Fix unused_imports warning in no-std tests
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use crate::chain;
23 use crate::chain::Access;
24 use crate::ln::chan_utils::make_funding_redeemscript;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35
36 use crate::io;
37 use crate::io_extras::{copy, sink};
38 use crate::prelude::*;
39 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
40 use core::{cmp, fmt};
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46 use bitcoin::hashes::hex::ToHex;
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80 }
81
82 impl fmt::Debug for NodeId {
83         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
84                 write!(f, "NodeId({})", log_bytes!(self.0))
85         }
86 }
87
88 impl core::hash::Hash for NodeId {
89         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
90                 self.0.hash(hasher);
91         }
92 }
93
94 impl Eq for NodeId {}
95
96 impl PartialEq for NodeId {
97         fn eq(&self, other: &Self) -> bool {
98                 self.0[..] == other.0[..]
99         }
100 }
101
102 impl cmp::PartialOrd for NodeId {
103         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
104                 Some(self.cmp(other))
105         }
106 }
107
108 impl Ord for NodeId {
109         fn cmp(&self, other: &Self) -> cmp::Ordering {
110                 self.0[..].cmp(&other.0[..])
111         }
112 }
113
114 impl Writeable for NodeId {
115         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
116                 writer.write_all(&self.0)?;
117                 Ok(())
118         }
119 }
120
121 impl Readable for NodeId {
122         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
123                 let mut buf = [0; PUBLIC_KEY_SIZE];
124                 reader.read_exact(&mut buf)?;
125                 Ok(Self(buf))
126         }
127 }
128
129 /// Represents the network as nodes and channels between them
130 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
131         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
132         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
133         genesis_hash: BlockHash,
134         logger: L,
135         // Lock order: channels -> nodes
136         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
137         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
138         // Lock order: removed_channels -> removed_nodes
139         //
140         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
141         // of `std::time::Instant`s for a few reasons:
142         //   * We want it to be possible to do tracking in no-std environments where we can compare
143         //     a provided current UNIX timestamp with the time at which we started tracking.
144         //   * In the future, if we decide to persist these maps, they will already be serializable.
145         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
146         //     environment should be practical over the time period we are considering (on the order of a
147         //     week).
148         //
149         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
150         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
151         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
152         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
153         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
154         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
155         /// that once some time passes, we can potentially resync it from gossip again.
156         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
157 }
158
159 /// A read-only view of [`NetworkGraph`].
160 pub struct ReadOnlyNetworkGraph<'a> {
161         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
162         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
163 }
164
165 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
166 /// return packet by a node along the route. See [BOLT #4] for details.
167 ///
168 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
169 #[derive(Clone, Debug, PartialEq, Eq)]
170 pub enum NetworkUpdate {
171         /// An error indicating a `channel_update` messages should be applied via
172         /// [`NetworkGraph::update_channel`].
173         ChannelUpdateMessage {
174                 /// The update to apply via [`NetworkGraph::update_channel`].
175                 msg: ChannelUpdate,
176         },
177         /// An error indicating that a channel failed to route a payment, which should be applied via
178         /// [`NetworkGraph::channel_failed`].
179         ChannelFailure {
180                 /// The short channel id of the closed channel.
181                 short_channel_id: u64,
182                 /// Whether the channel should be permanently removed or temporarily disabled until a new
183                 /// `channel_update` message is received.
184                 is_permanent: bool,
185         },
186         /// An error indicating that a node failed to route a payment, which should be applied via
187         /// [`NetworkGraph::node_failed_permanent`] if permanent.
188         NodeFailure {
189                 /// The node id of the failed node.
190                 node_id: PublicKey,
191                 /// Whether the node should be permanently removed from consideration or can be restored
192                 /// when a new `channel_update` message is received.
193                 is_permanent: bool,
194         }
195 }
196
197 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
198         (0, ChannelUpdateMessage) => {
199                 (0, msg, required),
200         },
201         (2, ChannelFailure) => {
202                 (0, short_channel_id, required),
203                 (2, is_permanent, required),
204         },
205         (4, NodeFailure) => {
206                 (0, node_id, required),
207                 (2, is_permanent, required),
208         },
209 );
210
211 /// Receives and validates network updates from peers,
212 /// stores authentic and relevant data as a network graph.
213 /// This network graph is then used for routing payments.
214 /// Provides interface to help with initial routing sync by
215 /// serving historical announcements.
216 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
217 where C::Target: chain::Access, L::Target: Logger
218 {
219         network_graph: G,
220         chain_access: Option<C>,
221         #[cfg(feature = "std")]
222         full_syncs_requested: AtomicUsize,
223         pending_events: Mutex<Vec<MessageSendEvent>>,
224         logger: L,
225 }
226
227 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
228 where C::Target: chain::Access, L::Target: Logger
229 {
230         /// Creates a new tracker of the actual state of the network of channels and nodes,
231         /// assuming an existing Network Graph.
232         /// Chain monitor is used to make sure announced channels exist on-chain,
233         /// channel data is correct, and that the announcement is signed with
234         /// channel owners' keys.
235         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
236                 P2PGossipSync {
237                         network_graph,
238                         #[cfg(feature = "std")]
239                         full_syncs_requested: AtomicUsize::new(0),
240                         chain_access,
241                         pending_events: Mutex::new(vec![]),
242                         logger,
243                 }
244         }
245
246         /// Adds a provider used to check new announcements. Does not affect
247         /// existing announcements unless they are updated.
248         /// Add, update or remove the provider would replace the current one.
249         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
250                 self.chain_access = chain_access;
251         }
252
253         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
254         /// [`P2PGossipSync::new`].
255         ///
256         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
257         pub fn network_graph(&self) -> &G {
258                 &self.network_graph
259         }
260
261         #[cfg(feature = "std")]
262         /// Returns true when a full routing table sync should be performed with a peer.
263         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
264                 //TODO: Determine whether to request a full sync based on the network map.
265                 const FULL_SYNCS_TO_REQUEST: usize = 5;
266                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
267                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
268                         true
269                 } else {
270                         false
271                 }
272         }
273 }
274
275 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
276         /// Handles any network updates originating from [`Event`]s.
277         ///
278         /// [`Event`]: crate::util::events::Event
279         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
280                 match *network_update {
281                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
282                                 let short_channel_id = msg.contents.short_channel_id;
283                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
284                                 let status = if is_enabled { "enabled" } else { "disabled" };
285                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
286                                 let _ = self.update_channel(msg);
287                         },
288                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
289                                 let action = if is_permanent { "Removing" } else { "Disabling" };
290                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
291                                 self.channel_failed(short_channel_id, is_permanent);
292                         },
293                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
294                                 if is_permanent {
295                                         log_debug!(self.logger,
296                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
297                                         self.node_failed_permanent(node_id);
298                                 };
299                         },
300                 }
301         }
302 }
303
304 macro_rules! secp_verify_sig {
305         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
306                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
307                         Ok(_) => {},
308                         Err(_) => {
309                                 return Err(LightningError {
310                                         err: format!("Invalid signature on {} message", $msg_type),
311                                         action: ErrorAction::SendWarningMessage {
312                                                 msg: msgs::WarningMessage {
313                                                         channel_id: [0; 32],
314                                                         data: format!("Invalid signature on {} message", $msg_type),
315                                                 },
316                                                 log_level: Level::Trace,
317                                         },
318                                 });
319                         },
320                 }
321         };
322 }
323
324 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
325 where C::Target: chain::Access, L::Target: Logger
326 {
327         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
328                 self.network_graph.update_node_from_announcement(msg)?;
329                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
330                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
331                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
332         }
333
334         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
335                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
336                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
337                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
338         }
339
340         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
341                 self.network_graph.update_channel(msg)?;
342                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
343         }
344
345         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
346                 let channels = self.network_graph.channels.read().unwrap();
347                 for (_, ref chan) in channels.range(starting_point..) {
348                         if chan.announcement_message.is_some() {
349                                 let chan_announcement = chan.announcement_message.clone().unwrap();
350                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
351                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
352                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
353                                         one_to_two_announcement = one_to_two.last_update_message.clone();
354                                 }
355                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
356                                         two_to_one_announcement = two_to_one.last_update_message.clone();
357                                 }
358                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
359                         } else {
360                                 // TODO: We may end up sending un-announced channel_updates if we are sending
361                                 // initial sync data while receiving announce/updates for this channel.
362                         }
363                 }
364                 None
365         }
366
367         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
368                 let nodes = self.network_graph.nodes.read().unwrap();
369                 let iter = if let Some(pubkey) = starting_point {
370                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
371                         } else {
372                                 nodes.range(..)
373                         };
374                 for (_, ref node) in iter {
375                         if let Some(node_info) = node.announcement_info.as_ref() {
376                                 if let Some(msg) = node_info.announcement_message.clone() {
377                                         return Some(msg);
378                                 }
379                         }
380                 }
381                 None
382         }
383
384         /// Initiates a stateless sync of routing gossip information with a peer
385         /// using gossip_queries. The default strategy used by this implementation
386         /// is to sync the full block range with several peers.
387         ///
388         /// We should expect one or more reply_channel_range messages in response
389         /// to our query_channel_range. Each reply will enqueue a query_scid message
390         /// to request gossip messages for each channel. The sync is considered complete
391         /// when the final reply_scids_end message is received, though we are not
392         /// tracking this directly.
393         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
394                 // We will only perform a sync with peers that support gossip_queries.
395                 if !init_msg.features.supports_gossip_queries() {
396                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
397                         // channels with peers even without being able to exchange gossip.
398                         return Ok(());
399                 }
400
401                 // The lightning network's gossip sync system is completely broken in numerous ways.
402                 //
403                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
404                 // to do a full sync from the first few peers we connect to, and then receive gossip
405                 // updates from all our peers normally.
406                 //
407                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
408                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
409                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
410                 // seen.
411                 //
412                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
413                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
414                 // channel data which you are missing. Except there was no way at all to identify which
415                 // `channel_update`s you were missing, so you still had to request everything, just in a
416                 // very complicated way with some queries instead of just getting the dump.
417                 //
418                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
419                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
420                 // relying on it useless.
421                 //
422                 // After gossip queries were introduced, support for receiving a full gossip table dump on
423                 // connection was removed from several nodes, making it impossible to get a full sync
424                 // without using the "gossip queries" messages.
425                 //
426                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
427                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
428                 // message, as the name implies, tells the peer to not forward any gossip messages with a
429                 // timestamp older than a given value (not the time the peer received the filter, but the
430                 // timestamp in the update message, which is often hours behind when the peer received the
431                 // message).
432                 //
433                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
434                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
435                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
436                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
437                 // will simply not forward any new updates they see to you which were generated some time
438                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
439                 // ago), you will always get the full routing graph from all your peers.
440                 //
441                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
442                 // propagated some time after it was generated, and, worse, often disable gossiping with
443                 // several peers after their first connection. The second behavior can cause gossip to not
444                 // propagate fully if there are cuts in the gossiping subgraph.
445                 //
446                 // In an attempt to cut a middle ground between always fetching the full graph from all of
447                 // our peers and never receiving gossip from peers at all, we send all of our peers a
448                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
449                 //
450                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
451                 #[allow(unused_mut, unused_assignments)]
452                 let mut gossip_start_time = 0;
453                 #[cfg(feature = "std")]
454                 {
455                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
456                         if self.should_request_full_sync(&their_node_id) {
457                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
458                         } else {
459                                 gossip_start_time -= 60 * 60; // an hour ago
460                         }
461                 }
462
463                 let mut pending_events = self.pending_events.lock().unwrap();
464                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
465                         node_id: their_node_id.clone(),
466                         msg: GossipTimestampFilter {
467                                 chain_hash: self.network_graph.genesis_hash,
468                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
469                                 timestamp_range: u32::max_value(),
470                         },
471                 });
472                 Ok(())
473         }
474
475         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
476                 // We don't make queries, so should never receive replies. If, in the future, the set
477                 // reconciliation extensions to gossip queries become broadly supported, we should revert
478                 // this code to its state pre-0.0.106.
479                 Ok(())
480         }
481
482         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
483                 // We don't make queries, so should never receive replies. If, in the future, the set
484                 // reconciliation extensions to gossip queries become broadly supported, we should revert
485                 // this code to its state pre-0.0.106.
486                 Ok(())
487         }
488
489         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
490         /// are in the specified block range. Due to message size limits, large range
491         /// queries may result in several reply messages. This implementation enqueues
492         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
493         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
494         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
495         /// memory constrained systems.
496         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
497                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
498
499                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
500
501                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
502                 // If so, we manually cap the ending block to avoid this overflow.
503                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
504
505                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
506                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
507                         let mut pending_events = self.pending_events.lock().unwrap();
508                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
509                                 node_id: their_node_id.clone(),
510                                 msg: ReplyChannelRange {
511                                         chain_hash: msg.chain_hash.clone(),
512                                         first_blocknum: msg.first_blocknum,
513                                         number_of_blocks: msg.number_of_blocks,
514                                         sync_complete: true,
515                                         short_channel_ids: vec![],
516                                 }
517                         });
518                         return Err(LightningError {
519                                 err: String::from("query_channel_range could not be processed"),
520                                 action: ErrorAction::IgnoreError,
521                         });
522                 }
523
524                 // Creates channel batches. We are not checking if the channel is routable
525                 // (has at least one update). A peer may still want to know the channel
526                 // exists even if its not yet routable.
527                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
528                 let channels = self.network_graph.channels.read().unwrap();
529                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
530                         if let Some(chan_announcement) = &chan.announcement_message {
531                                 // Construct a new batch if last one is full
532                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
533                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
534                                 }
535
536                                 let batch = batches.last_mut().unwrap();
537                                 batch.push(chan_announcement.contents.short_channel_id);
538                         }
539                 }
540                 drop(channels);
541
542                 let mut pending_events = self.pending_events.lock().unwrap();
543                 let batch_count = batches.len();
544                 let mut prev_batch_endblock = msg.first_blocknum;
545                 for (batch_index, batch) in batches.into_iter().enumerate() {
546                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
547                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
548                         //
549                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
550                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
551                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
552                         // significant diversion from the requirements set by the spec, and, in case of blocks
553                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
554                         // and *not* derive the first_blocknum from the actual first block of the reply.
555                         let first_blocknum = prev_batch_endblock;
556
557                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
558                         // fit in. Though there is no requirement that we use exactly the number of blocks its
559                         // contents are from, except for the bogus requirements c-lightning enforces, above.
560                         //
561                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
562                         // >= the query's end block. Thus, for the last reply, we calculate the difference
563                         // between the query's end block and the start of the reply.
564                         //
565                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
566                         // first_blocknum will be either msg.first_blocknum or a higher block height.
567                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
568                                 (true, msg.end_blocknum() - first_blocknum)
569                         }
570                         // Prior replies should use the number of blocks that fit into the reply. Overflow
571                         // safe since first_blocknum is always <= last SCID's block.
572                         else {
573                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
574                         };
575
576                         prev_batch_endblock = first_blocknum + number_of_blocks;
577
578                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
579                                 node_id: their_node_id.clone(),
580                                 msg: ReplyChannelRange {
581                                         chain_hash: msg.chain_hash.clone(),
582                                         first_blocknum,
583                                         number_of_blocks,
584                                         sync_complete,
585                                         short_channel_ids: batch,
586                                 }
587                         });
588                 }
589
590                 Ok(())
591         }
592
593         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
594                 // TODO
595                 Err(LightningError {
596                         err: String::from("Not implemented"),
597                         action: ErrorAction::IgnoreError,
598                 })
599         }
600
601         fn provided_node_features(&self) -> NodeFeatures {
602                 let mut features = NodeFeatures::empty();
603                 features.set_gossip_queries_optional();
604                 features
605         }
606
607         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
608                 let mut features = InitFeatures::empty();
609                 features.set_gossip_queries_optional();
610                 features
611         }
612 }
613
614 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
615 where
616         C::Target: chain::Access,
617         L::Target: Logger,
618 {
619         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
620                 let mut ret = Vec::new();
621                 let mut pending_events = self.pending_events.lock().unwrap();
622                 core::mem::swap(&mut ret, &mut pending_events);
623                 ret
624         }
625 }
626
627 #[derive(Clone, Debug, PartialEq, Eq)]
628 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
629 pub struct ChannelUpdateInfo {
630         /// When the last update to the channel direction was issued.
631         /// Value is opaque, as set in the announcement.
632         pub last_update: u32,
633         /// Whether the channel can be currently used for payments (in this one direction).
634         pub enabled: bool,
635         /// The difference in CLTV values that you must have when routing through this channel.
636         pub cltv_expiry_delta: u16,
637         /// The minimum value, which must be relayed to the next hop via the channel
638         pub htlc_minimum_msat: u64,
639         /// The maximum value which may be relayed to the next hop via the channel.
640         pub htlc_maximum_msat: u64,
641         /// Fees charged when the channel is used for routing
642         pub fees: RoutingFees,
643         /// Most recent update for the channel received from the network
644         /// Mostly redundant with the data we store in fields explicitly.
645         /// Everything else is useful only for sending out for initial routing sync.
646         /// Not stored if contains excess data to prevent DoS.
647         pub last_update_message: Option<ChannelUpdate>,
648 }
649
650 impl fmt::Display for ChannelUpdateInfo {
651         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
652                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
653                 Ok(())
654         }
655 }
656
657 impl Writeable for ChannelUpdateInfo {
658         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
659                 write_tlv_fields!(writer, {
660                         (0, self.last_update, required),
661                         (2, self.enabled, required),
662                         (4, self.cltv_expiry_delta, required),
663                         (6, self.htlc_minimum_msat, required),
664                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
665                         // compatibility with LDK versions prior to v0.0.110.
666                         (8, Some(self.htlc_maximum_msat), required),
667                         (10, self.fees, required),
668                         (12, self.last_update_message, required),
669                 });
670                 Ok(())
671         }
672 }
673
674 impl Readable for ChannelUpdateInfo {
675         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
676                 _init_tlv_field_var!(last_update, required);
677                 _init_tlv_field_var!(enabled, required);
678                 _init_tlv_field_var!(cltv_expiry_delta, required);
679                 _init_tlv_field_var!(htlc_minimum_msat, required);
680                 _init_tlv_field_var!(htlc_maximum_msat, option);
681                 _init_tlv_field_var!(fees, required);
682                 _init_tlv_field_var!(last_update_message, required);
683
684                 read_tlv_fields!(reader, {
685                         (0, last_update, required),
686                         (2, enabled, required),
687                         (4, cltv_expiry_delta, required),
688                         (6, htlc_minimum_msat, required),
689                         (8, htlc_maximum_msat, required),
690                         (10, fees, required),
691                         (12, last_update_message, required)
692                 });
693
694                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
695                         Ok(ChannelUpdateInfo {
696                                 last_update: _init_tlv_based_struct_field!(last_update, required),
697                                 enabled: _init_tlv_based_struct_field!(enabled, required),
698                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
699                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
700                                 htlc_maximum_msat,
701                                 fees: _init_tlv_based_struct_field!(fees, required),
702                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
703                         })
704                 } else {
705                         Err(DecodeError::InvalidValue)
706                 }
707         }
708 }
709
710 #[derive(Clone, Debug, PartialEq, Eq)]
711 /// Details about a channel (both directions).
712 /// Received within a channel announcement.
713 pub struct ChannelInfo {
714         /// Protocol features of a channel communicated during its announcement
715         pub features: ChannelFeatures,
716         /// Source node of the first direction of a channel
717         pub node_one: NodeId,
718         /// Details about the first direction of a channel
719         pub one_to_two: Option<ChannelUpdateInfo>,
720         /// Source node of the second direction of a channel
721         pub node_two: NodeId,
722         /// Details about the second direction of a channel
723         pub two_to_one: Option<ChannelUpdateInfo>,
724         /// The channel capacity as seen on-chain, if chain lookup is available.
725         pub capacity_sats: Option<u64>,
726         /// An initial announcement of the channel
727         /// Mostly redundant with the data we store in fields explicitly.
728         /// Everything else is useful only for sending out for initial routing sync.
729         /// Not stored if contains excess data to prevent DoS.
730         pub announcement_message: Option<ChannelAnnouncement>,
731         /// The timestamp when we received the announcement, if we are running with feature = "std"
732         /// (which we can probably assume we are - no-std environments probably won't have a full
733         /// network graph in memory!).
734         announcement_received_time: u64,
735 }
736
737 impl ChannelInfo {
738         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
739         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
740         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
741                 let (direction, source) = {
742                         if target == &self.node_one {
743                                 (self.two_to_one.as_ref(), &self.node_two)
744                         } else if target == &self.node_two {
745                                 (self.one_to_two.as_ref(), &self.node_one)
746                         } else {
747                                 return None;
748                         }
749                 };
750                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
751         }
752
753         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
754         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
755         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
756                 let (direction, target) = {
757                         if source == &self.node_one {
758                                 (self.one_to_two.as_ref(), &self.node_two)
759                         } else if source == &self.node_two {
760                                 (self.two_to_one.as_ref(), &self.node_one)
761                         } else {
762                                 return None;
763                         }
764                 };
765                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
766         }
767
768         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
769         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
770                 let direction = channel_flags & 1u8;
771                 if direction == 0 {
772                         self.one_to_two.as_ref()
773                 } else {
774                         self.two_to_one.as_ref()
775                 }
776         }
777 }
778
779 impl fmt::Display for ChannelInfo {
780         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
781                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
782                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
783                 Ok(())
784         }
785 }
786
787 impl Writeable for ChannelInfo {
788         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
789                 write_tlv_fields!(writer, {
790                         (0, self.features, required),
791                         (1, self.announcement_received_time, (default_value, 0)),
792                         (2, self.node_one, required),
793                         (4, self.one_to_two, required),
794                         (6, self.node_two, required),
795                         (8, self.two_to_one, required),
796                         (10, self.capacity_sats, required),
797                         (12, self.announcement_message, required),
798                 });
799                 Ok(())
800         }
801 }
802
803 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
804 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
805 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
806 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
807 // channel updates via the gossip network.
808 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
809
810 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
811         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
812                 match crate::util::ser::Readable::read(reader) {
813                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
814                         Err(DecodeError::ShortRead) => Ok(None),
815                         Err(DecodeError::InvalidValue) => Ok(None),
816                         Err(err) => Err(err),
817                 }
818         }
819 }
820
821 impl Readable for ChannelInfo {
822         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
823                 _init_tlv_field_var!(features, required);
824                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
825                 _init_tlv_field_var!(node_one, required);
826                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
827                 _init_tlv_field_var!(node_two, required);
828                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
829                 _init_tlv_field_var!(capacity_sats, required);
830                 _init_tlv_field_var!(announcement_message, required);
831                 read_tlv_fields!(reader, {
832                         (0, features, required),
833                         (1, announcement_received_time, (default_value, 0)),
834                         (2, node_one, required),
835                         (4, one_to_two_wrap, ignorable),
836                         (6, node_two, required),
837                         (8, two_to_one_wrap, ignorable),
838                         (10, capacity_sats, required),
839                         (12, announcement_message, required),
840                 });
841
842                 Ok(ChannelInfo {
843                         features: _init_tlv_based_struct_field!(features, required),
844                         node_one: _init_tlv_based_struct_field!(node_one, required),
845                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
846                         node_two: _init_tlv_based_struct_field!(node_two, required),
847                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
848                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
849                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
850                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
851                 })
852         }
853 }
854
855 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
856 /// source node to a target node.
857 #[derive(Clone)]
858 pub struct DirectedChannelInfo<'a> {
859         channel: &'a ChannelInfo,
860         direction: &'a ChannelUpdateInfo,
861         htlc_maximum_msat: u64,
862         effective_capacity: EffectiveCapacity,
863 }
864
865 impl<'a> DirectedChannelInfo<'a> {
866         #[inline]
867         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
868                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
869                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
870
871                 let effective_capacity = match capacity_msat {
872                         Some(capacity_msat) => {
873                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
874                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
875                         },
876                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
877                 };
878
879                 Self {
880                         channel, direction, htlc_maximum_msat, effective_capacity
881                 }
882         }
883
884         /// Returns information for the channel.
885         #[inline]
886         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
887
888         /// Returns the maximum HTLC amount allowed over the channel in the direction.
889         #[inline]
890         pub fn htlc_maximum_msat(&self) -> u64 {
891                 self.htlc_maximum_msat
892         }
893
894         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
895         ///
896         /// This is either the total capacity from the funding transaction, if known, or the
897         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
898         /// otherwise.
899         pub fn effective_capacity(&self) -> EffectiveCapacity {
900                 self.effective_capacity
901         }
902
903         /// Returns information for the direction.
904         #[inline]
905         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
906 }
907
908 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
909         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
910                 f.debug_struct("DirectedChannelInfo")
911                         .field("channel", &self.channel)
912                         .finish()
913         }
914 }
915
916 /// The effective capacity of a channel for routing purposes.
917 ///
918 /// While this may be smaller than the actual channel capacity, amounts greater than
919 /// [`Self::as_msat`] should not be routed through the channel.
920 #[derive(Clone, Copy, Debug)]
921 pub enum EffectiveCapacity {
922         /// The available liquidity in the channel known from being a channel counterparty, and thus a
923         /// direct hop.
924         ExactLiquidity {
925                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
926                 /// millisatoshi.
927                 liquidity_msat: u64,
928         },
929         /// The maximum HTLC amount in one direction as advertised on the gossip network.
930         MaximumHTLC {
931                 /// The maximum HTLC amount denominated in millisatoshi.
932                 amount_msat: u64,
933         },
934         /// The total capacity of the channel as determined by the funding transaction.
935         Total {
936                 /// The funding amount denominated in millisatoshi.
937                 capacity_msat: u64,
938                 /// The maximum HTLC amount denominated in millisatoshi.
939                 htlc_maximum_msat: u64
940         },
941         /// A capacity sufficient to route any payment, typically used for private channels provided by
942         /// an invoice.
943         Infinite,
944         /// A capacity that is unknown possibly because either the chain state is unavailable to know
945         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
946         Unknown,
947 }
948
949 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
950 /// use when making routing decisions.
951 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
952
953 impl EffectiveCapacity {
954         /// Returns the effective capacity denominated in millisatoshi.
955         pub fn as_msat(&self) -> u64 {
956                 match self {
957                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
958                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
959                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
960                         EffectiveCapacity::Infinite => u64::max_value(),
961                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
962                 }
963         }
964 }
965
966 /// Fees for routing via a given channel or a node
967 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
968 pub struct RoutingFees {
969         /// Flat routing fee in satoshis
970         pub base_msat: u32,
971         /// Liquidity-based routing fee in millionths of a routed amount.
972         /// In other words, 10000 is 1%.
973         pub proportional_millionths: u32,
974 }
975
976 impl_writeable_tlv_based!(RoutingFees, {
977         (0, base_msat, required),
978         (2, proportional_millionths, required)
979 });
980
981 #[derive(Clone, Debug, PartialEq, Eq)]
982 /// Information received in the latest node_announcement from this node.
983 pub struct NodeAnnouncementInfo {
984         /// Protocol features the node announced support for
985         pub features: NodeFeatures,
986         /// When the last known update to the node state was issued.
987         /// Value is opaque, as set in the announcement.
988         pub last_update: u32,
989         /// Color assigned to the node
990         pub rgb: [u8; 3],
991         /// Moniker assigned to the node.
992         /// May be invalid or malicious (eg control chars),
993         /// should not be exposed to the user.
994         pub alias: NodeAlias,
995         /// Internet-level addresses via which one can connect to the node
996         pub addresses: Vec<NetAddress>,
997         /// An initial announcement of the node
998         /// Mostly redundant with the data we store in fields explicitly.
999         /// Everything else is useful only for sending out for initial routing sync.
1000         /// Not stored if contains excess data to prevent DoS.
1001         pub announcement_message: Option<NodeAnnouncement>
1002 }
1003
1004 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1005         (0, features, required),
1006         (2, last_update, required),
1007         (4, rgb, required),
1008         (6, alias, required),
1009         (8, announcement_message, option),
1010         (10, addresses, vec_type),
1011 });
1012
1013 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1014 ///
1015 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1016 /// attacks. Care must be taken when processing.
1017 #[derive(Clone, Debug, PartialEq, Eq)]
1018 pub struct NodeAlias(pub [u8; 32]);
1019
1020 impl fmt::Display for NodeAlias {
1021         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1022                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1023                 let bytes = self.0.split_at(first_null).0;
1024                 match core::str::from_utf8(bytes) {
1025                         Ok(alias) => PrintableString(alias).fmt(f)?,
1026                         Err(_) => {
1027                                 use core::fmt::Write;
1028                                 for c in bytes.iter().map(|b| *b as char) {
1029                                         // Display printable ASCII characters
1030                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1031                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1032                                         f.write_char(c)?;
1033                                 }
1034                         },
1035                 };
1036                 Ok(())
1037         }
1038 }
1039
1040 impl Writeable for NodeAlias {
1041         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1042                 self.0.write(w)
1043         }
1044 }
1045
1046 impl Readable for NodeAlias {
1047         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1048                 Ok(NodeAlias(Readable::read(r)?))
1049         }
1050 }
1051
1052 #[derive(Clone, Debug, PartialEq, Eq)]
1053 /// Details about a node in the network, known from the network announcement.
1054 pub struct NodeInfo {
1055         /// All valid channels a node has announced
1056         pub channels: Vec<u64>,
1057         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1058         /// The two fields (flat and proportional fee) are independent,
1059         /// meaning they don't have to refer to the same channel.
1060         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1061         /// More information about a node from node_announcement.
1062         /// Optional because we store a Node entry after learning about it from
1063         /// a channel announcement, but before receiving a node announcement.
1064         pub announcement_info: Option<NodeAnnouncementInfo>
1065 }
1066
1067 impl fmt::Display for NodeInfo {
1068         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1069                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1070                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1071                 Ok(())
1072         }
1073 }
1074
1075 impl Writeable for NodeInfo {
1076         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1077                 write_tlv_fields!(writer, {
1078                         (0, self.lowest_inbound_channel_fees, option),
1079                         (2, self.announcement_info, option),
1080                         (4, self.channels, vec_type),
1081                 });
1082                 Ok(())
1083         }
1084 }
1085
1086 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1087 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1088 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1089 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1090 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1091
1092 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1093         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1094                 match crate::util::ser::Readable::read(reader) {
1095                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1096                         Err(_) => {
1097                                 copy(reader, &mut sink()).unwrap();
1098                                 return Ok(None)
1099                         },
1100                 };
1101         }
1102 }
1103
1104 impl Readable for NodeInfo {
1105         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1106                 _init_tlv_field_var!(lowest_inbound_channel_fees, option);
1107                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1108                 _init_tlv_field_var!(channels, vec_type);
1109
1110                 read_tlv_fields!(reader, {
1111                         (0, lowest_inbound_channel_fees, option),
1112                         (2, announcement_info_wrap, ignorable),
1113                         (4, channels, vec_type),
1114                 });
1115
1116                 Ok(NodeInfo {
1117                         lowest_inbound_channel_fees: _init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1118                         announcement_info: announcement_info_wrap.map(|w| w.0),
1119                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1120                 })
1121         }
1122 }
1123
1124 const SERIALIZATION_VERSION: u8 = 1;
1125 const MIN_SERIALIZATION_VERSION: u8 = 1;
1126
1127 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1128         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1129                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1130
1131                 self.genesis_hash.write(writer)?;
1132                 let channels = self.channels.read().unwrap();
1133                 (channels.len() as u64).write(writer)?;
1134                 for (ref chan_id, ref chan_info) in channels.iter() {
1135                         (*chan_id).write(writer)?;
1136                         chan_info.write(writer)?;
1137                 }
1138                 let nodes = self.nodes.read().unwrap();
1139                 (nodes.len() as u64).write(writer)?;
1140                 for (ref node_id, ref node_info) in nodes.iter() {
1141                         node_id.write(writer)?;
1142                         node_info.write(writer)?;
1143                 }
1144
1145                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1146                 write_tlv_fields!(writer, {
1147                         (1, last_rapid_gossip_sync_timestamp, option),
1148                 });
1149                 Ok(())
1150         }
1151 }
1152
1153 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1154         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1155                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1156
1157                 let genesis_hash: BlockHash = Readable::read(reader)?;
1158                 let channels_count: u64 = Readable::read(reader)?;
1159                 let mut channels = BTreeMap::new();
1160                 for _ in 0..channels_count {
1161                         let chan_id: u64 = Readable::read(reader)?;
1162                         let chan_info = Readable::read(reader)?;
1163                         channels.insert(chan_id, chan_info);
1164                 }
1165                 let nodes_count: u64 = Readable::read(reader)?;
1166                 let mut nodes = BTreeMap::new();
1167                 for _ in 0..nodes_count {
1168                         let node_id = Readable::read(reader)?;
1169                         let node_info = Readable::read(reader)?;
1170                         nodes.insert(node_id, node_info);
1171                 }
1172
1173                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1174                 read_tlv_fields!(reader, {
1175                         (1, last_rapid_gossip_sync_timestamp, option),
1176                 });
1177
1178                 Ok(NetworkGraph {
1179                         secp_ctx: Secp256k1::verification_only(),
1180                         genesis_hash,
1181                         logger,
1182                         channels: RwLock::new(channels),
1183                         nodes: RwLock::new(nodes),
1184                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1185                         removed_nodes: Mutex::new(HashMap::new()),
1186                         removed_channels: Mutex::new(HashMap::new()),
1187                 })
1188         }
1189 }
1190
1191 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1192         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1193                 writeln!(f, "Network map\n[Channels]")?;
1194                 for (key, val) in self.channels.read().unwrap().iter() {
1195                         writeln!(f, " {}: {}", key, val)?;
1196                 }
1197                 writeln!(f, "[Nodes]")?;
1198                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1199                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1200                 }
1201                 Ok(())
1202         }
1203 }
1204
1205 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1206 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1207         fn eq(&self, other: &Self) -> bool {
1208                 self.genesis_hash == other.genesis_hash &&
1209                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1210                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1211         }
1212 }
1213
1214 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1215         /// Creates a new, empty, network graph.
1216         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1217                 Self {
1218                         secp_ctx: Secp256k1::verification_only(),
1219                         genesis_hash,
1220                         logger,
1221                         channels: RwLock::new(BTreeMap::new()),
1222                         nodes: RwLock::new(BTreeMap::new()),
1223                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1224                         removed_channels: Mutex::new(HashMap::new()),
1225                         removed_nodes: Mutex::new(HashMap::new()),
1226                 }
1227         }
1228
1229         /// Returns a read-only view of the network graph.
1230         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1231                 let channels = self.channels.read().unwrap();
1232                 let nodes = self.nodes.read().unwrap();
1233                 ReadOnlyNetworkGraph {
1234                         channels,
1235                         nodes,
1236                 }
1237         }
1238
1239         /// The unix timestamp provided by the most recent rapid gossip sync.
1240         /// It will be set by the rapid sync process after every sync completion.
1241         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1242                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1243         }
1244
1245         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1246         /// This should be done automatically by the rapid sync process after every sync completion.
1247         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1248                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1249         }
1250
1251         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1252         /// purposes.
1253         #[cfg(test)]
1254         pub fn clear_nodes_announcement_info(&self) {
1255                 for node in self.nodes.write().unwrap().iter_mut() {
1256                         node.1.announcement_info = None;
1257                 }
1258         }
1259
1260         /// For an already known node (from channel announcements), update its stored properties from a
1261         /// given node announcement.
1262         ///
1263         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1264         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1265         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1266         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1267                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1268                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1269                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1270         }
1271
1272         /// For an already known node (from channel announcements), update its stored properties from a
1273         /// given node announcement without verifying the associated signatures. Because we aren't
1274         /// given the associated signatures here we cannot relay the node announcement to any of our
1275         /// peers.
1276         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1277                 self.update_node_from_announcement_intern(msg, None)
1278         }
1279
1280         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1281                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1282                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1283                         Some(node) => {
1284                                 if let Some(node_info) = node.announcement_info.as_ref() {
1285                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1286                                         // updates to ensure you always have the latest one, only vaguely suggesting
1287                                         // that it be at least the current time.
1288                                         if node_info.last_update  > msg.timestamp {
1289                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1290                                         } else if node_info.last_update  == msg.timestamp {
1291                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1292                                         }
1293                                 }
1294
1295                                 let should_relay =
1296                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1297                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1298                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1299                                 node.announcement_info = Some(NodeAnnouncementInfo {
1300                                         features: msg.features.clone(),
1301                                         last_update: msg.timestamp,
1302                                         rgb: msg.rgb,
1303                                         alias: NodeAlias(msg.alias),
1304                                         addresses: msg.addresses.clone(),
1305                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1306                                 });
1307
1308                                 Ok(())
1309                         }
1310                 }
1311         }
1312
1313         /// Store or update channel info from a channel announcement.
1314         ///
1315         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1316         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1317         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1318         ///
1319         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1320         /// the corresponding UTXO exists on chain and is correctly-formatted.
1321         pub fn update_channel_from_announcement<C: Deref>(
1322                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1323         ) -> Result<(), LightningError>
1324         where
1325                 C::Target: chain::Access,
1326         {
1327                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1328                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1329                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1330                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1331                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1332                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1333         }
1334
1335         /// Store or update channel info from a channel announcement without verifying the associated
1336         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1337         /// channel announcement to any of our peers.
1338         ///
1339         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1340         /// the corresponding UTXO exists on chain and is correctly-formatted.
1341         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1342                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1343         ) -> Result<(), LightningError>
1344         where
1345                 C::Target: chain::Access,
1346         {
1347                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1348         }
1349
1350         /// Update channel from partial announcement data received via rapid gossip sync
1351         ///
1352         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1353         /// rapid gossip sync server)
1354         ///
1355         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1356         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1357                 if node_id_1 == node_id_2 {
1358                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1359                 };
1360
1361                 let node_1 = NodeId::from_pubkey(&node_id_1);
1362                 let node_2 = NodeId::from_pubkey(&node_id_2);
1363                 let channel_info = ChannelInfo {
1364                         features,
1365                         node_one: node_1.clone(),
1366                         one_to_two: None,
1367                         node_two: node_2.clone(),
1368                         two_to_one: None,
1369                         capacity_sats: None,
1370                         announcement_message: None,
1371                         announcement_received_time: timestamp,
1372                 };
1373
1374                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1375         }
1376
1377         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1378                 let mut channels = self.channels.write().unwrap();
1379                 let mut nodes = self.nodes.write().unwrap();
1380
1381                 let node_id_a = channel_info.node_one.clone();
1382                 let node_id_b = channel_info.node_two.clone();
1383
1384                 match channels.entry(short_channel_id) {
1385                         BtreeEntry::Occupied(mut entry) => {
1386                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1387                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1388                                 //exactly how...
1389                                 if utxo_value.is_some() {
1390                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1391                                         // only sometimes returns results. In any case remove the previous entry. Note
1392                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1393                                         // do that because
1394                                         // a) we don't *require* a UTXO provider that always returns results.
1395                                         // b) we don't track UTXOs of channels we know about and remove them if they
1396                                         //    get reorg'd out.
1397                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1398                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1399                                         *entry.get_mut() = channel_info;
1400                                 } else {
1401                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1402                                 }
1403                         },
1404                         BtreeEntry::Vacant(entry) => {
1405                                 entry.insert(channel_info);
1406                         }
1407                 };
1408
1409                 for current_node_id in [node_id_a, node_id_b].iter() {
1410                         match nodes.entry(current_node_id.clone()) {
1411                                 BtreeEntry::Occupied(node_entry) => {
1412                                         node_entry.into_mut().channels.push(short_channel_id);
1413                                 },
1414                                 BtreeEntry::Vacant(node_entry) => {
1415                                         node_entry.insert(NodeInfo {
1416                                                 channels: vec!(short_channel_id),
1417                                                 lowest_inbound_channel_fees: None,
1418                                                 announcement_info: None,
1419                                         });
1420                                 }
1421                         };
1422                 };
1423
1424                 Ok(())
1425         }
1426
1427         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1428                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1429         ) -> Result<(), LightningError>
1430         where
1431                 C::Target: chain::Access,
1432         {
1433                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1434                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1435                 }
1436
1437                 let node_one = NodeId::from_pubkey(&msg.node_id_1);
1438                 let node_two = NodeId::from_pubkey(&msg.node_id_2);
1439
1440                 {
1441                         let channels = self.channels.read().unwrap();
1442
1443                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1444                                 if chan.capacity_sats.is_some() {
1445                                         // If we'd previously looked up the channel on-chain and checked the script
1446                                         // against what appears on-chain, ignore the duplicate announcement.
1447                                         //
1448                                         // Because a reorg could replace one channel with another at the same SCID, if
1449                                         // the channel appears to be different, we re-validate. This doesn't expose us
1450                                         // to any more DoS risk than not, as a peer can always flood us with
1451                                         // randomly-generated SCID values anyway.
1452                                         //
1453                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1454                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1455                                         // if the peers on the channel changed anyway.
1456                                         if node_one == chan.node_one && node_two == chan.node_two {
1457                                                 return Err(LightningError {
1458                                                         err: "Already have chain-validated channel".to_owned(),
1459                                                         action: ErrorAction::IgnoreDuplicateGossip
1460                                                 });
1461                                         }
1462                                 } else if chain_access.is_none() {
1463                                         // Similarly, if we can't check the chain right now anyway, ignore the
1464                                         // duplicate announcement without bothering to take the channels write lock.
1465                                         return Err(LightningError {
1466                                                 err: "Already have non-chain-validated channel".to_owned(),
1467                                                 action: ErrorAction::IgnoreDuplicateGossip
1468                                         });
1469                                 }
1470                         }
1471                 }
1472
1473                 {
1474                         let removed_channels = self.removed_channels.lock().unwrap();
1475                         let removed_nodes = self.removed_nodes.lock().unwrap();
1476                         if removed_channels.contains_key(&msg.short_channel_id) ||
1477                                 removed_nodes.contains_key(&node_one) ||
1478                                 removed_nodes.contains_key(&node_two) {
1479                                 return Err(LightningError{
1480                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1481                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1482                         }
1483                 }
1484
1485                 let utxo_value = match &chain_access {
1486                         &None => {
1487                                 // Tentatively accept, potentially exposing us to DoS attacks
1488                                 None
1489                         },
1490                         &Some(ref chain_access) => {
1491                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1492                                         Ok(TxOut { value, script_pubkey }) => {
1493                                                 let expected_script =
1494                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1495                                                 if script_pubkey != expected_script {
1496                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1497                                                 }
1498                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1499                                                 //to the new HTLC max field in channel_update
1500                                                 Some(value)
1501                                         },
1502                                         Err(chain::AccessError::UnknownChain) => {
1503                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1504                                         },
1505                                         Err(chain::AccessError::UnknownTx) => {
1506                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1507                                         },
1508                                 }
1509                         },
1510                 };
1511
1512                 #[allow(unused_mut, unused_assignments)]
1513                 let mut announcement_received_time = 0;
1514                 #[cfg(feature = "std")]
1515                 {
1516                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1517                 }
1518
1519                 let chan_info = ChannelInfo {
1520                         features: msg.features.clone(),
1521                         node_one,
1522                         one_to_two: None,
1523                         node_two,
1524                         two_to_one: None,
1525                         capacity_sats: utxo_value,
1526                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1527                                 { full_msg.cloned() } else { None },
1528                         announcement_received_time,
1529                 };
1530
1531                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1532         }
1533
1534         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1535         /// If permanent, removes a channel from the local storage.
1536         /// May cause the removal of nodes too, if this was their last channel.
1537         /// If not permanent, makes channels unavailable for routing.
1538         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1539                 #[cfg(feature = "std")]
1540                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1541                 #[cfg(not(feature = "std"))]
1542                 let current_time_unix = None;
1543
1544                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1545         }
1546
1547         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1548         /// If permanent, removes a channel from the local storage.
1549         /// May cause the removal of nodes too, if this was their last channel.
1550         /// If not permanent, makes channels unavailable for routing.
1551         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1552                 let mut channels = self.channels.write().unwrap();
1553                 if is_permanent {
1554                         if let Some(chan) = channels.remove(&short_channel_id) {
1555                                 let mut nodes = self.nodes.write().unwrap();
1556                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1557                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1558                         }
1559                 } else {
1560                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1561                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1562                                         one_to_two.enabled = false;
1563                                 }
1564                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1565                                         two_to_one.enabled = false;
1566                                 }
1567                         }
1568                 }
1569         }
1570
1571         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1572         /// from local storage.
1573         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1574                 #[cfg(feature = "std")]
1575                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1576                 #[cfg(not(feature = "std"))]
1577                 let current_time_unix = None;
1578
1579                 let node_id = NodeId::from_pubkey(node_id);
1580                 let mut channels = self.channels.write().unwrap();
1581                 let mut nodes = self.nodes.write().unwrap();
1582                 let mut removed_channels = self.removed_channels.lock().unwrap();
1583                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1584
1585                 if let Some(node) = nodes.remove(&node_id) {
1586                         for scid in node.channels.iter() {
1587                                 if let Some(chan_info) = channels.remove(scid) {
1588                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1589                                         if let BtreeEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1590                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1591                                                         *scid != *chan_id
1592                                                 });
1593                                                 if other_node_entry.get().channels.is_empty() {
1594                                                         other_node_entry.remove_entry();
1595                                                 }
1596                                         }
1597                                         removed_channels.insert(*scid, current_time_unix);
1598                                 }
1599                         }
1600                         removed_nodes.insert(node_id, current_time_unix);
1601                 }
1602         }
1603
1604         #[cfg(feature = "std")]
1605         /// Removes information about channels that we haven't heard any updates about in some time.
1606         /// This can be used regularly to prune the network graph of channels that likely no longer
1607         /// exist.
1608         ///
1609         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1610         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1611         /// pruning occur for updates which are at least two weeks old, which we implement here.
1612         ///
1613         /// Note that for users of the `lightning-background-processor` crate this method may be
1614         /// automatically called regularly for you.
1615         ///
1616         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1617         /// in the map for a while so that these can be resynced from gossip in the future.
1618         ///
1619         /// This method is only available with the `std` feature. See
1620         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1621         pub fn remove_stale_channels_and_tracking(&self) {
1622                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1623                 self.remove_stale_channels_and_tracking_with_time(time);
1624         }
1625
1626         /// Removes information about channels that we haven't heard any updates about in some time.
1627         /// This can be used regularly to prune the network graph of channels that likely no longer
1628         /// exist.
1629         ///
1630         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1631         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1632         /// pruning occur for updates which are at least two weeks old, which we implement here.
1633         ///
1634         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1635         /// in the map for a while so that these can be resynced from gossip in the future.
1636         ///
1637         /// This function takes the current unix time as an argument. For users with the `std` feature
1638         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1639         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1640                 let mut channels = self.channels.write().unwrap();
1641                 // Time out if we haven't received an update in at least 14 days.
1642                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1643                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1644                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1645                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1646                 // time.
1647                 let mut scids_to_remove = Vec::new();
1648                 for (scid, info) in channels.iter_mut() {
1649                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1650                                 info.one_to_two = None;
1651                         }
1652                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1653                                 info.two_to_one = None;
1654                         }
1655                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1656                                 // We check the announcement_received_time here to ensure we don't drop
1657                                 // announcements that we just received and are just waiting for our peer to send a
1658                                 // channel_update for.
1659                                 if info.announcement_received_time < min_time_unix as u64 {
1660                                         scids_to_remove.push(*scid);
1661                                 }
1662                         }
1663                 }
1664                 if !scids_to_remove.is_empty() {
1665                         let mut nodes = self.nodes.write().unwrap();
1666                         for scid in scids_to_remove {
1667                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1668                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1669                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1670                         }
1671                 }
1672
1673                 let should_keep_tracking = |time: &mut Option<u64>| {
1674                         if let Some(time) = time {
1675                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1676                         } else {
1677                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1678                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1679                                 // of this function.
1680                                 #[cfg(feature = "no-std")]
1681                                 {
1682                                         let mut tracked_time = Some(current_time_unix);
1683                                         core::mem::swap(time, &mut tracked_time);
1684                                         return true;
1685                                 }
1686                                 #[allow(unreachable_code)]
1687                                 false
1688                         }};
1689
1690                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1691                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1692         }
1693
1694         /// For an already known (from announcement) channel, update info about one of the directions
1695         /// of the channel.
1696         ///
1697         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1698         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1699         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1700         ///
1701         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1702         /// materially in the future will be rejected.
1703         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1704                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1705         }
1706
1707         /// For an already known (from announcement) channel, update info about one of the directions
1708         /// of the channel without verifying the associated signatures. Because we aren't given the
1709         /// associated signatures here we cannot relay the channel update to any of our peers.
1710         ///
1711         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1712         /// materially in the future will be rejected.
1713         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1714                 self.update_channel_intern(msg, None, None)
1715         }
1716
1717         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1718                 let dest_node_id;
1719                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1720                 let chan_was_enabled;
1721
1722                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1723                 {
1724                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1725                         // disable this check during tests!
1726                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1727                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1728                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1729                         }
1730                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1731                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1732                         }
1733                 }
1734
1735                 let mut channels = self.channels.write().unwrap();
1736                 match channels.get_mut(&msg.short_channel_id) {
1737                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1738                         Some(channel) => {
1739                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1740                                         return Err(LightningError{err:
1741                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1742                                                 action: ErrorAction::IgnoreError});
1743                                 }
1744
1745                                 if let Some(capacity_sats) = channel.capacity_sats {
1746                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1747                                         // Don't query UTXO set here to reduce DoS risks.
1748                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1749                                                 return Err(LightningError{err:
1750                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1751                                                         action: ErrorAction::IgnoreError});
1752                                         }
1753                                 }
1754                                 macro_rules! check_update_latest {
1755                                         ($target: expr) => {
1756                                                 if let Some(existing_chan_info) = $target.as_ref() {
1757                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1758                                                         // order updates to ensure you always have the latest one, only
1759                                                         // suggesting  that it be at least the current time. For
1760                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1761                                                         // pruning based on the timestamp field being more than two weeks old,
1762                                                         // but only in the non-normative section.
1763                                                         if existing_chan_info.last_update > msg.timestamp {
1764                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1765                                                         } else if existing_chan_info.last_update == msg.timestamp {
1766                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1767                                                         }
1768                                                         chan_was_enabled = existing_chan_info.enabled;
1769                                                 } else {
1770                                                         chan_was_enabled = false;
1771                                                 }
1772                                         }
1773                                 }
1774
1775                                 macro_rules! get_new_channel_info {
1776                                         () => { {
1777                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1778                                                         { full_msg.cloned() } else { None };
1779
1780                                                 let updated_channel_update_info = ChannelUpdateInfo {
1781                                                         enabled: chan_enabled,
1782                                                         last_update: msg.timestamp,
1783                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1784                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1785                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1786                                                         fees: RoutingFees {
1787                                                                 base_msat: msg.fee_base_msat,
1788                                                                 proportional_millionths: msg.fee_proportional_millionths,
1789                                                         },
1790                                                         last_update_message
1791                                                 };
1792                                                 Some(updated_channel_update_info)
1793                                         } }
1794                                 }
1795
1796                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1797                                 if msg.flags & 1 == 1 {
1798                                         dest_node_id = channel.node_one.clone();
1799                                         check_update_latest!(channel.two_to_one);
1800                                         if let Some(sig) = sig {
1801                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1802                                                         err: "Couldn't parse source node pubkey".to_owned(),
1803                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1804                                                 })?, "channel_update");
1805                                         }
1806                                         channel.two_to_one = get_new_channel_info!();
1807                                 } else {
1808                                         dest_node_id = channel.node_two.clone();
1809                                         check_update_latest!(channel.one_to_two);
1810                                         if let Some(sig) = sig {
1811                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1812                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1813                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1814                                                 })?, "channel_update");
1815                                         }
1816                                         channel.one_to_two = get_new_channel_info!();
1817                                 }
1818                         }
1819                 }
1820
1821                 let mut nodes = self.nodes.write().unwrap();
1822                 if chan_enabled {
1823                         let node = nodes.get_mut(&dest_node_id).unwrap();
1824                         let mut base_msat = msg.fee_base_msat;
1825                         let mut proportional_millionths = msg.fee_proportional_millionths;
1826                         if let Some(fees) = node.lowest_inbound_channel_fees {
1827                                 base_msat = cmp::min(base_msat, fees.base_msat);
1828                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1829                         }
1830                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1831                                 base_msat,
1832                                 proportional_millionths
1833                         });
1834                 } else if chan_was_enabled {
1835                         let node = nodes.get_mut(&dest_node_id).unwrap();
1836                         let mut lowest_inbound_channel_fees = None;
1837
1838                         for chan_id in node.channels.iter() {
1839                                 let chan = channels.get(chan_id).unwrap();
1840                                 let chan_info_opt;
1841                                 if chan.node_one == dest_node_id {
1842                                         chan_info_opt = chan.two_to_one.as_ref();
1843                                 } else {
1844                                         chan_info_opt = chan.one_to_two.as_ref();
1845                                 }
1846                                 if let Some(chan_info) = chan_info_opt {
1847                                         if chan_info.enabled {
1848                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1849                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1850                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1851                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1852                                         }
1853                                 }
1854                         }
1855
1856                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1857                 }
1858
1859                 Ok(())
1860         }
1861
1862         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1863                 macro_rules! remove_from_node {
1864                         ($node_id: expr) => {
1865                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1866                                         entry.get_mut().channels.retain(|chan_id| {
1867                                                 short_channel_id != *chan_id
1868                                         });
1869                                         if entry.get().channels.is_empty() {
1870                                                 entry.remove_entry();
1871                                         }
1872                                 } else {
1873                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1874                                 }
1875                         }
1876                 }
1877
1878                 remove_from_node!(chan.node_one);
1879                 remove_from_node!(chan.node_two);
1880         }
1881 }
1882
1883 impl ReadOnlyNetworkGraph<'_> {
1884         /// Returns all known valid channels' short ids along with announced channel info.
1885         ///
1886         /// (C-not exported) because we have no mapping for `BTreeMap`s
1887         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1888                 &*self.channels
1889         }
1890
1891         /// Returns information on a channel with the given id.
1892         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1893                 self.channels.get(&short_channel_id)
1894         }
1895
1896         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1897         /// Returns the list of channels in the graph
1898         pub fn list_channels(&self) -> Vec<u64> {
1899                 self.channels.keys().map(|c| *c).collect()
1900         }
1901
1902         /// Returns all known nodes' public keys along with announced node info.
1903         ///
1904         /// (C-not exported) because we have no mapping for `BTreeMap`s
1905         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1906                 &*self.nodes
1907         }
1908
1909         /// Returns information on a node with the given id.
1910         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1911                 self.nodes.get(node_id)
1912         }
1913
1914         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1915         /// Returns the list of nodes in the graph
1916         pub fn list_nodes(&self) -> Vec<NodeId> {
1917                 self.nodes.keys().map(|n| *n).collect()
1918         }
1919
1920         /// Get network addresses by node id.
1921         /// Returns None if the requested node is completely unknown,
1922         /// or if node announcement for the node was never received.
1923         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1924                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1925                         if let Some(node_info) = node.announcement_info.as_ref() {
1926                                 return Some(node_info.addresses.clone())
1927                         }
1928                 }
1929                 None
1930         }
1931 }
1932
1933 #[cfg(test)]
1934 mod tests {
1935         use crate::chain;
1936         use crate::ln::channelmanager;
1937         use crate::ln::chan_utils::make_funding_redeemscript;
1938         #[cfg(feature = "std")]
1939         use crate::ln::features::InitFeatures;
1940         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1941         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1942                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1943                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1944         use crate::util::config::UserConfig;
1945         use crate::util::test_utils;
1946         use crate::util::ser::{ReadableArgs, Writeable};
1947         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1948         use crate::util::scid_utils::scid_from_parts;
1949
1950         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1951         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1952
1953         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1954         use bitcoin::hashes::Hash;
1955         use bitcoin::network::constants::Network;
1956         use bitcoin::blockdata::constants::genesis_block;
1957         use bitcoin::blockdata::script::Script;
1958         use bitcoin::blockdata::transaction::TxOut;
1959
1960         use hex;
1961
1962         use bitcoin::secp256k1::{PublicKey, SecretKey};
1963         use bitcoin::secp256k1::{All, Secp256k1};
1964
1965         use crate::io;
1966         use bitcoin::secp256k1;
1967         use crate::prelude::*;
1968         use crate::sync::Arc;
1969
1970         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1971                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1972                 let logger = Arc::new(test_utils::TestLogger::new());
1973                 NetworkGraph::new(genesis_hash, logger)
1974         }
1975
1976         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1977                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1978                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1979         ) {
1980                 let secp_ctx = Secp256k1::new();
1981                 let logger = Arc::new(test_utils::TestLogger::new());
1982                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1983                 (secp_ctx, gossip_sync)
1984         }
1985
1986         #[test]
1987         #[cfg(feature = "std")]
1988         fn request_full_sync_finite_times() {
1989                 let network_graph = create_network_graph();
1990                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1991                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1992
1993                 assert!(gossip_sync.should_request_full_sync(&node_id));
1994                 assert!(gossip_sync.should_request_full_sync(&node_id));
1995                 assert!(gossip_sync.should_request_full_sync(&node_id));
1996                 assert!(gossip_sync.should_request_full_sync(&node_id));
1997                 assert!(gossip_sync.should_request_full_sync(&node_id));
1998                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1999         }
2000
2001         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2002                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
2003                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2004                         features: channelmanager::provided_node_features(&UserConfig::default()),
2005                         timestamp: 100,
2006                         node_id: node_id,
2007                         rgb: [0; 3],
2008                         alias: [0; 32],
2009                         addresses: Vec::new(),
2010                         excess_address_data: Vec::new(),
2011                         excess_data: Vec::new(),
2012                 };
2013                 f(&mut unsigned_announcement);
2014                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2015                 NodeAnnouncement {
2016                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2017                         contents: unsigned_announcement
2018                 }
2019         }
2020
2021         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2022                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2023                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2024                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2025                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2026
2027                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2028                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2029                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2030                         short_channel_id: 0,
2031                         node_id_1,
2032                         node_id_2,
2033                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
2034                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
2035                         excess_data: Vec::new(),
2036                 };
2037                 f(&mut unsigned_announcement);
2038                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2039                 ChannelAnnouncement {
2040                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2041                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2042                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2043                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2044                         contents: unsigned_announcement,
2045                 }
2046         }
2047
2048         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2049                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2050                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2051                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2052                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2053         }
2054
2055         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2056                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2057                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2058                         short_channel_id: 0,
2059                         timestamp: 100,
2060                         flags: 0,
2061                         cltv_expiry_delta: 144,
2062                         htlc_minimum_msat: 1_000_000,
2063                         htlc_maximum_msat: 1_000_000,
2064                         fee_base_msat: 10_000,
2065                         fee_proportional_millionths: 20,
2066                         excess_data: Vec::new()
2067                 };
2068                 f(&mut unsigned_channel_update);
2069                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2070                 ChannelUpdate {
2071                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2072                         contents: unsigned_channel_update
2073                 }
2074         }
2075
2076         #[test]
2077         fn handling_node_announcements() {
2078                 let network_graph = create_network_graph();
2079                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2080
2081                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2082                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2083                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2084
2085                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2086                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2087                         Ok(_) => panic!(),
2088                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2089                 };
2090
2091                 {
2092                         // Announce a channel to add a corresponding node.
2093                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2094                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2095                                 Ok(res) => assert!(res),
2096                                 _ => panic!()
2097                         };
2098                 }
2099
2100                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2101                         Ok(res) => assert!(res),
2102                         Err(_) => panic!()
2103                 };
2104
2105                 let fake_msghash = hash_to_message!(&zero_hash);
2106                 match gossip_sync.handle_node_announcement(
2107                         &NodeAnnouncement {
2108                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2109                                 contents: valid_announcement.contents.clone()
2110                 }) {
2111                         Ok(_) => panic!(),
2112                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2113                 };
2114
2115                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2116                         unsigned_announcement.timestamp += 1000;
2117                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2118                 }, node_1_privkey, &secp_ctx);
2119                 // Return false because contains excess data.
2120                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2121                         Ok(res) => assert!(!res),
2122                         Err(_) => panic!()
2123                 };
2124
2125                 // Even though previous announcement was not relayed further, we still accepted it,
2126                 // so we now won't accept announcements before the previous one.
2127                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2128                         unsigned_announcement.timestamp += 1000 - 10;
2129                 }, node_1_privkey, &secp_ctx);
2130                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2131                         Ok(_) => panic!(),
2132                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2133                 };
2134         }
2135
2136         #[test]
2137         fn handling_channel_announcements() {
2138                 let secp_ctx = Secp256k1::new();
2139                 let logger = test_utils::TestLogger::new();
2140
2141                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2142                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2143
2144                 let good_script = get_channel_script(&secp_ctx);
2145                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2146
2147                 // Test if the UTXO lookups were not supported
2148                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2149                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2150                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2151                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2152                         Ok(res) => assert!(res),
2153                         _ => panic!()
2154                 };
2155
2156                 {
2157                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2158                                 None => panic!(),
2159                                 Some(_) => ()
2160                         };
2161                 }
2162
2163                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2164                 // drop new one on the floor, since we can't see any changes.
2165                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2166                         Ok(_) => panic!(),
2167                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2168                 };
2169
2170                 // Test if an associated transaction were not on-chain (or not confirmed).
2171                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2172                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2173                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2174                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2175
2176                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2177                         unsigned_announcement.short_channel_id += 1;
2178                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2179                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2180                         Ok(_) => panic!(),
2181                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2182                 };
2183
2184                 // Now test if the transaction is found in the UTXO set and the script is correct.
2185                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2186                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2187                         unsigned_announcement.short_channel_id += 2;
2188                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2189                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2190                         Ok(res) => assert!(res),
2191                         _ => panic!()
2192                 };
2193
2194                 {
2195                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2196                                 None => panic!(),
2197                                 Some(_) => ()
2198                         };
2199                 }
2200
2201                 // If we receive announcement for the same channel, once we've validated it against the
2202                 // chain, we simply ignore all new (duplicate) announcements.
2203                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2204                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2205                         Ok(_) => panic!(),
2206                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2207                 };
2208
2209                 #[cfg(feature = "std")]
2210                 {
2211                         use std::time::{SystemTime, UNIX_EPOCH};
2212
2213                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2214                         // Mark a node as permanently failed so it's tracked as removed.
2215                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2216
2217                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2218                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2219                                 unsigned_announcement.short_channel_id += 3;
2220                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2221                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2222                                 Ok(_) => panic!(),
2223                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2224                         }
2225
2226                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2227
2228                         // The above channel announcement should be handled as per normal now.
2229                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2230                                 Ok(res) => assert!(res),
2231                                 _ => panic!()
2232                         }
2233                 }
2234
2235                 // Don't relay valid channels with excess data
2236                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2237                         unsigned_announcement.short_channel_id += 4;
2238                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2239                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2240                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2241                         Ok(res) => assert!(!res),
2242                         _ => panic!()
2243                 };
2244
2245                 let mut invalid_sig_announcement = valid_announcement.clone();
2246                 invalid_sig_announcement.contents.excess_data = Vec::new();
2247                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2248                         Ok(_) => panic!(),
2249                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2250                 };
2251
2252                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2253                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2254                         Ok(_) => panic!(),
2255                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2256                 };
2257         }
2258
2259         #[test]
2260         fn handling_channel_update() {
2261                 let secp_ctx = Secp256k1::new();
2262                 let logger = test_utils::TestLogger::new();
2263                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2264                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2265                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2266                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2267
2268                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2269                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2270
2271                 let amount_sats = 1000_000;
2272                 let short_channel_id;
2273
2274                 {
2275                         // Announce a channel we will update
2276                         let good_script = get_channel_script(&secp_ctx);
2277                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2278
2279                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2280                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2281                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2282                                 Ok(_) => (),
2283                                 Err(_) => panic!()
2284                         };
2285
2286                 }
2287
2288                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2289                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2290                         Ok(res) => assert!(res),
2291                         _ => panic!(),
2292                 };
2293
2294                 {
2295                         match network_graph.read_only().channels().get(&short_channel_id) {
2296                                 None => panic!(),
2297                                 Some(channel_info) => {
2298                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2299                                         assert!(channel_info.two_to_one.is_none());
2300                                 }
2301                         };
2302                 }
2303
2304                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2305                         unsigned_channel_update.timestamp += 100;
2306                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2307                 }, node_1_privkey, &secp_ctx);
2308                 // Return false because contains excess data
2309                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2310                         Ok(res) => assert!(!res),
2311                         _ => panic!()
2312                 };
2313
2314                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2315                         unsigned_channel_update.timestamp += 110;
2316                         unsigned_channel_update.short_channel_id += 1;
2317                 }, node_1_privkey, &secp_ctx);
2318                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2319                         Ok(_) => panic!(),
2320                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2321                 };
2322
2323                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2324                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2325                         unsigned_channel_update.timestamp += 110;
2326                 }, node_1_privkey, &secp_ctx);
2327                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2328                         Ok(_) => panic!(),
2329                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2330                 };
2331
2332                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2333                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2334                         unsigned_channel_update.timestamp += 110;
2335                 }, node_1_privkey, &secp_ctx);
2336                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2337                         Ok(_) => panic!(),
2338                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2339                 };
2340
2341                 // Even though previous update was not relayed further, we still accepted it,
2342                 // so we now won't accept update before the previous one.
2343                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2344                         unsigned_channel_update.timestamp += 100;
2345                 }, node_1_privkey, &secp_ctx);
2346                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2347                         Ok(_) => panic!(),
2348                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2349                 };
2350
2351                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2352                         unsigned_channel_update.timestamp += 500;
2353                 }, node_1_privkey, &secp_ctx);
2354                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2355                 let fake_msghash = hash_to_message!(&zero_hash);
2356                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2357                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2358                         Ok(_) => panic!(),
2359                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2360                 };
2361         }
2362
2363         #[test]
2364         fn handling_network_update() {
2365                 let logger = test_utils::TestLogger::new();
2366                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2367                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2368                 let secp_ctx = Secp256k1::new();
2369
2370                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2371                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2372                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2373
2374                 {
2375                         // There is no nodes in the table at the beginning.
2376                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2377                 }
2378
2379                 let short_channel_id;
2380                 {
2381                         // Announce a channel we will update
2382                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2383                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2384                         let chain_source: Option<&test_utils::TestChainSource> = None;
2385                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2386                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2387
2388                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2389                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2390
2391                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2392                                 msg: valid_channel_update,
2393                         });
2394
2395                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2396                 }
2397
2398                 // Non-permanent closing just disables a channel
2399                 {
2400                         match network_graph.read_only().channels().get(&short_channel_id) {
2401                                 None => panic!(),
2402                                 Some(channel_info) => {
2403                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2404                                 }
2405                         };
2406
2407                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2408                                 short_channel_id,
2409                                 is_permanent: false,
2410                         });
2411
2412                         match network_graph.read_only().channels().get(&short_channel_id) {
2413                                 None => panic!(),
2414                                 Some(channel_info) => {
2415                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2416                                 }
2417                         };
2418                 }
2419
2420                 // Permanent closing deletes a channel
2421                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2422                         short_channel_id,
2423                         is_permanent: true,
2424                 });
2425
2426                 assert_eq!(network_graph.read_only().channels().len(), 0);
2427                 // Nodes are also deleted because there are no associated channels anymore
2428                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2429
2430                 {
2431                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2432                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2433
2434                         // Announce a channel to test permanent node failure
2435                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2436                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2437                         let chain_source: Option<&test_utils::TestChainSource> = None;
2438                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2439                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2440
2441                         // Non-permanent node failure does not delete any nodes or channels
2442                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2443                                 node_id: node_2_id,
2444                                 is_permanent: false,
2445                         });
2446
2447                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2448                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2449
2450                         // Permanent node failure deletes node and its channels
2451                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2452                                 node_id: node_2_id,
2453                                 is_permanent: true,
2454                         });
2455
2456                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2457                         // Channels are also deleted because the associated node has been deleted
2458                         assert_eq!(network_graph.read_only().channels().len(), 0);
2459                 }
2460         }
2461
2462         #[test]
2463         fn test_channel_timeouts() {
2464                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2465                 let logger = test_utils::TestLogger::new();
2466                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2467                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2468                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2469                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2470                 let secp_ctx = Secp256k1::new();
2471
2472                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2473                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2474
2475                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2476                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2477                 let chain_source: Option<&test_utils::TestChainSource> = None;
2478                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2479                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2480
2481                 // Submit two channel updates for each channel direction (update.flags bit).
2482                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2483                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2484                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2485
2486                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2487                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2488                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2489
2490                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2491                 assert_eq!(network_graph.read_only().channels().len(), 1);
2492                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2493
2494                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2495                 #[cfg(not(feature = "std"))] {
2496                         // Make sure removed channels are tracked.
2497                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2498                 }
2499                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2500                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2501
2502                 #[cfg(feature = "std")]
2503                 {
2504                         // In std mode, a further check is performed before fully removing the channel -
2505                         // the channel_announcement must have been received at least two weeks ago. We
2506                         // fudge that here by indicating the time has jumped two weeks.
2507                         assert_eq!(network_graph.read_only().channels().len(), 1);
2508                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2509
2510                         // Note that the directional channel information will have been removed already..
2511                         // We want to check that this will work even if *one* of the channel updates is recent,
2512                         // so we should add it with a recent timestamp.
2513                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2514                         use std::time::{SystemTime, UNIX_EPOCH};
2515                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2516                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2517                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2518                         }, node_1_privkey, &secp_ctx);
2519                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2520                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2521                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2522                         // Make sure removed channels are tracked.
2523                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2524                         // Provide a later time so that sufficient time has passed
2525                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2526                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2527                 }
2528
2529                 assert_eq!(network_graph.read_only().channels().len(), 0);
2530                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2531                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2532
2533                 #[cfg(feature = "std")]
2534                 {
2535                         use std::time::{SystemTime, UNIX_EPOCH};
2536
2537                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2538
2539                         // Clear tracked nodes and channels for clean slate
2540                         network_graph.removed_channels.lock().unwrap().clear();
2541                         network_graph.removed_nodes.lock().unwrap().clear();
2542
2543                         // Add a channel and nodes from channel announcement. So our network graph will
2544                         // now only consist of two nodes and one channel between them.
2545                         assert!(network_graph.update_channel_from_announcement(
2546                                 &valid_channel_announcement, &chain_source).is_ok());
2547
2548                         // Mark the channel as permanently failed. This will also remove the two nodes
2549                         // and all of the entries will be tracked as removed.
2550                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2551
2552                         // Should not remove from tracking if insufficient time has passed
2553                         network_graph.remove_stale_channels_and_tracking_with_time(
2554                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2555                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2556
2557                         // Provide a later time so that sufficient time has passed
2558                         network_graph.remove_stale_channels_and_tracking_with_time(
2559                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2560                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2561                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2562                 }
2563
2564                 #[cfg(not(feature = "std"))]
2565                 {
2566                         // When we don't have access to the system clock, the time we started tracking removal will only
2567                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2568                         // only if sufficient time has passed after that first call, will the next call remove it from
2569                         // tracking.
2570                         let removal_time = 1664619654;
2571
2572                         // Clear removed nodes and channels for clean slate
2573                         network_graph.removed_channels.lock().unwrap().clear();
2574                         network_graph.removed_nodes.lock().unwrap().clear();
2575
2576                         // Add a channel and nodes from channel announcement. So our network graph will
2577                         // now only consist of two nodes and one channel between them.
2578                         assert!(network_graph.update_channel_from_announcement(
2579                                 &valid_channel_announcement, &chain_source).is_ok());
2580
2581                         // Mark the channel as permanently failed. This will also remove the two nodes
2582                         // and all of the entries will be tracked as removed.
2583                         network_graph.channel_failed(short_channel_id, true);
2584
2585                         // The first time we call the following, the channel will have a removal time assigned.
2586                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2587                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2588
2589                         // Provide a later time so that sufficient time has passed
2590                         network_graph.remove_stale_channels_and_tracking_with_time(
2591                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2592                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2593                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2594                 }
2595         }
2596
2597         #[test]
2598         fn getting_next_channel_announcements() {
2599                 let network_graph = create_network_graph();
2600                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2601                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2602                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2603
2604                 // Channels were not announced yet.
2605                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2606                 assert!(channels_with_announcements.is_none());
2607
2608                 let short_channel_id;
2609                 {
2610                         // Announce a channel we will update
2611                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2612                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2613                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2614                                 Ok(_) => (),
2615                                 Err(_) => panic!()
2616                         };
2617                 }
2618
2619                 // Contains initial channel announcement now.
2620                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2621                 if let Some(channel_announcements) = channels_with_announcements {
2622                         let (_, ref update_1, ref update_2) = channel_announcements;
2623                         assert_eq!(update_1, &None);
2624                         assert_eq!(update_2, &None);
2625                 } else {
2626                         panic!();
2627                 }
2628
2629                 {
2630                         // Valid channel update
2631                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2632                                 unsigned_channel_update.timestamp = 101;
2633                         }, node_1_privkey, &secp_ctx);
2634                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2635                                 Ok(_) => (),
2636                                 Err(_) => panic!()
2637                         };
2638                 }
2639
2640                 // Now contains an initial announcement and an update.
2641                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2642                 if let Some(channel_announcements) = channels_with_announcements {
2643                         let (_, ref update_1, ref update_2) = channel_announcements;
2644                         assert_ne!(update_1, &None);
2645                         assert_eq!(update_2, &None);
2646                 } else {
2647                         panic!();
2648                 }
2649
2650                 {
2651                         // Channel update with excess data.
2652                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2653                                 unsigned_channel_update.timestamp = 102;
2654                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2655                         }, node_1_privkey, &secp_ctx);
2656                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2657                                 Ok(_) => (),
2658                                 Err(_) => panic!()
2659                         };
2660                 }
2661
2662                 // Test that announcements with excess data won't be returned
2663                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2664                 if let Some(channel_announcements) = channels_with_announcements {
2665                         let (_, ref update_1, ref update_2) = channel_announcements;
2666                         assert_eq!(update_1, &None);
2667                         assert_eq!(update_2, &None);
2668                 } else {
2669                         panic!();
2670                 }
2671
2672                 // Further starting point have no channels after it
2673                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2674                 assert!(channels_with_announcements.is_none());
2675         }
2676
2677         #[test]
2678         fn getting_next_node_announcements() {
2679                 let network_graph = create_network_graph();
2680                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2681                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2682                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2683                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2684
2685                 // No nodes yet.
2686                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2687                 assert!(next_announcements.is_none());
2688
2689                 {
2690                         // Announce a channel to add 2 nodes
2691                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2692                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2693                                 Ok(_) => (),
2694                                 Err(_) => panic!()
2695                         };
2696                 }
2697
2698                 // Nodes were never announced
2699                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2700                 assert!(next_announcements.is_none());
2701
2702                 {
2703                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2704                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2705                                 Ok(_) => (),
2706                                 Err(_) => panic!()
2707                         };
2708
2709                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2710                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2711                                 Ok(_) => (),
2712                                 Err(_) => panic!()
2713                         };
2714                 }
2715
2716                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2717                 assert!(next_announcements.is_some());
2718
2719                 // Skip the first node.
2720                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2721                 assert!(next_announcements.is_some());
2722
2723                 {
2724                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2725                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2726                                 unsigned_announcement.timestamp += 10;
2727                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2728                         }, node_2_privkey, &secp_ctx);
2729                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2730                                 Ok(res) => assert!(!res),
2731                                 Err(_) => panic!()
2732                         };
2733                 }
2734
2735                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2736                 assert!(next_announcements.is_none());
2737         }
2738
2739         #[test]
2740         fn network_graph_serialization() {
2741                 let network_graph = create_network_graph();
2742                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2743
2744                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2745                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2746
2747                 // Announce a channel to add a corresponding node.
2748                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2749                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2750                         Ok(res) => assert!(res),
2751                         _ => panic!()
2752                 };
2753
2754                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2755                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2756                         Ok(_) => (),
2757                         Err(_) => panic!()
2758                 };
2759
2760                 let mut w = test_utils::TestVecWriter(Vec::new());
2761                 assert!(!network_graph.read_only().nodes().is_empty());
2762                 assert!(!network_graph.read_only().channels().is_empty());
2763                 network_graph.write(&mut w).unwrap();
2764
2765                 let logger = Arc::new(test_utils::TestLogger::new());
2766                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2767         }
2768
2769         #[test]
2770         fn network_graph_tlv_serialization() {
2771                 let network_graph = create_network_graph();
2772                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2773
2774                 let mut w = test_utils::TestVecWriter(Vec::new());
2775                 network_graph.write(&mut w).unwrap();
2776
2777                 let logger = Arc::new(test_utils::TestLogger::new());
2778                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2779                 assert!(reassembled_network_graph == network_graph);
2780                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2781         }
2782
2783         #[test]
2784         #[cfg(feature = "std")]
2785         fn calling_sync_routing_table() {
2786                 use std::time::{SystemTime, UNIX_EPOCH};
2787                 use crate::ln::msgs::Init;
2788
2789                 let network_graph = create_network_graph();
2790                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2791                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2792                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2793
2794                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2795
2796                 // It should ignore if gossip_queries feature is not enabled
2797                 {
2798                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2799                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2800                         let events = gossip_sync.get_and_clear_pending_msg_events();
2801                         assert_eq!(events.len(), 0);
2802                 }
2803
2804                 // It should send a gossip_timestamp_filter with the correct information
2805                 {
2806                         let mut features = InitFeatures::empty();
2807                         features.set_gossip_queries_optional();
2808                         let init_msg = Init { features, remote_network_address: None };
2809                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2810                         let events = gossip_sync.get_and_clear_pending_msg_events();
2811                         assert_eq!(events.len(), 1);
2812                         match &events[0] {
2813                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2814                                         assert_eq!(node_id, &node_id_1);
2815                                         assert_eq!(msg.chain_hash, chain_hash);
2816                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2817                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2818                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2819                                         assert_eq!(msg.timestamp_range, u32::max_value());
2820                                 },
2821                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2822                         };
2823                 }
2824         }
2825
2826         #[test]
2827         fn handling_query_channel_range() {
2828                 let network_graph = create_network_graph();
2829                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2830
2831                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2832                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2833                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2834                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2835
2836                 let mut scids: Vec<u64> = vec![
2837                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2838                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2839                 ];
2840
2841                 // used for testing multipart reply across blocks
2842                 for block in 100000..=108001 {
2843                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2844                 }
2845
2846                 // used for testing resumption on same block
2847                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2848
2849                 for scid in scids {
2850                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2851                                 unsigned_announcement.short_channel_id = scid;
2852                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2853                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2854                                 Ok(_) => (),
2855                                 _ => panic!()
2856                         };
2857                 }
2858
2859                 // Error when number_of_blocks=0
2860                 do_handling_query_channel_range(
2861                         &gossip_sync,
2862                         &node_id_2,
2863                         QueryChannelRange {
2864                                 chain_hash: chain_hash.clone(),
2865                                 first_blocknum: 0,
2866                                 number_of_blocks: 0,
2867                         },
2868                         false,
2869                         vec![ReplyChannelRange {
2870                                 chain_hash: chain_hash.clone(),
2871                                 first_blocknum: 0,
2872                                 number_of_blocks: 0,
2873                                 sync_complete: true,
2874                                 short_channel_ids: vec![]
2875                         }]
2876                 );
2877
2878                 // Error when wrong chain
2879                 do_handling_query_channel_range(
2880                         &gossip_sync,
2881                         &node_id_2,
2882                         QueryChannelRange {
2883                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2884                                 first_blocknum: 0,
2885                                 number_of_blocks: 0xffff_ffff,
2886                         },
2887                         false,
2888                         vec![ReplyChannelRange {
2889                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2890                                 first_blocknum: 0,
2891                                 number_of_blocks: 0xffff_ffff,
2892                                 sync_complete: true,
2893                                 short_channel_ids: vec![],
2894                         }]
2895                 );
2896
2897                 // Error when first_blocknum > 0xffffff
2898                 do_handling_query_channel_range(
2899                         &gossip_sync,
2900                         &node_id_2,
2901                         QueryChannelRange {
2902                                 chain_hash: chain_hash.clone(),
2903                                 first_blocknum: 0x01000000,
2904                                 number_of_blocks: 0xffff_ffff,
2905                         },
2906                         false,
2907                         vec![ReplyChannelRange {
2908                                 chain_hash: chain_hash.clone(),
2909                                 first_blocknum: 0x01000000,
2910                                 number_of_blocks: 0xffff_ffff,
2911                                 sync_complete: true,
2912                                 short_channel_ids: vec![]
2913                         }]
2914                 );
2915
2916                 // Empty reply when max valid SCID block num
2917                 do_handling_query_channel_range(
2918                         &gossip_sync,
2919                         &node_id_2,
2920                         QueryChannelRange {
2921                                 chain_hash: chain_hash.clone(),
2922                                 first_blocknum: 0xffffff,
2923                                 number_of_blocks: 1,
2924                         },
2925                         true,
2926                         vec![
2927                                 ReplyChannelRange {
2928                                         chain_hash: chain_hash.clone(),
2929                                         first_blocknum: 0xffffff,
2930                                         number_of_blocks: 1,
2931                                         sync_complete: true,
2932                                         short_channel_ids: vec![]
2933                                 },
2934                         ]
2935                 );
2936
2937                 // No results in valid query range
2938                 do_handling_query_channel_range(
2939                         &gossip_sync,
2940                         &node_id_2,
2941                         QueryChannelRange {
2942                                 chain_hash: chain_hash.clone(),
2943                                 first_blocknum: 1000,
2944                                 number_of_blocks: 1000,
2945                         },
2946                         true,
2947                         vec![
2948                                 ReplyChannelRange {
2949                                         chain_hash: chain_hash.clone(),
2950                                         first_blocknum: 1000,
2951                                         number_of_blocks: 1000,
2952                                         sync_complete: true,
2953                                         short_channel_ids: vec![],
2954                                 }
2955                         ]
2956                 );
2957
2958                 // Overflow first_blocknum + number_of_blocks
2959                 do_handling_query_channel_range(
2960                         &gossip_sync,
2961                         &node_id_2,
2962                         QueryChannelRange {
2963                                 chain_hash: chain_hash.clone(),
2964                                 first_blocknum: 0xfe0000,
2965                                 number_of_blocks: 0xffffffff,
2966                         },
2967                         true,
2968                         vec![
2969                                 ReplyChannelRange {
2970                                         chain_hash: chain_hash.clone(),
2971                                         first_blocknum: 0xfe0000,
2972                                         number_of_blocks: 0xffffffff - 0xfe0000,
2973                                         sync_complete: true,
2974                                         short_channel_ids: vec![
2975                                                 0xfffffe_ffffff_ffff, // max
2976                                         ]
2977                                 }
2978                         ]
2979                 );
2980
2981                 // Single block exactly full
2982                 do_handling_query_channel_range(
2983                         &gossip_sync,
2984                         &node_id_2,
2985                         QueryChannelRange {
2986                                 chain_hash: chain_hash.clone(),
2987                                 first_blocknum: 100000,
2988                                 number_of_blocks: 8000,
2989                         },
2990                         true,
2991                         vec![
2992                                 ReplyChannelRange {
2993                                         chain_hash: chain_hash.clone(),
2994                                         first_blocknum: 100000,
2995                                         number_of_blocks: 8000,
2996                                         sync_complete: true,
2997                                         short_channel_ids: (100000..=107999)
2998                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2999                                                 .collect(),
3000                                 },
3001                         ]
3002                 );
3003
3004                 // Multiple split on new block
3005                 do_handling_query_channel_range(
3006                         &gossip_sync,
3007                         &node_id_2,
3008                         QueryChannelRange {
3009                                 chain_hash: chain_hash.clone(),
3010                                 first_blocknum: 100000,
3011                                 number_of_blocks: 8001,
3012                         },
3013                         true,
3014                         vec![
3015                                 ReplyChannelRange {
3016                                         chain_hash: chain_hash.clone(),
3017                                         first_blocknum: 100000,
3018                                         number_of_blocks: 7999,
3019                                         sync_complete: false,
3020                                         short_channel_ids: (100000..=107999)
3021                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3022                                                 .collect(),
3023                                 },
3024                                 ReplyChannelRange {
3025                                         chain_hash: chain_hash.clone(),
3026                                         first_blocknum: 107999,
3027                                         number_of_blocks: 2,
3028                                         sync_complete: true,
3029                                         short_channel_ids: vec![
3030                                                 scid_from_parts(108000, 0, 0).unwrap(),
3031                                         ],
3032                                 }
3033                         ]
3034                 );
3035
3036                 // Multiple split on same block
3037                 do_handling_query_channel_range(
3038                         &gossip_sync,
3039                         &node_id_2,
3040                         QueryChannelRange {
3041                                 chain_hash: chain_hash.clone(),
3042                                 first_blocknum: 100002,
3043                                 number_of_blocks: 8000,
3044                         },
3045                         true,
3046                         vec![
3047                                 ReplyChannelRange {
3048                                         chain_hash: chain_hash.clone(),
3049                                         first_blocknum: 100002,
3050                                         number_of_blocks: 7999,
3051                                         sync_complete: false,
3052                                         short_channel_ids: (100002..=108001)
3053                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3054                                                 .collect(),
3055                                 },
3056                                 ReplyChannelRange {
3057                                         chain_hash: chain_hash.clone(),
3058                                         first_blocknum: 108001,
3059                                         number_of_blocks: 1,
3060                                         sync_complete: true,
3061                                         short_channel_ids: vec![
3062                                                 scid_from_parts(108001, 1, 0).unwrap(),
3063                                         ],
3064                                 }
3065                         ]
3066                 );
3067         }
3068
3069         fn do_handling_query_channel_range(
3070                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3071                 test_node_id: &PublicKey,
3072                 msg: QueryChannelRange,
3073                 expected_ok: bool,
3074                 expected_replies: Vec<ReplyChannelRange>
3075         ) {
3076                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3077                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3078                 let query_end_blocknum = msg.end_blocknum();
3079                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3080
3081                 if expected_ok {
3082                         assert!(result.is_ok());
3083                 } else {
3084                         assert!(result.is_err());
3085                 }
3086
3087                 let events = gossip_sync.get_and_clear_pending_msg_events();
3088                 assert_eq!(events.len(), expected_replies.len());
3089
3090                 for i in 0..events.len() {
3091                         let expected_reply = &expected_replies[i];
3092                         match &events[i] {
3093                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3094                                         assert_eq!(node_id, test_node_id);
3095                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3096                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3097                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3098                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3099                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3100
3101                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3102                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3103                                         assert!(msg.first_blocknum >= max_firstblocknum);
3104                                         max_firstblocknum = msg.first_blocknum;
3105                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3106
3107                                         // Check that the last block count is >= the query's end_blocknum
3108                                         if i == events.len() - 1 {
3109                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3110                                         }
3111                                 },
3112                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3113                         }
3114                 }
3115         }
3116
3117         #[test]
3118         fn handling_query_short_channel_ids() {
3119                 let network_graph = create_network_graph();
3120                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3121                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3122                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3123
3124                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3125
3126                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3127                         chain_hash,
3128                         short_channel_ids: vec![0x0003e8_000000_0000],
3129                 });
3130                 assert!(result.is_err());
3131         }
3132
3133         #[test]
3134         fn displays_node_alias() {
3135                 let format_str_alias = |alias: &str| {
3136                         let mut bytes = [0u8; 32];
3137                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3138                         format!("{}", NodeAlias(bytes))
3139                 };
3140
3141                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3142                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3143                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3144
3145                 let format_bytes_alias = |alias: &[u8]| {
3146                         let mut bytes = [0u8; 32];
3147                         bytes[..alias.len()].copy_from_slice(alias);
3148                         format!("{}", NodeAlias(bytes))
3149                 };
3150
3151                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3152                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3153                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3154         }
3155
3156         #[test]
3157         fn channel_info_is_readable() {
3158                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3159                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3160                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3161                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3162                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3163
3164                 // 1. Test encoding/decoding of ChannelUpdateInfo
3165                 let chan_update_info = ChannelUpdateInfo {
3166                         last_update: 23,
3167                         enabled: true,
3168                         cltv_expiry_delta: 42,
3169                         htlc_minimum_msat: 1234,
3170                         htlc_maximum_msat: 5678,
3171                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3172                         last_update_message: None,
3173                 };
3174
3175                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3176                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3177
3178                 // First make sure we can read ChannelUpdateInfos we just wrote
3179                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3180                 assert_eq!(chan_update_info, read_chan_update_info);
3181
3182                 // Check the serialization hasn't changed.
3183                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3184                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3185
3186                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3187                 // or the ChannelUpdate enclosed with `last_update_message`.
3188                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3189                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3190                 assert!(read_chan_update_info_res.is_err());
3191
3192                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3193                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3194                 assert!(read_chan_update_info_res.is_err());
3195
3196                 // 2. Test encoding/decoding of ChannelInfo
3197                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3198                 let chan_info_none_updates = ChannelInfo {
3199                         features: channelmanager::provided_channel_features(&config),
3200                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3201                         one_to_two: None,
3202                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3203                         two_to_one: None,
3204                         capacity_sats: None,
3205                         announcement_message: None,
3206                         announcement_received_time: 87654,
3207                 };
3208
3209                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3210                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3211
3212                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3213                 assert_eq!(chan_info_none_updates, read_chan_info);
3214
3215                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3216                 let chan_info_some_updates = ChannelInfo {
3217                         features: channelmanager::provided_channel_features(&config),
3218                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3219                         one_to_two: Some(chan_update_info.clone()),
3220                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3221                         two_to_one: Some(chan_update_info.clone()),
3222                         capacity_sats: None,
3223                         announcement_message: None,
3224                         announcement_received_time: 87654,
3225                 };
3226
3227                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3228                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3229
3230                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3231                 assert_eq!(chan_info_some_updates, read_chan_info);
3232
3233                 // Check the serialization hasn't changed.
3234                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3235                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3236
3237                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3238                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3239                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3240                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3241                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3242                 assert_eq!(read_chan_info.one_to_two, None);
3243                 assert_eq!(read_chan_info.two_to_one, None);
3244
3245                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3246                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3247                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3248                 assert_eq!(read_chan_info.one_to_two, None);
3249                 assert_eq!(read_chan_info.two_to_one, None);
3250         }
3251
3252         #[test]
3253         fn node_info_is_readable() {
3254                 use std::convert::TryFrom;
3255
3256                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3257                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3258                 let valid_node_ann_info = NodeAnnouncementInfo {
3259                         features: channelmanager::provided_node_features(&UserConfig::default()),
3260                         last_update: 0,
3261                         rgb: [0u8; 3],
3262                         alias: NodeAlias([0u8; 32]),
3263                         addresses: vec![valid_netaddr],
3264                         announcement_message: None,
3265                 };
3266
3267                 let mut encoded_valid_node_ann_info = Vec::new();
3268                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3269                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3270                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3271
3272                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3273                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3274                 assert!(read_invalid_node_ann_info_res.is_err());
3275
3276                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3277                 let valid_node_info = NodeInfo {
3278                         channels: Vec::new(),
3279                         lowest_inbound_channel_fees: None,
3280                         announcement_info: Some(valid_node_ann_info),
3281                 };
3282
3283                 let mut encoded_valid_node_info = Vec::new();
3284                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3285                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3286                 assert_eq!(read_valid_node_info, valid_node_info);
3287
3288                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3289                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3290                 assert_eq!(read_invalid_node_info.announcement_info, None);
3291         }
3292 }
3293
3294 #[cfg(all(test, feature = "_bench_unstable"))]
3295 mod benches {
3296         use super::*;
3297
3298         use test::Bencher;
3299         use std::io::Read;
3300
3301         #[bench]
3302         fn read_network_graph(bench: &mut Bencher) {
3303                 let logger = crate::util::test_utils::TestLogger::new();
3304                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3305                 let mut v = Vec::new();
3306                 d.read_to_end(&mut v).unwrap();
3307                 bench.iter(|| {
3308                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3309                 });
3310         }
3311
3312         #[bench]
3313         fn write_network_graph(bench: &mut Bencher) {
3314                 let logger = crate::util::test_utils::TestLogger::new();
3315                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3316                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3317                 bench.iter(|| {
3318                         let _ = net_graph.encode();
3319                 });
3320         }
3321 }