Simplify type aliasing somewhat around times
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
126         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
127         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
128         genesis_hash: BlockHash,
129         logger: L,
130         // Lock order: channels -> nodes
131         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
132         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
133 }
134
135 /// A read-only view of [`NetworkGraph`].
136 pub struct ReadOnlyNetworkGraph<'a> {
137         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
138         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
139 }
140
141 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
142 /// return packet by a node along the route. See [BOLT #4] for details.
143 ///
144 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
145 #[derive(Clone, Debug, PartialEq)]
146 pub enum NetworkUpdate {
147         /// An error indicating a `channel_update` messages should be applied via
148         /// [`NetworkGraph::update_channel`].
149         ChannelUpdateMessage {
150                 /// The update to apply via [`NetworkGraph::update_channel`].
151                 msg: ChannelUpdate,
152         },
153         /// An error indicating that a channel failed to route a payment, which should be applied via
154         /// [`NetworkGraph::channel_failed`].
155         ChannelFailure {
156                 /// The short channel id of the closed channel.
157                 short_channel_id: u64,
158                 /// Whether the channel should be permanently removed or temporarily disabled until a new
159                 /// `channel_update` message is received.
160                 is_permanent: bool,
161         },
162         /// An error indicating that a node failed to route a payment, which should be applied via
163         /// [`NetworkGraph::node_failed`].
164         NodeFailure {
165                 /// The node id of the failed node.
166                 node_id: PublicKey,
167                 /// Whether the node should be permanently removed from consideration or can be restored
168                 /// when a new `channel_update` message is received.
169                 is_permanent: bool,
170         }
171 }
172
173 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
174         (0, ChannelUpdateMessage) => {
175                 (0, msg, required),
176         },
177         (2, ChannelFailure) => {
178                 (0, short_channel_id, required),
179                 (2, is_permanent, required),
180         },
181         (4, NodeFailure) => {
182                 (0, node_id, required),
183                 (2, is_permanent, required),
184         },
185 );
186
187 /// Receives and validates network updates from peers,
188 /// stores authentic and relevant data as a network graph.
189 /// This network graph is then used for routing payments.
190 /// Provides interface to help with initial routing sync by
191 /// serving historical announcements.
192 ///
193 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
194 /// [`NetworkGraph`].
195 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
196 where C::Target: chain::Access, L::Target: Logger
197 {
198         network_graph: G,
199         chain_access: Option<C>,
200         #[cfg(feature = "std")]
201         full_syncs_requested: AtomicUsize,
202         pending_events: Mutex<Vec<MessageSendEvent>>,
203         logger: L,
204 }
205
206 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
207 where C::Target: chain::Access, L::Target: Logger
208 {
209         /// Creates a new tracker of the actual state of the network of channels and nodes,
210         /// assuming an existing Network Graph.
211         /// Chain monitor is used to make sure announced channels exist on-chain,
212         /// channel data is correct, and that the announcement is signed with
213         /// channel owners' keys.
214         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
215                 P2PGossipSync {
216                         network_graph,
217                         #[cfg(feature = "std")]
218                         full_syncs_requested: AtomicUsize::new(0),
219                         chain_access,
220                         pending_events: Mutex::new(vec![]),
221                         logger,
222                 }
223         }
224
225         /// Adds a provider used to check new announcements. Does not affect
226         /// existing announcements unless they are updated.
227         /// Add, update or remove the provider would replace the current one.
228         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
229                 self.chain_access = chain_access;
230         }
231
232         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
233         /// [`P2PGossipSync::new`].
234         ///
235         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
236         pub fn network_graph(&self) -> &G {
237                 &self.network_graph
238         }
239
240         #[cfg(feature = "std")]
241         /// Returns true when a full routing table sync should be performed with a peer.
242         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
243                 //TODO: Determine whether to request a full sync based on the network map.
244                 const FULL_SYNCS_TO_REQUEST: usize = 5;
245                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
246                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
247                         true
248                 } else {
249                         false
250                 }
251         }
252 }
253
254 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
255         fn handle_event(&self, event: &Event) {
256                 if let Event::PaymentPathFailed { network_update, .. } = event {
257                         if let Some(network_update) = network_update {
258                                 match *network_update {
259                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
260                                                 let short_channel_id = msg.contents.short_channel_id;
261                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
262                                                 let status = if is_enabled { "enabled" } else { "disabled" };
263                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
264                                                 let _ = self.update_channel(msg);
265                                         },
266                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
267                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
268                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
269                                                 self.channel_failed(short_channel_id, is_permanent);
270                                         },
271                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
272                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
273                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
274                                                 self.node_failed(node_id, is_permanent);
275                                         },
276                                 }
277                         }
278                 }
279         }
280 }
281
282 macro_rules! secp_verify_sig {
283         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
284                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
285                         Ok(_) => {},
286                         Err(_) => {
287                                 return Err(LightningError {
288                                         err: format!("Invalid signature on {} message", $msg_type),
289                                         action: ErrorAction::SendWarningMessage {
290                                                 msg: msgs::WarningMessage {
291                                                         channel_id: [0; 32],
292                                                         data: format!("Invalid signature on {} message", $msg_type),
293                                                 },
294                                                 log_level: Level::Trace,
295                                         },
296                                 });
297                         },
298                 }
299         };
300 }
301
302 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
303 where C::Target: chain::Access, L::Target: Logger
304 {
305         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
306                 self.network_graph.update_node_from_announcement(msg)?;
307                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
308                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
309                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
310         }
311
312         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
313                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
314                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
315                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
316         }
317
318         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
319                 self.network_graph.update_channel(msg)?;
320                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
321         }
322
323         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
324                 let channels = self.network_graph.channels.read().unwrap();
325                 for (_, ref chan) in channels.range(starting_point..) {
326                         if chan.announcement_message.is_some() {
327                                 let chan_announcement = chan.announcement_message.clone().unwrap();
328                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
329                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
330                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
331                                         one_to_two_announcement = one_to_two.last_update_message.clone();
332                                 }
333                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
334                                         two_to_one_announcement = two_to_one.last_update_message.clone();
335                                 }
336                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
337                         } else {
338                                 // TODO: We may end up sending un-announced channel_updates if we are sending
339                                 // initial sync data while receiving announce/updates for this channel.
340                         }
341                 }
342                 None
343         }
344
345         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
346                 let nodes = self.network_graph.nodes.read().unwrap();
347                 let iter = if let Some(pubkey) = starting_point {
348                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
349                         } else {
350                                 nodes.range(..)
351                         };
352                 for (_, ref node) in iter {
353                         if let Some(node_info) = node.announcement_info.as_ref() {
354                                 if let Some(msg) = node_info.announcement_message.clone() {
355                                         return Some(msg);
356                                 }
357                         }
358                 }
359                 None
360         }
361
362         /// Initiates a stateless sync of routing gossip information with a peer
363         /// using gossip_queries. The default strategy used by this implementation
364         /// is to sync the full block range with several peers.
365         ///
366         /// We should expect one or more reply_channel_range messages in response
367         /// to our query_channel_range. Each reply will enqueue a query_scid message
368         /// to request gossip messages for each channel. The sync is considered complete
369         /// when the final reply_scids_end message is received, though we are not
370         /// tracking this directly.
371         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
372                 // We will only perform a sync with peers that support gossip_queries.
373                 if !init_msg.features.supports_gossip_queries() {
374                         return ();
375                 }
376
377                 // The lightning network's gossip sync system is completely broken in numerous ways.
378                 //
379                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
380                 // to do a full sync from the first few peers we connect to, and then receive gossip
381                 // updates from all our peers normally.
382                 //
383                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
384                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
385                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
386                 // seen.
387                 //
388                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
389                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
390                 // channel data which you are missing. Except there was no way at all to identify which
391                 // `channel_update`s you were missing, so you still had to request everything, just in a
392                 // very complicated way with some queries instead of just getting the dump.
393                 //
394                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
395                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
396                 // relying on it useless.
397                 //
398                 // After gossip queries were introduced, support for receiving a full gossip table dump on
399                 // connection was removed from several nodes, making it impossible to get a full sync
400                 // without using the "gossip queries" messages.
401                 //
402                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
403                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
404                 // message, as the name implies, tells the peer to not forward any gossip messages with a
405                 // timestamp older than a given value (not the time the peer received the filter, but the
406                 // timestamp in the update message, which is often hours behind when the peer received the
407                 // message).
408                 //
409                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
410                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
411                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
412                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
413                 // will simply not forward any new updates they see to you which were generated some time
414                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
415                 // ago), you will always get the full routing graph from all your peers.
416                 //
417                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
418                 // propagated some time after it was generated, and, worse, often disable gossiping with
419                 // several peers after their first connection. The second behavior can cause gossip to not
420                 // propagate fully if there are cuts in the gossiping subgraph.
421                 //
422                 // In an attempt to cut a middle ground between always fetching the full graph from all of
423                 // our peers and never receiving gossip from peers at all, we send all of our peers a
424                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
425                 //
426                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
427                 #[allow(unused_mut, unused_assignments)]
428                 let mut gossip_start_time = 0;
429                 #[cfg(feature = "std")]
430                 {
431                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
432                         if self.should_request_full_sync(&their_node_id) {
433                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
434                         } else {
435                                 gossip_start_time -= 60 * 60; // an hour ago
436                         }
437                 }
438
439                 let mut pending_events = self.pending_events.lock().unwrap();
440                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
441                         node_id: their_node_id.clone(),
442                         msg: GossipTimestampFilter {
443                                 chain_hash: self.network_graph.genesis_hash,
444                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
445                                 timestamp_range: u32::max_value(),
446                         },
447                 });
448         }
449
450         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
451                 // We don't make queries, so should never receive replies. If, in the future, the set
452                 // reconciliation extensions to gossip queries become broadly supported, we should revert
453                 // this code to its state pre-0.0.106.
454                 Ok(())
455         }
456
457         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
458                 // We don't make queries, so should never receive replies. If, in the future, the set
459                 // reconciliation extensions to gossip queries become broadly supported, we should revert
460                 // this code to its state pre-0.0.106.
461                 Ok(())
462         }
463
464         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
465         /// are in the specified block range. Due to message size limits, large range
466         /// queries may result in several reply messages. This implementation enqueues
467         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
468         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
469         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
470         /// memory constrained systems.
471         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
472                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
473
474                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
475
476                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
477                 // If so, we manually cap the ending block to avoid this overflow.
478                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
479
480                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
481                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
482                         let mut pending_events = self.pending_events.lock().unwrap();
483                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
484                                 node_id: their_node_id.clone(),
485                                 msg: ReplyChannelRange {
486                                         chain_hash: msg.chain_hash.clone(),
487                                         first_blocknum: msg.first_blocknum,
488                                         number_of_blocks: msg.number_of_blocks,
489                                         sync_complete: true,
490                                         short_channel_ids: vec![],
491                                 }
492                         });
493                         return Err(LightningError {
494                                 err: String::from("query_channel_range could not be processed"),
495                                 action: ErrorAction::IgnoreError,
496                         });
497                 }
498
499                 // Creates channel batches. We are not checking if the channel is routable
500                 // (has at least one update). A peer may still want to know the channel
501                 // exists even if its not yet routable.
502                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
503                 let channels = self.network_graph.channels.read().unwrap();
504                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
505                         if let Some(chan_announcement) = &chan.announcement_message {
506                                 // Construct a new batch if last one is full
507                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
508                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
509                                 }
510
511                                 let batch = batches.last_mut().unwrap();
512                                 batch.push(chan_announcement.contents.short_channel_id);
513                         }
514                 }
515                 drop(channels);
516
517                 let mut pending_events = self.pending_events.lock().unwrap();
518                 let batch_count = batches.len();
519                 let mut prev_batch_endblock = msg.first_blocknum;
520                 for (batch_index, batch) in batches.into_iter().enumerate() {
521                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
522                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
523                         //
524                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
525                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
526                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
527                         // significant diversion from the requirements set by the spec, and, in case of blocks
528                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
529                         // and *not* derive the first_blocknum from the actual first block of the reply.
530                         let first_blocknum = prev_batch_endblock;
531
532                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
533                         // fit in. Though there is no requirement that we use exactly the number of blocks its
534                         // contents are from, except for the bogus requirements c-lightning enforces, above.
535                         //
536                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
537                         // >= the query's end block. Thus, for the last reply, we calculate the difference
538                         // between the query's end block and the start of the reply.
539                         //
540                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
541                         // first_blocknum will be either msg.first_blocknum or a higher block height.
542                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
543                                 (true, msg.end_blocknum() - first_blocknum)
544                         }
545                         // Prior replies should use the number of blocks that fit into the reply. Overflow
546                         // safe since first_blocknum is always <= last SCID's block.
547                         else {
548                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
549                         };
550
551                         prev_batch_endblock = first_blocknum + number_of_blocks;
552
553                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
554                                 node_id: their_node_id.clone(),
555                                 msg: ReplyChannelRange {
556                                         chain_hash: msg.chain_hash.clone(),
557                                         first_blocknum,
558                                         number_of_blocks,
559                                         sync_complete,
560                                         short_channel_ids: batch,
561                                 }
562                         });
563                 }
564
565                 Ok(())
566         }
567
568         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
569                 // TODO
570                 Err(LightningError {
571                         err: String::from("Not implemented"),
572                         action: ErrorAction::IgnoreError,
573                 })
574         }
575
576         fn provided_node_features(&self) -> NodeFeatures {
577                 let mut features = NodeFeatures::empty();
578                 features.set_gossip_queries_optional();
579                 features
580         }
581
582         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
583                 let mut features = InitFeatures::empty();
584                 features.set_gossip_queries_optional();
585                 features
586         }
587 }
588
589 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
590 where
591         C::Target: chain::Access,
592         L::Target: Logger,
593 {
594         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
595                 let mut ret = Vec::new();
596                 let mut pending_events = self.pending_events.lock().unwrap();
597                 core::mem::swap(&mut ret, &mut pending_events);
598                 ret
599         }
600 }
601
602 #[derive(Clone, Debug, PartialEq)]
603 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
604 pub struct ChannelUpdateInfo {
605         /// When the last update to the channel direction was issued.
606         /// Value is opaque, as set in the announcement.
607         pub last_update: u32,
608         /// Whether the channel can be currently used for payments (in this one direction).
609         pub enabled: bool,
610         /// The difference in CLTV values that you must have when routing through this channel.
611         pub cltv_expiry_delta: u16,
612         /// The minimum value, which must be relayed to the next hop via the channel
613         pub htlc_minimum_msat: u64,
614         /// The maximum value which may be relayed to the next hop via the channel.
615         pub htlc_maximum_msat: u64,
616         /// Fees charged when the channel is used for routing
617         pub fees: RoutingFees,
618         /// Most recent update for the channel received from the network
619         /// Mostly redundant with the data we store in fields explicitly.
620         /// Everything else is useful only for sending out for initial routing sync.
621         /// Not stored if contains excess data to prevent DoS.
622         pub last_update_message: Option<ChannelUpdate>,
623 }
624
625 impl fmt::Display for ChannelUpdateInfo {
626         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
627                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
628                 Ok(())
629         }
630 }
631
632 impl Writeable for ChannelUpdateInfo {
633         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
634                 write_tlv_fields!(writer, {
635                         (0, self.last_update, required),
636                         (2, self.enabled, required),
637                         (4, self.cltv_expiry_delta, required),
638                         (6, self.htlc_minimum_msat, required),
639                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
640                         // compatibility with LDK versions prior to v0.0.110.
641                         (8, Some(self.htlc_maximum_msat), required),
642                         (10, self.fees, required),
643                         (12, self.last_update_message, required),
644                 });
645                 Ok(())
646         }
647 }
648
649 impl Readable for ChannelUpdateInfo {
650         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
651                 init_tlv_field_var!(last_update, required);
652                 init_tlv_field_var!(enabled, required);
653                 init_tlv_field_var!(cltv_expiry_delta, required);
654                 init_tlv_field_var!(htlc_minimum_msat, required);
655                 init_tlv_field_var!(htlc_maximum_msat, option);
656                 init_tlv_field_var!(fees, required);
657                 init_tlv_field_var!(last_update_message, required);
658
659                 read_tlv_fields!(reader, {
660                         (0, last_update, required),
661                         (2, enabled, required),
662                         (4, cltv_expiry_delta, required),
663                         (6, htlc_minimum_msat, required),
664                         (8, htlc_maximum_msat, required),
665                         (10, fees, required),
666                         (12, last_update_message, required)
667                 });
668
669                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
670                         Ok(ChannelUpdateInfo {
671                                 last_update: init_tlv_based_struct_field!(last_update, required),
672                                 enabled: init_tlv_based_struct_field!(enabled, required),
673                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
674                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
675                                 htlc_maximum_msat,
676                                 fees: init_tlv_based_struct_field!(fees, required),
677                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
678                         })
679                 } else {
680                         Err(DecodeError::InvalidValue)
681                 }
682         }
683 }
684
685 #[derive(Clone, Debug, PartialEq)]
686 /// Details about a channel (both directions).
687 /// Received within a channel announcement.
688 pub struct ChannelInfo {
689         /// Protocol features of a channel communicated during its announcement
690         pub features: ChannelFeatures,
691         /// Source node of the first direction of a channel
692         pub node_one: NodeId,
693         /// Details about the first direction of a channel
694         pub one_to_two: Option<ChannelUpdateInfo>,
695         /// Source node of the second direction of a channel
696         pub node_two: NodeId,
697         /// Details about the second direction of a channel
698         pub two_to_one: Option<ChannelUpdateInfo>,
699         /// The channel capacity as seen on-chain, if chain lookup is available.
700         pub capacity_sats: Option<u64>,
701         /// An initial announcement of the channel
702         /// Mostly redundant with the data we store in fields explicitly.
703         /// Everything else is useful only for sending out for initial routing sync.
704         /// Not stored if contains excess data to prevent DoS.
705         pub announcement_message: Option<ChannelAnnouncement>,
706         /// The timestamp when we received the announcement, if we are running with feature = "std"
707         /// (which we can probably assume we are - no-std environments probably won't have a full
708         /// network graph in memory!).
709         announcement_received_time: u64,
710 }
711
712 impl ChannelInfo {
713         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
714         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
715         pub(crate) fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
716                 let (direction, source) = {
717                         if target == &self.node_one {
718                                 (self.two_to_one.as_ref(), &self.node_two)
719                         } else if target == &self.node_two {
720                                 (self.one_to_two.as_ref(), &self.node_one)
721                         } else {
722                                 return None;
723                         }
724                 };
725                 Some((DirectedChannelInfo::new(self, direction), source))
726         }
727
728         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
729         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
730         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
731                 let (direction, target) = {
732                         if source == &self.node_one {
733                                 (self.one_to_two.as_ref(), &self.node_two)
734                         } else if source == &self.node_two {
735                                 (self.two_to_one.as_ref(), &self.node_one)
736                         } else {
737                                 return None;
738                         }
739                 };
740                 Some((DirectedChannelInfo::new(self, direction), target))
741         }
742
743         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
744         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
745                 let direction = channel_flags & 1u8;
746                 if direction == 0 {
747                         self.one_to_two.as_ref()
748                 } else {
749                         self.two_to_one.as_ref()
750                 }
751         }
752 }
753
754 impl fmt::Display for ChannelInfo {
755         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
756                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
757                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
758                 Ok(())
759         }
760 }
761
762 impl Writeable for ChannelInfo {
763         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
764                 write_tlv_fields!(writer, {
765                         (0, self.features, required),
766                         (1, self.announcement_received_time, (default_value, 0)),
767                         (2, self.node_one, required),
768                         (4, self.one_to_two, required),
769                         (6, self.node_two, required),
770                         (8, self.two_to_one, required),
771                         (10, self.capacity_sats, required),
772                         (12, self.announcement_message, required),
773                 });
774                 Ok(())
775         }
776 }
777
778 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
779 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
780 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
781 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
782 // channel updates via the gossip network.
783 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
784
785 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
786         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
787                 match ::util::ser::Readable::read(reader) {
788                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
789                         Err(DecodeError::ShortRead) => Ok(None),
790                         Err(DecodeError::InvalidValue) => Ok(None),
791                         Err(err) => Err(err),
792                 }
793         }
794 }
795
796 impl Readable for ChannelInfo {
797         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
798                 init_tlv_field_var!(features, required);
799                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
800                 init_tlv_field_var!(node_one, required);
801                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
802                 init_tlv_field_var!(node_two, required);
803                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
804                 init_tlv_field_var!(capacity_sats, required);
805                 init_tlv_field_var!(announcement_message, required);
806                 read_tlv_fields!(reader, {
807                         (0, features, required),
808                         (1, announcement_received_time, (default_value, 0)),
809                         (2, node_one, required),
810                         (4, one_to_two_wrap, ignorable),
811                         (6, node_two, required),
812                         (8, two_to_one_wrap, ignorable),
813                         (10, capacity_sats, required),
814                         (12, announcement_message, required),
815                 });
816
817                 Ok(ChannelInfo {
818                         features: init_tlv_based_struct_field!(features, required),
819                         node_one: init_tlv_based_struct_field!(node_one, required),
820                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
821                         node_two: init_tlv_based_struct_field!(node_two, required),
822                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
823                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
824                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
825                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
826                 })
827         }
828 }
829
830 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
831 /// source node to a target node.
832 #[derive(Clone)]
833 pub struct DirectedChannelInfo<'a> {
834         channel: &'a ChannelInfo,
835         direction: Option<&'a ChannelUpdateInfo>,
836         htlc_maximum_msat: u64,
837         effective_capacity: EffectiveCapacity,
838 }
839
840 impl<'a> DirectedChannelInfo<'a> {
841         #[inline]
842         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
843                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
844                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
845
846                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
847                         (Some(amount_msat), Some(capacity_msat)) => {
848                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
849                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
850                         },
851                         (Some(amount_msat), None) => {
852                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
853                         },
854                         (None, Some(capacity_msat)) => {
855                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
856                         },
857                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
858                 };
859
860                 Self {
861                         channel, direction, htlc_maximum_msat, effective_capacity
862                 }
863         }
864
865         /// Returns information for the channel.
866         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
867
868         /// Returns information for the direction.
869         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
870
871         /// Returns the maximum HTLC amount allowed over the channel in the direction.
872         pub fn htlc_maximum_msat(&self) -> u64 {
873                 self.htlc_maximum_msat
874         }
875
876         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
877         ///
878         /// This is either the total capacity from the funding transaction, if known, or the
879         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
880         /// otherwise.
881         pub fn effective_capacity(&self) -> EffectiveCapacity {
882                 self.effective_capacity
883         }
884
885         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
886         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
887                 match self.direction {
888                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
889                         None => None,
890                 }
891         }
892 }
893
894 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
895         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
896                 f.debug_struct("DirectedChannelInfo")
897                         .field("channel", &self.channel)
898                         .finish()
899         }
900 }
901
902 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
903 #[derive(Clone)]
904 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
905         inner: DirectedChannelInfo<'a>,
906 }
907
908 impl<'a> DirectedChannelInfoWithUpdate<'a> {
909         /// Returns information for the channel.
910         #[inline]
911         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
912
913         /// Returns information for the direction.
914         #[inline]
915         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
916
917         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
918         #[inline]
919         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
920 }
921
922 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
923         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
924                 self.inner.fmt(f)
925         }
926 }
927
928 /// The effective capacity of a channel for routing purposes.
929 ///
930 /// While this may be smaller than the actual channel capacity, amounts greater than
931 /// [`Self::as_msat`] should not be routed through the channel.
932 #[derive(Clone, Copy, Debug)]
933 pub enum EffectiveCapacity {
934         /// The available liquidity in the channel known from being a channel counterparty, and thus a
935         /// direct hop.
936         ExactLiquidity {
937                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
938                 /// millisatoshi.
939                 liquidity_msat: u64,
940         },
941         /// The maximum HTLC amount in one direction as advertised on the gossip network.
942         MaximumHTLC {
943                 /// The maximum HTLC amount denominated in millisatoshi.
944                 amount_msat: u64,
945         },
946         /// The total capacity of the channel as determined by the funding transaction.
947         Total {
948                 /// The funding amount denominated in millisatoshi.
949                 capacity_msat: u64,
950                 /// The maximum HTLC amount denominated in millisatoshi.
951                 htlc_maximum_msat: Option<u64>
952         },
953         /// A capacity sufficient to route any payment, typically used for private channels provided by
954         /// an invoice.
955         Infinite,
956         /// A capacity that is unknown possibly because either the chain state is unavailable to know
957         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
958         Unknown,
959 }
960
961 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
962 /// use when making routing decisions.
963 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
964
965 impl EffectiveCapacity {
966         /// Returns the effective capacity denominated in millisatoshi.
967         pub fn as_msat(&self) -> u64 {
968                 match self {
969                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
970                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
971                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
972                         EffectiveCapacity::Infinite => u64::max_value(),
973                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
974                 }
975         }
976 }
977
978 /// Fees for routing via a given channel or a node
979 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
980 pub struct RoutingFees {
981         /// Flat routing fee in satoshis
982         pub base_msat: u32,
983         /// Liquidity-based routing fee in millionths of a routed amount.
984         /// In other words, 10000 is 1%.
985         pub proportional_millionths: u32,
986 }
987
988 impl_writeable_tlv_based!(RoutingFees, {
989         (0, base_msat, required),
990         (2, proportional_millionths, required)
991 });
992
993 #[derive(Clone, Debug, PartialEq)]
994 /// Information received in the latest node_announcement from this node.
995 pub struct NodeAnnouncementInfo {
996         /// Protocol features the node announced support for
997         pub features: NodeFeatures,
998         /// When the last known update to the node state was issued.
999         /// Value is opaque, as set in the announcement.
1000         pub last_update: u32,
1001         /// Color assigned to the node
1002         pub rgb: [u8; 3],
1003         /// Moniker assigned to the node.
1004         /// May be invalid or malicious (eg control chars),
1005         /// should not be exposed to the user.
1006         pub alias: NodeAlias,
1007         /// Internet-level addresses via which one can connect to the node
1008         pub addresses: Vec<NetAddress>,
1009         /// An initial announcement of the node
1010         /// Mostly redundant with the data we store in fields explicitly.
1011         /// Everything else is useful only for sending out for initial routing sync.
1012         /// Not stored if contains excess data to prevent DoS.
1013         pub announcement_message: Option<NodeAnnouncement>
1014 }
1015
1016 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1017         (0, features, required),
1018         (2, last_update, required),
1019         (4, rgb, required),
1020         (6, alias, required),
1021         (8, announcement_message, option),
1022         (10, addresses, vec_type),
1023 });
1024
1025 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1026 ///
1027 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1028 /// attacks. Care must be taken when processing.
1029 #[derive(Clone, Debug, PartialEq)]
1030 pub struct NodeAlias(pub [u8; 32]);
1031
1032 impl fmt::Display for NodeAlias {
1033         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1034                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1035                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1036                 let bytes = self.0.split_at(first_null).0;
1037                 match core::str::from_utf8(bytes) {
1038                         Ok(alias) => {
1039                                 for c in alias.chars() {
1040                                         let mut bytes = [0u8; 4];
1041                                         let c = if !c.is_control() { c } else { control_symbol };
1042                                         f.write_str(c.encode_utf8(&mut bytes))?;
1043                                 }
1044                         },
1045                         Err(_) => {
1046                                 for c in bytes.iter().map(|b| *b as char) {
1047                                         // Display printable ASCII characters
1048                                         let mut bytes = [0u8; 4];
1049                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1050                                         f.write_str(c.encode_utf8(&mut bytes))?;
1051                                 }
1052                         },
1053                 };
1054                 Ok(())
1055         }
1056 }
1057
1058 impl Writeable for NodeAlias {
1059         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1060                 self.0.write(w)
1061         }
1062 }
1063
1064 impl Readable for NodeAlias {
1065         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1066                 Ok(NodeAlias(Readable::read(r)?))
1067         }
1068 }
1069
1070 #[derive(Clone, Debug, PartialEq)]
1071 /// Details about a node in the network, known from the network announcement.
1072 pub struct NodeInfo {
1073         /// All valid channels a node has announced
1074         pub channels: Vec<u64>,
1075         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1076         /// The two fields (flat and proportional fee) are independent,
1077         /// meaning they don't have to refer to the same channel.
1078         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1079         /// More information about a node from node_announcement.
1080         /// Optional because we store a Node entry after learning about it from
1081         /// a channel announcement, but before receiving a node announcement.
1082         pub announcement_info: Option<NodeAnnouncementInfo>
1083 }
1084
1085 impl fmt::Display for NodeInfo {
1086         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1087                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1088                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1089                 Ok(())
1090         }
1091 }
1092
1093 impl Writeable for NodeInfo {
1094         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1095                 write_tlv_fields!(writer, {
1096                         (0, self.lowest_inbound_channel_fees, option),
1097                         (2, self.announcement_info, option),
1098                         (4, self.channels, vec_type),
1099                 });
1100                 Ok(())
1101         }
1102 }
1103
1104 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1105 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1106 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1107 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1108 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1109
1110 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1111         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1112                 match ::util::ser::Readable::read(reader) {
1113                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1114                         Err(_) => {
1115                                 copy(reader, &mut sink()).unwrap();
1116                                 return Ok(None)
1117                         },
1118                 };
1119         }
1120 }
1121
1122 impl Readable for NodeInfo {
1123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1124                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1125                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1126                 init_tlv_field_var!(channels, vec_type);
1127
1128                 read_tlv_fields!(reader, {
1129                         (0, lowest_inbound_channel_fees, option),
1130                         (2, announcement_info_wrap, ignorable),
1131                         (4, channels, vec_type),
1132                 });
1133
1134                 Ok(NodeInfo {
1135                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1136                         announcement_info: announcement_info_wrap.map(|w| w.0),
1137                         channels: init_tlv_based_struct_field!(channels, vec_type),
1138                 })
1139         }
1140 }
1141
1142 const SERIALIZATION_VERSION: u8 = 1;
1143 const MIN_SERIALIZATION_VERSION: u8 = 1;
1144
1145 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1146         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1147                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1148
1149                 self.genesis_hash.write(writer)?;
1150                 let channels = self.channels.read().unwrap();
1151                 (channels.len() as u64).write(writer)?;
1152                 for (ref chan_id, ref chan_info) in channels.iter() {
1153                         (*chan_id).write(writer)?;
1154                         chan_info.write(writer)?;
1155                 }
1156                 let nodes = self.nodes.read().unwrap();
1157                 (nodes.len() as u64).write(writer)?;
1158                 for (ref node_id, ref node_info) in nodes.iter() {
1159                         node_id.write(writer)?;
1160                         node_info.write(writer)?;
1161                 }
1162
1163                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1164                 write_tlv_fields!(writer, {
1165                         (1, last_rapid_gossip_sync_timestamp, option),
1166                 });
1167                 Ok(())
1168         }
1169 }
1170
1171 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1172         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1173                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1174
1175                 let genesis_hash: BlockHash = Readable::read(reader)?;
1176                 let channels_count: u64 = Readable::read(reader)?;
1177                 let mut channels = BTreeMap::new();
1178                 for _ in 0..channels_count {
1179                         let chan_id: u64 = Readable::read(reader)?;
1180                         let chan_info = Readable::read(reader)?;
1181                         channels.insert(chan_id, chan_info);
1182                 }
1183                 let nodes_count: u64 = Readable::read(reader)?;
1184                 let mut nodes = BTreeMap::new();
1185                 for _ in 0..nodes_count {
1186                         let node_id = Readable::read(reader)?;
1187                         let node_info = Readable::read(reader)?;
1188                         nodes.insert(node_id, node_info);
1189                 }
1190
1191                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1192                 read_tlv_fields!(reader, {
1193                         (1, last_rapid_gossip_sync_timestamp, option),
1194                 });
1195
1196                 Ok(NetworkGraph {
1197                         secp_ctx: Secp256k1::verification_only(),
1198                         genesis_hash,
1199                         logger,
1200                         channels: RwLock::new(channels),
1201                         nodes: RwLock::new(nodes),
1202                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1203                 })
1204         }
1205 }
1206
1207 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1208         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1209                 writeln!(f, "Network map\n[Channels]")?;
1210                 for (key, val) in self.channels.read().unwrap().iter() {
1211                         writeln!(f, " {}: {}", key, val)?;
1212                 }
1213                 writeln!(f, "[Nodes]")?;
1214                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1215                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1216                 }
1217                 Ok(())
1218         }
1219 }
1220
1221 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1222         fn eq(&self, other: &Self) -> bool {
1223                 self.genesis_hash == other.genesis_hash &&
1224                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1225                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1226         }
1227 }
1228
1229 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1230         /// Creates a new, empty, network graph.
1231         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1232                 Self {
1233                         secp_ctx: Secp256k1::verification_only(),
1234                         genesis_hash,
1235                         logger,
1236                         channels: RwLock::new(BTreeMap::new()),
1237                         nodes: RwLock::new(BTreeMap::new()),
1238                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1239                 }
1240         }
1241
1242         /// Returns a read-only view of the network graph.
1243         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1244                 let channels = self.channels.read().unwrap();
1245                 let nodes = self.nodes.read().unwrap();
1246                 ReadOnlyNetworkGraph {
1247                         channels,
1248                         nodes,
1249                 }
1250         }
1251
1252         /// The unix timestamp provided by the most recent rapid gossip sync.
1253         /// It will be set by the rapid sync process after every sync completion.
1254         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1255                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1256         }
1257
1258         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1259         /// This should be done automatically by the rapid sync process after every sync completion.
1260         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1261                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1262         }
1263
1264         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1265         /// purposes.
1266         #[cfg(test)]
1267         pub fn clear_nodes_announcement_info(&self) {
1268                 for node in self.nodes.write().unwrap().iter_mut() {
1269                         node.1.announcement_info = None;
1270                 }
1271         }
1272
1273         /// For an already known node (from channel announcements), update its stored properties from a
1274         /// given node announcement.
1275         ///
1276         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1277         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1278         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1279         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1280                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1281                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1282                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1283         }
1284
1285         /// For an already known node (from channel announcements), update its stored properties from a
1286         /// given node announcement without verifying the associated signatures. Because we aren't
1287         /// given the associated signatures here we cannot relay the node announcement to any of our
1288         /// peers.
1289         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1290                 self.update_node_from_announcement_intern(msg, None)
1291         }
1292
1293         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1294                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1295                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1296                         Some(node) => {
1297                                 if let Some(node_info) = node.announcement_info.as_ref() {
1298                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1299                                         // updates to ensure you always have the latest one, only vaguely suggesting
1300                                         // that it be at least the current time.
1301                                         if node_info.last_update  > msg.timestamp {
1302                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1303                                         } else if node_info.last_update  == msg.timestamp {
1304                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1305                                         }
1306                                 }
1307
1308                                 let should_relay =
1309                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1310                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1311                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1312                                 node.announcement_info = Some(NodeAnnouncementInfo {
1313                                         features: msg.features.clone(),
1314                                         last_update: msg.timestamp,
1315                                         rgb: msg.rgb,
1316                                         alias: NodeAlias(msg.alias),
1317                                         addresses: msg.addresses.clone(),
1318                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1319                                 });
1320
1321                                 Ok(())
1322                         }
1323                 }
1324         }
1325
1326         /// Store or update channel info from a channel announcement.
1327         ///
1328         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1329         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1330         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1331         ///
1332         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1333         /// the corresponding UTXO exists on chain and is correctly-formatted.
1334         pub fn update_channel_from_announcement<C: Deref>(
1335                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1336         ) -> Result<(), LightningError>
1337         where
1338                 C::Target: chain::Access,
1339         {
1340                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1341                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1342                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1343                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1344                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1345                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1346         }
1347
1348         /// Store or update channel info from a channel announcement without verifying the associated
1349         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1350         /// channel announcement to any of our peers.
1351         ///
1352         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1353         /// the corresponding UTXO exists on chain and is correctly-formatted.
1354         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1355                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1356         ) -> Result<(), LightningError>
1357         where
1358                 C::Target: chain::Access,
1359         {
1360                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1361         }
1362
1363         /// Update channel from partial announcement data received via rapid gossip sync
1364         ///
1365         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1366         /// rapid gossip sync server)
1367         ///
1368         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1369         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1370                 if node_id_1 == node_id_2 {
1371                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1372                 };
1373
1374                 let node_1 = NodeId::from_pubkey(&node_id_1);
1375                 let node_2 = NodeId::from_pubkey(&node_id_2);
1376                 let channel_info = ChannelInfo {
1377                         features,
1378                         node_one: node_1.clone(),
1379                         one_to_two: None,
1380                         node_two: node_2.clone(),
1381                         two_to_one: None,
1382                         capacity_sats: None,
1383                         announcement_message: None,
1384                         announcement_received_time: timestamp,
1385                 };
1386
1387                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1388         }
1389
1390         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1391                 let mut channels = self.channels.write().unwrap();
1392                 let mut nodes = self.nodes.write().unwrap();
1393
1394                 let node_id_a = channel_info.node_one.clone();
1395                 let node_id_b = channel_info.node_two.clone();
1396
1397                 match channels.entry(short_channel_id) {
1398                         BtreeEntry::Occupied(mut entry) => {
1399                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1400                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1401                                 //exactly how...
1402                                 if utxo_value.is_some() {
1403                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1404                                         // only sometimes returns results. In any case remove the previous entry. Note
1405                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1406                                         // do that because
1407                                         // a) we don't *require* a UTXO provider that always returns results.
1408                                         // b) we don't track UTXOs of channels we know about and remove them if they
1409                                         //    get reorg'd out.
1410                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1411                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1412                                         *entry.get_mut() = channel_info;
1413                                 } else {
1414                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1415                                 }
1416                         },
1417                         BtreeEntry::Vacant(entry) => {
1418                                 entry.insert(channel_info);
1419                         }
1420                 };
1421
1422                 for current_node_id in [node_id_a, node_id_b].iter() {
1423                         match nodes.entry(current_node_id.clone()) {
1424                                 BtreeEntry::Occupied(node_entry) => {
1425                                         node_entry.into_mut().channels.push(short_channel_id);
1426                                 },
1427                                 BtreeEntry::Vacant(node_entry) => {
1428                                         node_entry.insert(NodeInfo {
1429                                                 channels: vec!(short_channel_id),
1430                                                 lowest_inbound_channel_fees: None,
1431                                                 announcement_info: None,
1432                                         });
1433                                 }
1434                         };
1435                 };
1436
1437                 Ok(())
1438         }
1439
1440         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1441                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1442         ) -> Result<(), LightningError>
1443         where
1444                 C::Target: chain::Access,
1445         {
1446                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1447                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1448                 }
1449
1450                 {
1451                         let channels = self.channels.read().unwrap();
1452
1453                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1454                                 if chan.capacity_sats.is_some() {
1455                                         // If we'd previously looked up the channel on-chain and checked the script
1456                                         // against what appears on-chain, ignore the duplicate announcement.
1457                                         //
1458                                         // Because a reorg could replace one channel with another at the same SCID, if
1459                                         // the channel appears to be different, we re-validate. This doesn't expose us
1460                                         // to any more DoS risk than not, as a peer can always flood us with
1461                                         // randomly-generated SCID values anyway.
1462                                         //
1463                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1464                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1465                                         // if the peers on the channel changed anyway.
1466                                         if NodeId::from_pubkey(&msg.node_id_1) == chan.node_one && NodeId::from_pubkey(&msg.node_id_2) == chan.node_two {
1467                                                 return Err(LightningError {
1468                                                         err: "Already have chain-validated channel".to_owned(),
1469                                                         action: ErrorAction::IgnoreDuplicateGossip
1470                                                 });
1471                                         }
1472                                 } else if chain_access.is_none() {
1473                                         // Similarly, if we can't check the chain right now anyway, ignore the
1474                                         // duplicate announcement without bothering to take the channels write lock.
1475                                         return Err(LightningError {
1476                                                 err: "Already have non-chain-validated channel".to_owned(),
1477                                                 action: ErrorAction::IgnoreDuplicateGossip
1478                                         });
1479                                 }
1480                         }
1481                 }
1482
1483                 let utxo_value = match &chain_access {
1484                         &None => {
1485                                 // Tentatively accept, potentially exposing us to DoS attacks
1486                                 None
1487                         },
1488                         &Some(ref chain_access) => {
1489                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1490                                         Ok(TxOut { value, script_pubkey }) => {
1491                                                 let expected_script =
1492                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1493                                                 if script_pubkey != expected_script {
1494                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1495                                                 }
1496                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1497                                                 //to the new HTLC max field in channel_update
1498                                                 Some(value)
1499                                         },
1500                                         Err(chain::AccessError::UnknownChain) => {
1501                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1502                                         },
1503                                         Err(chain::AccessError::UnknownTx) => {
1504                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1505                                         },
1506                                 }
1507                         },
1508                 };
1509
1510                 #[allow(unused_mut, unused_assignments)]
1511                 let mut announcement_received_time = 0;
1512                 #[cfg(feature = "std")]
1513                 {
1514                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1515                 }
1516
1517                 let chan_info = ChannelInfo {
1518                         features: msg.features.clone(),
1519                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1520                         one_to_two: None,
1521                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1522                         two_to_one: None,
1523                         capacity_sats: utxo_value,
1524                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1525                                 { full_msg.cloned() } else { None },
1526                         announcement_received_time,
1527                 };
1528
1529                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1530         }
1531
1532         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1533         /// If permanent, removes a channel from the local storage.
1534         /// May cause the removal of nodes too, if this was their last channel.
1535         /// If not permanent, makes channels unavailable for routing.
1536         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1537                 let mut channels = self.channels.write().unwrap();
1538                 if is_permanent {
1539                         if let Some(chan) = channels.remove(&short_channel_id) {
1540                                 let mut nodes = self.nodes.write().unwrap();
1541                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1542                         }
1543                 } else {
1544                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1545                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1546                                         one_to_two.enabled = false;
1547                                 }
1548                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1549                                         two_to_one.enabled = false;
1550                                 }
1551                         }
1552                 }
1553         }
1554
1555         /// Marks a node in the graph as failed.
1556         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1557                 if is_permanent {
1558                         // TODO: Wholly remove the node
1559                 } else {
1560                         // TODO: downgrade the node
1561                 }
1562         }
1563
1564         #[cfg(feature = "std")]
1565         /// Removes information about channels that we haven't heard any updates about in some time.
1566         /// This can be used regularly to prune the network graph of channels that likely no longer
1567         /// exist.
1568         ///
1569         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1570         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1571         /// pruning occur for updates which are at least two weeks old, which we implement here.
1572         ///
1573         /// Note that for users of the `lightning-background-processor` crate this method may be
1574         /// automatically called regularly for you.
1575         ///
1576         /// This method is only available with the `std` feature. See
1577         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1578         pub fn remove_stale_channels(&self) {
1579                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1580                 self.remove_stale_channels_with_time(time);
1581         }
1582
1583         /// Removes information about channels that we haven't heard any updates about in some time.
1584         /// This can be used regularly to prune the network graph of channels that likely no longer
1585         /// exist.
1586         ///
1587         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1588         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1589         /// pruning occur for updates which are at least two weeks old, which we implement here.
1590         ///
1591         /// This function takes the current unix time as an argument. For users with the `std` feature
1592         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1593         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1594                 let mut channels = self.channels.write().unwrap();
1595                 // Time out if we haven't received an update in at least 14 days.
1596                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1597                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1598                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1599                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1600                 // time.
1601                 let mut scids_to_remove = Vec::new();
1602                 for (scid, info) in channels.iter_mut() {
1603                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1604                                 info.one_to_two = None;
1605                         }
1606                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1607                                 info.two_to_one = None;
1608                         }
1609                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1610                                 // We check the announcement_received_time here to ensure we don't drop
1611                                 // announcements that we just received and are just waiting for our peer to send a
1612                                 // channel_update for.
1613                                 if info.announcement_received_time < min_time_unix as u64 {
1614                                         scids_to_remove.push(*scid);
1615                                 }
1616                         }
1617                 }
1618                 if !scids_to_remove.is_empty() {
1619                         let mut nodes = self.nodes.write().unwrap();
1620                         for scid in scids_to_remove {
1621                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1622                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1623                         }
1624                 }
1625         }
1626
1627         /// For an already known (from announcement) channel, update info about one of the directions
1628         /// of the channel.
1629         ///
1630         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1631         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1632         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1633         ///
1634         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1635         /// materially in the future will be rejected.
1636         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1637                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1638         }
1639
1640         /// For an already known (from announcement) channel, update info about one of the directions
1641         /// of the channel without verifying the associated signatures. Because we aren't given the
1642         /// associated signatures here we cannot relay the channel update to any of our peers.
1643         ///
1644         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1645         /// materially in the future will be rejected.
1646         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1647                 self.update_channel_intern(msg, None, None)
1648         }
1649
1650         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1651                 let dest_node_id;
1652                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1653                 let chan_was_enabled;
1654
1655                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1656                 {
1657                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1658                         // disable this check during tests!
1659                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1660                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1661                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1662                         }
1663                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1664                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1665                         }
1666                 }
1667
1668                 let mut channels = self.channels.write().unwrap();
1669                 match channels.get_mut(&msg.short_channel_id) {
1670                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1671                         Some(channel) => {
1672                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1673                                         return Err(LightningError{err:
1674                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1675                                                 action: ErrorAction::IgnoreError});
1676                                 }
1677
1678                                 if let Some(capacity_sats) = channel.capacity_sats {
1679                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1680                                         // Don't query UTXO set here to reduce DoS risks.
1681                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1682                                                 return Err(LightningError{err:
1683                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1684                                                         action: ErrorAction::IgnoreError});
1685                                         }
1686                                 }
1687                                 macro_rules! check_update_latest {
1688                                         ($target: expr) => {
1689                                                 if let Some(existing_chan_info) = $target.as_ref() {
1690                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1691                                                         // order updates to ensure you always have the latest one, only
1692                                                         // suggesting  that it be at least the current time. For
1693                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1694                                                         // pruning based on the timestamp field being more than two weeks old,
1695                                                         // but only in the non-normative section.
1696                                                         if existing_chan_info.last_update > msg.timestamp {
1697                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1698                                                         } else if existing_chan_info.last_update == msg.timestamp {
1699                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1700                                                         }
1701                                                         chan_was_enabled = existing_chan_info.enabled;
1702                                                 } else {
1703                                                         chan_was_enabled = false;
1704                                                 }
1705                                         }
1706                                 }
1707
1708                                 macro_rules! get_new_channel_info {
1709                                         () => { {
1710                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1711                                                         { full_msg.cloned() } else { None };
1712
1713                                                 let updated_channel_update_info = ChannelUpdateInfo {
1714                                                         enabled: chan_enabled,
1715                                                         last_update: msg.timestamp,
1716                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1717                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1718                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1719                                                         fees: RoutingFees {
1720                                                                 base_msat: msg.fee_base_msat,
1721                                                                 proportional_millionths: msg.fee_proportional_millionths,
1722                                                         },
1723                                                         last_update_message
1724                                                 };
1725                                                 Some(updated_channel_update_info)
1726                                         } }
1727                                 }
1728
1729                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1730                                 if msg.flags & 1 == 1 {
1731                                         dest_node_id = channel.node_one.clone();
1732                                         check_update_latest!(channel.two_to_one);
1733                                         if let Some(sig) = sig {
1734                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1735                                                         err: "Couldn't parse source node pubkey".to_owned(),
1736                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1737                                                 })?, "channel_update");
1738                                         }
1739                                         channel.two_to_one = get_new_channel_info!();
1740                                 } else {
1741                                         dest_node_id = channel.node_two.clone();
1742                                         check_update_latest!(channel.one_to_two);
1743                                         if let Some(sig) = sig {
1744                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1745                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1746                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1747                                                 })?, "channel_update");
1748                                         }
1749                                         channel.one_to_two = get_new_channel_info!();
1750                                 }
1751                         }
1752                 }
1753
1754                 let mut nodes = self.nodes.write().unwrap();
1755                 if chan_enabled {
1756                         let node = nodes.get_mut(&dest_node_id).unwrap();
1757                         let mut base_msat = msg.fee_base_msat;
1758                         let mut proportional_millionths = msg.fee_proportional_millionths;
1759                         if let Some(fees) = node.lowest_inbound_channel_fees {
1760                                 base_msat = cmp::min(base_msat, fees.base_msat);
1761                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1762                         }
1763                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1764                                 base_msat,
1765                                 proportional_millionths
1766                         });
1767                 } else if chan_was_enabled {
1768                         let node = nodes.get_mut(&dest_node_id).unwrap();
1769                         let mut lowest_inbound_channel_fees = None;
1770
1771                         for chan_id in node.channels.iter() {
1772                                 let chan = channels.get(chan_id).unwrap();
1773                                 let chan_info_opt;
1774                                 if chan.node_one == dest_node_id {
1775                                         chan_info_opt = chan.two_to_one.as_ref();
1776                                 } else {
1777                                         chan_info_opt = chan.one_to_two.as_ref();
1778                                 }
1779                                 if let Some(chan_info) = chan_info_opt {
1780                                         if chan_info.enabled {
1781                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1782                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1783                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1784                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1785                                         }
1786                                 }
1787                         }
1788
1789                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1790                 }
1791
1792                 Ok(())
1793         }
1794
1795         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1796                 macro_rules! remove_from_node {
1797                         ($node_id: expr) => {
1798                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1799                                         entry.get_mut().channels.retain(|chan_id| {
1800                                                 short_channel_id != *chan_id
1801                                         });
1802                                         if entry.get().channels.is_empty() {
1803                                                 entry.remove_entry();
1804                                         }
1805                                 } else {
1806                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1807                                 }
1808                         }
1809                 }
1810
1811                 remove_from_node!(chan.node_one);
1812                 remove_from_node!(chan.node_two);
1813         }
1814 }
1815
1816 impl ReadOnlyNetworkGraph<'_> {
1817         /// Returns all known valid channels' short ids along with announced channel info.
1818         ///
1819         /// (C-not exported) because we have no mapping for `BTreeMap`s
1820         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1821                 &*self.channels
1822         }
1823
1824         /// Returns information on a channel with the given id.
1825         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1826                 self.channels.get(&short_channel_id)
1827         }
1828
1829         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1830         /// Returns the list of channels in the graph
1831         pub fn list_channels(&self) -> Vec<u64> {
1832                 self.channels.keys().map(|c| *c).collect()
1833         }
1834
1835         /// Returns all known nodes' public keys along with announced node info.
1836         ///
1837         /// (C-not exported) because we have no mapping for `BTreeMap`s
1838         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1839                 &*self.nodes
1840         }
1841
1842         /// Returns information on a node with the given id.
1843         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1844                 self.nodes.get(node_id)
1845         }
1846
1847         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1848         /// Returns the list of nodes in the graph
1849         pub fn list_nodes(&self) -> Vec<NodeId> {
1850                 self.nodes.keys().map(|n| *n).collect()
1851         }
1852
1853         /// Get network addresses by node id.
1854         /// Returns None if the requested node is completely unknown,
1855         /// or if node announcement for the node was never received.
1856         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1857                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1858                         if let Some(node_info) = node.announcement_info.as_ref() {
1859                                 return Some(node_info.addresses.clone())
1860                         }
1861                 }
1862                 None
1863         }
1864 }
1865
1866 #[cfg(test)]
1867 mod tests {
1868         use chain;
1869         use ln::chan_utils::make_funding_redeemscript;
1870         use ln::PaymentHash;
1871         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1872         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1873         use ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1874                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1875                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1876         use util::test_utils;
1877         use util::ser::{ReadableArgs, Writeable};
1878         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1879         use util::scid_utils::scid_from_parts;
1880
1881         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1882
1883         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1884         use bitcoin::hashes::Hash;
1885         use bitcoin::network::constants::Network;
1886         use bitcoin::blockdata::constants::genesis_block;
1887         use bitcoin::blockdata::script::Script;
1888         use bitcoin::blockdata::transaction::TxOut;
1889
1890         use hex;
1891
1892         use bitcoin::secp256k1::{PublicKey, SecretKey};
1893         use bitcoin::secp256k1::{All, Secp256k1};
1894
1895         use io;
1896         use bitcoin::secp256k1;
1897         use prelude::*;
1898         use sync::Arc;
1899
1900         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1901                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1902                 let logger = Arc::new(test_utils::TestLogger::new());
1903                 NetworkGraph::new(genesis_hash, logger)
1904         }
1905
1906         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1907                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1908                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1909         ) {
1910                 let secp_ctx = Secp256k1::new();
1911                 let logger = Arc::new(test_utils::TestLogger::new());
1912                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1913                 (secp_ctx, gossip_sync)
1914         }
1915
1916         #[test]
1917         #[cfg(feature = "std")]
1918         fn request_full_sync_finite_times() {
1919                 let network_graph = create_network_graph();
1920                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1921                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1922
1923                 assert!(gossip_sync.should_request_full_sync(&node_id));
1924                 assert!(gossip_sync.should_request_full_sync(&node_id));
1925                 assert!(gossip_sync.should_request_full_sync(&node_id));
1926                 assert!(gossip_sync.should_request_full_sync(&node_id));
1927                 assert!(gossip_sync.should_request_full_sync(&node_id));
1928                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1929         }
1930
1931         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1932                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1933                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1934                         features: NodeFeatures::known(),
1935                         timestamp: 100,
1936                         node_id: node_id,
1937                         rgb: [0; 3],
1938                         alias: [0; 32],
1939                         addresses: Vec::new(),
1940                         excess_address_data: Vec::new(),
1941                         excess_data: Vec::new(),
1942                 };
1943                 f(&mut unsigned_announcement);
1944                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1945                 NodeAnnouncement {
1946                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1947                         contents: unsigned_announcement
1948                 }
1949         }
1950
1951         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1952                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1953                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1954                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1955                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1956
1957                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1958                         features: ChannelFeatures::known(),
1959                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1960                         short_channel_id: 0,
1961                         node_id_1,
1962                         node_id_2,
1963                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1964                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1965                         excess_data: Vec::new(),
1966                 };
1967                 f(&mut unsigned_announcement);
1968                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1969                 ChannelAnnouncement {
1970                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1971                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1972                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1973                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1974                         contents: unsigned_announcement,
1975                 }
1976         }
1977
1978         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1979                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1980                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1981                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1982                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
1983         }
1984
1985         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1986                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1987                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1988                         short_channel_id: 0,
1989                         timestamp: 100,
1990                         flags: 0,
1991                         cltv_expiry_delta: 144,
1992                         htlc_minimum_msat: 1_000_000,
1993                         htlc_maximum_msat: 1_000_000,
1994                         fee_base_msat: 10_000,
1995                         fee_proportional_millionths: 20,
1996                         excess_data: Vec::new()
1997                 };
1998                 f(&mut unsigned_channel_update);
1999                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2000                 ChannelUpdate {
2001                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2002                         contents: unsigned_channel_update
2003                 }
2004         }
2005
2006         #[test]
2007         fn handling_node_announcements() {
2008                 let network_graph = create_network_graph();
2009                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2010
2011                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2012                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2013                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2014
2015                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2016                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2017                         Ok(_) => panic!(),
2018                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2019                 };
2020
2021                 {
2022                         // Announce a channel to add a corresponding node.
2023                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2024                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2025                                 Ok(res) => assert!(res),
2026                                 _ => panic!()
2027                         };
2028                 }
2029
2030                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2031                         Ok(res) => assert!(res),
2032                         Err(_) => panic!()
2033                 };
2034
2035                 let fake_msghash = hash_to_message!(&zero_hash);
2036                 match gossip_sync.handle_node_announcement(
2037                         &NodeAnnouncement {
2038                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2039                                 contents: valid_announcement.contents.clone()
2040                 }) {
2041                         Ok(_) => panic!(),
2042                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2043                 };
2044
2045                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2046                         unsigned_announcement.timestamp += 1000;
2047                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2048                 }, node_1_privkey, &secp_ctx);
2049                 // Return false because contains excess data.
2050                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2051                         Ok(res) => assert!(!res),
2052                         Err(_) => panic!()
2053                 };
2054
2055                 // Even though previous announcement was not relayed further, we still accepted it,
2056                 // so we now won't accept announcements before the previous one.
2057                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2058                         unsigned_announcement.timestamp += 1000 - 10;
2059                 }, node_1_privkey, &secp_ctx);
2060                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2061                         Ok(_) => panic!(),
2062                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2063                 };
2064         }
2065
2066         #[test]
2067         fn handling_channel_announcements() {
2068                 let secp_ctx = Secp256k1::new();
2069                 let logger = test_utils::TestLogger::new();
2070
2071                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2072                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2073
2074                 let good_script = get_channel_script(&secp_ctx);
2075                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2076
2077                 // Test if the UTXO lookups were not supported
2078                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2079                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2080                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2081                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2082                         Ok(res) => assert!(res),
2083                         _ => panic!()
2084                 };
2085
2086                 {
2087                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2088                                 None => panic!(),
2089                                 Some(_) => ()
2090                         };
2091                 }
2092
2093                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2094                 // drop new one on the floor, since we can't see any changes.
2095                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2096                         Ok(_) => panic!(),
2097                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2098                 };
2099
2100                 // Test if an associated transaction were not on-chain (or not confirmed).
2101                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2102                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2103                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2104                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2105
2106                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2107                         unsigned_announcement.short_channel_id += 1;
2108                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2109                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2110                         Ok(_) => panic!(),
2111                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2112                 };
2113
2114                 // Now test if the transaction is found in the UTXO set and the script is correct.
2115                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2116                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2117                         unsigned_announcement.short_channel_id += 2;
2118                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2119                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2120                         Ok(res) => assert!(res),
2121                         _ => panic!()
2122                 };
2123
2124                 {
2125                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2126                                 None => panic!(),
2127                                 Some(_) => ()
2128                         };
2129                 }
2130
2131                 // If we receive announcement for the same channel, once we've validated it against the
2132                 // chain, we simply ignore all new (duplicate) announcements.
2133                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2134                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2135                         Ok(_) => panic!(),
2136                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2137                 };
2138
2139                 // Don't relay valid channels with excess data
2140                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2141                         unsigned_announcement.short_channel_id += 3;
2142                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2143                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2144                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2145                         Ok(res) => assert!(!res),
2146                         _ => panic!()
2147                 };
2148
2149                 let mut invalid_sig_announcement = valid_announcement.clone();
2150                 invalid_sig_announcement.contents.excess_data = Vec::new();
2151                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2152                         Ok(_) => panic!(),
2153                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2154                 };
2155
2156                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2157                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2158                         Ok(_) => panic!(),
2159                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2160                 };
2161         }
2162
2163         #[test]
2164         fn handling_channel_update() {
2165                 let secp_ctx = Secp256k1::new();
2166                 let logger = test_utils::TestLogger::new();
2167                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2168                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2169                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2170                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2171
2172                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2173                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2174
2175                 let amount_sats = 1000_000;
2176                 let short_channel_id;
2177
2178                 {
2179                         // Announce a channel we will update
2180                         let good_script = get_channel_script(&secp_ctx);
2181                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2182
2183                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2184                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2185                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2186                                 Ok(_) => (),
2187                                 Err(_) => panic!()
2188                         };
2189
2190                 }
2191
2192                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2193                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2194                         Ok(res) => assert!(res),
2195                         _ => panic!(),
2196                 };
2197
2198                 {
2199                         match network_graph.read_only().channels().get(&short_channel_id) {
2200                                 None => panic!(),
2201                                 Some(channel_info) => {
2202                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2203                                         assert!(channel_info.two_to_one.is_none());
2204                                 }
2205                         };
2206                 }
2207
2208                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2209                         unsigned_channel_update.timestamp += 100;
2210                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2211                 }, node_1_privkey, &secp_ctx);
2212                 // Return false because contains excess data
2213                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2214                         Ok(res) => assert!(!res),
2215                         _ => panic!()
2216                 };
2217
2218                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2219                         unsigned_channel_update.timestamp += 110;
2220                         unsigned_channel_update.short_channel_id += 1;
2221                 }, node_1_privkey, &secp_ctx);
2222                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2223                         Ok(_) => panic!(),
2224                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2225                 };
2226
2227                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2228                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2229                         unsigned_channel_update.timestamp += 110;
2230                 }, node_1_privkey, &secp_ctx);
2231                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2232                         Ok(_) => panic!(),
2233                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2234                 };
2235
2236                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2237                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2238                         unsigned_channel_update.timestamp += 110;
2239                 }, node_1_privkey, &secp_ctx);
2240                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2241                         Ok(_) => panic!(),
2242                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2243                 };
2244
2245                 // Even though previous update was not relayed further, we still accepted it,
2246                 // so we now won't accept update before the previous one.
2247                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2248                         unsigned_channel_update.timestamp += 100;
2249                 }, node_1_privkey, &secp_ctx);
2250                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2251                         Ok(_) => panic!(),
2252                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2253                 };
2254
2255                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2256                         unsigned_channel_update.timestamp += 500;
2257                 }, node_1_privkey, &secp_ctx);
2258                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2259                 let fake_msghash = hash_to_message!(&zero_hash);
2260                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2261                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2262                         Ok(_) => panic!(),
2263                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2264                 };
2265         }
2266
2267         #[test]
2268         fn handling_network_update() {
2269                 let logger = test_utils::TestLogger::new();
2270                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2271                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2272                 let secp_ctx = Secp256k1::new();
2273
2274                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2275                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2276
2277                 {
2278                         // There is no nodes in the table at the beginning.
2279                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2280                 }
2281
2282                 let short_channel_id;
2283                 {
2284                         // Announce a channel we will update
2285                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2286                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2287                         let chain_source: Option<&test_utils::TestChainSource> = None;
2288                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2289                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2290
2291                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2292                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2293
2294                         network_graph.handle_event(&Event::PaymentPathFailed {
2295                                 payment_id: None,
2296                                 payment_hash: PaymentHash([0; 32]),
2297                                 payment_failed_permanently: false,
2298                                 all_paths_failed: true,
2299                                 path: vec![],
2300                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2301                                         msg: valid_channel_update,
2302                                 }),
2303                                 short_channel_id: None,
2304                                 retry: None,
2305                                 error_code: None,
2306                                 error_data: None,
2307                         });
2308
2309                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2310                 }
2311
2312                 // Non-permanent closing just disables a channel
2313                 {
2314                         match network_graph.read_only().channels().get(&short_channel_id) {
2315                                 None => panic!(),
2316                                 Some(channel_info) => {
2317                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2318                                 }
2319                         };
2320
2321                         network_graph.handle_event(&Event::PaymentPathFailed {
2322                                 payment_id: None,
2323                                 payment_hash: PaymentHash([0; 32]),
2324                                 payment_failed_permanently: false,
2325                                 all_paths_failed: true,
2326                                 path: vec![],
2327                                 network_update: Some(NetworkUpdate::ChannelFailure {
2328                                         short_channel_id,
2329                                         is_permanent: false,
2330                                 }),
2331                                 short_channel_id: None,
2332                                 retry: None,
2333                                 error_code: None,
2334                                 error_data: None,
2335                         });
2336
2337                         match network_graph.read_only().channels().get(&short_channel_id) {
2338                                 None => panic!(),
2339                                 Some(channel_info) => {
2340                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2341                                 }
2342                         };
2343                 }
2344
2345                 // Permanent closing deletes a channel
2346                 network_graph.handle_event(&Event::PaymentPathFailed {
2347                         payment_id: None,
2348                         payment_hash: PaymentHash([0; 32]),
2349                         payment_failed_permanently: false,
2350                         all_paths_failed: true,
2351                         path: vec![],
2352                         network_update: Some(NetworkUpdate::ChannelFailure {
2353                                 short_channel_id,
2354                                 is_permanent: true,
2355                         }),
2356                         short_channel_id: None,
2357                         retry: None,
2358                         error_code: None,
2359                         error_data: None,
2360                 });
2361
2362                 assert_eq!(network_graph.read_only().channels().len(), 0);
2363                 // Nodes are also deleted because there are no associated channels anymore
2364                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2365                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2366         }
2367
2368         #[test]
2369         fn test_channel_timeouts() {
2370                 // Test the removal of channels with `remove_stale_channels`.
2371                 let logger = test_utils::TestLogger::new();
2372                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2373                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2374                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2375                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2376                 let secp_ctx = Secp256k1::new();
2377
2378                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2379                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2380
2381                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2382                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2383                 let chain_source: Option<&test_utils::TestChainSource> = None;
2384                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2385                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2386
2387                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2388                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2389                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2390
2391                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2392                 assert_eq!(network_graph.read_only().channels().len(), 1);
2393                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2394
2395                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2396                 #[cfg(feature = "std")]
2397                 {
2398                         // In std mode, a further check is performed before fully removing the channel -
2399                         // the channel_announcement must have been received at least two weeks ago. We
2400                         // fudge that here by indicating the time has jumped two weeks. Note that the
2401                         // directional channel information will have been removed already..
2402                         assert_eq!(network_graph.read_only().channels().len(), 1);
2403                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2404                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2405
2406                         use std::time::{SystemTime, UNIX_EPOCH};
2407                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2408                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2409                 }
2410
2411                 assert_eq!(network_graph.read_only().channels().len(), 0);
2412                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2413         }
2414
2415         #[test]
2416         fn getting_next_channel_announcements() {
2417                 let network_graph = create_network_graph();
2418                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2419                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2420                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2421
2422                 // Channels were not announced yet.
2423                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2424                 assert!(channels_with_announcements.is_none());
2425
2426                 let short_channel_id;
2427                 {
2428                         // Announce a channel we will update
2429                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2430                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2431                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2432                                 Ok(_) => (),
2433                                 Err(_) => panic!()
2434                         };
2435                 }
2436
2437                 // Contains initial channel announcement now.
2438                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2439                 if let Some(channel_announcements) = channels_with_announcements {
2440                         let (_, ref update_1, ref update_2) = channel_announcements;
2441                         assert_eq!(update_1, &None);
2442                         assert_eq!(update_2, &None);
2443                 } else {
2444                         panic!();
2445                 }
2446
2447                 {
2448                         // Valid channel update
2449                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2450                                 unsigned_channel_update.timestamp = 101;
2451                         }, node_1_privkey, &secp_ctx);
2452                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2453                                 Ok(_) => (),
2454                                 Err(_) => panic!()
2455                         };
2456                 }
2457
2458                 // Now contains an initial announcement and an update.
2459                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2460                 if let Some(channel_announcements) = channels_with_announcements {
2461                         let (_, ref update_1, ref update_2) = channel_announcements;
2462                         assert_ne!(update_1, &None);
2463                         assert_eq!(update_2, &None);
2464                 } else {
2465                         panic!();
2466                 }
2467
2468                 {
2469                         // Channel update with excess data.
2470                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2471                                 unsigned_channel_update.timestamp = 102;
2472                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2473                         }, node_1_privkey, &secp_ctx);
2474                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2475                                 Ok(_) => (),
2476                                 Err(_) => panic!()
2477                         };
2478                 }
2479
2480                 // Test that announcements with excess data won't be returned
2481                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2482                 if let Some(channel_announcements) = channels_with_announcements {
2483                         let (_, ref update_1, ref update_2) = channel_announcements;
2484                         assert_eq!(update_1, &None);
2485                         assert_eq!(update_2, &None);
2486                 } else {
2487                         panic!();
2488                 }
2489
2490                 // Further starting point have no channels after it
2491                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2492                 assert!(channels_with_announcements.is_none());
2493         }
2494
2495         #[test]
2496         fn getting_next_node_announcements() {
2497                 let network_graph = create_network_graph();
2498                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2499                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2500                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2501                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2502
2503                 // No nodes yet.
2504                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2505                 assert!(next_announcements.is_none());
2506
2507                 {
2508                         // Announce a channel to add 2 nodes
2509                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2510                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2511                                 Ok(_) => (),
2512                                 Err(_) => panic!()
2513                         };
2514                 }
2515
2516                 // Nodes were never announced
2517                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2518                 assert!(next_announcements.is_none());
2519
2520                 {
2521                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2522                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2523                                 Ok(_) => (),
2524                                 Err(_) => panic!()
2525                         };
2526
2527                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2528                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2529                                 Ok(_) => (),
2530                                 Err(_) => panic!()
2531                         };
2532                 }
2533
2534                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2535                 assert!(next_announcements.is_some());
2536
2537                 // Skip the first node.
2538                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2539                 assert!(next_announcements.is_some());
2540
2541                 {
2542                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2543                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2544                                 unsigned_announcement.timestamp += 10;
2545                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2546                         }, node_2_privkey, &secp_ctx);
2547                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2548                                 Ok(res) => assert!(!res),
2549                                 Err(_) => panic!()
2550                         };
2551                 }
2552
2553                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2554                 assert!(next_announcements.is_none());
2555         }
2556
2557         #[test]
2558         fn network_graph_serialization() {
2559                 let network_graph = create_network_graph();
2560                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2561
2562                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2563                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2564
2565                 // Announce a channel to add a corresponding node.
2566                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2567                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2568                         Ok(res) => assert!(res),
2569                         _ => panic!()
2570                 };
2571
2572                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2573                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2574                         Ok(_) => (),
2575                         Err(_) => panic!()
2576                 };
2577
2578                 let mut w = test_utils::TestVecWriter(Vec::new());
2579                 assert!(!network_graph.read_only().nodes().is_empty());
2580                 assert!(!network_graph.read_only().channels().is_empty());
2581                 network_graph.write(&mut w).unwrap();
2582
2583                 let logger = Arc::new(test_utils::TestLogger::new());
2584                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2585         }
2586
2587         #[test]
2588         fn network_graph_tlv_serialization() {
2589                 let network_graph = create_network_graph();
2590                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2591
2592                 let mut w = test_utils::TestVecWriter(Vec::new());
2593                 network_graph.write(&mut w).unwrap();
2594
2595                 let logger = Arc::new(test_utils::TestLogger::new());
2596                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2597                 assert!(reassembled_network_graph == network_graph);
2598                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2599         }
2600
2601         #[test]
2602         #[cfg(feature = "std")]
2603         fn calling_sync_routing_table() {
2604                 use std::time::{SystemTime, UNIX_EPOCH};
2605                 use ln::msgs::Init;
2606
2607                 let network_graph = create_network_graph();
2608                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2609                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2610                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2611
2612                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2613
2614                 // It should ignore if gossip_queries feature is not enabled
2615                 {
2616                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries(), remote_network_address: None };
2617                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2618                         let events = gossip_sync.get_and_clear_pending_msg_events();
2619                         assert_eq!(events.len(), 0);
2620                 }
2621
2622                 // It should send a gossip_timestamp_filter with the correct information
2623                 {
2624                         let init_msg = Init { features: InitFeatures::known(), remote_network_address: None };
2625                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2626                         let events = gossip_sync.get_and_clear_pending_msg_events();
2627                         assert_eq!(events.len(), 1);
2628                         match &events[0] {
2629                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2630                                         assert_eq!(node_id, &node_id_1);
2631                                         assert_eq!(msg.chain_hash, chain_hash);
2632                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2633                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2634                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2635                                         assert_eq!(msg.timestamp_range, u32::max_value());
2636                                 },
2637                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2638                         };
2639                 }
2640         }
2641
2642         #[test]
2643         fn handling_query_channel_range() {
2644                 let network_graph = create_network_graph();
2645                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2646
2647                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2648                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2649                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2650                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2651
2652                 let mut scids: Vec<u64> = vec![
2653                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2654                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2655                 ];
2656
2657                 // used for testing multipart reply across blocks
2658                 for block in 100000..=108001 {
2659                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2660                 }
2661
2662                 // used for testing resumption on same block
2663                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2664
2665                 for scid in scids {
2666                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2667                                 unsigned_announcement.short_channel_id = scid;
2668                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2669                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2670                                 Ok(_) => (),
2671                                 _ => panic!()
2672                         };
2673                 }
2674
2675                 // Error when number_of_blocks=0
2676                 do_handling_query_channel_range(
2677                         &gossip_sync,
2678                         &node_id_2,
2679                         QueryChannelRange {
2680                                 chain_hash: chain_hash.clone(),
2681                                 first_blocknum: 0,
2682                                 number_of_blocks: 0,
2683                         },
2684                         false,
2685                         vec![ReplyChannelRange {
2686                                 chain_hash: chain_hash.clone(),
2687                                 first_blocknum: 0,
2688                                 number_of_blocks: 0,
2689                                 sync_complete: true,
2690                                 short_channel_ids: vec![]
2691                         }]
2692                 );
2693
2694                 // Error when wrong chain
2695                 do_handling_query_channel_range(
2696                         &gossip_sync,
2697                         &node_id_2,
2698                         QueryChannelRange {
2699                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2700                                 first_blocknum: 0,
2701                                 number_of_blocks: 0xffff_ffff,
2702                         },
2703                         false,
2704                         vec![ReplyChannelRange {
2705                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2706                                 first_blocknum: 0,
2707                                 number_of_blocks: 0xffff_ffff,
2708                                 sync_complete: true,
2709                                 short_channel_ids: vec![],
2710                         }]
2711                 );
2712
2713                 // Error when first_blocknum > 0xffffff
2714                 do_handling_query_channel_range(
2715                         &gossip_sync,
2716                         &node_id_2,
2717                         QueryChannelRange {
2718                                 chain_hash: chain_hash.clone(),
2719                                 first_blocknum: 0x01000000,
2720                                 number_of_blocks: 0xffff_ffff,
2721                         },
2722                         false,
2723                         vec![ReplyChannelRange {
2724                                 chain_hash: chain_hash.clone(),
2725                                 first_blocknum: 0x01000000,
2726                                 number_of_blocks: 0xffff_ffff,
2727                                 sync_complete: true,
2728                                 short_channel_ids: vec![]
2729                         }]
2730                 );
2731
2732                 // Empty reply when max valid SCID block num
2733                 do_handling_query_channel_range(
2734                         &gossip_sync,
2735                         &node_id_2,
2736                         QueryChannelRange {
2737                                 chain_hash: chain_hash.clone(),
2738                                 first_blocknum: 0xffffff,
2739                                 number_of_blocks: 1,
2740                         },
2741                         true,
2742                         vec![
2743                                 ReplyChannelRange {
2744                                         chain_hash: chain_hash.clone(),
2745                                         first_blocknum: 0xffffff,
2746                                         number_of_blocks: 1,
2747                                         sync_complete: true,
2748                                         short_channel_ids: vec![]
2749                                 },
2750                         ]
2751                 );
2752
2753                 // No results in valid query range
2754                 do_handling_query_channel_range(
2755                         &gossip_sync,
2756                         &node_id_2,
2757                         QueryChannelRange {
2758                                 chain_hash: chain_hash.clone(),
2759                                 first_blocknum: 1000,
2760                                 number_of_blocks: 1000,
2761                         },
2762                         true,
2763                         vec![
2764                                 ReplyChannelRange {
2765                                         chain_hash: chain_hash.clone(),
2766                                         first_blocknum: 1000,
2767                                         number_of_blocks: 1000,
2768                                         sync_complete: true,
2769                                         short_channel_ids: vec![],
2770                                 }
2771                         ]
2772                 );
2773
2774                 // Overflow first_blocknum + number_of_blocks
2775                 do_handling_query_channel_range(
2776                         &gossip_sync,
2777                         &node_id_2,
2778                         QueryChannelRange {
2779                                 chain_hash: chain_hash.clone(),
2780                                 first_blocknum: 0xfe0000,
2781                                 number_of_blocks: 0xffffffff,
2782                         },
2783                         true,
2784                         vec![
2785                                 ReplyChannelRange {
2786                                         chain_hash: chain_hash.clone(),
2787                                         first_blocknum: 0xfe0000,
2788                                         number_of_blocks: 0xffffffff - 0xfe0000,
2789                                         sync_complete: true,
2790                                         short_channel_ids: vec![
2791                                                 0xfffffe_ffffff_ffff, // max
2792                                         ]
2793                                 }
2794                         ]
2795                 );
2796
2797                 // Single block exactly full
2798                 do_handling_query_channel_range(
2799                         &gossip_sync,
2800                         &node_id_2,
2801                         QueryChannelRange {
2802                                 chain_hash: chain_hash.clone(),
2803                                 first_blocknum: 100000,
2804                                 number_of_blocks: 8000,
2805                         },
2806                         true,
2807                         vec![
2808                                 ReplyChannelRange {
2809                                         chain_hash: chain_hash.clone(),
2810                                         first_blocknum: 100000,
2811                                         number_of_blocks: 8000,
2812                                         sync_complete: true,
2813                                         short_channel_ids: (100000..=107999)
2814                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2815                                                 .collect(),
2816                                 },
2817                         ]
2818                 );
2819
2820                 // Multiple split on new block
2821                 do_handling_query_channel_range(
2822                         &gossip_sync,
2823                         &node_id_2,
2824                         QueryChannelRange {
2825                                 chain_hash: chain_hash.clone(),
2826                                 first_blocknum: 100000,
2827                                 number_of_blocks: 8001,
2828                         },
2829                         true,
2830                         vec![
2831                                 ReplyChannelRange {
2832                                         chain_hash: chain_hash.clone(),
2833                                         first_blocknum: 100000,
2834                                         number_of_blocks: 7999,
2835                                         sync_complete: false,
2836                                         short_channel_ids: (100000..=107999)
2837                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2838                                                 .collect(),
2839                                 },
2840                                 ReplyChannelRange {
2841                                         chain_hash: chain_hash.clone(),
2842                                         first_blocknum: 107999,
2843                                         number_of_blocks: 2,
2844                                         sync_complete: true,
2845                                         short_channel_ids: vec![
2846                                                 scid_from_parts(108000, 0, 0).unwrap(),
2847                                         ],
2848                                 }
2849                         ]
2850                 );
2851
2852                 // Multiple split on same block
2853                 do_handling_query_channel_range(
2854                         &gossip_sync,
2855                         &node_id_2,
2856                         QueryChannelRange {
2857                                 chain_hash: chain_hash.clone(),
2858                                 first_blocknum: 100002,
2859                                 number_of_blocks: 8000,
2860                         },
2861                         true,
2862                         vec![
2863                                 ReplyChannelRange {
2864                                         chain_hash: chain_hash.clone(),
2865                                         first_blocknum: 100002,
2866                                         number_of_blocks: 7999,
2867                                         sync_complete: false,
2868                                         short_channel_ids: (100002..=108001)
2869                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2870                                                 .collect(),
2871                                 },
2872                                 ReplyChannelRange {
2873                                         chain_hash: chain_hash.clone(),
2874                                         first_blocknum: 108001,
2875                                         number_of_blocks: 1,
2876                                         sync_complete: true,
2877                                         short_channel_ids: vec![
2878                                                 scid_from_parts(108001, 1, 0).unwrap(),
2879                                         ],
2880                                 }
2881                         ]
2882                 );
2883         }
2884
2885         fn do_handling_query_channel_range(
2886                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2887                 test_node_id: &PublicKey,
2888                 msg: QueryChannelRange,
2889                 expected_ok: bool,
2890                 expected_replies: Vec<ReplyChannelRange>
2891         ) {
2892                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2893                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2894                 let query_end_blocknum = msg.end_blocknum();
2895                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2896
2897                 if expected_ok {
2898                         assert!(result.is_ok());
2899                 } else {
2900                         assert!(result.is_err());
2901                 }
2902
2903                 let events = gossip_sync.get_and_clear_pending_msg_events();
2904                 assert_eq!(events.len(), expected_replies.len());
2905
2906                 for i in 0..events.len() {
2907                         let expected_reply = &expected_replies[i];
2908                         match &events[i] {
2909                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2910                                         assert_eq!(node_id, test_node_id);
2911                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2912                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2913                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2914                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2915                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2916
2917                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2918                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2919                                         assert!(msg.first_blocknum >= max_firstblocknum);
2920                                         max_firstblocknum = msg.first_blocknum;
2921                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2922
2923                                         // Check that the last block count is >= the query's end_blocknum
2924                                         if i == events.len() - 1 {
2925                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2926                                         }
2927                                 },
2928                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2929                         }
2930                 }
2931         }
2932
2933         #[test]
2934         fn handling_query_short_channel_ids() {
2935                 let network_graph = create_network_graph();
2936                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2937                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2938                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2939
2940                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2941
2942                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2943                         chain_hash,
2944                         short_channel_ids: vec![0x0003e8_000000_0000],
2945                 });
2946                 assert!(result.is_err());
2947         }
2948
2949         #[test]
2950         fn displays_node_alias() {
2951                 let format_str_alias = |alias: &str| {
2952                         let mut bytes = [0u8; 32];
2953                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2954                         format!("{}", NodeAlias(bytes))
2955                 };
2956
2957                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2958                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2959                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2960
2961                 let format_bytes_alias = |alias: &[u8]| {
2962                         let mut bytes = [0u8; 32];
2963                         bytes[..alias.len()].copy_from_slice(alias);
2964                         format!("{}", NodeAlias(bytes))
2965                 };
2966
2967                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2968                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2969                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2970         }
2971
2972         #[test]
2973         fn channel_info_is_readable() {
2974                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2975                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2976                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2977                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2978
2979                 // 1. Test encoding/decoding of ChannelUpdateInfo
2980                 let chan_update_info = ChannelUpdateInfo {
2981                         last_update: 23,
2982                         enabled: true,
2983                         cltv_expiry_delta: 42,
2984                         htlc_minimum_msat: 1234,
2985                         htlc_maximum_msat: 5678,
2986                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2987                         last_update_message: None,
2988                 };
2989
2990                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2991                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2992
2993                 // First make sure we can read ChannelUpdateInfos we just wrote
2994                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
2995                 assert_eq!(chan_update_info, read_chan_update_info);
2996
2997                 // Check the serialization hasn't changed.
2998                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
2999                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3000
3001                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3002                 // or the ChannelUpdate enclosed with `last_update_message`.
3003                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3004                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3005                 assert!(read_chan_update_info_res.is_err());
3006
3007                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3008                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3009                 assert!(read_chan_update_info_res.is_err());
3010
3011                 // 2. Test encoding/decoding of ChannelInfo
3012                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3013                 let chan_info_none_updates = ChannelInfo {
3014                         features: ChannelFeatures::known(),
3015                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3016                         one_to_two: None,
3017                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3018                         two_to_one: None,
3019                         capacity_sats: None,
3020                         announcement_message: None,
3021                         announcement_received_time: 87654,
3022                 };
3023
3024                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3025                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3026
3027                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3028                 assert_eq!(chan_info_none_updates, read_chan_info);
3029
3030                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3031                 let chan_info_some_updates = ChannelInfo {
3032                         features: ChannelFeatures::known(),
3033                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3034                         one_to_two: Some(chan_update_info.clone()),
3035                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3036                         two_to_one: Some(chan_update_info.clone()),
3037                         capacity_sats: None,
3038                         announcement_message: None,
3039                         announcement_received_time: 87654,
3040                 };
3041
3042                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3043                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3044
3045                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3046                 assert_eq!(chan_info_some_updates, read_chan_info);
3047
3048                 // Check the serialization hasn't changed.
3049                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3050                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3051
3052                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3053                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3054                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3055                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3056                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3057                 assert_eq!(read_chan_info.one_to_two, None);
3058                 assert_eq!(read_chan_info.two_to_one, None);
3059
3060                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3061                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3062                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3063                 assert_eq!(read_chan_info.one_to_two, None);
3064                 assert_eq!(read_chan_info.two_to_one, None);
3065         }
3066
3067         #[test]
3068         fn node_info_is_readable() {
3069                 use std::convert::TryFrom;
3070
3071                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3072                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3073                 let valid_node_ann_info = NodeAnnouncementInfo {
3074                         features: NodeFeatures::known(),
3075                         last_update: 0,
3076                         rgb: [0u8; 3],
3077                         alias: NodeAlias([0u8; 32]),
3078                         addresses: vec![valid_netaddr],
3079                         announcement_message: None,
3080                 };
3081
3082                 let mut encoded_valid_node_ann_info = Vec::new();
3083                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3084                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3085                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3086
3087                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3088                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3089                 assert!(read_invalid_node_ann_info_res.is_err());
3090
3091                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3092                 let valid_node_info = NodeInfo {
3093                         channels: Vec::new(),
3094                         lowest_inbound_channel_fees: None,
3095                         announcement_info: Some(valid_node_ann_info),
3096                 };
3097
3098                 let mut encoded_valid_node_info = Vec::new();
3099                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3100                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3101                 assert_eq!(read_valid_node_info, valid_node_info);
3102
3103                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3104                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3105                 assert_eq!(read_invalid_node_info.announcement_info, None);
3106         }
3107 }
3108
3109 #[cfg(all(test, feature = "_bench_unstable"))]
3110 mod benches {
3111         use super::*;
3112
3113         use test::Bencher;
3114         use std::io::Read;
3115
3116         #[bench]
3117         fn read_network_graph(bench: &mut Bencher) {
3118                 let logger = ::util::test_utils::TestLogger::new();
3119                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3120                 let mut v = Vec::new();
3121                 d.read_to_end(&mut v).unwrap();
3122                 bench.iter(|| {
3123                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3124                 });
3125         }
3126
3127         #[bench]
3128         fn write_network_graph(bench: &mut Bencher) {
3129                 let logger = ::util::test_utils::TestLogger::new();
3130                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3131                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3132                 bench.iter(|| {
3133                         let _ = net_graph.encode();
3134                 });
3135         }
3136 }