source node of the first direction of a channel
868         pub node_one: NodeId,
869
870         /// Source node of the second direction of a channel
871         pub node_two: NodeId,
872
873         /// XXX docs
874         pub(crate) node_one_counter: u32,
875         /// XXX docs
876         pub(crate) node_two_counter: u32,
877
878         /// The channel capacity as seen on-chain, if chain lookup is available.
879         pub capacity_sats: Option<u64>,
880
881         /// Details about the first direction of a channel
882         pub one_to_two: Option<ChannelUpdateInfo>,
883         /// Details about the second direction of a channel
884         pub two_to_one: Option<ChannelUpdateInfo>,
885
886         /// An initial announcement of the channel
887         /// Mostly redundant with the data we store in fields explicitly.
888         /// Everything else is useful only for sending out for initial routing sync.
889         /// Not stored if contains excess data to prevent DoS.
890         pub announcement_message: Option<ChannelAnnouncement>,
891         /// The timestamp when we received the announcement, if we are running with feature = "std"
892         /// (which we can probably assume we are - no-std environments probably won't have a full
893         /// network graph in memory!).
894         announcement_received_time: u64,
895 }
896
897 impl PartialEq for ChannelInfo {
898         fn eq(&self, o: &ChannelInfo) -> bool {
899                 self.features == o.features &&
900                         self.node_one == o.node_one &&
901                         self.one_to_two == o.one_to_two &&
902                         self.node_two == o.node_two &&
903                         self.two_to_one == o.two_to_one &&
904                         self.capacity_sats == o.capacity_sats &&
905                         self.announcement_message == o.announcement_message &&
906                         self.announcement_received_time == o.announcement_received_time
907         }
908 }
909
910 impl ChannelInfo {
911         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
912         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
913         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
914                 let (direction, source, outbound) = {
915                         if target == &self.node_one {
916                                 (self.two_to_one.as_ref(), &self.node_two, false)
917                         } else if target == &self.node_two {
918                                 (self.one_to_two.as_ref(), &self.node_one, true)
919                         } else {
920                                 return None;
921                         }
922                 };
923                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), source))
924         }
925
926         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
927         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
928         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
929                 let (direction, target, outbound) = {
930                         if source == &self.node_one {
931                                 (self.one_to_two.as_ref(), &self.node_two, true)
932                         } else if source == &self.node_two {
933                                 (self.two_to_one.as_ref(), &self.node_one, false)
934                         } else {
935                                 return None;
936                         }
937                 };
938                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), target))
939         }
940
941         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
942         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
943                 let direction = channel_flags & 1u8;
944                 if direction == 0 {
945                         self.one_to_two.as_ref()
946                 } else {
947                         self.two_to_one.as_ref()
948                 }
949         }
950 }
951
952 impl fmt::Display for ChannelInfo {
953         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
954                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
955                    log_bytes!(self.features.encode()), &self.node_one, self.one_to_two, &self.node_two, self.two_to_one)?;
956                 Ok(())
957         }
958 }
959
960 impl Writeable for ChannelInfo {
961         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
962                 write_tlv_fields!(writer, {
963                         (0, self.features, required),
964                         (1, self.announcement_received_time, (default_value, 0)),
965                         (2, self.node_one, required),
966                         (4, self.one_to_two, required),
967                         (6, self.node_two, required),
968                         (8, self.two_to_one, required),
969                         (10, self.capacity_sats, required),
970                         (12, self.announcement_message, required),
971                 });
972                 Ok(())
973         }
974 }
975
976 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
977 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
978 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
979 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
980 // channel updates via the gossip network.
981 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
982
983 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
984         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
985                 match crate::util::ser::Readable::read(reader) {
986                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
987                         Err(DecodeError::ShortRead) => Ok(None),
988                         Err(DecodeError::InvalidValue) => Ok(None),
989                         Err(err) => Err(err),
990                 }
991         }
992 }
993
994 impl Readable for ChannelInfo {
995         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
996                 _init_tlv_field_var!(features, required);
997                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
998                 _init_tlv_field_var!(node_one, required);
999                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
1000                 _init_tlv_field_var!(node_two, required);
1001                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
1002                 _init_tlv_field_var!(capacity_sats, required);
1003                 _init_tlv_field_var!(announcement_message, required);
1004                 read_tlv_fields!(reader, {
1005                         (0, features, required),
1006                         (1, announcement_received_time, (default_value, 0)),
1007                         (2, node_one, required),
1008                         (4, one_to_two_wrap, upgradable_option),
1009                         (6, node_two, required),
1010                         (8, two_to_one_wrap, upgradable_option),
1011                         (10, capacity_sats, required),
1012                         (12, announcement_message, required),
1013                 });
1014
1015                 Ok(ChannelInfo {
1016                         features: _init_tlv_based_struct_field!(features, required),
1017                         node_one: _init_tlv_based_struct_field!(node_one, required),
1018                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
1019                         node_two: _init_tlv_based_struct_field!(node_two, required),
1020                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
1021                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
1022                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
1023                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
1024                         node_one_counter: u32::max_value(),
1025                         node_two_counter: u32::max_value(),
1026                 })
1027         }
1028 }
1029
1030 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
1031 /// source node to a target node.
1032 #[derive(Clone)]
1033 pub struct DirectedChannelInfo<'a> {
1034         channel: &'a ChannelInfo,
1035         direction: &'a ChannelUpdateInfo,
1036         source_counter: u32,
1037         target_counter: u32,
1038         /// The direction this channel is in - if set, it indicates that we're traversing the channel
1039         /// from [`ChannelInfo::node_one`] to [`ChannelInfo::node_two`].
1040         from_node_one: bool,
1041 }
1042
1043 impl<'a> DirectedChannelInfo<'a> {
1044         #[inline]
1045         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo, from_node_one: bool) -> Self {
1046                 let (source_counter, target_counter) = if from_node_one {
1047                         (channel.node_one_counter, channel.node_two_counter)
1048                 } else {
1049                         (channel.node_two_counter, channel.node_one_counter)
1050                 };
1051                 Self { channel, direction, from_node_one, source_counter, target_counter }
1052         }
1053
1054         /// Returns information for the channel.
1055         #[inline]
1056         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
1057
1058         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
1059         ///
1060         /// This is either the total capacity from the funding transaction, if known, or the
1061         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
1062         /// otherwise.
1063         #[inline]
1064         pub fn effective_capacity(&self) -> EffectiveCapacity {
1065                 let mut htlc_maximum_msat = self.direction().htlc_maximum_msat;
1066                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
1067
1068                 match capacity_msat {
1069                         Some(capacity_msat) => {
1070                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
1071                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat }
1072                         },
1073                         None => EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: htlc_maximum_msat },
1074                 }
1075         }
1076
1077         /// Returns information for the direction.
1078         #[inline]
1079         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1080
1081         /// Returns the `node_id` of the source hop.
1082         ///
1083         /// Refers to the `node_id` forwarding the payment to the next hop.
1084         #[inline]
1085         pub(super) fn source(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_one } else { &self.channel.node_two } }
1086
1087         /// Returns the `node_id` of the target hop.
1088         ///
1089         /// Refers to the `node_id` receiving the payment from the previous hop.
1090         #[inline]
1091         pub(super) fn target(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_two } else { &self.channel.node_one } }
1092
1093         /// Returns the source node's counter
1094         #[inline(always)]
1095         pub(super) fn source_counter(&self) -> u32 { self.source_counter }
1096
1097         /// Returns the target node's counter
1098         #[inline(always)]
1099         pub(super) fn target_counter(&self) -> u32 { self.target_counter }
1100 }
1101
1102 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1103         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1104                 f.debug_struct("DirectedChannelInfo")
1105                         .field("channel", &self.channel)
1106                         .finish()
1107         }
1108 }
1109
1110 /// The effective capacity of a channel for routing purposes.
1111 ///
1112 /// While this may be smaller than the actual channel capacity, amounts greater than
1113 /// [`Self::as_msat`] should not be routed through the channel.
1114 #[derive(Clone, Copy, Debug, PartialEq)]
1115 pub enum EffectiveCapacity {
1116         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1117         /// direct hop.
1118         ExactLiquidity {
1119                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1120                 /// millisatoshi.
1121                 liquidity_msat: u64,
1122         },
1123         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1124         AdvertisedMaxHTLC {
1125                 /// The maximum HTLC amount denominated in millisatoshi.
1126                 amount_msat: u64,
1127         },
1128         /// The total capacity of the channel as determined by the funding transaction.
1129         Total {
1130                 /// The funding amount denominated in millisatoshi.
1131                 capacity_msat: u64,
1132                 /// The maximum HTLC amount denominated in millisatoshi.
1133                 htlc_maximum_msat: u64
1134         },
1135         /// A capacity sufficient to route any payment, typically used for private channels provided by
1136         /// an invoice.
1137         Infinite,
1138         /// The maximum HTLC amount as provided by an invoice route hint.
1139         HintMaxHTLC {
1140                 /// The maximum HTLC amount denominated in millisatoshi.
1141                 amount_msat: u64,
1142         },
1143         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1144         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1145         Unknown,
1146 }
1147
1148 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1149 /// use when making routing decisions.
1150 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1151
1152 impl EffectiveCapacity {
1153         /// Returns the effective capacity denominated in millisatoshi.
1154         pub fn as_msat(&self) -> u64 {
1155                 match self {
1156                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1157                         EffectiveCapacity::AdvertisedMaxHTLC { amount_msat } => *amount_msat,
1158                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1159                         EffectiveCapacity::HintMaxHTLC { amount_msat } => *amount_msat,
1160                         EffectiveCapacity::Infinite => u64::max_value(),
1161                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1162                 }
1163         }
1164 }
1165
1166 /// Fees for routing via a given channel or a node
1167 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1168 pub struct RoutingFees {
1169         /// Flat routing fee in millisatoshis.
1170         pub base_msat: u32,
1171         /// Liquidity-based routing fee in millionths of a routed amount.
1172         /// In other words, 10000 is 1%.
1173         pub proportional_millionths: u32,
1174 }
1175
1176 impl_writeable_tlv_based!(RoutingFees, {
1177         (0, base_msat, required),
1178         (2, proportional_millionths, required)
1179 });
1180
1181 #[derive(Clone, Debug, PartialEq, Eq)]
1182 /// Information received in the latest node_announcement from this node.
1183 pub struct NodeAnnouncementInfo {
1184         /// Protocol features the node announced support for
1185         pub features: NodeFeatures,
1186         /// When the last known update to the node state was issued.
1187         /// Value is opaque, as set in the announcement.
1188         pub last_update: u32,
1189         /// Color assigned to the node
1190         pub rgb: [u8; 3],
1191         /// Moniker assigned to the node.
1192         /// May be invalid or malicious (eg control chars),
1193         /// should not be exposed to the user.
1194         pub alias: NodeAlias,
1195         /// An initial announcement of the node
1196         /// Mostly redundant with the data we store in fields explicitly.
1197         /// Everything else is useful only for sending out for initial routing sync.
1198         /// Not stored if contains excess data to prevent DoS.
1199         pub announcement_message: Option<NodeAnnouncement>
1200 }
1201
1202 impl NodeAnnouncementInfo {
1203         /// Internet-level addresses via which one can connect to the node
1204         pub fn addresses(&self) -> &[SocketAddress] {
1205                 self.announcement_message.as_ref()
1206                         .map(|msg| msg.contents.addresses.as_slice())
1207                         .unwrap_or_default()
1208         }
1209 }
1210
1211 impl Writeable for NodeAnnouncementInfo {
1212         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1213                 let empty_addresses = Vec::<SocketAddress>::new();
1214                 write_tlv_fields!(writer, {
1215                         (0, self.features, required),
1216                         (2, self.last_update, required),
1217                         (4, self.rgb, required),
1218                         (6, self.alias, required),
1219                         (8, self.announcement_message, option),
1220                         (10, empty_addresses, required_vec), // Versions prior to 0.0.115 require this field
1221                 });
1222                 Ok(())
1223         }
1224 }
1225
1226 impl Readable for NodeAnnouncementInfo {
1227         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1228                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1229                         (0, features, required),
1230                         (2, last_update, required),
1231                         (4, rgb, required),
1232                         (6, alias, required),
1233                         (8, announcement_message, option),
1234                         (10, _addresses, optional_vec), // deprecated, not used anymore
1235                 });
1236                 let _: Option<Vec<SocketAddress>> = _addresses;
1237                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1238                         alias: alias.0.unwrap(), announcement_message })
1239         }
1240 }
1241
1242 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1243 ///
1244 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1245 /// attacks. Care must be taken when processing.
1246 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
1247 pub struct NodeAlias(pub [u8; 32]);
1248
1249 impl fmt::Display for NodeAlias {
1250         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1251                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1252                 let bytes = self.0.split_at(first_null).0;
1253                 match core::str::from_utf8(bytes) {
1254                         Ok(alias) => PrintableString(alias).fmt(f)?,
1255                         Err(_) => {
1256                                 use core::fmt::Write;
1257                                 for c in bytes.iter().map(|b| *b as char) {
1258                                         // Display printable ASCII characters
1259                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1260                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1261                                         f.write_char(c)?;
1262                                 }
1263                         },
1264                 };
1265                 Ok(())
1266         }
1267 }
1268
1269 impl Writeable for NodeAlias {
1270         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1271                 self.0.write(w)
1272         }
1273 }
1274
1275 impl Readable for NodeAlias {
1276         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1277                 Ok(NodeAlias(Readable::read(r)?))
1278         }
1279 }
1280
1281 #[derive(Clone, Debug, Eq)]
1282 /// Details about a node in the network, known from the network announcement.
1283 pub struct NodeInfo {
1284         /// All valid channels a node has announced
1285         pub channels: Vec<u64>,
1286         /// More information about a node from node_announcement.
1287         /// Optional because we store a Node entry after learning about it from
1288         /// a channel announcement, but before receiving a node announcement.
1289         pub announcement_info: Option<NodeAnnouncementInfo>,
1290         /// XXX: Docs
1291         pub(crate) node_counter: u32,
1292 }
1293
1294 impl PartialEq for NodeInfo {
1295         fn eq(&self, o: &NodeInfo) -> bool {
1296                 self.channels == o.channels && self.announcement_info == o.announcement_info
1297         }
1298 }
1299
1300 impl fmt::Display for NodeInfo {
1301         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1302                 write!(f, " channels: {:?}, announcement_info: {:?}",
1303                         &self.channels[..], self.announcement_info)?;
1304                 Ok(())
1305         }
1306 }
1307
1308 impl Writeable for NodeInfo {
1309         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1310                 write_tlv_fields!(writer, {
1311                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1312                         (2, self.announcement_info, option),
1313                         (4, self.channels, required_vec),
1314                 });
1315                 Ok(())
1316         }
1317 }
1318
1319 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1320 // necessary to maintain compatibility with previous serializations of `SocketAddress` that have an
1321 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1322 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1323 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1324
1325 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1326         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1327                 match crate::util::ser::Readable::read(reader) {
1328                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1329                         Err(_) => {
1330                                 copy(reader, &mut sink()).unwrap();
1331                                 return Ok(None)
1332                         },
1333                 };
1334         }
1335 }
1336
1337 impl Readable for NodeInfo {
1338         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1339                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1340                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1341                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1342                 // requires additional complexity and lookups during routing, it ends up being a
1343                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1344                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1345                         (0, _lowest_inbound_channel_fees, option),
1346                         (2, announcement_info_wrap, upgradable_option),
1347                         (4, channels, required_vec),
1348                 });
1349                 let _: Option<RoutingFees> = _lowest_inbound_channel_fees;
1350                 let announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = announcement_info_wrap;
1351
1352                 Ok(NodeInfo {
1353                         announcement_info: announcement_info_wrap.map(|w| w.0),
1354                         channels,
1355                         node_counter: u32::max_value(),
1356                 })
1357         }
1358 }
1359
1360 const SERIALIZATION_VERSION: u8 = 1;
1361 const MIN_SERIALIZATION_VERSION: u8 = 1;
1362
1363 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1364         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1365                 self.test_node_counter_consistency();
1366
1367                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1368
1369                 self.chain_hash.write(writer)?;
1370                 let channels = self.channels.read().unwrap();
1371                 (channels.len() as u64).write(writer)?;
1372                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1373                         (*chan_id).write(writer)?;
1374                         chan_info.write(writer)?;
1375                 }
1376                 let nodes = self.nodes.read().unwrap();
1377                 (nodes.len() as u64).write(writer)?;
1378                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1379                         node_id.write(writer)?;
1380                         node_info.write(writer)?;
1381                 }
1382
1383                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1384                 write_tlv_fields!(writer, {
1385                         (1, last_rapid_gossip_sync_timestamp, option),
1386                 });
1387                 Ok(())
1388         }
1389 }
1390
1391 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1392         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1393                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1394
1395                 let chain_hash: ChainHash = Readable::read(reader)?;
1396                 let channels_count: u64 = Readable::read(reader)?;
1397                 // In Nov, 2023 there were about 15,000 nodes; we cap allocations to 1.5x that.
1398                 let mut channels = IndexedMap::with_capacity(cmp::min(channels_count as usize, 22500));
1399                 for _ in 0..channels_count {
1400                         let chan_id: u64 = Readable::read(reader)?;
1401                         let chan_info: ChannelInfo = Readable::read(reader)?;
1402                         channels.insert(chan_id, chan_info);
1403                 }
1404                 let nodes_count: u64 = Readable::read(reader)?;
1405                 if nodes_count > u32::max_value() as u64 / 2 { return Err(DecodeError::InvalidValue); }
1406                 // In Nov, 2023 there were about 69K channels; we cap allocations to 1.5x that.
1407                 let mut nodes = IndexedMap::with_capacity(cmp::min(nodes_count as usize, 103500));
1408                 for i in 0..nodes_count {
1409                         let node_id = Readable::read(reader)?;
1410                         let mut node_info: NodeInfo = Readable::read(reader)?;
1411                         node_info.node_counter = i as u32;
1412                         nodes.insert(node_id, node_info);
1413                 }
1414
1415                 for (_, chan) in channels.unordered_iter_mut() {
1416                         chan.node_one_counter =
1417                                 nodes.get(&chan.node_one).ok_or(DecodeError::InvalidValue)?.node_counter;
1418                         chan.node_two_counter =
1419                                 nodes.get(&chan.node_two).ok_or(DecodeError::InvalidValue)?.node_counter;
1420                 }
1421
1422                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1423                 read_tlv_fields!(reader, {
1424                         (1, last_rapid_gossip_sync_timestamp, option),
1425                 });
1426
1427                 Ok(NetworkGraph {
1428                         secp_ctx: Secp256k1::verification_only(),
1429                         chain_hash,
1430                         logger,
1431                         channels: RwLock::new(channels),
1432                         nodes: RwLock::new(nodes),
1433                         removed_node_counters: Mutex::new(Vec::new()),
1434                         next_node_counter: AtomicUsize::new(nodes_count as usize),
1435                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1436                         removed_nodes: Mutex::new(HashMap::new()),
1437                         removed_channels: Mutex::new(HashMap::new()),
1438                         pending_checks: utxo::PendingChecks::new(),
1439                 })
1440         }
1441 }
1442
1443 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1444         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1445                 writeln!(f, "Network map\n[Channels]")?;
1446                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1447                         writeln!(f, " {}: {}", key, val)?;
1448                 }
1449                 writeln!(f, "[Nodes]")?;
1450                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1451                         writeln!(f, " {}: {}", &node_id, val)?;
1452                 }
1453                 Ok(())
1454         }
1455 }
1456
1457 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1458 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1459         fn eq(&self, other: &Self) -> bool {
1460                 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1461                 // (Assumes that we can't move within memory while a lock is held).
1462                 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1463                 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1464                 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1465                 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1466                 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1467                 self.chain_hash.eq(&other.chain_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1468         }
1469 }
1470
1471 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1472         /// Creates a new, empty, network graph.
1473         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1474                 Self {
1475                         secp_ctx: Secp256k1::verification_only(),
1476                         chain_hash: ChainHash::using_genesis_block(network),
1477                         logger,
1478                         channels: RwLock::new(IndexedMap::new()),
1479                         nodes: RwLock::new(IndexedMap::new()),
1480                         next_node_counter: AtomicUsize::new(0),
1481                         removed_node_counters: Mutex::new(Vec::new()),
1482                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1483                         removed_channels: Mutex::new(HashMap::new()),
1484                         removed_nodes: Mutex::new(HashMap::new()),
1485                         pending_checks: utxo::PendingChecks::new(),
1486                 }
1487         }
1488
1489         fn test_node_counter_consistency(&self) {
1490                 #[cfg(debug_assertions)] {
1491                         let channels = self.channels.read().unwrap();
1492                         let nodes = self.nodes.read().unwrap();
1493                         let removed_node_counters = self.removed_node_counters.lock().unwrap();
1494                         let next_counter = self.next_node_counter.load(Ordering::Acquire);
1495                         assert!(next_counter < (u32::max_value() as usize) / 2);
1496                         let mut used_node_counters = vec![0u8; next_counter / 8 + 1];
1497
1498                         for counter in removed_node_counters.iter() {
1499                                 let pos = (*counter as usize) / 8;
1500                                 let bit = 1 << (counter % 8);
1501                                 assert_eq!(used_node_counters[pos] & bit, 0);
1502                                 used_node_counters[pos] |= bit;
1503                         }
1504                         for (_, node) in nodes.unordered_iter() {
1505                                 assert!((node.node_counter as usize) < next_counter);
1506                                 let pos = (node.node_counter as usize) / 8;
1507                                 let bit = 1 << (node.node_counter % 8);
1508                                 assert_eq!(used_node_counters[pos] & bit, 0);
1509                                 used_node_counters[pos] |= bit;
1510                         }
1511
1512                         for (_, chan) in channels.unordered_iter() {
1513                                 assert_eq!(chan.node_one_counter, nodes.get(&chan.node_one).unwrap().node_counter);
1514                                 assert_eq!(chan.node_two_counter, nodes.get(&chan.node_two).unwrap().node_counter);
1515                         }
1516                 }
1517         }
1518
1519         /// Returns a read-only view of the network graph.
1520         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1521                 self.test_node_counter_consistency();
1522                 let channels = self.channels.read().unwrap();
1523                 let nodes = self.nodes.read().unwrap();
1524                 ReadOnlyNetworkGraph {
1525                         channels,
1526                         nodes,
1527                         max_node_counter: (self.next_node_counter.load(Ordering::Acquire) as u32).saturating_sub(1),
1528                 }
1529         }
1530
1531         /// The unix timestamp provided by the most recent rapid gossip sync.
1532         /// It will be set by the rapid sync process after every sync completion.
1533         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1534                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1535         }
1536
1537         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1538         /// This should be done automatically by the rapid sync process after every sync completion.
1539         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1540                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1541         }
1542
1543         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1544         /// purposes.
1545         #[cfg(test)]
1546         pub fn clear_nodes_announcement_info(&self) {
1547                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1548                         node.1.announcement_info = None;
1549                 }
1550         }
1551
1552         /// For an already known node (from channel announcements), update its stored properties from a
1553         /// given node announcement.
1554         ///
1555         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1556         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1557         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1558         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1559                 verify_node_announcement(msg, &self.secp_ctx)?;
1560                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1561         }
1562
1563         /// For an already known node (from channel announcements), update its stored properties from a
1564         /// given node announcement without verifying the associated signatures. Because we aren't
1565         /// given the associated signatures here we cannot relay the node announcement to any of our
1566         /// peers.
1567         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1568                 self.update_node_from_announcement_intern(msg, None)
1569         }
1570
1571         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1572                 let mut nodes = self.nodes.write().unwrap();
1573                 match nodes.get_mut(&msg.node_id) {
1574                         None => {
1575                                 core::mem::drop(nodes);
1576                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1577                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1578                         },
1579                         Some(node) => {
1580                                 if let Some(node_info) = node.announcement_info.as_ref() {
1581                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1582                                         // updates to ensure you always have the latest one, only vaguely suggesting
1583                                         // that it be at least the current time.
1584                                         if node_info.last_update  > msg.timestamp {
1585                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1586                                         } else if node_info.last_update  == msg.timestamp {
1587                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1588                                         }
1589                                 }
1590
1591                                 let should_relay =
1592                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1593                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1594                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1595                                 node.announcement_info = Some(NodeAnnouncementInfo {
1596                                         features: msg.features.clone(),
1597                                         last_update: msg.timestamp,
1598                                         rgb: msg.rgb,
1599                                         alias: msg.alias,
1600                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1601                                 });
1602
1603                                 Ok(())
1604                         }
1605                 }
1606         }
1607
1608         /// Store or update channel info from a channel announcement.
1609         ///
1610         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1611         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1612         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1613         ///
1614         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1615         /// the corresponding UTXO exists on chain and is correctly-formatted.
1616         pub fn update_channel_from_announcement<U: Deref>(
1617                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1618         ) -> Result<(), LightningError>
1619         where
1620                 U::Target: UtxoLookup,
1621         {
1622                 verify_channel_announcement(msg, &self.secp_ctx)?;
1623                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1624         }
1625
1626         /// Store or update channel info from a channel announcement.
1627         ///
1628         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1629         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1630         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1631         ///
1632         /// This will skip verification of if the channel is actually on-chain.
1633         pub fn update_channel_from_announcement_no_lookup(
1634                 &self, msg: &ChannelAnnouncement
1635         ) -> Result<(), LightningError> {
1636                 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1637         }
1638
1639         /// Store or update channel info from a channel announcement without verifying the associated
1640         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1641         /// channel announcement to any of our peers.
1642         ///
1643         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1644         /// the corresponding UTXO exists on chain and is correctly-formatted.
1645         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1646                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1647         ) -> Result<(), LightningError>
1648         where
1649                 U::Target: UtxoLookup,
1650         {
1651                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1652         }
1653
1654         /// Update channel from partial announcement data received via rapid gossip sync
1655         ///
1656         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1657         /// rapid gossip sync server)
1658         ///
1659         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1660         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1661                 if node_id_1 == node_id_2 {
1662                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1663                 };
1664
1665                 let node_1 = NodeId::from_pubkey(&node_id_1);
1666                 let node_2 = NodeId::from_pubkey(&node_id_2);
1667                 let channel_info = ChannelInfo {
1668                         features,
1669                         node_one: node_1.clone(),
1670                         one_to_two: None,
1671                         node_two: node_2.clone(),
1672                         two_to_one: None,
1673                         capacity_sats: None,
1674                         announcement_message: None,
1675                         announcement_received_time: timestamp,
1676                         node_one_counter: u32::max_value(),
1677                         node_two_counter: u32::max_value(),
1678                 };
1679
1680                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1681         }
1682
1683         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1684                 let mut channels = self.channels.write().unwrap();
1685                 let mut nodes = self.nodes.write().unwrap();
1686
1687                 let node_id_a = channel_info.node_one.clone();
1688                 let node_id_b = channel_info.node_two.clone();
1689
1690                 log_gossip!(self.logger, "Adding channel {} between nodes {} and {}", short_channel_id, node_id_a, node_id_b);
1691
1692                 let channel_entry = channels.entry(short_channel_id);
1693                 let channel_info = match channel_entry {
1694                         IndexedMapEntry::Occupied(mut entry) => {
1695                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1696                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1697                                 //exactly how...
1698                                 if utxo_value.is_some() {
1699                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1700                                         // only sometimes returns results. In any case remove the previous entry. Note
1701                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1702                                         // do that because
1703                                         // a) we don't *require* a UTXO provider that always returns results.
1704                                         // b) we don't track UTXOs of channels we know about and remove them if they
1705                                         //    get reorg'd out.
1706                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1707                                         self.remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1708                                         *entry.get_mut() = channel_info;
1709                                         entry.into_mut()
1710                                 } else {
1711                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1712                                 }
1713                         },
1714                         IndexedMapEntry::Vacant(entry) => {
1715                                 entry.insert(channel_info)
1716                         }
1717                 };
1718
1719                 let mut node_counter_id = [
1720                         (&mut channel_info.node_one_counter, node_id_a),
1721                         (&mut channel_info.node_two_counter, node_id_b)
1722                 ];
1723                 for (node_counter, current_node_id) in node_counter_id.iter_mut() {
1724                         match nodes.entry(current_node_id.clone()) {
1725                                 IndexedMapEntry::Occupied(node_entry) => {
1726                                         let node = node_entry.into_mut();
1727                                         node.channels.push(short_channel_id);
1728                                         **node_counter = node.node_counter;
1729                                 },
1730                                 IndexedMapEntry::Vacant(node_entry) => {
1731                                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1732                                         **node_counter = removed_node_counters.pop()
1733                                                 .unwrap_or(self.next_node_counter.fetch_add(1, Ordering::Relaxed) as u32);
1734                                         node_entry.insert(NodeInfo {
1735                                                 channels: vec!(short_channel_id),
1736                                                 announcement_info: None,
1737                                                 node_counter: **node_counter,
1738                                         });
1739                                 }
1740                         };
1741                 };
1742
1743                 Ok(())
1744         }
1745
1746         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1747                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1748         ) -> Result<(), LightningError>
1749         where
1750                 U::Target: UtxoLookup,
1751         {
1752                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1753                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1754                 }
1755
1756                 if msg.chain_hash != self.chain_hash {
1757                         return Err(LightningError {
1758                                 err: "Channel announcement chain hash does not match genesis hash".to_owned(),
1759                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1760                         });
1761                 }
1762
1763                 {
1764                         let channels = self.channels.read().unwrap();
1765
1766                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1767                                 if chan.capacity_sats.is_some() {
1768                                         // If we'd previously looked up the channel on-chain and checked the script
1769                                         // against what appears on-chain, ignore the duplicate announcement.
1770                                         //
1771                                         // Because a reorg could replace one channel with another at the same SCID, if
1772                                         // the channel appears to be different, we re-validate. This doesn't expose us
1773                                         // to any more DoS risk than not, as a peer can always flood us with
1774                                         // randomly-generated SCID values anyway.
1775                                         //
1776                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1777                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1778                                         // if the peers on the channel changed anyway.
1779                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1780                                                 return Err(LightningError {
1781                                                         err: "Already have chain-validated channel".to_owned(),
1782                                                         action: ErrorAction::IgnoreDuplicateGossip
1783                                                 });
1784                                         }
1785                                 } else if utxo_lookup.is_none() {
1786                                         // Similarly, if we can't check the chain right now anyway, ignore the
1787                                         // duplicate announcement without bothering to take the channels write lock.
1788                                         return Err(LightningError {
1789                                                 err: "Already have non-chain-validated channel".to_owned(),
1790                                                 action: ErrorAction::IgnoreDuplicateGossip
1791                                         });
1792                                 }
1793                         }
1794                 }
1795
1796                 {
1797                         let removed_channels = self.removed_channels.lock().unwrap();
1798                         let removed_nodes = self.removed_nodes.lock().unwrap();
1799                         if removed_channels.contains_key(&msg.short_channel_id) ||
1800                                 removed_nodes.contains_key(&msg.node_id_1) ||
1801                                 removed_nodes.contains_key(&msg.node_id_2) {
1802                                 return Err(LightningError{
1803                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1804                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1805                         }
1806                 }
1807
1808                 let utxo_value = self.pending_checks.check_channel_announcement(
1809                         utxo_lookup, msg, full_msg)?;
1810
1811                 #[allow(unused_mut, unused_assignments)]
1812                 let mut announcement_received_time = 0;
1813                 #[cfg(feature = "std")]
1814                 {
1815                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1816                 }
1817
1818                 let chan_info = ChannelInfo {
1819                         features: msg.features.clone(),
1820                         node_one: msg.node_id_1,
1821                         one_to_two: None,
1822                         node_two: msg.node_id_2,
1823                         two_to_one: None,
1824                         capacity_sats: utxo_value,
1825                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1826                                 { full_msg.cloned() } else { None },
1827                         announcement_received_time,
1828                         node_one_counter: u32::max_value(),
1829                         node_two_counter: u32::max_value(),
1830                 };
1831
1832                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1833
1834                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1835                 Ok(())
1836         }
1837
1838         /// Marks a channel in the graph as failed permanently.
1839         ///
1840         /// The channel and any node for which this was their last channel are removed from the graph.
1841         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1842                 #[cfg(feature = "std")]
1843                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1844                 #[cfg(not(feature = "std"))]
1845                 let current_time_unix = None;
1846
1847                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1848         }
1849
1850         /// Marks a channel in the graph as failed permanently.
1851         ///
1852         /// The channel and any node for which this was their last channel are removed from the graph.
1853         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1854                 let mut channels = self.channels.write().unwrap();
1855                 if let Some(chan) = channels.remove(&short_channel_id) {
1856                         let mut nodes = self.nodes.write().unwrap();
1857                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1858                         self.remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1859                 }
1860         }
1861
1862         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1863         /// from local storage.
1864         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1865                 #[cfg(feature = "std")]
1866                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1867                 #[cfg(not(feature = "std"))]
1868                 let current_time_unix = None;
1869
1870                 let node_id = NodeId::from_pubkey(node_id);
1871                 let mut channels = self.channels.write().unwrap();
1872                 let mut nodes = self.nodes.write().unwrap();
1873                 let mut removed_channels = self.removed_channels.lock().unwrap();
1874                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1875
1876                 if let Some(node) = nodes.remove(&node_id) {
1877                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1878                         for scid in node.channels.iter() {
1879                                 if let Some(chan_info) = channels.remove(scid) {
1880                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1881                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1882                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1883                                                         *scid != *chan_id
1884                                                 });
1885                                                 if other_node_entry.get().channels.is_empty() {
1886                                                         removed_node_counters.push(other_node_entry.get().node_counter);
1887                                                         other_node_entry.remove_entry();
1888                                                 }
1889                                         }
1890                                         removed_channels.insert(*scid, current_time_unix);
1891                                 }
1892                         }
1893                         removed_node_counters.push(node.node_counter);
1894                         removed_nodes.insert(node_id, current_time_unix);
1895                 }
1896         }
1897
1898         #[cfg(feature = "std")]
1899         /// Removes information about channels that we haven't heard any updates about in some time.
1900         /// This can be used regularly to prune the network graph of channels that likely no longer
1901         /// exist.
1902         ///
1903         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1904         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1905         /// pruning occur for updates which are at least two weeks old, which we implement here.
1906         ///
1907         /// Note that for users of the `lightning-background-processor` crate this method may be
1908         /// automatically called regularly for you.
1909         ///
1910         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1911         /// in the map for a while so that these can be resynced from gossip in the future.
1912         ///
1913         /// This method is only available with the `std` feature. See
1914         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1915         pub fn remove_stale_channels_and_tracking(&self) {
1916                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1917                 self.remove_stale_channels_and_tracking_with_time(time);
1918         }
1919
1920         /// Removes information about channels that we haven't heard any updates about in some time.
1921         /// This can be used regularly to prune the network graph of channels that likely no longer
1922         /// exist.
1923         ///
1924         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1925         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1926         /// pruning occur for updates which are at least two weeks old, which we implement here.
1927         ///
1928         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1929         /// in the map for a while so that these can be resynced from gossip in the future.
1930         ///
1931         /// This function takes the current unix time as an argument. For users with the `std` feature
1932         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1933         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1934                 let mut channels = self.channels.write().unwrap();
1935                 // Time out if we haven't received an update in at least 14 days.
1936                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1937                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1938                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1939                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1940                 // time.
1941                 let mut scids_to_remove = Vec::new();
1942                 for (scid, info) in channels.unordered_iter_mut() {
1943                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1944                                 log_gossip!(self.logger, "Removing directional update one_to_two (0) for channel {} due to its timestamp {} being below {}",
1945                                         scid, info.one_to_two.as_ref().unwrap().last_update, min_time_unix);
1946                                 info.one_to_two = None;
1947                         }
1948                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1949                                 log_gossip!(self.logger, "Removing directional update two_to_one (1) for channel {} due to its timestamp {} being below {}",
1950                                         scid, info.two_to_one.as_ref().unwrap().last_update, min_time_unix);
1951                                 info.two_to_one = None;
1952                         }
1953                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1954                                 // We check the announcement_received_time here to ensure we don't drop
1955                                 // announcements that we just received and are just waiting for our peer to send a
1956                                 // channel_update for.
1957                                 let announcement_received_timestamp = info.announcement_received_time;
1958                                 if announcement_received_timestamp < min_time_unix as u64 {
1959                                         log_gossip!(self.logger, "Removing channel {} because both directional updates are missing and its announcement timestamp {} being below {}",
1960                                                 scid, announcement_received_timestamp, min_time_unix);
1961                                         scids_to_remove.push(*scid);
1962                                 }
1963                         }
1964                 }
1965                 if !scids_to_remove.is_empty() {
1966                         let mut nodes = self.nodes.write().unwrap();
1967                         for scid in scids_to_remove {
1968                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1969                                 self.remove_channel_in_nodes(&mut nodes, &info, scid);
1970                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1971                         }
1972                 }
1973
1974                 let should_keep_tracking = |time: &mut Option<u64>| {
1975                         if let Some(time) = time {
1976                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1977                         } else {
1978                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1979                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1980                                 // of this function.
1981                                 #[cfg(feature = "no-std")]
1982                                 {
1983                                         let mut tracked_time = Some(current_time_unix);
1984                                         core::mem::swap(time, &mut tracked_time);
1985                                         return true;
1986                                 }
1987                                 #[allow(unreachable_code)]
1988                                 false
1989                         }};
1990
1991                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1992                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1993         }
1994
1995         /// For an already known (from announcement) channel, update info about one of the directions
1996         /// of the channel.
1997         ///
1998         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1999         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
2000         /// routing messages from a source using a protocol other than the lightning P2P protocol.
2001         ///
2002         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
2003         /// materially in the future will be rejected.
2004         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
2005                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), false)
2006         }
2007
2008         /// For an already known (from announcement) channel, update info about one of the directions
2009         /// of the channel without verifying the associated signatures. Because we aren't given the
2010         /// associated signatures here we cannot relay the channel update to any of our peers.
2011         ///
2012         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
2013         /// materially in the future will be rejected.
2014         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
2015                 self.update_channel_internal(msg, None, None, false)
2016         }
2017
2018         /// For an already known (from announcement) channel, verify the given [`ChannelUpdate`].
2019         ///
2020         /// This checks whether the update currently is applicable by [`Self::update_channel`].
2021         ///
2022         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
2023         /// materially in the future will be rejected.
2024         pub fn verify_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
2025                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), true)
2026         }
2027
2028         fn update_channel_internal(&self, msg: &msgs::UnsignedChannelUpdate,
2029                 full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>,
2030                 only_verify: bool) -> Result<(), LightningError>
2031         {
2032                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
2033
2034                 if msg.chain_hash != self.chain_hash {
2035                         return Err(LightningError {
2036                                 err: "Channel update chain hash does not match genesis hash".to_owned(),
2037                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
2038                         });
2039                 }
2040
2041                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
2042                 {
2043                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
2044                         // disable this check during tests!
2045                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2046                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
2047                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2048                         }
2049                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
2050                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2051                         }
2052                 }
2053
2054                 log_gossip!(self.logger, "Updating channel {} in direction {} with timestamp {}", msg.short_channel_id, msg.flags & 1, msg.timestamp);
2055
2056                 let mut channels = self.channels.write().unwrap();
2057                 match channels.get_mut(&msg.short_channel_id) {
2058                         None => {
2059                                 core::mem::drop(channels);
2060                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
2061                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
2062                         },
2063                         Some(channel) => {
2064                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
2065                                         return Err(LightningError{err:
2066                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
2067                                                 action: ErrorAction::IgnoreError});
2068                                 }
2069
2070                                 if let Some(capacity_sats) = channel.capacity_sats {
2071                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
2072                                         // Don't query UTXO set here to reduce DoS risks.
2073                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
2074                                                 return Err(LightningError{err:
2075                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
2076                                                         action: ErrorAction::IgnoreError});
2077                                         }
2078                                 }
2079                                 macro_rules! check_update_latest {
2080                                         ($target: expr) => {
2081                                                 if let Some(existing_chan_info) = $target.as_ref() {
2082                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
2083                                                         // order updates to ensure you always have the latest one, only
2084                                                         // suggesting  that it be at least the current time. For
2085                                                         // channel_updates specifically, the BOLTs discuss the possibility of
2086                                                         // pruning based on the timestamp field being more than two weeks old,
2087                                                         // but only in the non-normative section.
2088                                                         if existing_chan_info.last_update > msg.timestamp {
2089                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2090                                                         } else if existing_chan_info.last_update == msg.timestamp {
2091                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2092                                                         }
2093                                                 }
2094                                         }
2095                                 }
2096
2097                                 macro_rules! get_new_channel_info {
2098                                         () => { {
2099                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
2100                                                         { full_msg.cloned() } else { None };
2101
2102                                                 let updated_channel_update_info = ChannelUpdateInfo {
2103                                                         enabled: chan_enabled,
2104                                                         last_update: msg.timestamp,
2105                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
2106                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
2107                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
2108                                                         fees: RoutingFees {
2109                                                                 base_msat: msg.fee_base_msat,
2110                                                                 proportional_millionths: msg.fee_proportional_millionths,
2111                                                         },
2112                                                         last_update_message
2113                                                 };
2114                                                 Some(updated_channel_update_info)
2115                                         } }
2116                                 }
2117
2118                                 let msg_hash = hash_to_message!(&message_sha256d_hash(&msg)[..]);
2119                                 if msg.flags & 1 == 1 {
2120                                         check_update_latest!(channel.two_to_one);
2121                                         if let Some(sig) = sig {
2122                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
2123                                                         err: "Couldn't parse source node pubkey".to_owned(),
2124                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2125                                                 })?, "channel_update");
2126                                         }
2127                                         if !only_verify {
2128                                                 channel.two_to_one = get_new_channel_info!();
2129                                         }
2130                                 } else {
2131                                         check_update_latest!(channel.one_to_two);
2132                                         if let Some(sig) = sig {
2133                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
2134                                                         err: "Couldn't parse destination node pubkey".to_owned(),
2135                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2136                                                 })?, "channel_update");
2137                                         }
2138                                         if !only_verify {
2139                                                 channel.one_to_two = get_new_channel_info!();
2140                                         }
2141                                 }
2142                         }
2143                 }
2144
2145                 Ok(())
2146         }
2147
2148         fn remove_channel_in_nodes(&self, nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
2149                 macro_rules! remove_from_node {
2150                         ($node_id: expr) => {
2151                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
2152                                         entry.get_mut().channels.retain(|chan_id| {
2153                                                 short_channel_id != *chan_id
2154                                         });
2155                                         if entry.get().channels.is_empty() {
2156                                                 self.removed_node_counters.lock().unwrap().push(entry.get().node_counter);
2157                                                 entry.remove_entry();
2158                                         }
2159                                 } else {
2160                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
2161                                 }
2162                         }
2163                 }
2164
2165                 remove_from_node!(chan.node_one);
2166                 remove_from_node!(chan.node_two);
2167         }
2168 }
2169
2170 impl ReadOnlyNetworkGraph<'_> {
2171         /// Returns all known valid channels' short ids along with announced channel info.
2172         ///
2173         /// This is not exported to bindings users because we don't want to return lifetime'd references
2174         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
2175                 &*self.channels
2176         }
2177
2178         /// Returns information on a channel with the given id.
2179         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
2180                 self.channels.get(&short_channel_id)
2181         }
2182
2183         #[cfg(c_bindings)] // Non-bindings users should use `channels`
2184         /// Returns the list of channels in the graph
2185         pub fn list_channels(&self) -> Vec<u64> {
2186                 self.channels.unordered_keys().map(|c| *c).collect()
2187         }
2188
2189         /// Returns all known nodes' public keys along with announced node info.
2190         ///
2191         /// This is not exported to bindings users because we don't want to return lifetime'd references
2192         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
2193                 &*self.nodes
2194         }
2195
2196         /// Returns information on a node with the given id.
2197         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
2198                 self.nodes.get(node_id)
2199         }
2200
2201         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2202         /// Returns the list of nodes in the graph
2203         pub fn list_nodes(&self) -> Vec<NodeId> {
2204                 self.nodes.unordered_keys().map(|n| *n).collect()
2205         }
2206
2207         /// Get network addresses by node id.
2208         /// Returns None if the requested node is completely unknown,
2209         /// or if node announcement for the node was never received.
2210         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<SocketAddress>> {
2211                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2212                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2213         }
2214
2215         /// Gets the maximum possible node_counter for a node in this graph
2216         pub(crate) fn max_node_counter(&self) -> u32 {
2217                 self.max_node_counter
2218         }
2219 }
2220
2221 #[cfg(test)]
2222 pub(crate) mod tests {
2223         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2224         use crate::ln::channelmanager;
2225         use crate::ln::chan_utils::make_funding_redeemscript;
2226         #[cfg(feature = "std")]
2227         use crate::ln::features::InitFeatures;
2228         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2229         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2230         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2231                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2232                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2233         use crate::util::config::UserConfig;
2234         use crate::util::test_utils;
2235         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2236         use crate::util::scid_utils::scid_from_parts;
2237
2238         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2239         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2240
2241         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2242         use bitcoin::hashes::Hash;
2243         use bitcoin::hashes::hex::FromHex;
2244         use bitcoin::network::constants::Network;
2245         use bitcoin::blockdata::constants::ChainHash;
2246         use bitcoin::blockdata::script::ScriptBuf;
2247         use bitcoin::blockdata::transaction::TxOut;
2248         use bitcoin::secp256k1::{PublicKey, SecretKey};
2249         use bitcoin::secp256k1::{All, Secp256k1};
2250
2251         use crate::io;
2252         use bitcoin::secp256k1;
2253         use crate::prelude::*;
2254         use crate::sync::Arc;
2255
2256         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2257                 let logger = Arc::new(test_utils::TestLogger::new());
2258                 NetworkGraph::new(Network::Testnet, logger)
2259         }
2260
2261         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2262                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2263                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2264         ) {
2265                 let secp_ctx = Secp256k1::new();
2266                 let logger = Arc::new(test_utils::TestLogger::new());
2267                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2268                 (secp_ctx, gossip_sync)
2269         }
2270
2271         #[test]
2272         #[cfg(feature = "std")]
2273         fn request_full_sync_finite_times() {
2274                 let network_graph = create_network_graph();
2275                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2276                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&<Vec<u8>>::from_hex("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2277
2278                 assert!(gossip_sync.should_request_full_sync(&node_id));
2279                 assert!(gossip_sync.should_request_full_sync(&node_id));
2280                 assert!(gossip_sync.should_request_full_sync(&node_id));
2281                 assert!(gossip_sync.should_request_full_sync(&node_id));
2282                 assert!(gossip_sync.should_request_full_sync(&node_id));
2283                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2284         }
2285
2286         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2287                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2288                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2289                         features: channelmanager::provided_node_features(&UserConfig::default()),
2290                         timestamp: 100,
2291                         node_id,
2292                         rgb: [0; 3],
2293                         alias: NodeAlias([0; 32]),
2294                         addresses: Vec::new(),
2295                         excess_address_data: Vec::new(),
2296                         excess_data: Vec::new(),
2297                 };
2298                 f(&mut unsigned_announcement);
2299                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2300                 NodeAnnouncement {
2301                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2302                         contents: unsigned_announcement
2303                 }
2304         }
2305
2306         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2307                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2308                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2309                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2310                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2311
2312                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2313                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2314                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2315                         short_channel_id: 0,
2316                         node_id_1: NodeId::from_pubkey(&node_id_1),
2317                         node_id_2: NodeId::from_pubkey(&node_id_2),
2318                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2319                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2320                         excess_data: Vec::new(),
2321                 };
2322                 f(&mut unsigned_announcement);
2323                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2324                 ChannelAnnouncement {
2325                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2326                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2327                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2328                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2329                         contents: unsigned_announcement,
2330                 }
2331         }
2332
2333         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> ScriptBuf {
2334                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2335                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2336                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2337                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2338         }
2339
2340         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2341                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2342                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2343                         short_channel_id: 0,
2344                         timestamp: 100,
2345                         flags: 0,
2346                         cltv_expiry_delta: 144,
2347                         htlc_minimum_msat: 1_000_000,
2348                         htlc_maximum_msat: 1_000_000,
2349                         fee_base_msat: 10_000,
2350                         fee_proportional_millionths: 20,
2351                         excess_data: Vec::new()
2352                 };
2353                 f(&mut unsigned_channel_update);
2354                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2355                 ChannelUpdate {
2356                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2357                         contents: unsigned_channel_update
2358                 }
2359         }
2360
2361         #[test]
2362         fn handling_node_announcements() {
2363                 let network_graph = create_network_graph();
2364                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2365
2366                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2367                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2368                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2369
2370                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2371                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2372                         Ok(_) => panic!(),
2373                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2374                 };
2375
2376                 {
2377                         // Announce a channel to add a corresponding node.
2378                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2379                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2380                                 Ok(res) => assert!(res),
2381                                 _ => panic!()
2382                         };
2383                 }
2384
2385                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2386                         Ok(res) => assert!(res),
2387                         Err(_) => panic!()
2388                 };
2389
2390                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2391                 match gossip_sync.handle_node_announcement(
2392                         &NodeAnnouncement {
2393                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2394                                 contents: valid_announcement.contents.clone()
2395                 }) {
2396                         Ok(_) => panic!(),
2397                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2398                 };
2399
2400                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2401                         unsigned_announcement.timestamp += 1000;
2402                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2403                 }, node_1_privkey, &secp_ctx);
2404                 // Return false because contains excess data.
2405                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2406                         Ok(res) => assert!(!res),
2407                         Err(_) => panic!()
2408                 };
2409
2410                 // Even though previous announcement was not relayed further, we still accepted it,
2411                 // so we now won't accept announcements before the previous one.
2412                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2413                         unsigned_announcement.timestamp += 1000 - 10;
2414                 }, node_1_privkey, &secp_ctx);
2415                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2416                         Ok(_) => panic!(),
2417                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2418                 };
2419         }
2420
2421         #[test]
2422         fn handling_channel_announcements() {
2423                 let secp_ctx = Secp256k1::new();
2424                 let logger = test_utils::TestLogger::new();
2425
2426                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2427                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2428
2429                 let good_script = get_channel_script(&secp_ctx);
2430                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2431
2432                 // Test if the UTXO lookups were not supported
2433                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2434                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2435                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2436                         Ok(res) => assert!(res),
2437                         _ => panic!()
2438                 };
2439
2440                 {
2441                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2442                                 None => panic!(),
2443                                 Some(_) => ()
2444                         };
2445                 }
2446
2447                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2448                 // drop new one on the floor, since we can't see any changes.
2449                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2450                         Ok(_) => panic!(),
2451                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2452                 };
2453
2454                 // Test if an associated transaction were not on-chain (or not confirmed).
2455                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2456                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2457                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2458                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2459
2460                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2461                         unsigned_announcement.short_channel_id += 1;
2462                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2463                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2464                         Ok(_) => panic!(),
2465                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2466                 };
2467
2468                 // Now test if the transaction is found in the UTXO set and the script is correct.
2469                 *chain_source.utxo_ret.lock().unwrap() =
2470                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2471                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2472                         unsigned_announcement.short_channel_id += 2;
2473                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2474                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2475                         Ok(res) => assert!(res),
2476                         _ => panic!()
2477                 };
2478
2479                 {
2480                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2481                                 None => panic!(),
2482                                 Some(_) => ()
2483                         };
2484                 }
2485
2486                 // If we receive announcement for the same channel, once we've validated it against the
2487                 // chain, we simply ignore all new (duplicate) announcements.
2488                 *chain_source.utxo_ret.lock().unwrap() =
2489                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2490                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2491                         Ok(_) => panic!(),
2492                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2493                 };
2494
2495                 #[cfg(feature = "std")]
2496                 {
2497                         use std::time::{SystemTime, UNIX_EPOCH};
2498
2499                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2500                         // Mark a node as permanently failed so it's tracked as removed.
2501                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2502
2503                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2504                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2505                                 unsigned_announcement.short_channel_id += 3;
2506                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2507                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2508                                 Ok(_) => panic!(),
2509                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2510                         }
2511
2512                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2513
2514                         // The above channel announcement should be handled as per normal now.
2515                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2516                                 Ok(res) => assert!(res),
2517                                 _ => panic!()
2518                         }
2519                 }
2520
2521                 // Don't relay valid channels with excess data
2522                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2523                         unsigned_announcement.short_channel_id += 4;
2524                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2525                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2526                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2527                         Ok(res) => assert!(!res),
2528                         _ => panic!()
2529                 };
2530
2531                 let mut invalid_sig_announcement = valid_announcement.clone();
2532                 invalid_sig_announcement.contents.excess_data = Vec::new();
2533                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2534                         Ok(_) => panic!(),
2535                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2536                 };
2537
2538                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2539                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2540                         Ok(_) => panic!(),
2541                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2542                 };
2543
2544                 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2545                 // announcement is mainnet).
2546                 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2547                         unsigned_announcement.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2548                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2549                 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2550                         Ok(_) => panic!(),
2551                         Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2552                 };
2553         }
2554
2555         #[test]
2556         fn handling_channel_update() {
2557                 let secp_ctx = Secp256k1::new();
2558                 let logger = test_utils::TestLogger::new();
2559                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2560                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2561                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2562
2563                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2564                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2565
2566                 let amount_sats = 1000_000;
2567                 let short_channel_id;
2568
2569                 {
2570                         // Announce a channel we will update
2571                         let good_script = get_channel_script(&secp_ctx);
2572                         *chain_source.utxo_ret.lock().unwrap() =
2573                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2574
2575                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2576                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2577                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2578                                 Ok(_) => (),
2579                                 Err(_) => panic!()
2580                         };
2581
2582                 }
2583
2584                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2585                 network_graph.verify_channel_update(&valid_channel_update).unwrap();
2586                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2587                         Ok(res) => assert!(res),
2588                         _ => panic!(),
2589                 };
2590
2591                 {
2592                         match network_graph.read_only().channels().get(&short_channel_id) {
2593                                 None => panic!(),
2594                                 Some(channel_info) => {
2595                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2596                                         assert!(channel_info.two_to_one.is_none());
2597                                 }
2598                         };
2599                 }
2600
2601                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2602                         unsigned_channel_update.timestamp += 100;
2603                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2604                 }, node_1_privkey, &secp_ctx);
2605                 // Return false because contains excess data
2606                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2607                         Ok(res) => assert!(!res),
2608                         _ => panic!()
2609                 };
2610
2611                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2612                         unsigned_channel_update.timestamp += 110;
2613                         unsigned_channel_update.short_channel_id += 1;
2614                 }, node_1_privkey, &secp_ctx);
2615                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2616                         Ok(_) => panic!(),
2617                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2618                 };
2619
2620                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2621                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2622                         unsigned_channel_update.timestamp += 110;
2623                 }, node_1_privkey, &secp_ctx);
2624                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2625                         Ok(_) => panic!(),
2626                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2627                 };
2628
2629                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2630                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2631                         unsigned_channel_update.timestamp += 110;
2632                 }, node_1_privkey, &secp_ctx);
2633                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2634                         Ok(_) => panic!(),
2635                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2636                 };
2637
2638                 // Even though previous update was not relayed further, we still accepted it,
2639                 // so we now won't accept update before the previous one.
2640                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2641                         unsigned_channel_update.timestamp += 100;
2642                 }, node_1_privkey, &secp_ctx);
2643                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2644                         Ok(_) => panic!(),
2645                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2646                 };
2647
2648                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2649                         unsigned_channel_update.timestamp += 500;
2650                 }, node_1_privkey, &secp_ctx);
2651                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2652                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2653                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2654                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2655                         Ok(_) => panic!(),
2656                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2657                 };
2658
2659                 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2660                 // update is mainet).
2661                 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2662                         unsigned_channel_update.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2663                 }, node_1_privkey, &secp_ctx);
2664
2665                 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2666                         Ok(_) => panic!(),
2667                         Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2668                 };
2669         }
2670
2671         #[test]
2672         fn handling_network_update() {
2673                 let logger = test_utils::TestLogger::new();
2674                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2675                 let secp_ctx = Secp256k1::new();
2676
2677                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2678                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2679                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2680
2681                 {
2682                         // There is no nodes in the table at the beginning.
2683                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2684                 }
2685
2686                 let short_channel_id;
2687                 {
2688                         // Check we won't apply an update via `handle_network_update` for privacy reasons, but
2689                         // can continue fine if we manually apply it.
2690                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2691                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2692                         let chain_source: Option<&test_utils::TestChainSource> = None;
2693                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2694                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2695
2696                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2697                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2698
2699                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2700                                 msg: valid_channel_update.clone(),
2701                         });
2702
2703                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2704                         network_graph.update_channel(&valid_channel_update).unwrap();
2705                 }
2706
2707                 // Non-permanent failure doesn't touch the channel at all
2708                 {
2709                         match network_graph.read_only().channels().get(&short_channel_id) {
2710                                 None => panic!(),
2711                                 Some(channel_info) => {
2712                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2713                                 }
2714                         };
2715
2716                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2717                                 short_channel_id,
2718                                 is_permanent: false,
2719                         });
2720
2721                         match network_graph.read_only().channels().get(&short_channel_id) {
2722                                 None => panic!(),
2723                                 Some(channel_info) => {
2724                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2725                                 }
2726                         };
2727                 }
2728
2729                 // Permanent closing deletes a channel
2730                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2731                         short_channel_id,
2732                         is_permanent: true,
2733                 });
2734
2735                 assert_eq!(network_graph.read_only().channels().len(), 0);
2736                 // Nodes are also deleted because there are no associated channels anymore
2737                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2738
2739                 {
2740                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2741                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2742
2743                         // Announce a channel to test permanent node failure
2744                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2745                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2746                         let chain_source: Option<&test_utils::TestChainSource> = None;
2747                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2748                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2749
2750                         // Non-permanent node failure does not delete any nodes or channels
2751                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2752                                 node_id: node_2_id,
2753                                 is_permanent: false,
2754                         });
2755
2756                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2757                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2758
2759                         // Permanent node failure deletes node and its channels
2760                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2761                                 node_id: node_2_id,
2762                                 is_permanent: true,
2763                         });
2764
2765                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2766                         // Channels are also deleted because the associated node has been deleted
2767                         assert_eq!(network_graph.read_only().channels().len(), 0);
2768                 }
2769         }
2770
2771         #[test]
2772         fn test_channel_timeouts() {
2773                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2774                 let logger = test_utils::TestLogger::new();
2775                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2776                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2777                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2778                 let secp_ctx = Secp256k1::new();
2779
2780                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2781                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2782
2783                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2784                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2785                 let chain_source: Option<&test_utils::TestChainSource> = None;
2786                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2787                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2788
2789                 // Submit two channel updates for each channel direction (update.flags bit).
2790                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2791                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2792                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2793
2794                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2795                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2796                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2797
2798                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2799                 assert_eq!(network_graph.read_only().channels().len(), 1);
2800                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2801
2802                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2803                 #[cfg(not(feature = "std"))] {
2804                         // Make sure removed channels are tracked.
2805                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2806                 }
2807                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2808                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2809
2810                 #[cfg(feature = "std")]
2811                 {
2812                         // In std mode, a further check is performed before fully removing the channel -
2813                         // the channel_announcement must have been received at least two weeks ago. We
2814                         // fudge that here by indicating the time has jumped two weeks.
2815                         assert_eq!(network_graph.read_only().channels().len(), 1);
2816                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2817
2818                         // Note that the directional channel information will have been removed already..
2819                         // We want to check that this will work even if *one* of the channel updates is recent,
2820                         // so we should add it with a recent timestamp.
2821                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2822                         use std::time::{SystemTime, UNIX_EPOCH};
2823                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2824                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2825                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2826                         }, node_1_privkey, &secp_ctx);
2827                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2828                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2829                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2830                         // Make sure removed channels are tracked.
2831                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2832                         // Provide a later time so that sufficient time has passed
2833                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2834                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2835                 }
2836
2837                 assert_eq!(network_graph.read_only().channels().len(), 0);
2838                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2839                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2840
2841                 #[cfg(feature = "std")]
2842                 {
2843                         use std::time::{SystemTime, UNIX_EPOCH};
2844
2845                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2846
2847                         // Clear tracked nodes and channels for clean slate
2848                         network_graph.removed_channels.lock().unwrap().clear();
2849                         network_graph.removed_nodes.lock().unwrap().clear();
2850
2851                         // Add a channel and nodes from channel announcement. So our network graph will
2852                         // now only consist of two nodes and one channel between them.
2853                         assert!(network_graph.update_channel_from_announcement(
2854                                 &valid_channel_announcement, &chain_source).is_ok());
2855
2856                         // Mark the channel as permanently failed. This will also remove the two nodes
2857                         // and all of the entries will be tracked as removed.
2858                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2859
2860                         // Should not remove from tracking if insufficient time has passed
2861                         network_graph.remove_stale_channels_and_tracking_with_time(
2862                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2863                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2864
2865                         // Provide a later time so that sufficient time has passed
2866                         network_graph.remove_stale_channels_and_tracking_with_time(
2867                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2868                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2869                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2870                 }
2871
2872                 #[cfg(not(feature = "std"))]
2873                 {
2874                         // When we don't have access to the system clock, the time we started tracking removal will only
2875                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2876                         // only if sufficient time has passed after that first call, will the next call remove it from
2877                         // tracking.
2878                         let removal_time = 1664619654;
2879
2880                         // Clear removed nodes and channels for clean slate
2881                         network_graph.removed_channels.lock().unwrap().clear();
2882                         network_graph.removed_nodes.lock().unwrap().clear();
2883
2884                         // Add a channel and nodes from channel announcement. So our network graph will
2885                         // now only consist of two nodes and one channel between them.
2886                         assert!(network_graph.update_channel_from_announcement(
2887                                 &valid_channel_announcement, &chain_source).is_ok());
2888
2889                         // Mark the channel as permanently failed. This will also remove the two nodes
2890                         // and all of the entries will be tracked as removed.
2891                         network_graph.channel_failed_permanent(short_channel_id);
2892
2893                         // The first time we call the following, the channel will have a removal time assigned.
2894                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2895                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2896
2897                         // Provide a later time so that sufficient time has passed
2898                         network_graph.remove_stale_channels_and_tracking_with_time(
2899                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2900                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2901                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2902                 }
2903         }
2904
2905         #[test]
2906         fn getting_next_channel_announcements() {
2907                 let network_graph = create_network_graph();
2908                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2909                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2910                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2911
2912                 // Channels were not announced yet.
2913                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2914                 assert!(channels_with_announcements.is_none());
2915
2916                 let short_channel_id;
2917                 {
2918                         // Announce a channel we will update
2919                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2920                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2921                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2922                                 Ok(_) => (),
2923                                 Err(_) => panic!()
2924                         };
2925                 }
2926
2927                 // Contains initial channel announcement now.
2928                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2929                 if let Some(channel_announcements) = channels_with_announcements {
2930                         let (_, ref update_1, ref update_2) = channel_announcements;
2931                         assert_eq!(update_1, &None);
2932                         assert_eq!(update_2, &None);
2933                 } else {
2934                         panic!();
2935                 }
2936
2937                 {
2938                         // Valid channel update
2939                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2940                                 unsigned_channel_update.timestamp = 101;
2941                         }, node_1_privkey, &secp_ctx);
2942                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2943                                 Ok(_) => (),
2944                                 Err(_) => panic!()
2945                         };
2946                 }
2947
2948                 // Now contains an initial announcement and an update.
2949                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2950                 if let Some(channel_announcements) = channels_with_announcements {
2951                         let (_, ref update_1, ref update_2) = channel_announcements;
2952                         assert_ne!(update_1, &None);
2953                         assert_eq!(update_2, &None);
2954                 } else {
2955                         panic!();
2956                 }
2957
2958                 {
2959                         // Channel update with excess data.
2960                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2961                                 unsigned_channel_update.timestamp = 102;
2962                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2963                         }, node_1_privkey, &secp_ctx);
2964                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2965                                 Ok(_) => (),
2966                                 Err(_) => panic!()
2967                         };
2968                 }
2969
2970                 // Test that announcements with excess data won't be returned
2971                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2972                 if let Some(channel_announcements) = channels_with_announcements {
2973                         let (_, ref update_1, ref update_2) = channel_announcements;
2974                         assert_eq!(update_1, &None);
2975                         assert_eq!(update_2, &None);
2976                 } else {
2977                         panic!();
2978                 }
2979
2980                 // Further starting point have no channels after it
2981                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2982                 assert!(channels_with_announcements.is_none());
2983         }
2984
2985         #[test]
2986         fn getting_next_node_announcements() {
2987                 let network_graph = create_network_graph();
2988                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2989                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2990                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2991                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2992
2993                 // No nodes yet.
2994                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2995                 assert!(next_announcements.is_none());
2996
2997                 {
2998                         // Announce a channel to add 2 nodes
2999                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
3000                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
3001                                 Ok(_) => (),
3002                                 Err(_) => panic!()
3003                         };
3004                 }
3005
3006                 // Nodes were never announced
3007                 let next_announcements = gossip_sync.get_next_node_announcement(None);
3008                 assert!(next_announcements.is_none());
3009
3010                 {
3011                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
3012                         match gossip_sync.handle_node_announcement(&valid_announcement) {
3013                                 Ok(_) => (),
3014                                 Err(_) => panic!()
3015                         };
3016
3017                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
3018                         match gossip_sync.handle_node_announcement(&valid_announcement) {
3019                                 Ok(_) => (),
3020                                 Err(_) => panic!()
3021                         };
3022                 }
3023
3024                 let next_announcements = gossip_sync.get_next_node_announcement(None);
3025                 assert!(next_announcements.is_some());
3026
3027                 // Skip the first node.
3028                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
3029                 assert!(next_announcements.is_some());
3030
3031                 {
3032                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
3033                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
3034                                 unsigned_announcement.timestamp += 10;
3035                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
3036                         }, node_2_privkey, &secp_ctx);
3037                         match gossip_sync.handle_node_announcement(&valid_announcement) {
3038                                 Ok(res) => assert!(!res),
3039                                 Err(_) => panic!()
3040                         };
3041                 }
3042
3043                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
3044                 assert!(next_announcements.is_none());
3045         }
3046
3047         #[test]
3048         fn network_graph_serialization() {
3049                 let network_graph = create_network_graph();
3050                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3051
3052                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3053                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3054
3055                 // Announce a channel to add a corresponding node.
3056                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
3057                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
3058                         Ok(res) => assert!(res),
3059                         _ => panic!()
3060                 };
3061
3062                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
3063                 match gossip_sync.handle_node_announcement(&valid_announcement) {
3064                         Ok(_) => (),
3065                         Err(_) => panic!()
3066                 };
3067
3068                 let mut w = test_utils::TestVecWriter(Vec::new());
3069                 assert!(!network_graph.read_only().nodes().is_empty());
3070                 assert!(!network_graph.read_only().channels().is_empty());
3071                 network_graph.write(&mut w).unwrap();
3072
3073                 let logger = Arc::new(test_utils::TestLogger::new());
3074                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
3075         }
3076
3077         #[test]
3078         fn network_graph_tlv_serialization() {
3079                 let network_graph = create_network_graph();
3080                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
3081
3082                 let mut w = test_utils::TestVecWriter(Vec::new());
3083                 network_graph.write(&mut w).unwrap();
3084
3085                 let logger = Arc::new(test_utils::TestLogger::new());
3086                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
3087                 assert!(reassembled_network_graph == network_graph);
3088                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
3089         }
3090
3091         #[test]
3092         #[cfg(feature = "std")]
3093         fn calling_sync_routing_table() {
3094                 use std::time::{SystemTime, UNIX_EPOCH};
3095                 use crate::ln::msgs::Init;
3096
3097                 let network_graph = create_network_graph();
3098                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3099                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
3100                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
3101
3102                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3103
3104                 // It should ignore if gossip_queries feature is not enabled
3105                 {
3106                         let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
3107                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3108                         let events = gossip_sync.get_and_clear_pending_msg_events();
3109                         assert_eq!(events.len(), 0);
3110                 }
3111
3112                 // It should send a gossip_timestamp_filter with the correct information
3113                 {
3114                         let mut features = InitFeatures::empty();
3115                         features.set_gossip_queries_optional();
3116                         let init_msg = Init { features, networks: None, remote_network_address: None };
3117                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3118                         let events = gossip_sync.get_and_clear_pending_msg_events();
3119                         assert_eq!(events.len(), 1);
3120                         match &events[0] {
3121                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
3122                                         assert_eq!(node_id, &node_id_1);
3123                                         assert_eq!(msg.chain_hash, chain_hash);
3124                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
3125                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
3126                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
3127                                         assert_eq!(msg.timestamp_range, u32::max_value());
3128                                 },
3129                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
3130                         };
3131                 }
3132         }
3133
3134         #[test]
3135         fn handling_query_channel_range() {
3136                 let network_graph = create_network_graph();
3137                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3138
3139                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3140                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3141                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3142                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
3143
3144                 let mut scids: Vec<u64> = vec![
3145                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
3146                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
3147                 ];
3148
3149                 // used for testing multipart reply across blocks
3150                 for block in 100000..=108001 {
3151                         scids.push(scid_from_parts(block, 0, 0).unwrap());
3152                 }
3153
3154                 // used for testing resumption on same block
3155                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
3156
3157                 for scid in scids {
3158                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
3159                                 unsigned_announcement.short_channel_id = scid;
3160                         }, node_1_privkey, node_2_privkey, &secp_ctx);
3161                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
3162                                 Ok(_) => (),
3163                                 _ => panic!()
3164                         };
3165                 }
3166
3167                 // Error when number_of_blocks=0
3168                 do_handling_query_channel_range(
3169                         &gossip_sync,
3170                         &node_id_2,
3171                         QueryChannelRange {
3172                                 chain_hash: chain_hash.clone(),
3173                                 first_blocknum: 0,
3174                                 number_of_blocks: 0,
3175                         },
3176                         false,
3177                         vec![ReplyChannelRange {
3178                                 chain_hash: chain_hash.clone(),
3179                                 first_blocknum: 0,
3180                                 number_of_blocks: 0,
3181                                 sync_complete: true,
3182                                 short_channel_ids: vec![]
3183                         }]
3184                 );
3185
3186                 // Error when wrong chain
3187                 do_handling_query_channel_range(
3188                         &gossip_sync,
3189                         &node_id_2,
3190                         QueryChannelRange {
3191                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3192                                 first_blocknum: 0,
3193                                 number_of_blocks: 0xffff_ffff,
3194                         },
3195                         false,
3196                         vec![ReplyChannelRange {
3197                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3198                                 first_blocknum: 0,
3199                                 number_of_blocks: 0xffff_ffff,
3200                                 sync_complete: true,
3201                                 short_channel_ids: vec![],
3202                         }]
3203                 );
3204
3205                 // Error when first_blocknum > 0xffffff
3206                 do_handling_query_channel_range(
3207                         &gossip_sync,
3208                         &node_id_2,
3209                         QueryChannelRange {
3210                                 chain_hash: chain_hash.clone(),
3211                                 first_blocknum: 0x01000000,
3212                                 number_of_blocks: 0xffff_ffff,
3213                         },
3214                         false,
3215                         vec![ReplyChannelRange {
3216                                 chain_hash: chain_hash.clone(),
3217                                 first_blocknum: 0x01000000,
3218                                 number_of_blocks: 0xffff_ffff,
3219                                 sync_complete: true,
3220                                 short_channel_ids: vec![]
3221                         }]
3222                 );
3223
3224                 // Empty reply when max valid SCID block num
3225                 do_handling_query_channel_range(
3226                         &gossip_sync,
3227                         &node_id_2,
3228                         QueryChannelRange {
3229                                 chain_hash: chain_hash.clone(),
3230                                 first_blocknum: 0xffffff,
3231                                 number_of_blocks: 1,
3232                         },
3233                         true,
3234                         vec![
3235                                 ReplyChannelRange {
3236                                         chain_hash: chain_hash.clone(),
3237                                         first_blocknum: 0xffffff,
3238                                         number_of_blocks: 1,
3239                                         sync_complete: true,
3240                                         short_channel_ids: vec![]
3241                                 },
3242                         ]
3243                 );
3244
3245                 // No results in valid query range
3246                 do_handling_query_channel_range(
3247                         &gossip_sync,
3248                         &node_id_2,
3249                         QueryChannelRange {
3250                                 chain_hash: chain_hash.clone(),
3251                                 first_blocknum: 1000,
3252                                 number_of_blocks: 1000,
3253                         },
3254                         true,
3255                         vec![
3256                                 ReplyChannelRange {
3257                                         chain_hash: chain_hash.clone(),
3258                                         first_blocknum: 1000,
3259                                         number_of_blocks: 1000,
3260                                         sync_complete: true,
3261                                         short_channel_ids: vec![],
3262                                 }
3263                         ]
3264                 );
3265
3266                 // Overflow first_blocknum + number_of_blocks
3267                 do_handling_query_channel_range(
3268                         &gossip_sync,
3269                         &node_id_2,
3270                         QueryChannelRange {
3271                                 chain_hash: chain_hash.clone(),
3272                                 first_blocknum: 0xfe0000,
3273                                 number_of_blocks: 0xffffffff,
3274                         },
3275                         true,
3276                         vec![
3277                                 ReplyChannelRange {
3278                                         chain_hash: chain_hash.clone(),
3279                                         first_blocknum: 0xfe0000,
3280                                         number_of_blocks: 0xffffffff - 0xfe0000,
3281                                         sync_complete: true,
3282                                         short_channel_ids: vec![
3283                                                 0xfffffe_ffffff_ffff, // max
3284                                         ]
3285                                 }
3286                         ]
3287                 );
3288
3289                 // Single block exactly full
3290                 do_handling_query_channel_range(
3291                         &gossip_sync,
3292                         &node_id_2,
3293                         QueryChannelRange {
3294                                 chain_hash: chain_hash.clone(),
3295                                 first_blocknum: 100000,
3296                                 number_of_blocks: 8000,
3297                         },
3298                         true,
3299                         vec![
3300                                 ReplyChannelRange {
3301                                         chain_hash: chain_hash.clone(),
3302                                         first_blocknum: 100000,
3303                                         number_of_blocks: 8000,
3304                                         sync_complete: true,
3305                                         short_channel_ids: (100000..=107999)
3306                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3307                                                 .collect(),
3308                                 },
3309                         ]
3310                 );
3311
3312                 // Multiple split on new block
3313                 do_handling_query_channel_range(
3314                         &gossip_sync,
3315                         &node_id_2,
3316                         QueryChannelRange {
3317                                 chain_hash: chain_hash.clone(),
3318                                 first_blocknum: 100000,
3319                                 number_of_blocks: 8001,
3320                         },
3321                         true,
3322                         vec![
3323                                 ReplyChannelRange {
3324                                         chain_hash: chain_hash.clone(),
3325                                         first_blocknum: 100000,
3326                                         number_of_blocks: 7999,
3327                                         sync_complete: false,
3328                                         short_channel_ids: (100000..=107999)
3329                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3330                                                 .collect(),
3331                                 },
3332                                 ReplyChannelRange {
3333                                         chain_hash: chain_hash.clone(),
3334                                         first_blocknum: 107999,
3335                                         number_of_blocks: 2,
3336                                         sync_complete: true,
3337                                         short_channel_ids: vec![
3338                                                 scid_from_parts(108000, 0, 0).unwrap(),
3339                                         ],
3340                                 }
3341                         ]
3342                 );
3343
3344                 // Multiple split on same block
3345                 do_handling_query_channel_range(
3346                         &gossip_sync,
3347                         &node_id_2,
3348                         QueryChannelRange {
3349                                 chain_hash: chain_hash.clone(),
3350                                 first_blocknum: 100002,
3351                                 number_of_blocks: 8000,
3352                         },
3353                         true,
3354                         vec![
3355                                 ReplyChannelRange {
3356                                         chain_hash: chain_hash.clone(),
3357                                         first_blocknum: 100002,
3358                                         number_of_blocks: 7999,
3359                                         sync_complete: false,
3360                                         short_channel_ids: (100002..=108001)
3361                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3362                                                 .collect(),
3363                                 },
3364                                 ReplyChannelRange {
3365                                         chain_hash: chain_hash.clone(),
3366                                         first_blocknum: 108001,
3367                                         number_of_blocks: 1,
3368                                         sync_complete: true,
3369                                         short_channel_ids: vec![
3370                                                 scid_from_parts(108001, 1, 0).unwrap(),
3371                                         ],
3372                                 }
3373                         ]
3374                 );
3375         }
3376
3377         fn do_handling_query_channel_range(
3378                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3379                 test_node_id: &PublicKey,
3380                 msg: QueryChannelRange,
3381                 expected_ok: bool,
3382                 expected_replies: Vec<ReplyChannelRange>
3383         ) {
3384                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3385                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3386                 let query_end_blocknum = msg.end_blocknum();
3387                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3388
3389                 if expected_ok {
3390                         assert!(result.is_ok());
3391                 } else {
3392                         assert!(result.is_err());
3393                 }
3394
3395                 let events = gossip_sync.get_and_clear_pending_msg_events();
3396                 assert_eq!(events.len(), expected_replies.len());
3397
3398                 for i in 0..events.len() {
3399                         let expected_reply = &expected_replies[i];
3400                         match &events[i] {
3401                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3402                                         assert_eq!(node_id, test_node_id);
3403                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3404                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3405                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3406                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3407                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3408
3409                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3410                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3411                                         assert!(msg.first_blocknum >= max_firstblocknum);
3412                                         max_firstblocknum = msg.first_blocknum;
3413                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3414
3415                                         // Check that the last block count is >= the query's end_blocknum
3416                                         if i == events.len() - 1 {
3417                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3418                                         }
3419                                 },
3420                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3421                         }
3422                 }
3423         }
3424
3425         #[test]
3426         fn handling_query_short_channel_ids() {
3427                 let network_graph = create_network_graph();
3428                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3429                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3430                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3431
3432                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3433
3434                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3435                         chain_hash,
3436                         short_channel_ids: vec![0x0003e8_000000_0000],
3437                 });
3438                 assert!(result.is_err());
3439         }
3440
3441         #[test]
3442         fn displays_node_alias() {
3443                 let format_str_alias = |alias: &str| {
3444                         let mut bytes = [0u8; 32];
3445                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3446                         format!("{}", NodeAlias(bytes))
3447                 };
3448
3449                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3450                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3451                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3452
3453                 let format_bytes_alias = |alias: &[u8]| {
3454                         let mut bytes = [0u8; 32];
3455                         bytes[..alias.len()].copy_from_slice(alias);
3456                         format!("{}", NodeAlias(bytes))
3457                 };
3458
3459                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3460                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3461                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3462         }
3463
3464         #[test]
3465         fn channel_info_is_readable() {
3466                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3467                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3468                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3469                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3470                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3471
3472                 // 1. Test encoding/decoding of ChannelUpdateInfo
3473                 let chan_update_info = ChannelUpdateInfo {
3474                         last_update: 23,
3475                         enabled: true,
3476                         cltv_expiry_delta: 42,
3477                         htlc_minimum_msat: 1234,
3478                         htlc_maximum_msat: 5678,
3479                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3480                         last_update_message: None,
3481                 };
3482
3483                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3484                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3485
3486                 // First make sure we can read ChannelUpdateInfos we just wrote
3487                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3488                 assert_eq!(chan_update_info, read_chan_update_info);
3489
3490                 // Check the serialization hasn't changed.
3491                 let legacy_chan_update_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3492                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3493
3494                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3495                 // or the ChannelUpdate enclosed with `last_update_message`.
3496                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = <Vec<u8>>::from_hex("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3497                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3498                 assert!(read_chan_update_info_res.is_err());
3499
3500                 let legacy_chan_update_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3501                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3502                 assert!(read_chan_update_info_res.is_err());
3503
3504                 // 2. Test encoding/decoding of ChannelInfo
3505                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3506                 let chan_info_none_updates = ChannelInfo {
3507                         features: channelmanager::provided_channel_features(&config),
3508                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3509                         one_to_two: None,
3510                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3511                         two_to_one: None,
3512                         capacity_sats: None,
3513                         announcement_message: None,
3514                         announcement_received_time: 87654,
3515                         node_one_counter: 0,
3516                         node_two_counter: 1,
3517                 };
3518
3519                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3520                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3521
3522                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3523                 assert_eq!(chan_info_none_updates, read_chan_info);
3524
3525                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3526                 let chan_info_some_updates = ChannelInfo {
3527                         features: channelmanager::provided_channel_features(&config),
3528                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3529                         one_to_two: Some(chan_update_info.clone()),
3530                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3531                         two_to_one: Some(chan_update_info.clone()),
3532                         capacity_sats: None,
3533                         announcement_message: None,
3534                         announcement_received_time: 87654,
3535                         node_one_counter: 0,
3536                         node_two_counter: 1,
3537                 };
3538
3539                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3540                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3541
3542                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3543                 assert_eq!(chan_info_some_updates, read_chan_info);
3544
3545                 // Check the serialization hasn't changed.
3546                 let legacy_chan_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3547                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3548
3549                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3550                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3551                 let legacy_chan_info_with_some_and_fail_update = <Vec<u8>>::from_hex("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3552                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3553                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3554                 assert_eq!(read_chan_info.one_to_two, None);
3555                 assert_eq!(read_chan_info.two_to_one, None);
3556
3557                 let legacy_chan_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3558                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3559                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3560                 assert_eq!(read_chan_info.one_to_two, None);
3561                 assert_eq!(read_chan_info.two_to_one, None);
3562         }
3563
3564         #[test]
3565         fn node_info_is_readable() {
3566                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3567                 let announcement_message = <Vec<u8>>::from_hex("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3568                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3569                 let valid_node_ann_info = NodeAnnouncementInfo {
3570                         features: channelmanager::provided_node_features(&UserConfig::default()),
3571                         last_update: 0,
3572                         rgb: [0u8; 3],
3573                         alias: NodeAlias([0u8; 32]),
3574                         announcement_message: Some(announcement_message)
3575                 };
3576
3577                 let mut encoded_valid_node_ann_info = Vec::new();
3578                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3579                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3580                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3581                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3582
3583                 let encoded_invalid_node_ann_info = <Vec<u8>>::from_hex("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3584                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3585                 assert!(read_invalid_node_ann_info_res.is_err());
3586
3587                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3588                 let valid_node_info = NodeInfo {
3589                         channels: Vec::new(),
3590                         announcement_info: Some(valid_node_ann_info),
3591                         node_counter: 0,
3592                 };
3593
3594                 let mut encoded_valid_node_info = Vec::new();
3595                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3596                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3597                 assert_eq!(read_valid_node_info, valid_node_info);
3598
3599                 let encoded_invalid_node_info_hex = <Vec<u8>>::from_hex("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3600                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3601                 assert_eq!(read_invalid_node_info.announcement_info, None);
3602         }
3603
3604         #[test]
3605         fn test_node_info_keeps_compatibility() {
3606                 let old_ann_info_with_addresses = <Vec<u8>>::from_hex("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3607                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3608                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3609                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3610                 assert!(ann_info_with_addresses.addresses().is_empty());
3611         }
3612
3613         #[test]
3614         fn test_node_id_display() {
3615                 let node_id = NodeId([42; 33]);
3616                 assert_eq!(format!("{}", &node_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
3617         }
3618 }
3619
3620 #[cfg(ldk_bench)]
3621 pub mod benches {
3622         use super::*;
3623         use std::io::Read;
3624         use criterion::{black_box, Criterion};
3625
3626         pub fn read_network_graph(bench: &mut Criterion) {
3627                 let logger = crate::util::test_utils::TestLogger::new();
3628                 let (mut d, _) = crate::routing::router::bench_utils::get_graph_scorer_file().unwrap();
3629                 let mut v = Vec::new();
3630                 d.read_to_end(&mut v).unwrap();
3631                 bench.bench_function("read_network_graph", |b| b.iter(||
3632                         NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3633                 ));
3634         }
3635
3636         pub fn write_network_graph(bench: &mut Criterion) {
3637                 let logger = crate::util::test_utils::TestLogger::new();
3638                 let (mut d, _) = crate::routing::router::bench_utils::get_graph_scorer_file().unwrap();
3639                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3640                 bench.bench_function("write_network_graph", |b| b.iter(||
3641                         black_box(&net_graph).encode()
3642                 ));
3643         }
3644 }