363f067b1aa6050b3ddf495e84d042f64ebfad6f
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use crate::chain;
23 use crate::chain::Access;
24 use crate::ln::chan_utils::make_funding_redeemscript;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46 use bitcoin::hashes::hex::ToHex;
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80 }
81
82 impl fmt::Debug for NodeId {
83         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
84                 write!(f, "NodeId({})", log_bytes!(self.0))
85         }
86 }
87 impl fmt::Display for NodeId {
88         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
89                 write!(f, "{}", log_bytes!(self.0))
90         }
91 }
92
93 impl core::hash::Hash for NodeId {
94         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
95                 self.0.hash(hasher);
96         }
97 }
98
99 impl Eq for NodeId {}
100
101 impl PartialEq for NodeId {
102         fn eq(&self, other: &Self) -> bool {
103                 self.0[..] == other.0[..]
104         }
105 }
106
107 impl cmp::PartialOrd for NodeId {
108         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
109                 Some(self.cmp(other))
110         }
111 }
112
113 impl Ord for NodeId {
114         fn cmp(&self, other: &Self) -> cmp::Ordering {
115                 self.0[..].cmp(&other.0[..])
116         }
117 }
118
119 impl Writeable for NodeId {
120         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
121                 writer.write_all(&self.0)?;
122                 Ok(())
123         }
124 }
125
126 impl Readable for NodeId {
127         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
128                 let mut buf = [0; PUBLIC_KEY_SIZE];
129                 reader.read_exact(&mut buf)?;
130                 Ok(Self(buf))
131         }
132 }
133
134 /// Represents the network as nodes and channels between them
135 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
136         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
137         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
138         genesis_hash: BlockHash,
139         logger: L,
140         // Lock order: channels -> nodes
141         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
142         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
143         // Lock order: removed_channels -> removed_nodes
144         //
145         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
146         // of `std::time::Instant`s for a few reasons:
147         //   * We want it to be possible to do tracking in no-std environments where we can compare
148         //     a provided current UNIX timestamp with the time at which we started tracking.
149         //   * In the future, if we decide to persist these maps, they will already be serializable.
150         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
151         //     environment should be practical over the time period we are considering (on the order of a
152         //     week).
153         //
154         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
155         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
156         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
157         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
158         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
159         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
160         /// that once some time passes, we can potentially resync it from gossip again.
161         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
162 }
163
164 /// A read-only view of [`NetworkGraph`].
165 pub struct ReadOnlyNetworkGraph<'a> {
166         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
167         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
168 }
169
170 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
171 /// return packet by a node along the route. See [BOLT #4] for details.
172 ///
173 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
174 #[derive(Clone, Debug, PartialEq, Eq)]
175 pub enum NetworkUpdate {
176         /// An error indicating a `channel_update` messages should be applied via
177         /// [`NetworkGraph::update_channel`].
178         ChannelUpdateMessage {
179                 /// The update to apply via [`NetworkGraph::update_channel`].
180                 msg: ChannelUpdate,
181         },
182         /// An error indicating that a channel failed to route a payment, which should be applied via
183         /// [`NetworkGraph::channel_failed`].
184         ChannelFailure {
185                 /// The short channel id of the closed channel.
186                 short_channel_id: u64,
187                 /// Whether the channel should be permanently removed or temporarily disabled until a new
188                 /// `channel_update` message is received.
189                 is_permanent: bool,
190         },
191         /// An error indicating that a node failed to route a payment, which should be applied via
192         /// [`NetworkGraph::node_failed_permanent`] if permanent.
193         NodeFailure {
194                 /// The node id of the failed node.
195                 node_id: PublicKey,
196                 /// Whether the node should be permanently removed from consideration or can be restored
197                 /// when a new `channel_update` message is received.
198                 is_permanent: bool,
199         }
200 }
201
202 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
203         (0, ChannelUpdateMessage) => {
204                 (0, msg, required),
205         },
206         (2, ChannelFailure) => {
207                 (0, short_channel_id, required),
208                 (2, is_permanent, required),
209         },
210         (4, NodeFailure) => {
211                 (0, node_id, required),
212                 (2, is_permanent, required),
213         },
214 );
215
216 /// Receives and validates network updates from peers,
217 /// stores authentic and relevant data as a network graph.
218 /// This network graph is then used for routing payments.
219 /// Provides interface to help with initial routing sync by
220 /// serving historical announcements.
221 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
222 where C::Target: chain::Access, L::Target: Logger
223 {
224         network_graph: G,
225         chain_access: Option<C>,
226         #[cfg(feature = "std")]
227         full_syncs_requested: AtomicUsize,
228         pending_events: Mutex<Vec<MessageSendEvent>>,
229         logger: L,
230 }
231
232 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
233 where C::Target: chain::Access, L::Target: Logger
234 {
235         /// Creates a new tracker of the actual state of the network of channels and nodes,
236         /// assuming an existing Network Graph.
237         /// Chain monitor is used to make sure announced channels exist on-chain,
238         /// channel data is correct, and that the announcement is signed with
239         /// channel owners' keys.
240         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
241                 P2PGossipSync {
242                         network_graph,
243                         #[cfg(feature = "std")]
244                         full_syncs_requested: AtomicUsize::new(0),
245                         chain_access,
246                         pending_events: Mutex::new(vec![]),
247                         logger,
248                 }
249         }
250
251         /// Adds a provider used to check new announcements. Does not affect
252         /// existing announcements unless they are updated.
253         /// Add, update or remove the provider would replace the current one.
254         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
255                 self.chain_access = chain_access;
256         }
257
258         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
259         /// [`P2PGossipSync::new`].
260         ///
261         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
262         pub fn network_graph(&self) -> &G {
263                 &self.network_graph
264         }
265
266         #[cfg(feature = "std")]
267         /// Returns true when a full routing table sync should be performed with a peer.
268         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
269                 //TODO: Determine whether to request a full sync based on the network map.
270                 const FULL_SYNCS_TO_REQUEST: usize = 5;
271                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
272                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
273                         true
274                 } else {
275                         false
276                 }
277         }
278 }
279
280 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
281         /// Handles any network updates originating from [`Event`]s.
282         ///
283         /// [`Event`]: crate::util::events::Event
284         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
285                 match *network_update {
286                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
287                                 let short_channel_id = msg.contents.short_channel_id;
288                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
289                                 let status = if is_enabled { "enabled" } else { "disabled" };
290                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
291                                 let _ = self.update_channel(msg);
292                         },
293                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
294                                 let action = if is_permanent { "Removing" } else { "Disabling" };
295                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
296                                 self.channel_failed(short_channel_id, is_permanent);
297                         },
298                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
299                                 if is_permanent {
300                                         log_debug!(self.logger,
301                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
302                                         self.node_failed_permanent(node_id);
303                                 };
304                         },
305                 }
306         }
307 }
308
309 macro_rules! secp_verify_sig {
310         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
311                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
312                         Ok(_) => {},
313                         Err(_) => {
314                                 return Err(LightningError {
315                                         err: format!("Invalid signature on {} message", $msg_type),
316                                         action: ErrorAction::SendWarningMessage {
317                                                 msg: msgs::WarningMessage {
318                                                         channel_id: [0; 32],
319                                                         data: format!("Invalid signature on {} message", $msg_type),
320                                                 },
321                                                 log_level: Level::Trace,
322                                         },
323                                 });
324                         },
325                 }
326         };
327 }
328
329 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
330 where C::Target: chain::Access, L::Target: Logger
331 {
332         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
333                 self.network_graph.update_node_from_announcement(msg)?;
334                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
335                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
336                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
337         }
338
339         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
340                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
341                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
342                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
343         }
344
345         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
346                 self.network_graph.update_channel(msg)?;
347                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
348         }
349
350         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
351                 let channels = self.network_graph.channels.read().unwrap();
352                 for (_, ref chan) in channels.range(starting_point..) {
353                         if chan.announcement_message.is_some() {
354                                 let chan_announcement = chan.announcement_message.clone().unwrap();
355                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
356                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
357                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
358                                         one_to_two_announcement = one_to_two.last_update_message.clone();
359                                 }
360                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
361                                         two_to_one_announcement = two_to_one.last_update_message.clone();
362                                 }
363                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
364                         } else {
365                                 // TODO: We may end up sending un-announced channel_updates if we are sending
366                                 // initial sync data while receiving announce/updates for this channel.
367                         }
368                 }
369                 None
370         }
371
372         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
373                 let nodes = self.network_graph.nodes.read().unwrap();
374                 let iter = if let Some(pubkey) = starting_point {
375                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
376                         } else {
377                                 nodes.range(..)
378                         };
379                 for (_, ref node) in iter {
380                         if let Some(node_info) = node.announcement_info.as_ref() {
381                                 if let Some(msg) = node_info.announcement_message.clone() {
382                                         return Some(msg);
383                                 }
384                         }
385                 }
386                 None
387         }
388
389         /// Initiates a stateless sync of routing gossip information with a peer
390         /// using gossip_queries. The default strategy used by this implementation
391         /// is to sync the full block range with several peers.
392         ///
393         /// We should expect one or more reply_channel_range messages in response
394         /// to our query_channel_range. Each reply will enqueue a query_scid message
395         /// to request gossip messages for each channel. The sync is considered complete
396         /// when the final reply_scids_end message is received, though we are not
397         /// tracking this directly.
398         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
399                 // We will only perform a sync with peers that support gossip_queries.
400                 if !init_msg.features.supports_gossip_queries() {
401                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
402                         // channels with peers even without being able to exchange gossip.
403                         return Ok(());
404                 }
405
406                 // The lightning network's gossip sync system is completely broken in numerous ways.
407                 //
408                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
409                 // to do a full sync from the first few peers we connect to, and then receive gossip
410                 // updates from all our peers normally.
411                 //
412                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
413                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
414                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
415                 // seen.
416                 //
417                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
418                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
419                 // channel data which you are missing. Except there was no way at all to identify which
420                 // `channel_update`s you were missing, so you still had to request everything, just in a
421                 // very complicated way with some queries instead of just getting the dump.
422                 //
423                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
424                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
425                 // relying on it useless.
426                 //
427                 // After gossip queries were introduced, support for receiving a full gossip table dump on
428                 // connection was removed from several nodes, making it impossible to get a full sync
429                 // without using the "gossip queries" messages.
430                 //
431                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
432                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
433                 // message, as the name implies, tells the peer to not forward any gossip messages with a
434                 // timestamp older than a given value (not the time the peer received the filter, but the
435                 // timestamp in the update message, which is often hours behind when the peer received the
436                 // message).
437                 //
438                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
439                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
440                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
441                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
442                 // will simply not forward any new updates they see to you which were generated some time
443                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
444                 // ago), you will always get the full routing graph from all your peers.
445                 //
446                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
447                 // propagated some time after it was generated, and, worse, often disable gossiping with
448                 // several peers after their first connection. The second behavior can cause gossip to not
449                 // propagate fully if there are cuts in the gossiping subgraph.
450                 //
451                 // In an attempt to cut a middle ground between always fetching the full graph from all of
452                 // our peers and never receiving gossip from peers at all, we send all of our peers a
453                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
454                 //
455                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
456                 #[allow(unused_mut, unused_assignments)]
457                 let mut gossip_start_time = 0;
458                 #[cfg(feature = "std")]
459                 {
460                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
461                         if self.should_request_full_sync(&their_node_id) {
462                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
463                         } else {
464                                 gossip_start_time -= 60 * 60; // an hour ago
465                         }
466                 }
467
468                 let mut pending_events = self.pending_events.lock().unwrap();
469                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
470                         node_id: their_node_id.clone(),
471                         msg: GossipTimestampFilter {
472                                 chain_hash: self.network_graph.genesis_hash,
473                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
474                                 timestamp_range: u32::max_value(),
475                         },
476                 });
477                 Ok(())
478         }
479
480         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
481                 // We don't make queries, so should never receive replies. If, in the future, the set
482                 // reconciliation extensions to gossip queries become broadly supported, we should revert
483                 // this code to its state pre-0.0.106.
484                 Ok(())
485         }
486
487         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
488                 // We don't make queries, so should never receive replies. If, in the future, the set
489                 // reconciliation extensions to gossip queries become broadly supported, we should revert
490                 // this code to its state pre-0.0.106.
491                 Ok(())
492         }
493
494         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
495         /// are in the specified block range. Due to message size limits, large range
496         /// queries may result in several reply messages. This implementation enqueues
497         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
498         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
499         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
500         /// memory constrained systems.
501         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
502                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
503
504                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
505
506                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
507                 // If so, we manually cap the ending block to avoid this overflow.
508                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
509
510                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
511                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
512                         let mut pending_events = self.pending_events.lock().unwrap();
513                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
514                                 node_id: their_node_id.clone(),
515                                 msg: ReplyChannelRange {
516                                         chain_hash: msg.chain_hash.clone(),
517                                         first_blocknum: msg.first_blocknum,
518                                         number_of_blocks: msg.number_of_blocks,
519                                         sync_complete: true,
520                                         short_channel_ids: vec![],
521                                 }
522                         });
523                         return Err(LightningError {
524                                 err: String::from("query_channel_range could not be processed"),
525                                 action: ErrorAction::IgnoreError,
526                         });
527                 }
528
529                 // Creates channel batches. We are not checking if the channel is routable
530                 // (has at least one update). A peer may still want to know the channel
531                 // exists even if its not yet routable.
532                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
533                 let channels = self.network_graph.channels.read().unwrap();
534                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
535                         if let Some(chan_announcement) = &chan.announcement_message {
536                                 // Construct a new batch if last one is full
537                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
538                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
539                                 }
540
541                                 let batch = batches.last_mut().unwrap();
542                                 batch.push(chan_announcement.contents.short_channel_id);
543                         }
544                 }
545                 drop(channels);
546
547                 let mut pending_events = self.pending_events.lock().unwrap();
548                 let batch_count = batches.len();
549                 let mut prev_batch_endblock = msg.first_blocknum;
550                 for (batch_index, batch) in batches.into_iter().enumerate() {
551                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
552                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
553                         //
554                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
555                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
556                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
557                         // significant diversion from the requirements set by the spec, and, in case of blocks
558                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
559                         // and *not* derive the first_blocknum from the actual first block of the reply.
560                         let first_blocknum = prev_batch_endblock;
561
562                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
563                         // fit in. Though there is no requirement that we use exactly the number of blocks its
564                         // contents are from, except for the bogus requirements c-lightning enforces, above.
565                         //
566                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
567                         // >= the query's end block. Thus, for the last reply, we calculate the difference
568                         // between the query's end block and the start of the reply.
569                         //
570                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
571                         // first_blocknum will be either msg.first_blocknum or a higher block height.
572                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
573                                 (true, msg.end_blocknum() - first_blocknum)
574                         }
575                         // Prior replies should use the number of blocks that fit into the reply. Overflow
576                         // safe since first_blocknum is always <= last SCID's block.
577                         else {
578                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
579                         };
580
581                         prev_batch_endblock = first_blocknum + number_of_blocks;
582
583                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
584                                 node_id: their_node_id.clone(),
585                                 msg: ReplyChannelRange {
586                                         chain_hash: msg.chain_hash.clone(),
587                                         first_blocknum,
588                                         number_of_blocks,
589                                         sync_complete,
590                                         short_channel_ids: batch,
591                                 }
592                         });
593                 }
594
595                 Ok(())
596         }
597
598         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
599                 // TODO
600                 Err(LightningError {
601                         err: String::from("Not implemented"),
602                         action: ErrorAction::IgnoreError,
603                 })
604         }
605
606         fn provided_node_features(&self) -> NodeFeatures {
607                 let mut features = NodeFeatures::empty();
608                 features.set_gossip_queries_optional();
609                 features
610         }
611
612         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
613                 let mut features = InitFeatures::empty();
614                 features.set_gossip_queries_optional();
615                 features
616         }
617 }
618
619 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
620 where
621         C::Target: chain::Access,
622         L::Target: Logger,
623 {
624         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
625                 let mut ret = Vec::new();
626                 let mut pending_events = self.pending_events.lock().unwrap();
627                 core::mem::swap(&mut ret, &mut pending_events);
628                 ret
629         }
630 }
631
632 #[derive(Clone, Debug, PartialEq, Eq)]
633 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
634 pub struct ChannelUpdateInfo {
635         /// When the last update to the channel direction was issued.
636         /// Value is opaque, as set in the announcement.
637         pub last_update: u32,
638         /// Whether the channel can be currently used for payments (in this one direction).
639         pub enabled: bool,
640         /// The difference in CLTV values that you must have when routing through this channel.
641         pub cltv_expiry_delta: u16,
642         /// The minimum value, which must be relayed to the next hop via the channel
643         pub htlc_minimum_msat: u64,
644         /// The maximum value which may be relayed to the next hop via the channel.
645         pub htlc_maximum_msat: u64,
646         /// Fees charged when the channel is used for routing
647         pub fees: RoutingFees,
648         /// Most recent update for the channel received from the network
649         /// Mostly redundant with the data we store in fields explicitly.
650         /// Everything else is useful only for sending out for initial routing sync.
651         /// Not stored if contains excess data to prevent DoS.
652         pub last_update_message: Option<ChannelUpdate>,
653 }
654
655 impl fmt::Display for ChannelUpdateInfo {
656         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
657                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
658                 Ok(())
659         }
660 }
661
662 impl Writeable for ChannelUpdateInfo {
663         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
664                 write_tlv_fields!(writer, {
665                         (0, self.last_update, required),
666                         (2, self.enabled, required),
667                         (4, self.cltv_expiry_delta, required),
668                         (6, self.htlc_minimum_msat, required),
669                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
670                         // compatibility with LDK versions prior to v0.0.110.
671                         (8, Some(self.htlc_maximum_msat), required),
672                         (10, self.fees, required),
673                         (12, self.last_update_message, required),
674                 });
675                 Ok(())
676         }
677 }
678
679 impl Readable for ChannelUpdateInfo {
680         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
681                 _init_tlv_field_var!(last_update, required);
682                 _init_tlv_field_var!(enabled, required);
683                 _init_tlv_field_var!(cltv_expiry_delta, required);
684                 _init_tlv_field_var!(htlc_minimum_msat, required);
685                 _init_tlv_field_var!(htlc_maximum_msat, option);
686                 _init_tlv_field_var!(fees, required);
687                 _init_tlv_field_var!(last_update_message, required);
688
689                 read_tlv_fields!(reader, {
690                         (0, last_update, required),
691                         (2, enabled, required),
692                         (4, cltv_expiry_delta, required),
693                         (6, htlc_minimum_msat, required),
694                         (8, htlc_maximum_msat, required),
695                         (10, fees, required),
696                         (12, last_update_message, required)
697                 });
698
699                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
700                         Ok(ChannelUpdateInfo {
701                                 last_update: _init_tlv_based_struct_field!(last_update, required),
702                                 enabled: _init_tlv_based_struct_field!(enabled, required),
703                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
704                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
705                                 htlc_maximum_msat,
706                                 fees: _init_tlv_based_struct_field!(fees, required),
707                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
708                         })
709                 } else {
710                         Err(DecodeError::InvalidValue)
711                 }
712         }
713 }
714
715 #[derive(Clone, Debug, PartialEq, Eq)]
716 /// Details about a channel (both directions).
717 /// Received within a channel announcement.
718 pub struct ChannelInfo {
719         /// Protocol features of a channel communicated during its announcement
720         pub features: ChannelFeatures,
721         /// Source node of the first direction of a channel
722         pub node_one: NodeId,
723         /// Details about the first direction of a channel
724         pub one_to_two: Option<ChannelUpdateInfo>,
725         /// Source node of the second direction of a channel
726         pub node_two: NodeId,
727         /// Details about the second direction of a channel
728         pub two_to_one: Option<ChannelUpdateInfo>,
729         /// The channel capacity as seen on-chain, if chain lookup is available.
730         pub capacity_sats: Option<u64>,
731         /// An initial announcement of the channel
732         /// Mostly redundant with the data we store in fields explicitly.
733         /// Everything else is useful only for sending out for initial routing sync.
734         /// Not stored if contains excess data to prevent DoS.
735         pub announcement_message: Option<ChannelAnnouncement>,
736         /// The timestamp when we received the announcement, if we are running with feature = "std"
737         /// (which we can probably assume we are - no-std environments probably won't have a full
738         /// network graph in memory!).
739         announcement_received_time: u64,
740 }
741
742 impl ChannelInfo {
743         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
744         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
745         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
746                 let (direction, source) = {
747                         if target == &self.node_one {
748                                 (self.two_to_one.as_ref(), &self.node_two)
749                         } else if target == &self.node_two {
750                                 (self.one_to_two.as_ref(), &self.node_one)
751                         } else {
752                                 return None;
753                         }
754                 };
755                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
756         }
757
758         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
759         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
760         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
761                 let (direction, target) = {
762                         if source == &self.node_one {
763                                 (self.one_to_two.as_ref(), &self.node_two)
764                         } else if source == &self.node_two {
765                                 (self.two_to_one.as_ref(), &self.node_one)
766                         } else {
767                                 return None;
768                         }
769                 };
770                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
771         }
772
773         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
774         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
775                 let direction = channel_flags & 1u8;
776                 if direction == 0 {
777                         self.one_to_two.as_ref()
778                 } else {
779                         self.two_to_one.as_ref()
780                 }
781         }
782 }
783
784 impl fmt::Display for ChannelInfo {
785         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
786                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
787                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
788                 Ok(())
789         }
790 }
791
792 impl Writeable for ChannelInfo {
793         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
794                 write_tlv_fields!(writer, {
795                         (0, self.features, required),
796                         (1, self.announcement_received_time, (default_value, 0)),
797                         (2, self.node_one, required),
798                         (4, self.one_to_two, required),
799                         (6, self.node_two, required),
800                         (8, self.two_to_one, required),
801                         (10, self.capacity_sats, required),
802                         (12, self.announcement_message, required),
803                 });
804                 Ok(())
805         }
806 }
807
808 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
809 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
810 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
811 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
812 // channel updates via the gossip network.
813 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
814
815 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
816         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
817                 match crate::util::ser::Readable::read(reader) {
818                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
819                         Err(DecodeError::ShortRead) => Ok(None),
820                         Err(DecodeError::InvalidValue) => Ok(None),
821                         Err(err) => Err(err),
822                 }
823         }
824 }
825
826 impl Readable for ChannelInfo {
827         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
828                 _init_tlv_field_var!(features, required);
829                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
830                 _init_tlv_field_var!(node_one, required);
831                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
832                 _init_tlv_field_var!(node_two, required);
833                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
834                 _init_tlv_field_var!(capacity_sats, required);
835                 _init_tlv_field_var!(announcement_message, required);
836                 read_tlv_fields!(reader, {
837                         (0, features, required),
838                         (1, announcement_received_time, (default_value, 0)),
839                         (2, node_one, required),
840                         (4, one_to_two_wrap, ignorable),
841                         (6, node_two, required),
842                         (8, two_to_one_wrap, ignorable),
843                         (10, capacity_sats, required),
844                         (12, announcement_message, required),
845                 });
846
847                 Ok(ChannelInfo {
848                         features: _init_tlv_based_struct_field!(features, required),
849                         node_one: _init_tlv_based_struct_field!(node_one, required),
850                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
851                         node_two: _init_tlv_based_struct_field!(node_two, required),
852                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
853                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
854                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
855                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
856                 })
857         }
858 }
859
860 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
861 /// source node to a target node.
862 #[derive(Clone)]
863 pub struct DirectedChannelInfo<'a> {
864         channel: &'a ChannelInfo,
865         direction: &'a ChannelUpdateInfo,
866         htlc_maximum_msat: u64,
867         effective_capacity: EffectiveCapacity,
868 }
869
870 impl<'a> DirectedChannelInfo<'a> {
871         #[inline]
872         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
873                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
874                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
875
876                 let effective_capacity = match capacity_msat {
877                         Some(capacity_msat) => {
878                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
879                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
880                         },
881                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
882                 };
883
884                 Self {
885                         channel, direction, htlc_maximum_msat, effective_capacity
886                 }
887         }
888
889         /// Returns information for the channel.
890         #[inline]
891         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
892
893         /// Returns the maximum HTLC amount allowed over the channel in the direction.
894         #[inline]
895         pub fn htlc_maximum_msat(&self) -> u64 {
896                 self.htlc_maximum_msat
897         }
898
899         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
900         ///
901         /// This is either the total capacity from the funding transaction, if known, or the
902         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
903         /// otherwise.
904         pub fn effective_capacity(&self) -> EffectiveCapacity {
905                 self.effective_capacity
906         }
907
908         /// Returns information for the direction.
909         #[inline]
910         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
911 }
912
913 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
914         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
915                 f.debug_struct("DirectedChannelInfo")
916                         .field("channel", &self.channel)
917                         .finish()
918         }
919 }
920
921 /// The effective capacity of a channel for routing purposes.
922 ///
923 /// While this may be smaller than the actual channel capacity, amounts greater than
924 /// [`Self::as_msat`] should not be routed through the channel.
925 #[derive(Clone, Copy, Debug)]
926 pub enum EffectiveCapacity {
927         /// The available liquidity in the channel known from being a channel counterparty, and thus a
928         /// direct hop.
929         ExactLiquidity {
930                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
931                 /// millisatoshi.
932                 liquidity_msat: u64,
933         },
934         /// The maximum HTLC amount in one direction as advertised on the gossip network.
935         MaximumHTLC {
936                 /// The maximum HTLC amount denominated in millisatoshi.
937                 amount_msat: u64,
938         },
939         /// The total capacity of the channel as determined by the funding transaction.
940         Total {
941                 /// The funding amount denominated in millisatoshi.
942                 capacity_msat: u64,
943                 /// The maximum HTLC amount denominated in millisatoshi.
944                 htlc_maximum_msat: u64
945         },
946         /// A capacity sufficient to route any payment, typically used for private channels provided by
947         /// an invoice.
948         Infinite,
949         /// A capacity that is unknown possibly because either the chain state is unavailable to know
950         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
951         Unknown,
952 }
953
954 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
955 /// use when making routing decisions.
956 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
957
958 impl EffectiveCapacity {
959         /// Returns the effective capacity denominated in millisatoshi.
960         pub fn as_msat(&self) -> u64 {
961                 match self {
962                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
963                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
964                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
965                         EffectiveCapacity::Infinite => u64::max_value(),
966                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
967                 }
968         }
969 }
970
971 /// Fees for routing via a given channel or a node
972 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
973 pub struct RoutingFees {
974         /// Flat routing fee in satoshis
975         pub base_msat: u32,
976         /// Liquidity-based routing fee in millionths of a routed amount.
977         /// In other words, 10000 is 1%.
978         pub proportional_millionths: u32,
979 }
980
981 impl_writeable_tlv_based!(RoutingFees, {
982         (0, base_msat, required),
983         (2, proportional_millionths, required)
984 });
985
986 #[derive(Clone, Debug, PartialEq, Eq)]
987 /// Information received in the latest node_announcement from this node.
988 pub struct NodeAnnouncementInfo {
989         /// Protocol features the node announced support for
990         pub features: NodeFeatures,
991         /// When the last known update to the node state was issued.
992         /// Value is opaque, as set in the announcement.
993         pub last_update: u32,
994         /// Color assigned to the node
995         pub rgb: [u8; 3],
996         /// Moniker assigned to the node.
997         /// May be invalid or malicious (eg control chars),
998         /// should not be exposed to the user.
999         pub alias: NodeAlias,
1000         /// Internet-level addresses via which one can connect to the node
1001         pub addresses: Vec<NetAddress>,
1002         /// An initial announcement of the node
1003         /// Mostly redundant with the data we store in fields explicitly.
1004         /// Everything else is useful only for sending out for initial routing sync.
1005         /// Not stored if contains excess data to prevent DoS.
1006         pub announcement_message: Option<NodeAnnouncement>
1007 }
1008
1009 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1010         (0, features, required),
1011         (2, last_update, required),
1012         (4, rgb, required),
1013         (6, alias, required),
1014         (8, announcement_message, option),
1015         (10, addresses, vec_type),
1016 });
1017
1018 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1019 ///
1020 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1021 /// attacks. Care must be taken when processing.
1022 #[derive(Clone, Debug, PartialEq, Eq)]
1023 pub struct NodeAlias(pub [u8; 32]);
1024
1025 impl fmt::Display for NodeAlias {
1026         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1027                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1028                 let bytes = self.0.split_at(first_null).0;
1029                 match core::str::from_utf8(bytes) {
1030                         Ok(alias) => PrintableString(alias).fmt(f)?,
1031                         Err(_) => {
1032                                 use core::fmt::Write;
1033                                 for c in bytes.iter().map(|b| *b as char) {
1034                                         // Display printable ASCII characters
1035                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1036                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1037                                         f.write_char(c)?;
1038                                 }
1039                         },
1040                 };
1041                 Ok(())
1042         }
1043 }
1044
1045 impl Writeable for NodeAlias {
1046         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1047                 self.0.write(w)
1048         }
1049 }
1050
1051 impl Readable for NodeAlias {
1052         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1053                 Ok(NodeAlias(Readable::read(r)?))
1054         }
1055 }
1056
1057 #[derive(Clone, Debug, PartialEq, Eq)]
1058 /// Details about a node in the network, known from the network announcement.
1059 pub struct NodeInfo {
1060         /// All valid channels a node has announced
1061         pub channels: Vec<u64>,
1062         /// More information about a node from node_announcement.
1063         /// Optional because we store a Node entry after learning about it from
1064         /// a channel announcement, but before receiving a node announcement.
1065         pub announcement_info: Option<NodeAnnouncementInfo>
1066 }
1067
1068 impl fmt::Display for NodeInfo {
1069         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1070                 write!(f, " channels: {:?}, announcement_info: {:?}",
1071                         &self.channels[..], self.announcement_info)?;
1072                 Ok(())
1073         }
1074 }
1075
1076 impl Writeable for NodeInfo {
1077         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1078                 write_tlv_fields!(writer, {
1079                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1080                         (2, self.announcement_info, option),
1081                         (4, self.channels, vec_type),
1082                 });
1083                 Ok(())
1084         }
1085 }
1086
1087 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1088 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1089 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1090 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1091 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1092
1093 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1094         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1095                 match crate::util::ser::Readable::read(reader) {
1096                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1097                         Err(_) => {
1098                                 copy(reader, &mut sink()).unwrap();
1099                                 return Ok(None)
1100                         },
1101                 };
1102         }
1103 }
1104
1105 impl Readable for NodeInfo {
1106         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1107                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1108                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1109                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1110                 // requires additional complexity and lookups during routing, it ends up being a
1111                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1112                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1113                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1114                 _init_tlv_field_var!(channels, vec_type);
1115
1116                 read_tlv_fields!(reader, {
1117                         (0, _lowest_inbound_channel_fees, option),
1118                         (2, announcement_info_wrap, ignorable),
1119                         (4, channels, vec_type),
1120                 });
1121
1122                 Ok(NodeInfo {
1123                         announcement_info: announcement_info_wrap.map(|w| w.0),
1124                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1125                 })
1126         }
1127 }
1128
1129 const SERIALIZATION_VERSION: u8 = 1;
1130 const MIN_SERIALIZATION_VERSION: u8 = 1;
1131
1132 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1133         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1134                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1135
1136                 self.genesis_hash.write(writer)?;
1137                 let channels = self.channels.read().unwrap();
1138                 (channels.len() as u64).write(writer)?;
1139                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1140                         (*chan_id).write(writer)?;
1141                         chan_info.write(writer)?;
1142                 }
1143                 let nodes = self.nodes.read().unwrap();
1144                 (nodes.len() as u64).write(writer)?;
1145                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1146                         node_id.write(writer)?;
1147                         node_info.write(writer)?;
1148                 }
1149
1150                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1151                 write_tlv_fields!(writer, {
1152                         (1, last_rapid_gossip_sync_timestamp, option),
1153                 });
1154                 Ok(())
1155         }
1156 }
1157
1158 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1159         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1160                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1161
1162                 let genesis_hash: BlockHash = Readable::read(reader)?;
1163                 let channels_count: u64 = Readable::read(reader)?;
1164                 let mut channels = IndexedMap::new();
1165                 for _ in 0..channels_count {
1166                         let chan_id: u64 = Readable::read(reader)?;
1167                         let chan_info = Readable::read(reader)?;
1168                         channels.insert(chan_id, chan_info);
1169                 }
1170                 let nodes_count: u64 = Readable::read(reader)?;
1171                 let mut nodes = IndexedMap::new();
1172                 for _ in 0..nodes_count {
1173                         let node_id = Readable::read(reader)?;
1174                         let node_info = Readable::read(reader)?;
1175                         nodes.insert(node_id, node_info);
1176                 }
1177
1178                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1179                 read_tlv_fields!(reader, {
1180                         (1, last_rapid_gossip_sync_timestamp, option),
1181                 });
1182
1183                 Ok(NetworkGraph {
1184                         secp_ctx: Secp256k1::verification_only(),
1185                         genesis_hash,
1186                         logger,
1187                         channels: RwLock::new(channels),
1188                         nodes: RwLock::new(nodes),
1189                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1190                         removed_nodes: Mutex::new(HashMap::new()),
1191                         removed_channels: Mutex::new(HashMap::new()),
1192                 })
1193         }
1194 }
1195
1196 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1197         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1198                 writeln!(f, "Network map\n[Channels]")?;
1199                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1200                         writeln!(f, " {}: {}", key, val)?;
1201                 }
1202                 writeln!(f, "[Nodes]")?;
1203                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1204                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1205                 }
1206                 Ok(())
1207         }
1208 }
1209
1210 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1211 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1212         fn eq(&self, other: &Self) -> bool {
1213                 self.genesis_hash == other.genesis_hash &&
1214                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1215                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1216         }
1217 }
1218
1219 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1220         /// Creates a new, empty, network graph.
1221         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1222                 Self {
1223                         secp_ctx: Secp256k1::verification_only(),
1224                         genesis_hash,
1225                         logger,
1226                         channels: RwLock::new(IndexedMap::new()),
1227                         nodes: RwLock::new(IndexedMap::new()),
1228                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1229                         removed_channels: Mutex::new(HashMap::new()),
1230                         removed_nodes: Mutex::new(HashMap::new()),
1231                 }
1232         }
1233
1234         /// Returns a read-only view of the network graph.
1235         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1236                 let channels = self.channels.read().unwrap();
1237                 let nodes = self.nodes.read().unwrap();
1238                 ReadOnlyNetworkGraph {
1239                         channels,
1240                         nodes,
1241                 }
1242         }
1243
1244         /// The unix timestamp provided by the most recent rapid gossip sync.
1245         /// It will be set by the rapid sync process after every sync completion.
1246         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1247                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1248         }
1249
1250         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1251         /// This should be done automatically by the rapid sync process after every sync completion.
1252         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1253                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1254         }
1255
1256         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1257         /// purposes.
1258         #[cfg(test)]
1259         pub fn clear_nodes_announcement_info(&self) {
1260                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1261                         node.1.announcement_info = None;
1262                 }
1263         }
1264
1265         /// For an already known node (from channel announcements), update its stored properties from a
1266         /// given node announcement.
1267         ///
1268         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1269         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1270         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1271         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1272                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1273                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1274                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1275         }
1276
1277         /// For an already known node (from channel announcements), update its stored properties from a
1278         /// given node announcement without verifying the associated signatures. Because we aren't
1279         /// given the associated signatures here we cannot relay the node announcement to any of our
1280         /// peers.
1281         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1282                 self.update_node_from_announcement_intern(msg, None)
1283         }
1284
1285         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1286                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1287                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1288                         Some(node) => {
1289                                 if let Some(node_info) = node.announcement_info.as_ref() {
1290                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1291                                         // updates to ensure you always have the latest one, only vaguely suggesting
1292                                         // that it be at least the current time.
1293                                         if node_info.last_update  > msg.timestamp {
1294                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1295                                         } else if node_info.last_update  == msg.timestamp {
1296                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1297                                         }
1298                                 }
1299
1300                                 let should_relay =
1301                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1302                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1303                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1304                                 node.announcement_info = Some(NodeAnnouncementInfo {
1305                                         features: msg.features.clone(),
1306                                         last_update: msg.timestamp,
1307                                         rgb: msg.rgb,
1308                                         alias: NodeAlias(msg.alias),
1309                                         addresses: msg.addresses.clone(),
1310                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1311                                 });
1312
1313                                 Ok(())
1314                         }
1315                 }
1316         }
1317
1318         /// Store or update channel info from a channel announcement.
1319         ///
1320         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1321         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1322         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1323         ///
1324         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1325         /// the corresponding UTXO exists on chain and is correctly-formatted.
1326         pub fn update_channel_from_announcement<C: Deref>(
1327                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1328         ) -> Result<(), LightningError>
1329         where
1330                 C::Target: chain::Access,
1331         {
1332                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1333                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1334                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1335                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1336                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1337                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1338         }
1339
1340         /// Store or update channel info from a channel announcement without verifying the associated
1341         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1342         /// channel announcement to any of our peers.
1343         ///
1344         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1345         /// the corresponding UTXO exists on chain and is correctly-formatted.
1346         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1347                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1348         ) -> Result<(), LightningError>
1349         where
1350                 C::Target: chain::Access,
1351         {
1352                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1353         }
1354
1355         /// Update channel from partial announcement data received via rapid gossip sync
1356         ///
1357         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1358         /// rapid gossip sync server)
1359         ///
1360         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1361         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1362                 if node_id_1 == node_id_2 {
1363                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1364                 };
1365
1366                 let node_1 = NodeId::from_pubkey(&node_id_1);
1367                 let node_2 = NodeId::from_pubkey(&node_id_2);
1368                 let channel_info = ChannelInfo {
1369                         features,
1370                         node_one: node_1.clone(),
1371                         one_to_two: None,
1372                         node_two: node_2.clone(),
1373                         two_to_one: None,
1374                         capacity_sats: None,
1375                         announcement_message: None,
1376                         announcement_received_time: timestamp,
1377                 };
1378
1379                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1380         }
1381
1382         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1383                 let mut channels = self.channels.write().unwrap();
1384                 let mut nodes = self.nodes.write().unwrap();
1385
1386                 let node_id_a = channel_info.node_one.clone();
1387                 let node_id_b = channel_info.node_two.clone();
1388
1389                 match channels.entry(short_channel_id) {
1390                         IndexedMapEntry::Occupied(mut entry) => {
1391                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1392                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1393                                 //exactly how...
1394                                 if utxo_value.is_some() {
1395                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1396                                         // only sometimes returns results. In any case remove the previous entry. Note
1397                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1398                                         // do that because
1399                                         // a) we don't *require* a UTXO provider that always returns results.
1400                                         // b) we don't track UTXOs of channels we know about and remove them if they
1401                                         //    get reorg'd out.
1402                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1403                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1404                                         *entry.get_mut() = channel_info;
1405                                 } else {
1406                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1407                                 }
1408                         },
1409                         IndexedMapEntry::Vacant(entry) => {
1410                                 entry.insert(channel_info);
1411                         }
1412                 };
1413
1414                 for current_node_id in [node_id_a, node_id_b].iter() {
1415                         match nodes.entry(current_node_id.clone()) {
1416                                 IndexedMapEntry::Occupied(node_entry) => {
1417                                         node_entry.into_mut().channels.push(short_channel_id);
1418                                 },
1419                                 IndexedMapEntry::Vacant(node_entry) => {
1420                                         node_entry.insert(NodeInfo {
1421                                                 channels: vec!(short_channel_id),
1422                                                 announcement_info: None,
1423                                         });
1424                                 }
1425                         };
1426                 };
1427
1428                 Ok(())
1429         }
1430
1431         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1432                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1433         ) -> Result<(), LightningError>
1434         where
1435                 C::Target: chain::Access,
1436         {
1437                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1438                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1439                 }
1440
1441                 let node_one = NodeId::from_pubkey(&msg.node_id_1);
1442                 let node_two = NodeId::from_pubkey(&msg.node_id_2);
1443
1444                 {
1445                         let channels = self.channels.read().unwrap();
1446
1447                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1448                                 if chan.capacity_sats.is_some() {
1449                                         // If we'd previously looked up the channel on-chain and checked the script
1450                                         // against what appears on-chain, ignore the duplicate announcement.
1451                                         //
1452                                         // Because a reorg could replace one channel with another at the same SCID, if
1453                                         // the channel appears to be different, we re-validate. This doesn't expose us
1454                                         // to any more DoS risk than not, as a peer can always flood us with
1455                                         // randomly-generated SCID values anyway.
1456                                         //
1457                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1458                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1459                                         // if the peers on the channel changed anyway.
1460                                         if node_one == chan.node_one && node_two == chan.node_two {
1461                                                 return Err(LightningError {
1462                                                         err: "Already have chain-validated channel".to_owned(),
1463                                                         action: ErrorAction::IgnoreDuplicateGossip
1464                                                 });
1465                                         }
1466                                 } else if chain_access.is_none() {
1467                                         // Similarly, if we can't check the chain right now anyway, ignore the
1468                                         // duplicate announcement without bothering to take the channels write lock.
1469                                         return Err(LightningError {
1470                                                 err: "Already have non-chain-validated channel".to_owned(),
1471                                                 action: ErrorAction::IgnoreDuplicateGossip
1472                                         });
1473                                 }
1474                         }
1475                 }
1476
1477                 {
1478                         let removed_channels = self.removed_channels.lock().unwrap();
1479                         let removed_nodes = self.removed_nodes.lock().unwrap();
1480                         if removed_channels.contains_key(&msg.short_channel_id) ||
1481                                 removed_nodes.contains_key(&node_one) ||
1482                                 removed_nodes.contains_key(&node_two) {
1483                                 return Err(LightningError{
1484                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1485                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1486                         }
1487                 }
1488
1489                 let utxo_value = match &chain_access {
1490                         &None => {
1491                                 // Tentatively accept, potentially exposing us to DoS attacks
1492                                 None
1493                         },
1494                         &Some(ref chain_access) => {
1495                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1496                                         Ok(TxOut { value, script_pubkey }) => {
1497                                                 let expected_script =
1498                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1499                                                 if script_pubkey != expected_script {
1500                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1501                                                 }
1502                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1503                                                 //to the new HTLC max field in channel_update
1504                                                 Some(value)
1505                                         },
1506                                         Err(chain::AccessError::UnknownChain) => {
1507                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1508                                         },
1509                                         Err(chain::AccessError::UnknownTx) => {
1510                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1511                                         },
1512                                 }
1513                         },
1514                 };
1515
1516                 #[allow(unused_mut, unused_assignments)]
1517                 let mut announcement_received_time = 0;
1518                 #[cfg(feature = "std")]
1519                 {
1520                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1521                 }
1522
1523                 let chan_info = ChannelInfo {
1524                         features: msg.features.clone(),
1525                         node_one,
1526                         one_to_two: None,
1527                         node_two,
1528                         two_to_one: None,
1529                         capacity_sats: utxo_value,
1530                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1531                                 { full_msg.cloned() } else { None },
1532                         announcement_received_time,
1533                 };
1534
1535                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1536         }
1537
1538         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1539         /// If permanent, removes a channel from the local storage.
1540         /// May cause the removal of nodes too, if this was their last channel.
1541         /// If not permanent, makes channels unavailable for routing.
1542         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1543                 #[cfg(feature = "std")]
1544                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1545                 #[cfg(not(feature = "std"))]
1546                 let current_time_unix = None;
1547
1548                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1549         }
1550
1551         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1552         /// If permanent, removes a channel from the local storage.
1553         /// May cause the removal of nodes too, if this was their last channel.
1554         /// If not permanent, makes channels unavailable for routing.
1555         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1556                 let mut channels = self.channels.write().unwrap();
1557                 if is_permanent {
1558                         if let Some(chan) = channels.remove(&short_channel_id) {
1559                                 let mut nodes = self.nodes.write().unwrap();
1560                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1561                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1562                         }
1563                 } else {
1564                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1565                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1566                                         one_to_two.enabled = false;
1567                                 }
1568                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1569                                         two_to_one.enabled = false;
1570                                 }
1571                         }
1572                 }
1573         }
1574
1575         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1576         /// from local storage.
1577         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1578                 #[cfg(feature = "std")]
1579                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1580                 #[cfg(not(feature = "std"))]
1581                 let current_time_unix = None;
1582
1583                 let node_id = NodeId::from_pubkey(node_id);
1584                 let mut channels = self.channels.write().unwrap();
1585                 let mut nodes = self.nodes.write().unwrap();
1586                 let mut removed_channels = self.removed_channels.lock().unwrap();
1587                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1588
1589                 if let Some(node) = nodes.remove(&node_id) {
1590                         for scid in node.channels.iter() {
1591                                 if let Some(chan_info) = channels.remove(scid) {
1592                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1593                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1594                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1595                                                         *scid != *chan_id
1596                                                 });
1597                                                 if other_node_entry.get().channels.is_empty() {
1598                                                         other_node_entry.remove_entry();
1599                                                 }
1600                                         }
1601                                         removed_channels.insert(*scid, current_time_unix);
1602                                 }
1603                         }
1604                         removed_nodes.insert(node_id, current_time_unix);
1605                 }
1606         }
1607
1608         #[cfg(feature = "std")]
1609         /// Removes information about channels that we haven't heard any updates about in some time.
1610         /// This can be used regularly to prune the network graph of channels that likely no longer
1611         /// exist.
1612         ///
1613         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1614         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1615         /// pruning occur for updates which are at least two weeks old, which we implement here.
1616         ///
1617         /// Note that for users of the `lightning-background-processor` crate this method may be
1618         /// automatically called regularly for you.
1619         ///
1620         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1621         /// in the map for a while so that these can be resynced from gossip in the future.
1622         ///
1623         /// This method is only available with the `std` feature. See
1624         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1625         pub fn remove_stale_channels_and_tracking(&self) {
1626                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1627                 self.remove_stale_channels_and_tracking_with_time(time);
1628         }
1629
1630         /// Removes information about channels that we haven't heard any updates about in some time.
1631         /// This can be used regularly to prune the network graph of channels that likely no longer
1632         /// exist.
1633         ///
1634         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1635         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1636         /// pruning occur for updates which are at least two weeks old, which we implement here.
1637         ///
1638         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1639         /// in the map for a while so that these can be resynced from gossip in the future.
1640         ///
1641         /// This function takes the current unix time as an argument. For users with the `std` feature
1642         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1643         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1644                 let mut channels = self.channels.write().unwrap();
1645                 // Time out if we haven't received an update in at least 14 days.
1646                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1647                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1648                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1649                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1650                 // time.
1651                 let mut scids_to_remove = Vec::new();
1652                 for (scid, info) in channels.unordered_iter_mut() {
1653                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1654                                 info.one_to_two = None;
1655                         }
1656                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1657                                 info.two_to_one = None;
1658                         }
1659                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1660                                 // We check the announcement_received_time here to ensure we don't drop
1661                                 // announcements that we just received and are just waiting for our peer to send a
1662                                 // channel_update for.
1663                                 if info.announcement_received_time < min_time_unix as u64 {
1664                                         scids_to_remove.push(*scid);
1665                                 }
1666                         }
1667                 }
1668                 if !scids_to_remove.is_empty() {
1669                         let mut nodes = self.nodes.write().unwrap();
1670                         for scid in scids_to_remove {
1671                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1672                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1673                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1674                         }
1675                 }
1676
1677                 let should_keep_tracking = |time: &mut Option<u64>| {
1678                         if let Some(time) = time {
1679                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1680                         } else {
1681                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1682                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1683                                 // of this function.
1684                                 #[cfg(feature = "no-std")]
1685                                 {
1686                                         let mut tracked_time = Some(current_time_unix);
1687                                         core::mem::swap(time, &mut tracked_time);
1688                                         return true;
1689                                 }
1690                                 #[allow(unreachable_code)]
1691                                 false
1692                         }};
1693
1694                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1695                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1696         }
1697
1698         /// For an already known (from announcement) channel, update info about one of the directions
1699         /// of the channel.
1700         ///
1701         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1702         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1703         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1704         ///
1705         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1706         /// materially in the future will be rejected.
1707         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1708                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1709         }
1710
1711         /// For an already known (from announcement) channel, update info about one of the directions
1712         /// of the channel without verifying the associated signatures. Because we aren't given the
1713         /// associated signatures here we cannot relay the channel update to any of our peers.
1714         ///
1715         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1716         /// materially in the future will be rejected.
1717         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1718                 self.update_channel_intern(msg, None, None)
1719         }
1720
1721         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1722                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1723
1724                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1725                 {
1726                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1727                         // disable this check during tests!
1728                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1729                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1730                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1731                         }
1732                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1733                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1734                         }
1735                 }
1736
1737                 let mut channels = self.channels.write().unwrap();
1738                 match channels.get_mut(&msg.short_channel_id) {
1739                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1740                         Some(channel) => {
1741                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1742                                         return Err(LightningError{err:
1743                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1744                                                 action: ErrorAction::IgnoreError});
1745                                 }
1746
1747                                 if let Some(capacity_sats) = channel.capacity_sats {
1748                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1749                                         // Don't query UTXO set here to reduce DoS risks.
1750                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1751                                                 return Err(LightningError{err:
1752                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1753                                                         action: ErrorAction::IgnoreError});
1754                                         }
1755                                 }
1756                                 macro_rules! check_update_latest {
1757                                         ($target: expr) => {
1758                                                 if let Some(existing_chan_info) = $target.as_ref() {
1759                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1760                                                         // order updates to ensure you always have the latest one, only
1761                                                         // suggesting  that it be at least the current time. For
1762                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1763                                                         // pruning based on the timestamp field being more than two weeks old,
1764                                                         // but only in the non-normative section.
1765                                                         if existing_chan_info.last_update > msg.timestamp {
1766                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1767                                                         } else if existing_chan_info.last_update == msg.timestamp {
1768                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1769                                                         }
1770                                                 }
1771                                         }
1772                                 }
1773
1774                                 macro_rules! get_new_channel_info {
1775                                         () => { {
1776                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1777                                                         { full_msg.cloned() } else { None };
1778
1779                                                 let updated_channel_update_info = ChannelUpdateInfo {
1780                                                         enabled: chan_enabled,
1781                                                         last_update: msg.timestamp,
1782                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1783                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1784                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1785                                                         fees: RoutingFees {
1786                                                                 base_msat: msg.fee_base_msat,
1787                                                                 proportional_millionths: msg.fee_proportional_millionths,
1788                                                         },
1789                                                         last_update_message
1790                                                 };
1791                                                 Some(updated_channel_update_info)
1792                                         } }
1793                                 }
1794
1795                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1796                                 if msg.flags & 1 == 1 {
1797                                         check_update_latest!(channel.two_to_one);
1798                                         if let Some(sig) = sig {
1799                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1800                                                         err: "Couldn't parse source node pubkey".to_owned(),
1801                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1802                                                 })?, "channel_update");
1803                                         }
1804                                         channel.two_to_one = get_new_channel_info!();
1805                                 } else {
1806                                         check_update_latest!(channel.one_to_two);
1807                                         if let Some(sig) = sig {
1808                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1809                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1810                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1811                                                 })?, "channel_update");
1812                                         }
1813                                         channel.one_to_two = get_new_channel_info!();
1814                                 }
1815                         }
1816                 }
1817
1818                 Ok(())
1819         }
1820
1821         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1822                 macro_rules! remove_from_node {
1823                         ($node_id: expr) => {
1824                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1825                                         entry.get_mut().channels.retain(|chan_id| {
1826                                                 short_channel_id != *chan_id
1827                                         });
1828                                         if entry.get().channels.is_empty() {
1829                                                 entry.remove_entry();
1830                                         }
1831                                 } else {
1832                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1833                                 }
1834                         }
1835                 }
1836
1837                 remove_from_node!(chan.node_one);
1838                 remove_from_node!(chan.node_two);
1839         }
1840 }
1841
1842 impl ReadOnlyNetworkGraph<'_> {
1843         /// Returns all known valid channels' short ids along with announced channel info.
1844         ///
1845         /// (C-not exported) because we don't want to return lifetime'd references
1846         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1847                 &*self.channels
1848         }
1849
1850         /// Returns information on a channel with the given id.
1851         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1852                 self.channels.get(&short_channel_id)
1853         }
1854
1855         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1856         /// Returns the list of channels in the graph
1857         pub fn list_channels(&self) -> Vec<u64> {
1858                 self.channels.unordered_keys().map(|c| *c).collect()
1859         }
1860
1861         /// Returns all known nodes' public keys along with announced node info.
1862         ///
1863         /// (C-not exported) because we don't want to return lifetime'd references
1864         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1865                 &*self.nodes
1866         }
1867
1868         /// Returns information on a node with the given id.
1869         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1870                 self.nodes.get(node_id)
1871         }
1872
1873         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1874         /// Returns the list of nodes in the graph
1875         pub fn list_nodes(&self) -> Vec<NodeId> {
1876                 self.nodes.unordered_keys().map(|n| *n).collect()
1877         }
1878
1879         /// Get network addresses by node id.
1880         /// Returns None if the requested node is completely unknown,
1881         /// or if node announcement for the node was never received.
1882         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1883                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1884                         if let Some(node_info) = node.announcement_info.as_ref() {
1885                                 return Some(node_info.addresses.clone())
1886                         }
1887                 }
1888                 None
1889         }
1890 }
1891
1892 #[cfg(test)]
1893 mod tests {
1894         use crate::chain;
1895         use crate::ln::channelmanager;
1896         use crate::ln::chan_utils::make_funding_redeemscript;
1897         #[cfg(feature = "std")]
1898         use crate::ln::features::InitFeatures;
1899         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1900         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1901                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1902                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1903         use crate::util::config::UserConfig;
1904         use crate::util::test_utils;
1905         use crate::util::ser::{ReadableArgs, Writeable};
1906         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1907         use crate::util::scid_utils::scid_from_parts;
1908
1909         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1910         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1911
1912         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1913         use bitcoin::hashes::Hash;
1914         use bitcoin::network::constants::Network;
1915         use bitcoin::blockdata::constants::genesis_block;
1916         use bitcoin::blockdata::script::Script;
1917         use bitcoin::blockdata::transaction::TxOut;
1918
1919         use hex;
1920
1921         use bitcoin::secp256k1::{PublicKey, SecretKey};
1922         use bitcoin::secp256k1::{All, Secp256k1};
1923
1924         use crate::io;
1925         use bitcoin::secp256k1;
1926         use crate::prelude::*;
1927         use crate::sync::Arc;
1928
1929         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1930                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1931                 let logger = Arc::new(test_utils::TestLogger::new());
1932                 NetworkGraph::new(genesis_hash, logger)
1933         }
1934
1935         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1936                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1937                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1938         ) {
1939                 let secp_ctx = Secp256k1::new();
1940                 let logger = Arc::new(test_utils::TestLogger::new());
1941                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1942                 (secp_ctx, gossip_sync)
1943         }
1944
1945         #[test]
1946         #[cfg(feature = "std")]
1947         fn request_full_sync_finite_times() {
1948                 let network_graph = create_network_graph();
1949                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1950                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1951
1952                 assert!(gossip_sync.should_request_full_sync(&node_id));
1953                 assert!(gossip_sync.should_request_full_sync(&node_id));
1954                 assert!(gossip_sync.should_request_full_sync(&node_id));
1955                 assert!(gossip_sync.should_request_full_sync(&node_id));
1956                 assert!(gossip_sync.should_request_full_sync(&node_id));
1957                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1958         }
1959
1960         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1961                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1962                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1963                         features: channelmanager::provided_node_features(&UserConfig::default()),
1964                         timestamp: 100,
1965                         node_id: node_id,
1966                         rgb: [0; 3],
1967                         alias: [0; 32],
1968                         addresses: Vec::new(),
1969                         excess_address_data: Vec::new(),
1970                         excess_data: Vec::new(),
1971                 };
1972                 f(&mut unsigned_announcement);
1973                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1974                 NodeAnnouncement {
1975                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1976                         contents: unsigned_announcement
1977                 }
1978         }
1979
1980         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1981                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1982                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1983                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1984                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1985
1986                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1987                         features: channelmanager::provided_channel_features(&UserConfig::default()),
1988                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1989                         short_channel_id: 0,
1990                         node_id_1,
1991                         node_id_2,
1992                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1993                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1994                         excess_data: Vec::new(),
1995                 };
1996                 f(&mut unsigned_announcement);
1997                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1998                 ChannelAnnouncement {
1999                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2000                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2001                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2002                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2003                         contents: unsigned_announcement,
2004                 }
2005         }
2006
2007         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2008                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2009                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2010                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2011                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2012         }
2013
2014         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2015                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2016                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2017                         short_channel_id: 0,
2018                         timestamp: 100,
2019                         flags: 0,
2020                         cltv_expiry_delta: 144,
2021                         htlc_minimum_msat: 1_000_000,
2022                         htlc_maximum_msat: 1_000_000,
2023                         fee_base_msat: 10_000,
2024                         fee_proportional_millionths: 20,
2025                         excess_data: Vec::new()
2026                 };
2027                 f(&mut unsigned_channel_update);
2028                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2029                 ChannelUpdate {
2030                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2031                         contents: unsigned_channel_update
2032                 }
2033         }
2034
2035         #[test]
2036         fn handling_node_announcements() {
2037                 let network_graph = create_network_graph();
2038                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2039
2040                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2041                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2042                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2043
2044                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2045                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2046                         Ok(_) => panic!(),
2047                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2048                 };
2049
2050                 {
2051                         // Announce a channel to add a corresponding node.
2052                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2053                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2054                                 Ok(res) => assert!(res),
2055                                 _ => panic!()
2056                         };
2057                 }
2058
2059                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2060                         Ok(res) => assert!(res),
2061                         Err(_) => panic!()
2062                 };
2063
2064                 let fake_msghash = hash_to_message!(&zero_hash);
2065                 match gossip_sync.handle_node_announcement(
2066                         &NodeAnnouncement {
2067                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2068                                 contents: valid_announcement.contents.clone()
2069                 }) {
2070                         Ok(_) => panic!(),
2071                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2072                 };
2073
2074                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2075                         unsigned_announcement.timestamp += 1000;
2076                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2077                 }, node_1_privkey, &secp_ctx);
2078                 // Return false because contains excess data.
2079                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2080                         Ok(res) => assert!(!res),
2081                         Err(_) => panic!()
2082                 };
2083
2084                 // Even though previous announcement was not relayed further, we still accepted it,
2085                 // so we now won't accept announcements before the previous one.
2086                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2087                         unsigned_announcement.timestamp += 1000 - 10;
2088                 }, node_1_privkey, &secp_ctx);
2089                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2090                         Ok(_) => panic!(),
2091                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2092                 };
2093         }
2094
2095         #[test]
2096         fn handling_channel_announcements() {
2097                 let secp_ctx = Secp256k1::new();
2098                 let logger = test_utils::TestLogger::new();
2099
2100                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2101                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2102
2103                 let good_script = get_channel_script(&secp_ctx);
2104                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2105
2106                 // Test if the UTXO lookups were not supported
2107                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2108                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2109                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2110                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2111                         Ok(res) => assert!(res),
2112                         _ => panic!()
2113                 };
2114
2115                 {
2116                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2117                                 None => panic!(),
2118                                 Some(_) => ()
2119                         };
2120                 }
2121
2122                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2123                 // drop new one on the floor, since we can't see any changes.
2124                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2125                         Ok(_) => panic!(),
2126                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2127                 };
2128
2129                 // Test if an associated transaction were not on-chain (or not confirmed).
2130                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2131                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2132                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2133                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2134
2135                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2136                         unsigned_announcement.short_channel_id += 1;
2137                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2138                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2139                         Ok(_) => panic!(),
2140                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2141                 };
2142
2143                 // Now test if the transaction is found in the UTXO set and the script is correct.
2144                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2145                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2146                         unsigned_announcement.short_channel_id += 2;
2147                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2148                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2149                         Ok(res) => assert!(res),
2150                         _ => panic!()
2151                 };
2152
2153                 {
2154                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2155                                 None => panic!(),
2156                                 Some(_) => ()
2157                         };
2158                 }
2159
2160                 // If we receive announcement for the same channel, once we've validated it against the
2161                 // chain, we simply ignore all new (duplicate) announcements.
2162                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2163                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2164                         Ok(_) => panic!(),
2165                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2166                 };
2167
2168                 #[cfg(feature = "std")]
2169                 {
2170                         use std::time::{SystemTime, UNIX_EPOCH};
2171
2172                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2173                         // Mark a node as permanently failed so it's tracked as removed.
2174                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2175
2176                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2177                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2178                                 unsigned_announcement.short_channel_id += 3;
2179                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2180                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2181                                 Ok(_) => panic!(),
2182                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2183                         }
2184
2185                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2186
2187                         // The above channel announcement should be handled as per normal now.
2188                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2189                                 Ok(res) => assert!(res),
2190                                 _ => panic!()
2191                         }
2192                 }
2193
2194                 // Don't relay valid channels with excess data
2195                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2196                         unsigned_announcement.short_channel_id += 4;
2197                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2198                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2199                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2200                         Ok(res) => assert!(!res),
2201                         _ => panic!()
2202                 };
2203
2204                 let mut invalid_sig_announcement = valid_announcement.clone();
2205                 invalid_sig_announcement.contents.excess_data = Vec::new();
2206                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2207                         Ok(_) => panic!(),
2208                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2209                 };
2210
2211                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2212                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2213                         Ok(_) => panic!(),
2214                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2215                 };
2216         }
2217
2218         #[test]
2219         fn handling_channel_update() {
2220                 let secp_ctx = Secp256k1::new();
2221                 let logger = test_utils::TestLogger::new();
2222                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2223                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2224                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2225                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2226
2227                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2228                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2229
2230                 let amount_sats = 1000_000;
2231                 let short_channel_id;
2232
2233                 {
2234                         // Announce a channel we will update
2235                         let good_script = get_channel_script(&secp_ctx);
2236                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2237
2238                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2239                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2240                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2241                                 Ok(_) => (),
2242                                 Err(_) => panic!()
2243                         };
2244
2245                 }
2246
2247                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2248                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2249                         Ok(res) => assert!(res),
2250                         _ => panic!(),
2251                 };
2252
2253                 {
2254                         match network_graph.read_only().channels().get(&short_channel_id) {
2255                                 None => panic!(),
2256                                 Some(channel_info) => {
2257                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2258                                         assert!(channel_info.two_to_one.is_none());
2259                                 }
2260                         };
2261                 }
2262
2263                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2264                         unsigned_channel_update.timestamp += 100;
2265                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2266                 }, node_1_privkey, &secp_ctx);
2267                 // Return false because contains excess data
2268                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2269                         Ok(res) => assert!(!res),
2270                         _ => panic!()
2271                 };
2272
2273                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2274                         unsigned_channel_update.timestamp += 110;
2275                         unsigned_channel_update.short_channel_id += 1;
2276                 }, node_1_privkey, &secp_ctx);
2277                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2278                         Ok(_) => panic!(),
2279                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2280                 };
2281
2282                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2283                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2284                         unsigned_channel_update.timestamp += 110;
2285                 }, node_1_privkey, &secp_ctx);
2286                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2287                         Ok(_) => panic!(),
2288                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2289                 };
2290
2291                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2292                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2293                         unsigned_channel_update.timestamp += 110;
2294                 }, node_1_privkey, &secp_ctx);
2295                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2296                         Ok(_) => panic!(),
2297                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2298                 };
2299
2300                 // Even though previous update was not relayed further, we still accepted it,
2301                 // so we now won't accept update before the previous one.
2302                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2303                         unsigned_channel_update.timestamp += 100;
2304                 }, node_1_privkey, &secp_ctx);
2305                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2306                         Ok(_) => panic!(),
2307                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2308                 };
2309
2310                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2311                         unsigned_channel_update.timestamp += 500;
2312                 }, node_1_privkey, &secp_ctx);
2313                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2314                 let fake_msghash = hash_to_message!(&zero_hash);
2315                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2316                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2317                         Ok(_) => panic!(),
2318                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2319                 };
2320         }
2321
2322         #[test]
2323         fn handling_network_update() {
2324                 let logger = test_utils::TestLogger::new();
2325                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2326                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2327                 let secp_ctx = Secp256k1::new();
2328
2329                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2330                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2331                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2332
2333                 {
2334                         // There is no nodes in the table at the beginning.
2335                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2336                 }
2337
2338                 let short_channel_id;
2339                 {
2340                         // Announce a channel we will update
2341                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2342                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2343                         let chain_source: Option<&test_utils::TestChainSource> = None;
2344                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2345                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2346
2347                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2348                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2349
2350                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2351                                 msg: valid_channel_update,
2352                         });
2353
2354                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2355                 }
2356
2357                 // Non-permanent closing just disables a channel
2358                 {
2359                         match network_graph.read_only().channels().get(&short_channel_id) {
2360                                 None => panic!(),
2361                                 Some(channel_info) => {
2362                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2363                                 }
2364                         };
2365
2366                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2367                                 short_channel_id,
2368                                 is_permanent: false,
2369                         });
2370
2371                         match network_graph.read_only().channels().get(&short_channel_id) {
2372                                 None => panic!(),
2373                                 Some(channel_info) => {
2374                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2375                                 }
2376                         };
2377                 }
2378
2379                 // Permanent closing deletes a channel
2380                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2381                         short_channel_id,
2382                         is_permanent: true,
2383                 });
2384
2385                 assert_eq!(network_graph.read_only().channels().len(), 0);
2386                 // Nodes are also deleted because there are no associated channels anymore
2387                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2388
2389                 {
2390                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2391                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2392
2393                         // Announce a channel to test permanent node failure
2394                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2395                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2396                         let chain_source: Option<&test_utils::TestChainSource> = None;
2397                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2398                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2399
2400                         // Non-permanent node failure does not delete any nodes or channels
2401                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2402                                 node_id: node_2_id,
2403                                 is_permanent: false,
2404                         });
2405
2406                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2407                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2408
2409                         // Permanent node failure deletes node and its channels
2410                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2411                                 node_id: node_2_id,
2412                                 is_permanent: true,
2413                         });
2414
2415                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2416                         // Channels are also deleted because the associated node has been deleted
2417                         assert_eq!(network_graph.read_only().channels().len(), 0);
2418                 }
2419         }
2420
2421         #[test]
2422         fn test_channel_timeouts() {
2423                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2424                 let logger = test_utils::TestLogger::new();
2425                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2426                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2427                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2428                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2429                 let secp_ctx = Secp256k1::new();
2430
2431                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2432                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2433
2434                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2435                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2436                 let chain_source: Option<&test_utils::TestChainSource> = None;
2437                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2438                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2439
2440                 // Submit two channel updates for each channel direction (update.flags bit).
2441                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2442                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2443                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2444
2445                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2446                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2447                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2448
2449                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2450                 assert_eq!(network_graph.read_only().channels().len(), 1);
2451                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2452
2453                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2454                 #[cfg(not(feature = "std"))] {
2455                         // Make sure removed channels are tracked.
2456                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2457                 }
2458                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2459                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2460
2461                 #[cfg(feature = "std")]
2462                 {
2463                         // In std mode, a further check is performed before fully removing the channel -
2464                         // the channel_announcement must have been received at least two weeks ago. We
2465                         // fudge that here by indicating the time has jumped two weeks.
2466                         assert_eq!(network_graph.read_only().channels().len(), 1);
2467                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2468
2469                         // Note that the directional channel information will have been removed already..
2470                         // We want to check that this will work even if *one* of the channel updates is recent,
2471                         // so we should add it with a recent timestamp.
2472                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2473                         use std::time::{SystemTime, UNIX_EPOCH};
2474                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2475                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2476                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2477                         }, node_1_privkey, &secp_ctx);
2478                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2479                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2480                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2481                         // Make sure removed channels are tracked.
2482                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2483                         // Provide a later time so that sufficient time has passed
2484                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2485                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2486                 }
2487
2488                 assert_eq!(network_graph.read_only().channels().len(), 0);
2489                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2490                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2491
2492                 #[cfg(feature = "std")]
2493                 {
2494                         use std::time::{SystemTime, UNIX_EPOCH};
2495
2496                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2497
2498                         // Clear tracked nodes and channels for clean slate
2499                         network_graph.removed_channels.lock().unwrap().clear();
2500                         network_graph.removed_nodes.lock().unwrap().clear();
2501
2502                         // Add a channel and nodes from channel announcement. So our network graph will
2503                         // now only consist of two nodes and one channel between them.
2504                         assert!(network_graph.update_channel_from_announcement(
2505                                 &valid_channel_announcement, &chain_source).is_ok());
2506
2507                         // Mark the channel as permanently failed. This will also remove the two nodes
2508                         // and all of the entries will be tracked as removed.
2509                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2510
2511                         // Should not remove from tracking if insufficient time has passed
2512                         network_graph.remove_stale_channels_and_tracking_with_time(
2513                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2514                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2515
2516                         // Provide a later time so that sufficient time has passed
2517                         network_graph.remove_stale_channels_and_tracking_with_time(
2518                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2519                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2520                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2521                 }
2522
2523                 #[cfg(not(feature = "std"))]
2524                 {
2525                         // When we don't have access to the system clock, the time we started tracking removal will only
2526                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2527                         // only if sufficient time has passed after that first call, will the next call remove it from
2528                         // tracking.
2529                         let removal_time = 1664619654;
2530
2531                         // Clear removed nodes and channels for clean slate
2532                         network_graph.removed_channels.lock().unwrap().clear();
2533                         network_graph.removed_nodes.lock().unwrap().clear();
2534
2535                         // Add a channel and nodes from channel announcement. So our network graph will
2536                         // now only consist of two nodes and one channel between them.
2537                         assert!(network_graph.update_channel_from_announcement(
2538                                 &valid_channel_announcement, &chain_source).is_ok());
2539
2540                         // Mark the channel as permanently failed. This will also remove the two nodes
2541                         // and all of the entries will be tracked as removed.
2542                         network_graph.channel_failed(short_channel_id, true);
2543
2544                         // The first time we call the following, the channel will have a removal time assigned.
2545                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2546                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2547
2548                         // Provide a later time so that sufficient time has passed
2549                         network_graph.remove_stale_channels_and_tracking_with_time(
2550                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2551                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2552                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2553                 }
2554         }
2555
2556         #[test]
2557         fn getting_next_channel_announcements() {
2558                 let network_graph = create_network_graph();
2559                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2560                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2561                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2562
2563                 // Channels were not announced yet.
2564                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2565                 assert!(channels_with_announcements.is_none());
2566
2567                 let short_channel_id;
2568                 {
2569                         // Announce a channel we will update
2570                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2571                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2572                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2573                                 Ok(_) => (),
2574                                 Err(_) => panic!()
2575                         };
2576                 }
2577
2578                 // Contains initial channel announcement now.
2579                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2580                 if let Some(channel_announcements) = channels_with_announcements {
2581                         let (_, ref update_1, ref update_2) = channel_announcements;
2582                         assert_eq!(update_1, &None);
2583                         assert_eq!(update_2, &None);
2584                 } else {
2585                         panic!();
2586                 }
2587
2588                 {
2589                         // Valid channel update
2590                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2591                                 unsigned_channel_update.timestamp = 101;
2592                         }, node_1_privkey, &secp_ctx);
2593                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2594                                 Ok(_) => (),
2595                                 Err(_) => panic!()
2596                         };
2597                 }
2598
2599                 // Now contains an initial announcement and an update.
2600                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2601                 if let Some(channel_announcements) = channels_with_announcements {
2602                         let (_, ref update_1, ref update_2) = channel_announcements;
2603                         assert_ne!(update_1, &None);
2604                         assert_eq!(update_2, &None);
2605                 } else {
2606                         panic!();
2607                 }
2608
2609                 {
2610                         // Channel update with excess data.
2611                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2612                                 unsigned_channel_update.timestamp = 102;
2613                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2614                         }, node_1_privkey, &secp_ctx);
2615                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2616                                 Ok(_) => (),
2617                                 Err(_) => panic!()
2618                         };
2619                 }
2620
2621                 // Test that announcements with excess data won't be returned
2622                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2623                 if let Some(channel_announcements) = channels_with_announcements {
2624                         let (_, ref update_1, ref update_2) = channel_announcements;
2625                         assert_eq!(update_1, &None);
2626                         assert_eq!(update_2, &None);
2627                 } else {
2628                         panic!();
2629                 }
2630
2631                 // Further starting point have no channels after it
2632                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2633                 assert!(channels_with_announcements.is_none());
2634         }
2635
2636         #[test]
2637         fn getting_next_node_announcements() {
2638                 let network_graph = create_network_graph();
2639                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2640                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2641                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2642                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2643
2644                 // No nodes yet.
2645                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2646                 assert!(next_announcements.is_none());
2647
2648                 {
2649                         // Announce a channel to add 2 nodes
2650                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2651                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2652                                 Ok(_) => (),
2653                                 Err(_) => panic!()
2654                         };
2655                 }
2656
2657                 // Nodes were never announced
2658                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2659                 assert!(next_announcements.is_none());
2660
2661                 {
2662                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2663                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2664                                 Ok(_) => (),
2665                                 Err(_) => panic!()
2666                         };
2667
2668                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2669                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2670                                 Ok(_) => (),
2671                                 Err(_) => panic!()
2672                         };
2673                 }
2674
2675                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2676                 assert!(next_announcements.is_some());
2677
2678                 // Skip the first node.
2679                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2680                 assert!(next_announcements.is_some());
2681
2682                 {
2683                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2684                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2685                                 unsigned_announcement.timestamp += 10;
2686                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2687                         }, node_2_privkey, &secp_ctx);
2688                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2689                                 Ok(res) => assert!(!res),
2690                                 Err(_) => panic!()
2691                         };
2692                 }
2693
2694                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2695                 assert!(next_announcements.is_none());
2696         }
2697
2698         #[test]
2699         fn network_graph_serialization() {
2700                 let network_graph = create_network_graph();
2701                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2702
2703                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2704                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2705
2706                 // Announce a channel to add a corresponding node.
2707                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2708                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2709                         Ok(res) => assert!(res),
2710                         _ => panic!()
2711                 };
2712
2713                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2714                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2715                         Ok(_) => (),
2716                         Err(_) => panic!()
2717                 };
2718
2719                 let mut w = test_utils::TestVecWriter(Vec::new());
2720                 assert!(!network_graph.read_only().nodes().is_empty());
2721                 assert!(!network_graph.read_only().channels().is_empty());
2722                 network_graph.write(&mut w).unwrap();
2723
2724                 let logger = Arc::new(test_utils::TestLogger::new());
2725                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2726         }
2727
2728         #[test]
2729         fn network_graph_tlv_serialization() {
2730                 let network_graph = create_network_graph();
2731                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2732
2733                 let mut w = test_utils::TestVecWriter(Vec::new());
2734                 network_graph.write(&mut w).unwrap();
2735
2736                 let logger = Arc::new(test_utils::TestLogger::new());
2737                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2738                 assert!(reassembled_network_graph == network_graph);
2739                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2740         }
2741
2742         #[test]
2743         #[cfg(feature = "std")]
2744         fn calling_sync_routing_table() {
2745                 use std::time::{SystemTime, UNIX_EPOCH};
2746                 use crate::ln::msgs::Init;
2747
2748                 let network_graph = create_network_graph();
2749                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2750                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2751                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2752
2753                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2754
2755                 // It should ignore if gossip_queries feature is not enabled
2756                 {
2757                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2758                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2759                         let events = gossip_sync.get_and_clear_pending_msg_events();
2760                         assert_eq!(events.len(), 0);
2761                 }
2762
2763                 // It should send a gossip_timestamp_filter with the correct information
2764                 {
2765                         let mut features = InitFeatures::empty();
2766                         features.set_gossip_queries_optional();
2767                         let init_msg = Init { features, remote_network_address: None };
2768                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2769                         let events = gossip_sync.get_and_clear_pending_msg_events();
2770                         assert_eq!(events.len(), 1);
2771                         match &events[0] {
2772                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2773                                         assert_eq!(node_id, &node_id_1);
2774                                         assert_eq!(msg.chain_hash, chain_hash);
2775                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2776                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2777                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2778                                         assert_eq!(msg.timestamp_range, u32::max_value());
2779                                 },
2780                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2781                         };
2782                 }
2783         }
2784
2785         #[test]
2786         fn handling_query_channel_range() {
2787                 let network_graph = create_network_graph();
2788                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2789
2790                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2791                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2792                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2793                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2794
2795                 let mut scids: Vec<u64> = vec![
2796                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2797                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2798                 ];
2799
2800                 // used for testing multipart reply across blocks
2801                 for block in 100000..=108001 {
2802                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2803                 }
2804
2805                 // used for testing resumption on same block
2806                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2807
2808                 for scid in scids {
2809                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2810                                 unsigned_announcement.short_channel_id = scid;
2811                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2812                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2813                                 Ok(_) => (),
2814                                 _ => panic!()
2815                         };
2816                 }
2817
2818                 // Error when number_of_blocks=0
2819                 do_handling_query_channel_range(
2820                         &gossip_sync,
2821                         &node_id_2,
2822                         QueryChannelRange {
2823                                 chain_hash: chain_hash.clone(),
2824                                 first_blocknum: 0,
2825                                 number_of_blocks: 0,
2826                         },
2827                         false,
2828                         vec![ReplyChannelRange {
2829                                 chain_hash: chain_hash.clone(),
2830                                 first_blocknum: 0,
2831                                 number_of_blocks: 0,
2832                                 sync_complete: true,
2833                                 short_channel_ids: vec![]
2834                         }]
2835                 );
2836
2837                 // Error when wrong chain
2838                 do_handling_query_channel_range(
2839                         &gossip_sync,
2840                         &node_id_2,
2841                         QueryChannelRange {
2842                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2843                                 first_blocknum: 0,
2844                                 number_of_blocks: 0xffff_ffff,
2845                         },
2846                         false,
2847                         vec![ReplyChannelRange {
2848                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2849                                 first_blocknum: 0,
2850                                 number_of_blocks: 0xffff_ffff,
2851                                 sync_complete: true,
2852                                 short_channel_ids: vec![],
2853                         }]
2854                 );
2855
2856                 // Error when first_blocknum > 0xffffff
2857                 do_handling_query_channel_range(
2858                         &gossip_sync,
2859                         &node_id_2,
2860                         QueryChannelRange {
2861                                 chain_hash: chain_hash.clone(),
2862                                 first_blocknum: 0x01000000,
2863                                 number_of_blocks: 0xffff_ffff,
2864                         },
2865                         false,
2866                         vec![ReplyChannelRange {
2867                                 chain_hash: chain_hash.clone(),
2868                                 first_blocknum: 0x01000000,
2869                                 number_of_blocks: 0xffff_ffff,
2870                                 sync_complete: true,
2871                                 short_channel_ids: vec![]
2872                         }]
2873                 );
2874
2875                 // Empty reply when max valid SCID block num
2876                 do_handling_query_channel_range(
2877                         &gossip_sync,
2878                         &node_id_2,
2879                         QueryChannelRange {
2880                                 chain_hash: chain_hash.clone(),
2881                                 first_blocknum: 0xffffff,
2882                                 number_of_blocks: 1,
2883                         },
2884                         true,
2885                         vec![
2886                                 ReplyChannelRange {
2887                                         chain_hash: chain_hash.clone(),
2888                                         first_blocknum: 0xffffff,
2889                                         number_of_blocks: 1,
2890                                         sync_complete: true,
2891                                         short_channel_ids: vec![]
2892                                 },
2893                         ]
2894                 );
2895
2896                 // No results in valid query range
2897                 do_handling_query_channel_range(
2898                         &gossip_sync,
2899                         &node_id_2,
2900                         QueryChannelRange {
2901                                 chain_hash: chain_hash.clone(),
2902                                 first_blocknum: 1000,
2903                                 number_of_blocks: 1000,
2904                         },
2905                         true,
2906                         vec![
2907                                 ReplyChannelRange {
2908                                         chain_hash: chain_hash.clone(),
2909                                         first_blocknum: 1000,
2910                                         number_of_blocks: 1000,
2911                                         sync_complete: true,
2912                                         short_channel_ids: vec![],
2913                                 }
2914                         ]
2915                 );
2916
2917                 // Overflow first_blocknum + number_of_blocks
2918                 do_handling_query_channel_range(
2919                         &gossip_sync,
2920                         &node_id_2,
2921                         QueryChannelRange {
2922                                 chain_hash: chain_hash.clone(),
2923                                 first_blocknum: 0xfe0000,
2924                                 number_of_blocks: 0xffffffff,
2925                         },
2926                         true,
2927                         vec![
2928                                 ReplyChannelRange {
2929                                         chain_hash: chain_hash.clone(),
2930                                         first_blocknum: 0xfe0000,
2931                                         number_of_blocks: 0xffffffff - 0xfe0000,
2932                                         sync_complete: true,
2933                                         short_channel_ids: vec![
2934                                                 0xfffffe_ffffff_ffff, // max
2935                                         ]
2936                                 }
2937                         ]
2938                 );
2939
2940                 // Single block exactly full
2941                 do_handling_query_channel_range(
2942                         &gossip_sync,
2943                         &node_id_2,
2944                         QueryChannelRange {
2945                                 chain_hash: chain_hash.clone(),
2946                                 first_blocknum: 100000,
2947                                 number_of_blocks: 8000,
2948                         },
2949                         true,
2950                         vec![
2951                                 ReplyChannelRange {
2952                                         chain_hash: chain_hash.clone(),
2953                                         first_blocknum: 100000,
2954                                         number_of_blocks: 8000,
2955                                         sync_complete: true,
2956                                         short_channel_ids: (100000..=107999)
2957                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2958                                                 .collect(),
2959                                 },
2960                         ]
2961                 );
2962
2963                 // Multiple split on new block
2964                 do_handling_query_channel_range(
2965                         &gossip_sync,
2966                         &node_id_2,
2967                         QueryChannelRange {
2968                                 chain_hash: chain_hash.clone(),
2969                                 first_blocknum: 100000,
2970                                 number_of_blocks: 8001,
2971                         },
2972                         true,
2973                         vec![
2974                                 ReplyChannelRange {
2975                                         chain_hash: chain_hash.clone(),
2976                                         first_blocknum: 100000,
2977                                         number_of_blocks: 7999,
2978                                         sync_complete: false,
2979                                         short_channel_ids: (100000..=107999)
2980                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2981                                                 .collect(),
2982                                 },
2983                                 ReplyChannelRange {
2984                                         chain_hash: chain_hash.clone(),
2985                                         first_blocknum: 107999,
2986                                         number_of_blocks: 2,
2987                                         sync_complete: true,
2988                                         short_channel_ids: vec![
2989                                                 scid_from_parts(108000, 0, 0).unwrap(),
2990                                         ],
2991                                 }
2992                         ]
2993                 );
2994
2995                 // Multiple split on same block
2996                 do_handling_query_channel_range(
2997                         &gossip_sync,
2998                         &node_id_2,
2999                         QueryChannelRange {
3000                                 chain_hash: chain_hash.clone(),
3001                                 first_blocknum: 100002,
3002                                 number_of_blocks: 8000,
3003                         },
3004                         true,
3005                         vec![
3006                                 ReplyChannelRange {
3007                                         chain_hash: chain_hash.clone(),
3008                                         first_blocknum: 100002,
3009                                         number_of_blocks: 7999,
3010                                         sync_complete: false,
3011                                         short_channel_ids: (100002..=108001)
3012                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3013                                                 .collect(),
3014                                 },
3015                                 ReplyChannelRange {
3016                                         chain_hash: chain_hash.clone(),
3017                                         first_blocknum: 108001,
3018                                         number_of_blocks: 1,
3019                                         sync_complete: true,
3020                                         short_channel_ids: vec![
3021                                                 scid_from_parts(108001, 1, 0).unwrap(),
3022                                         ],
3023                                 }
3024                         ]
3025                 );
3026         }
3027
3028         fn do_handling_query_channel_range(
3029                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3030                 test_node_id: &PublicKey,
3031                 msg: QueryChannelRange,
3032                 expected_ok: bool,
3033                 expected_replies: Vec<ReplyChannelRange>
3034         ) {
3035                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3036                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3037                 let query_end_blocknum = msg.end_blocknum();
3038                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3039
3040                 if expected_ok {
3041                         assert!(result.is_ok());
3042                 } else {
3043                         assert!(result.is_err());
3044                 }
3045
3046                 let events = gossip_sync.get_and_clear_pending_msg_events();
3047                 assert_eq!(events.len(), expected_replies.len());
3048
3049                 for i in 0..events.len() {
3050                         let expected_reply = &expected_replies[i];
3051                         match &events[i] {
3052                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3053                                         assert_eq!(node_id, test_node_id);
3054                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3055                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3056                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3057                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3058                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3059
3060                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3061                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3062                                         assert!(msg.first_blocknum >= max_firstblocknum);
3063                                         max_firstblocknum = msg.first_blocknum;
3064                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3065
3066                                         // Check that the last block count is >= the query's end_blocknum
3067                                         if i == events.len() - 1 {
3068                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3069                                         }
3070                                 },
3071                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3072                         }
3073                 }
3074         }
3075
3076         #[test]
3077         fn handling_query_short_channel_ids() {
3078                 let network_graph = create_network_graph();
3079                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3080                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3081                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3082
3083                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3084
3085                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3086                         chain_hash,
3087                         short_channel_ids: vec![0x0003e8_000000_0000],
3088                 });
3089                 assert!(result.is_err());
3090         }
3091
3092         #[test]
3093         fn displays_node_alias() {
3094                 let format_str_alias = |alias: &str| {
3095                         let mut bytes = [0u8; 32];
3096                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3097                         format!("{}", NodeAlias(bytes))
3098                 };
3099
3100                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3101                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3102                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3103
3104                 let format_bytes_alias = |alias: &[u8]| {
3105                         let mut bytes = [0u8; 32];
3106                         bytes[..alias.len()].copy_from_slice(alias);
3107                         format!("{}", NodeAlias(bytes))
3108                 };
3109
3110                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3111                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3112                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3113         }
3114
3115         #[test]
3116         fn channel_info_is_readable() {
3117                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3118                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3119                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3120                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3121                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3122
3123                 // 1. Test encoding/decoding of ChannelUpdateInfo
3124                 let chan_update_info = ChannelUpdateInfo {
3125                         last_update: 23,
3126                         enabled: true,
3127                         cltv_expiry_delta: 42,
3128                         htlc_minimum_msat: 1234,
3129                         htlc_maximum_msat: 5678,
3130                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3131                         last_update_message: None,
3132                 };
3133
3134                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3135                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3136
3137                 // First make sure we can read ChannelUpdateInfos we just wrote
3138                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3139                 assert_eq!(chan_update_info, read_chan_update_info);
3140
3141                 // Check the serialization hasn't changed.
3142                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3143                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3144
3145                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3146                 // or the ChannelUpdate enclosed with `last_update_message`.
3147                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3148                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3149                 assert!(read_chan_update_info_res.is_err());
3150
3151                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3152                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3153                 assert!(read_chan_update_info_res.is_err());
3154
3155                 // 2. Test encoding/decoding of ChannelInfo
3156                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3157                 let chan_info_none_updates = ChannelInfo {
3158                         features: channelmanager::provided_channel_features(&config),
3159                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3160                         one_to_two: None,
3161                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3162                         two_to_one: None,
3163                         capacity_sats: None,
3164                         announcement_message: None,
3165                         announcement_received_time: 87654,
3166                 };
3167
3168                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3169                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3170
3171                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3172                 assert_eq!(chan_info_none_updates, read_chan_info);
3173
3174                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3175                 let chan_info_some_updates = ChannelInfo {
3176                         features: channelmanager::provided_channel_features(&config),
3177                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3178                         one_to_two: Some(chan_update_info.clone()),
3179                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3180                         two_to_one: Some(chan_update_info.clone()),
3181                         capacity_sats: None,
3182                         announcement_message: None,
3183                         announcement_received_time: 87654,
3184                 };
3185
3186                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3187                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3188
3189                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3190                 assert_eq!(chan_info_some_updates, read_chan_info);
3191
3192                 // Check the serialization hasn't changed.
3193                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3194                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3195
3196                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3197                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3198                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3199                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3200                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3201                 assert_eq!(read_chan_info.one_to_two, None);
3202                 assert_eq!(read_chan_info.two_to_one, None);
3203
3204                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3205                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3206                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3207                 assert_eq!(read_chan_info.one_to_two, None);
3208                 assert_eq!(read_chan_info.two_to_one, None);
3209         }
3210
3211         #[test]
3212         fn node_info_is_readable() {
3213                 use std::convert::TryFrom;
3214
3215                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3216                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3217                 let valid_node_ann_info = NodeAnnouncementInfo {
3218                         features: channelmanager::provided_node_features(&UserConfig::default()),
3219                         last_update: 0,
3220                         rgb: [0u8; 3],
3221                         alias: NodeAlias([0u8; 32]),
3222                         addresses: vec![valid_netaddr],
3223                         announcement_message: None,
3224                 };
3225
3226                 let mut encoded_valid_node_ann_info = Vec::new();
3227                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3228                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3229                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3230
3231                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3232                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3233                 assert!(read_invalid_node_ann_info_res.is_err());
3234
3235                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3236                 let valid_node_info = NodeInfo {
3237                         channels: Vec::new(),
3238                         announcement_info: Some(valid_node_ann_info),
3239                 };
3240
3241                 let mut encoded_valid_node_info = Vec::new();
3242                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3243                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3244                 assert_eq!(read_valid_node_info, valid_node_info);
3245
3246                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3247                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3248                 assert_eq!(read_invalid_node_info.announcement_info, None);
3249         }
3250 }
3251
3252 #[cfg(all(test, feature = "_bench_unstable"))]
3253 mod benches {
3254         use super::*;
3255
3256         use test::Bencher;
3257         use std::io::Read;
3258
3259         #[bench]
3260         fn read_network_graph(bench: &mut Bencher) {
3261                 let logger = crate::util::test_utils::TestLogger::new();
3262                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3263                 let mut v = Vec::new();
3264                 d.read_to_end(&mut v).unwrap();
3265                 bench.iter(|| {
3266                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3267                 });
3268         }
3269
3270         #[bench]
3271         fn write_network_graph(bench: &mut Bencher) {
3272                 let logger = crate::util::test_utils::TestLogger::new();
3273                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3274                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3275                 bench.iter(|| {
3276                         let _ = net_graph.encode();
3277                 });
3278         }
3279 }