47d7dab6d1132121a5da3bacf2e57cb52befb2ab
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
54 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
55
56 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
57 /// refuse to relay the message.
58 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
59
60 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
61 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
62 const MAX_SCIDS_PER_REPLY: usize = 8000;
63
64 /// Represents the compressed public key of a node
65 #[derive(Clone, Copy)]
66 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
67
68 impl NodeId {
69         /// Create a new NodeId from a public key
70         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
71                 NodeId(pubkey.serialize())
72         }
73
74         /// Get the public key slice from this NodeId
75         pub fn as_slice(&self) -> &[u8] {
76                 &self.0
77         }
78 }
79
80 impl fmt::Debug for NodeId {
81         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
82                 write!(f, "NodeId({})", log_bytes!(self.0))
83         }
84 }
85
86 impl core::hash::Hash for NodeId {
87         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
88                 self.0.hash(hasher);
89         }
90 }
91
92 impl Eq for NodeId {}
93
94 impl PartialEq for NodeId {
95         fn eq(&self, other: &Self) -> bool {
96                 self.0[..] == other.0[..]
97         }
98 }
99
100 impl cmp::PartialOrd for NodeId {
101         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
102                 Some(self.cmp(other))
103         }
104 }
105
106 impl Ord for NodeId {
107         fn cmp(&self, other: &Self) -> cmp::Ordering {
108                 self.0[..].cmp(&other.0[..])
109         }
110 }
111
112 impl Writeable for NodeId {
113         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
114                 writer.write_all(&self.0)?;
115                 Ok(())
116         }
117 }
118
119 impl Readable for NodeId {
120         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
121                 let mut buf = [0; PUBLIC_KEY_SIZE];
122                 reader.read_exact(&mut buf)?;
123                 Ok(Self(buf))
124         }
125 }
126
127 /// Represents the network as nodes and channels between them
128 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
129         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
130         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
131         genesis_hash: BlockHash,
132         logger: L,
133         // Lock order: channels -> nodes
134         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
135         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
136         // Lock order: removed_channels -> removed_nodes
137         //
138         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
139         // of `std::time::Instant`s for a few reasons:
140         //   * We want it to be possible to do tracking in no-std environments where we can compare
141         //     a provided current UNIX timestamp with the time at which we started tracking.
142         //   * In the future, if we decide to persist these maps, they will already be serializable.
143         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
144         //     environment should be practical over the time period we are considering (on the order of a
145         //     week).
146         //
147         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
148         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
149         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
150         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
151         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
152         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
153         /// that once some time passes, we can potentially resync it from gossip again.
154         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
155 }
156
157 /// A read-only view of [`NetworkGraph`].
158 pub struct ReadOnlyNetworkGraph<'a> {
159         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
160         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
161 }
162
163 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
164 /// return packet by a node along the route. See [BOLT #4] for details.
165 ///
166 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
167 #[derive(Clone, Debug, PartialEq, Eq)]
168 pub enum NetworkUpdate {
169         /// An error indicating a `channel_update` messages should be applied via
170         /// [`NetworkGraph::update_channel`].
171         ChannelUpdateMessage {
172                 /// The update to apply via [`NetworkGraph::update_channel`].
173                 msg: ChannelUpdate,
174         },
175         /// An error indicating that a channel failed to route a payment, which should be applied via
176         /// [`NetworkGraph::channel_failed`].
177         ChannelFailure {
178                 /// The short channel id of the closed channel.
179                 short_channel_id: u64,
180                 /// Whether the channel should be permanently removed or temporarily disabled until a new
181                 /// `channel_update` message is received.
182                 is_permanent: bool,
183         },
184         /// An error indicating that a node failed to route a payment, which should be applied via
185         /// [`NetworkGraph::node_failed_permanent`] if permanent.
186         NodeFailure {
187                 /// The node id of the failed node.
188                 node_id: PublicKey,
189                 /// Whether the node should be permanently removed from consideration or can be restored
190                 /// when a new `channel_update` message is received.
191                 is_permanent: bool,
192         }
193 }
194
195 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
196         (0, ChannelUpdateMessage) => {
197                 (0, msg, required),
198         },
199         (2, ChannelFailure) => {
200                 (0, short_channel_id, required),
201                 (2, is_permanent, required),
202         },
203         (4, NodeFailure) => {
204                 (0, node_id, required),
205                 (2, is_permanent, required),
206         },
207 );
208
209 /// Receives and validates network updates from peers,
210 /// stores authentic and relevant data as a network graph.
211 /// This network graph is then used for routing payments.
212 /// Provides interface to help with initial routing sync by
213 /// serving historical announcements.
214 ///
215 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
216 /// [`NetworkGraph`].
217 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
218 where C::Target: chain::Access, L::Target: Logger
219 {
220         network_graph: G,
221         chain_access: Option<C>,
222         #[cfg(feature = "std")]
223         full_syncs_requested: AtomicUsize,
224         pending_events: Mutex<Vec<MessageSendEvent>>,
225         logger: L,
226 }
227
228 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
229 where C::Target: chain::Access, L::Target: Logger
230 {
231         /// Creates a new tracker of the actual state of the network of channels and nodes,
232         /// assuming an existing Network Graph.
233         /// Chain monitor is used to make sure announced channels exist on-chain,
234         /// channel data is correct, and that the announcement is signed with
235         /// channel owners' keys.
236         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
237                 P2PGossipSync {
238                         network_graph,
239                         #[cfg(feature = "std")]
240                         full_syncs_requested: AtomicUsize::new(0),
241                         chain_access,
242                         pending_events: Mutex::new(vec![]),
243                         logger,
244                 }
245         }
246
247         /// Adds a provider used to check new announcements. Does not affect
248         /// existing announcements unless they are updated.
249         /// Add, update or remove the provider would replace the current one.
250         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
251                 self.chain_access = chain_access;
252         }
253
254         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
255         /// [`P2PGossipSync::new`].
256         ///
257         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
258         pub fn network_graph(&self) -> &G {
259                 &self.network_graph
260         }
261
262         #[cfg(feature = "std")]
263         /// Returns true when a full routing table sync should be performed with a peer.
264         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
265                 //TODO: Determine whether to request a full sync based on the network map.
266                 const FULL_SYNCS_TO_REQUEST: usize = 5;
267                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
268                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
269                         true
270                 } else {
271                         false
272                 }
273         }
274 }
275
276 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
277         fn handle_event(&self, event: &Event) {
278                 if let Event::PaymentPathFailed { network_update, .. } = event {
279                         if let Some(network_update) = network_update {
280                                 match *network_update {
281                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
282                                                 let short_channel_id = msg.contents.short_channel_id;
283                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
284                                                 let status = if is_enabled { "enabled" } else { "disabled" };
285                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
286                                                 let _ = self.update_channel(msg);
287                                         },
288                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
289                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
290                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
291                                                 self.channel_failed(short_channel_id, is_permanent);
292                                         },
293                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
294                                                 if is_permanent {
295                                                         log_debug!(self.logger,
296                                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
297                                                         self.node_failed_permanent(node_id);
298                                                 };
299                                         },
300                                 }
301                         }
302                 }
303         }
304 }
305
306 macro_rules! secp_verify_sig {
307         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
308                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
309                         Ok(_) => {},
310                         Err(_) => {
311                                 return Err(LightningError {
312                                         err: format!("Invalid signature on {} message", $msg_type),
313                                         action: ErrorAction::SendWarningMessage {
314                                                 msg: msgs::WarningMessage {
315                                                         channel_id: [0; 32],
316                                                         data: format!("Invalid signature on {} message", $msg_type),
317                                                 },
318                                                 log_level: Level::Trace,
319                                         },
320                                 });
321                         },
322                 }
323         };
324 }
325
326 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
327 where C::Target: chain::Access, L::Target: Logger
328 {
329         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
330                 self.network_graph.update_node_from_announcement(msg)?;
331                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
332                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
333                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
334         }
335
336         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
337                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
338                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
339                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
340         }
341
342         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
343                 self.network_graph.update_channel(msg)?;
344                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
345         }
346
347         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
348                 let channels = self.network_graph.channels.read().unwrap();
349                 for (_, ref chan) in channels.range(starting_point..) {
350                         if chan.announcement_message.is_some() {
351                                 let chan_announcement = chan.announcement_message.clone().unwrap();
352                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
353                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
354                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
355                                         one_to_two_announcement = one_to_two.last_update_message.clone();
356                                 }
357                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
358                                         two_to_one_announcement = two_to_one.last_update_message.clone();
359                                 }
360                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
361                         } else {
362                                 // TODO: We may end up sending un-announced channel_updates if we are sending
363                                 // initial sync data while receiving announce/updates for this channel.
364                         }
365                 }
366                 None
367         }
368
369         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
370                 let nodes = self.network_graph.nodes.read().unwrap();
371                 let iter = if let Some(pubkey) = starting_point {
372                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
373                         } else {
374                                 nodes.range(..)
375                         };
376                 for (_, ref node) in iter {
377                         if let Some(node_info) = node.announcement_info.as_ref() {
378                                 if let Some(msg) = node_info.announcement_message.clone() {
379                                         return Some(msg);
380                                 }
381                         }
382                 }
383                 None
384         }
385
386         /// Initiates a stateless sync of routing gossip information with a peer
387         /// using gossip_queries. The default strategy used by this implementation
388         /// is to sync the full block range with several peers.
389         ///
390         /// We should expect one or more reply_channel_range messages in response
391         /// to our query_channel_range. Each reply will enqueue a query_scid message
392         /// to request gossip messages for each channel. The sync is considered complete
393         /// when the final reply_scids_end message is received, though we are not
394         /// tracking this directly.
395         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
396                 // We will only perform a sync with peers that support gossip_queries.
397                 if !init_msg.features.supports_gossip_queries() {
398                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
399                         // channels with peers even without being able to exchange gossip.
400                         return Ok(());
401                 }
402
403                 // The lightning network's gossip sync system is completely broken in numerous ways.
404                 //
405                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
406                 // to do a full sync from the first few peers we connect to, and then receive gossip
407                 // updates from all our peers normally.
408                 //
409                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
410                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
411                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
412                 // seen.
413                 //
414                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
415                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
416                 // channel data which you are missing. Except there was no way at all to identify which
417                 // `channel_update`s you were missing, so you still had to request everything, just in a
418                 // very complicated way with some queries instead of just getting the dump.
419                 //
420                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
421                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
422                 // relying on it useless.
423                 //
424                 // After gossip queries were introduced, support for receiving a full gossip table dump on
425                 // connection was removed from several nodes, making it impossible to get a full sync
426                 // without using the "gossip queries" messages.
427                 //
428                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
429                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
430                 // message, as the name implies, tells the peer to not forward any gossip messages with a
431                 // timestamp older than a given value (not the time the peer received the filter, but the
432                 // timestamp in the update message, which is often hours behind when the peer received the
433                 // message).
434                 //
435                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
436                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
437                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
438                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
439                 // will simply not forward any new updates they see to you which were generated some time
440                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
441                 // ago), you will always get the full routing graph from all your peers.
442                 //
443                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
444                 // propagated some time after it was generated, and, worse, often disable gossiping with
445                 // several peers after their first connection. The second behavior can cause gossip to not
446                 // propagate fully if there are cuts in the gossiping subgraph.
447                 //
448                 // In an attempt to cut a middle ground between always fetching the full graph from all of
449                 // our peers and never receiving gossip from peers at all, we send all of our peers a
450                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
451                 //
452                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
453                 #[allow(unused_mut, unused_assignments)]
454                 let mut gossip_start_time = 0;
455                 #[cfg(feature = "std")]
456                 {
457                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
458                         if self.should_request_full_sync(&their_node_id) {
459                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
460                         } else {
461                                 gossip_start_time -= 60 * 60; // an hour ago
462                         }
463                 }
464
465                 let mut pending_events = self.pending_events.lock().unwrap();
466                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
467                         node_id: their_node_id.clone(),
468                         msg: GossipTimestampFilter {
469                                 chain_hash: self.network_graph.genesis_hash,
470                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
471                                 timestamp_range: u32::max_value(),
472                         },
473                 });
474                 Ok(())
475         }
476
477         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
478                 // We don't make queries, so should never receive replies. If, in the future, the set
479                 // reconciliation extensions to gossip queries become broadly supported, we should revert
480                 // this code to its state pre-0.0.106.
481                 Ok(())
482         }
483
484         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
485                 // We don't make queries, so should never receive replies. If, in the future, the set
486                 // reconciliation extensions to gossip queries become broadly supported, we should revert
487                 // this code to its state pre-0.0.106.
488                 Ok(())
489         }
490
491         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
492         /// are in the specified block range. Due to message size limits, large range
493         /// queries may result in several reply messages. This implementation enqueues
494         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
495         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
496         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
497         /// memory constrained systems.
498         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
499                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
500
501                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
502
503                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
504                 // If so, we manually cap the ending block to avoid this overflow.
505                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
506
507                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
508                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
509                         let mut pending_events = self.pending_events.lock().unwrap();
510                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
511                                 node_id: their_node_id.clone(),
512                                 msg: ReplyChannelRange {
513                                         chain_hash: msg.chain_hash.clone(),
514                                         first_blocknum: msg.first_blocknum,
515                                         number_of_blocks: msg.number_of_blocks,
516                                         sync_complete: true,
517                                         short_channel_ids: vec![],
518                                 }
519                         });
520                         return Err(LightningError {
521                                 err: String::from("query_channel_range could not be processed"),
522                                 action: ErrorAction::IgnoreError,
523                         });
524                 }
525
526                 // Creates channel batches. We are not checking if the channel is routable
527                 // (has at least one update). A peer may still want to know the channel
528                 // exists even if its not yet routable.
529                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
530                 let channels = self.network_graph.channels.read().unwrap();
531                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
532                         if let Some(chan_announcement) = &chan.announcement_message {
533                                 // Construct a new batch if last one is full
534                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
535                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
536                                 }
537
538                                 let batch = batches.last_mut().unwrap();
539                                 batch.push(chan_announcement.contents.short_channel_id);
540                         }
541                 }
542                 drop(channels);
543
544                 let mut pending_events = self.pending_events.lock().unwrap();
545                 let batch_count = batches.len();
546                 let mut prev_batch_endblock = msg.first_blocknum;
547                 for (batch_index, batch) in batches.into_iter().enumerate() {
548                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
549                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
550                         //
551                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
552                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
553                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
554                         // significant diversion from the requirements set by the spec, and, in case of blocks
555                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
556                         // and *not* derive the first_blocknum from the actual first block of the reply.
557                         let first_blocknum = prev_batch_endblock;
558
559                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
560                         // fit in. Though there is no requirement that we use exactly the number of blocks its
561                         // contents are from, except for the bogus requirements c-lightning enforces, above.
562                         //
563                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
564                         // >= the query's end block. Thus, for the last reply, we calculate the difference
565                         // between the query's end block and the start of the reply.
566                         //
567                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
568                         // first_blocknum will be either msg.first_blocknum or a higher block height.
569                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
570                                 (true, msg.end_blocknum() - first_blocknum)
571                         }
572                         // Prior replies should use the number of blocks that fit into the reply. Overflow
573                         // safe since first_blocknum is always <= last SCID's block.
574                         else {
575                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
576                         };
577
578                         prev_batch_endblock = first_blocknum + number_of_blocks;
579
580                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
581                                 node_id: their_node_id.clone(),
582                                 msg: ReplyChannelRange {
583                                         chain_hash: msg.chain_hash.clone(),
584                                         first_blocknum,
585                                         number_of_blocks,
586                                         sync_complete,
587                                         short_channel_ids: batch,
588                                 }
589                         });
590                 }
591
592                 Ok(())
593         }
594
595         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
596                 // TODO
597                 Err(LightningError {
598                         err: String::from("Not implemented"),
599                         action: ErrorAction::IgnoreError,
600                 })
601         }
602
603         fn provided_node_features(&self) -> NodeFeatures {
604                 let mut features = NodeFeatures::empty();
605                 features.set_gossip_queries_optional();
606                 features
607         }
608
609         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
610                 let mut features = InitFeatures::empty();
611                 features.set_gossip_queries_optional();
612                 features
613         }
614 }
615
616 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
617 where
618         C::Target: chain::Access,
619         L::Target: Logger,
620 {
621         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
622                 let mut ret = Vec::new();
623                 let mut pending_events = self.pending_events.lock().unwrap();
624                 core::mem::swap(&mut ret, &mut pending_events);
625                 ret
626         }
627 }
628
629 #[derive(Clone, Debug, PartialEq, Eq)]
630 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
631 pub struct ChannelUpdateInfo {
632         /// When the last update to the channel direction was issued.
633         /// Value is opaque, as set in the announcement.
634         pub last_update: u32,
635         /// Whether the channel can be currently used for payments (in this one direction).
636         pub enabled: bool,
637         /// The difference in CLTV values that you must have when routing through this channel.
638         pub cltv_expiry_delta: u16,
639         /// The minimum value, which must be relayed to the next hop via the channel
640         pub htlc_minimum_msat: u64,
641         /// The maximum value which may be relayed to the next hop via the channel.
642         pub htlc_maximum_msat: u64,
643         /// Fees charged when the channel is used for routing
644         pub fees: RoutingFees,
645         /// Most recent update for the channel received from the network
646         /// Mostly redundant with the data we store in fields explicitly.
647         /// Everything else is useful only for sending out for initial routing sync.
648         /// Not stored if contains excess data to prevent DoS.
649         pub last_update_message: Option<ChannelUpdate>,
650 }
651
652 impl fmt::Display for ChannelUpdateInfo {
653         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
654                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
655                 Ok(())
656         }
657 }
658
659 impl Writeable for ChannelUpdateInfo {
660         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
661                 write_tlv_fields!(writer, {
662                         (0, self.last_update, required),
663                         (2, self.enabled, required),
664                         (4, self.cltv_expiry_delta, required),
665                         (6, self.htlc_minimum_msat, required),
666                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
667                         // compatibility with LDK versions prior to v0.0.110.
668                         (8, Some(self.htlc_maximum_msat), required),
669                         (10, self.fees, required),
670                         (12, self.last_update_message, required),
671                 });
672                 Ok(())
673         }
674 }
675
676 impl Readable for ChannelUpdateInfo {
677         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
678                 init_tlv_field_var!(last_update, required);
679                 init_tlv_field_var!(enabled, required);
680                 init_tlv_field_var!(cltv_expiry_delta, required);
681                 init_tlv_field_var!(htlc_minimum_msat, required);
682                 init_tlv_field_var!(htlc_maximum_msat, option);
683                 init_tlv_field_var!(fees, required);
684                 init_tlv_field_var!(last_update_message, required);
685
686                 read_tlv_fields!(reader, {
687                         (0, last_update, required),
688                         (2, enabled, required),
689                         (4, cltv_expiry_delta, required),
690                         (6, htlc_minimum_msat, required),
691                         (8, htlc_maximum_msat, required),
692                         (10, fees, required),
693                         (12, last_update_message, required)
694                 });
695
696                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
697                         Ok(ChannelUpdateInfo {
698                                 last_update: init_tlv_based_struct_field!(last_update, required),
699                                 enabled: init_tlv_based_struct_field!(enabled, required),
700                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
701                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
702                                 htlc_maximum_msat,
703                                 fees: init_tlv_based_struct_field!(fees, required),
704                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
705                         })
706                 } else {
707                         Err(DecodeError::InvalidValue)
708                 }
709         }
710 }
711
712 #[derive(Clone, Debug, PartialEq, Eq)]
713 /// Details about a channel (both directions).
714 /// Received within a channel announcement.
715 pub struct ChannelInfo {
716         /// Protocol features of a channel communicated during its announcement
717         pub features: ChannelFeatures,
718         /// Source node of the first direction of a channel
719         pub node_one: NodeId,
720         /// Details about the first direction of a channel
721         pub one_to_two: Option<ChannelUpdateInfo>,
722         /// Source node of the second direction of a channel
723         pub node_two: NodeId,
724         /// Details about the second direction of a channel
725         pub two_to_one: Option<ChannelUpdateInfo>,
726         /// The channel capacity as seen on-chain, if chain lookup is available.
727         pub capacity_sats: Option<u64>,
728         /// An initial announcement of the channel
729         /// Mostly redundant with the data we store in fields explicitly.
730         /// Everything else is useful only for sending out for initial routing sync.
731         /// Not stored if contains excess data to prevent DoS.
732         pub announcement_message: Option<ChannelAnnouncement>,
733         /// The timestamp when we received the announcement, if we are running with feature = "std"
734         /// (which we can probably assume we are - no-std environments probably won't have a full
735         /// network graph in memory!).
736         announcement_received_time: u64,
737 }
738
739 impl ChannelInfo {
740         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
741         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
742         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
743                 let (direction, source) = {
744                         if target == &self.node_one {
745                                 (self.two_to_one.as_ref(), &self.node_two)
746                         } else if target == &self.node_two {
747                                 (self.one_to_two.as_ref(), &self.node_one)
748                         } else {
749                                 return None;
750                         }
751                 };
752                 Some((DirectedChannelInfo::new(self, direction), source))
753         }
754
755         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
756         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
757         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
758                 let (direction, target) = {
759                         if source == &self.node_one {
760                                 (self.one_to_two.as_ref(), &self.node_two)
761                         } else if source == &self.node_two {
762                                 (self.two_to_one.as_ref(), &self.node_one)
763                         } else {
764                                 return None;
765                         }
766                 };
767                 Some((DirectedChannelInfo::new(self, direction), target))
768         }
769
770         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
771         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
772                 let direction = channel_flags & 1u8;
773                 if direction == 0 {
774                         self.one_to_two.as_ref()
775                 } else {
776                         self.two_to_one.as_ref()
777                 }
778         }
779 }
780
781 impl fmt::Display for ChannelInfo {
782         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
783                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
784                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
785                 Ok(())
786         }
787 }
788
789 impl Writeable for ChannelInfo {
790         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
791                 write_tlv_fields!(writer, {
792                         (0, self.features, required),
793                         (1, self.announcement_received_time, (default_value, 0)),
794                         (2, self.node_one, required),
795                         (4, self.one_to_two, required),
796                         (6, self.node_two, required),
797                         (8, self.two_to_one, required),
798                         (10, self.capacity_sats, required),
799                         (12, self.announcement_message, required),
800                 });
801                 Ok(())
802         }
803 }
804
805 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
806 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
807 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
808 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
809 // channel updates via the gossip network.
810 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
811
812 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
813         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
814                 match ::util::ser::Readable::read(reader) {
815                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
816                         Err(DecodeError::ShortRead) => Ok(None),
817                         Err(DecodeError::InvalidValue) => Ok(None),
818                         Err(err) => Err(err),
819                 }
820         }
821 }
822
823 impl Readable for ChannelInfo {
824         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
825                 init_tlv_field_var!(features, required);
826                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
827                 init_tlv_field_var!(node_one, required);
828                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
829                 init_tlv_field_var!(node_two, required);
830                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
831                 init_tlv_field_var!(capacity_sats, required);
832                 init_tlv_field_var!(announcement_message, required);
833                 read_tlv_fields!(reader, {
834                         (0, features, required),
835                         (1, announcement_received_time, (default_value, 0)),
836                         (2, node_one, required),
837                         (4, one_to_two_wrap, ignorable),
838                         (6, node_two, required),
839                         (8, two_to_one_wrap, ignorable),
840                         (10, capacity_sats, required),
841                         (12, announcement_message, required),
842                 });
843
844                 Ok(ChannelInfo {
845                         features: init_tlv_based_struct_field!(features, required),
846                         node_one: init_tlv_based_struct_field!(node_one, required),
847                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
848                         node_two: init_tlv_based_struct_field!(node_two, required),
849                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
850                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
851                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
852                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
853                 })
854         }
855 }
856
857 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
858 /// source node to a target node.
859 #[derive(Clone)]
860 pub struct DirectedChannelInfo<'a> {
861         channel: &'a ChannelInfo,
862         direction: Option<&'a ChannelUpdateInfo>,
863         htlc_maximum_msat: u64,
864         effective_capacity: EffectiveCapacity,
865 }
866
867 impl<'a> DirectedChannelInfo<'a> {
868         #[inline]
869         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
870                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
871                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
872
873                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
874                         (Some(amount_msat), Some(capacity_msat)) => {
875                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
876                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
877                         },
878                         (Some(amount_msat), None) => {
879                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
880                         },
881                         (None, Some(capacity_msat)) => {
882                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
883                         },
884                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
885                 };
886
887                 Self {
888                         channel, direction, htlc_maximum_msat, effective_capacity
889                 }
890         }
891
892         /// Returns information for the channel.
893         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
894
895         /// Returns information for the direction.
896         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
897
898         /// Returns the maximum HTLC amount allowed over the channel in the direction.
899         pub fn htlc_maximum_msat(&self) -> u64 {
900                 self.htlc_maximum_msat
901         }
902
903         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
904         ///
905         /// This is either the total capacity from the funding transaction, if known, or the
906         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
907         /// otherwise.
908         pub fn effective_capacity(&self) -> EffectiveCapacity {
909                 self.effective_capacity
910         }
911
912         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
913         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
914                 match self.direction {
915                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
916                         None => None,
917                 }
918         }
919 }
920
921 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
922         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
923                 f.debug_struct("DirectedChannelInfo")
924                         .field("channel", &self.channel)
925                         .finish()
926         }
927 }
928
929 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
930 #[derive(Clone)]
931 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
932         inner: DirectedChannelInfo<'a>,
933 }
934
935 impl<'a> DirectedChannelInfoWithUpdate<'a> {
936         /// Returns information for the channel.
937         #[inline]
938         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
939
940         /// Returns information for the direction.
941         #[inline]
942         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
943
944         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
945         #[inline]
946         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
947 }
948
949 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
950         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
951                 self.inner.fmt(f)
952         }
953 }
954
955 /// The effective capacity of a channel for routing purposes.
956 ///
957 /// While this may be smaller than the actual channel capacity, amounts greater than
958 /// [`Self::as_msat`] should not be routed through the channel.
959 #[derive(Clone, Copy, Debug)]
960 pub enum EffectiveCapacity {
961         /// The available liquidity in the channel known from being a channel counterparty, and thus a
962         /// direct hop.
963         ExactLiquidity {
964                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
965                 /// millisatoshi.
966                 liquidity_msat: u64,
967         },
968         /// The maximum HTLC amount in one direction as advertised on the gossip network.
969         MaximumHTLC {
970                 /// The maximum HTLC amount denominated in millisatoshi.
971                 amount_msat: u64,
972         },
973         /// The total capacity of the channel as determined by the funding transaction.
974         Total {
975                 /// The funding amount denominated in millisatoshi.
976                 capacity_msat: u64,
977                 /// The maximum HTLC amount denominated in millisatoshi.
978                 htlc_maximum_msat: Option<u64>
979         },
980         /// A capacity sufficient to route any payment, typically used for private channels provided by
981         /// an invoice.
982         Infinite,
983         /// A capacity that is unknown possibly because either the chain state is unavailable to know
984         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
985         Unknown,
986 }
987
988 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
989 /// use when making routing decisions.
990 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
991
992 impl EffectiveCapacity {
993         /// Returns the effective capacity denominated in millisatoshi.
994         pub fn as_msat(&self) -> u64 {
995                 match self {
996                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
997                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
998                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
999                         EffectiveCapacity::Infinite => u64::max_value(),
1000                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1001                 }
1002         }
1003 }
1004
1005 /// Fees for routing via a given channel or a node
1006 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1007 pub struct RoutingFees {
1008         /// Flat routing fee in satoshis
1009         pub base_msat: u32,
1010         /// Liquidity-based routing fee in millionths of a routed amount.
1011         /// In other words, 10000 is 1%.
1012         pub proportional_millionths: u32,
1013 }
1014
1015 impl_writeable_tlv_based!(RoutingFees, {
1016         (0, base_msat, required),
1017         (2, proportional_millionths, required)
1018 });
1019
1020 #[derive(Clone, Debug, PartialEq, Eq)]
1021 /// Information received in the latest node_announcement from this node.
1022 pub struct NodeAnnouncementInfo {
1023         /// Protocol features the node announced support for
1024         pub features: NodeFeatures,
1025         /// When the last known update to the node state was issued.
1026         /// Value is opaque, as set in the announcement.
1027         pub last_update: u32,
1028         /// Color assigned to the node
1029         pub rgb: [u8; 3],
1030         /// Moniker assigned to the node.
1031         /// May be invalid or malicious (eg control chars),
1032         /// should not be exposed to the user.
1033         pub alias: NodeAlias,
1034         /// Internet-level addresses via which one can connect to the node
1035         pub addresses: Vec<NetAddress>,
1036         /// An initial announcement of the node
1037         /// Mostly redundant with the data we store in fields explicitly.
1038         /// Everything else is useful only for sending out for initial routing sync.
1039         /// Not stored if contains excess data to prevent DoS.
1040         pub announcement_message: Option<NodeAnnouncement>
1041 }
1042
1043 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1044         (0, features, required),
1045         (2, last_update, required),
1046         (4, rgb, required),
1047         (6, alias, required),
1048         (8, announcement_message, option),
1049         (10, addresses, vec_type),
1050 });
1051
1052 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1053 ///
1054 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1055 /// attacks. Care must be taken when processing.
1056 #[derive(Clone, Debug, PartialEq, Eq)]
1057 pub struct NodeAlias(pub [u8; 32]);
1058
1059 impl fmt::Display for NodeAlias {
1060         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1061                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1062                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1063                 let bytes = self.0.split_at(first_null).0;
1064                 match core::str::from_utf8(bytes) {
1065                         Ok(alias) => {
1066                                 for c in alias.chars() {
1067                                         let mut bytes = [0u8; 4];
1068                                         let c = if !c.is_control() { c } else { control_symbol };
1069                                         f.write_str(c.encode_utf8(&mut bytes))?;
1070                                 }
1071                         },
1072                         Err(_) => {
1073                                 for c in bytes.iter().map(|b| *b as char) {
1074                                         // Display printable ASCII characters
1075                                         let mut bytes = [0u8; 4];
1076                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1077                                         f.write_str(c.encode_utf8(&mut bytes))?;
1078                                 }
1079                         },
1080                 };
1081                 Ok(())
1082         }
1083 }
1084
1085 impl Writeable for NodeAlias {
1086         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1087                 self.0.write(w)
1088         }
1089 }
1090
1091 impl Readable for NodeAlias {
1092         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1093                 Ok(NodeAlias(Readable::read(r)?))
1094         }
1095 }
1096
1097 #[derive(Clone, Debug, PartialEq, Eq)]
1098 /// Details about a node in the network, known from the network announcement.
1099 pub struct NodeInfo {
1100         /// All valid channels a node has announced
1101         pub channels: Vec<u64>,
1102         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1103         /// The two fields (flat and proportional fee) are independent,
1104         /// meaning they don't have to refer to the same channel.
1105         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1106         /// More information about a node from node_announcement.
1107         /// Optional because we store a Node entry after learning about it from
1108         /// a channel announcement, but before receiving a node announcement.
1109         pub announcement_info: Option<NodeAnnouncementInfo>
1110 }
1111
1112 impl fmt::Display for NodeInfo {
1113         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1114                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1115                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1116                 Ok(())
1117         }
1118 }
1119
1120 impl Writeable for NodeInfo {
1121         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1122                 write_tlv_fields!(writer, {
1123                         (0, self.lowest_inbound_channel_fees, option),
1124                         (2, self.announcement_info, option),
1125                         (4, self.channels, vec_type),
1126                 });
1127                 Ok(())
1128         }
1129 }
1130
1131 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1132 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1133 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1134 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1135 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1136
1137 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1138         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1139                 match ::util::ser::Readable::read(reader) {
1140                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1141                         Err(_) => {
1142                                 copy(reader, &mut sink()).unwrap();
1143                                 return Ok(None)
1144                         },
1145                 };
1146         }
1147 }
1148
1149 impl Readable for NodeInfo {
1150         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1151                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1152                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1153                 init_tlv_field_var!(channels, vec_type);
1154
1155                 read_tlv_fields!(reader, {
1156                         (0, lowest_inbound_channel_fees, option),
1157                         (2, announcement_info_wrap, ignorable),
1158                         (4, channels, vec_type),
1159                 });
1160
1161                 Ok(NodeInfo {
1162                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1163                         announcement_info: announcement_info_wrap.map(|w| w.0),
1164                         channels: init_tlv_based_struct_field!(channels, vec_type),
1165                 })
1166         }
1167 }
1168
1169 const SERIALIZATION_VERSION: u8 = 1;
1170 const MIN_SERIALIZATION_VERSION: u8 = 1;
1171
1172 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1173         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1174                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1175
1176                 self.genesis_hash.write(writer)?;
1177                 let channels = self.channels.read().unwrap();
1178                 (channels.len() as u64).write(writer)?;
1179                 for (ref chan_id, ref chan_info) in channels.iter() {
1180                         (*chan_id).write(writer)?;
1181                         chan_info.write(writer)?;
1182                 }
1183                 let nodes = self.nodes.read().unwrap();
1184                 (nodes.len() as u64).write(writer)?;
1185                 for (ref node_id, ref node_info) in nodes.iter() {
1186                         node_id.write(writer)?;
1187                         node_info.write(writer)?;
1188                 }
1189
1190                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1191                 write_tlv_fields!(writer, {
1192                         (1, last_rapid_gossip_sync_timestamp, option),
1193                 });
1194                 Ok(())
1195         }
1196 }
1197
1198 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1199         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1200                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1201
1202                 let genesis_hash: BlockHash = Readable::read(reader)?;
1203                 let channels_count: u64 = Readable::read(reader)?;
1204                 let mut channels = BTreeMap::new();
1205                 for _ in 0..channels_count {
1206                         let chan_id: u64 = Readable::read(reader)?;
1207                         let chan_info = Readable::read(reader)?;
1208                         channels.insert(chan_id, chan_info);
1209                 }
1210                 let nodes_count: u64 = Readable::read(reader)?;
1211                 let mut nodes = BTreeMap::new();
1212                 for _ in 0..nodes_count {
1213                         let node_id = Readable::read(reader)?;
1214                         let node_info = Readable::read(reader)?;
1215                         nodes.insert(node_id, node_info);
1216                 }
1217
1218                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1219                 read_tlv_fields!(reader, {
1220                         (1, last_rapid_gossip_sync_timestamp, option),
1221                 });
1222
1223                 Ok(NetworkGraph {
1224                         secp_ctx: Secp256k1::verification_only(),
1225                         genesis_hash,
1226                         logger,
1227                         channels: RwLock::new(channels),
1228                         nodes: RwLock::new(nodes),
1229                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1230                         removed_nodes: Mutex::new(HashMap::new()),
1231                         removed_channels: Mutex::new(HashMap::new()),
1232                 })
1233         }
1234 }
1235
1236 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1237         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1238                 writeln!(f, "Network map\n[Channels]")?;
1239                 for (key, val) in self.channels.read().unwrap().iter() {
1240                         writeln!(f, " {}: {}", key, val)?;
1241                 }
1242                 writeln!(f, "[Nodes]")?;
1243                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1244                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1245                 }
1246                 Ok(())
1247         }
1248 }
1249
1250 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1251 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1252         fn eq(&self, other: &Self) -> bool {
1253                 self.genesis_hash == other.genesis_hash &&
1254                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1255                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1256         }
1257 }
1258
1259 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1260         /// Creates a new, empty, network graph.
1261         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1262                 Self {
1263                         secp_ctx: Secp256k1::verification_only(),
1264                         genesis_hash,
1265                         logger,
1266                         channels: RwLock::new(BTreeMap::new()),
1267                         nodes: RwLock::new(BTreeMap::new()),
1268                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1269                         removed_channels: Mutex::new(HashMap::new()),
1270                         removed_nodes: Mutex::new(HashMap::new()),
1271                 }
1272         }
1273
1274         /// Returns a read-only view of the network graph.
1275         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1276                 let channels = self.channels.read().unwrap();
1277                 let nodes = self.nodes.read().unwrap();
1278                 ReadOnlyNetworkGraph {
1279                         channels,
1280                         nodes,
1281                 }
1282         }
1283
1284         /// The unix timestamp provided by the most recent rapid gossip sync.
1285         /// It will be set by the rapid sync process after every sync completion.
1286         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1287                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1288         }
1289
1290         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1291         /// This should be done automatically by the rapid sync process after every sync completion.
1292         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1293                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1294         }
1295
1296         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1297         /// purposes.
1298         #[cfg(test)]
1299         pub fn clear_nodes_announcement_info(&self) {
1300                 for node in self.nodes.write().unwrap().iter_mut() {
1301                         node.1.announcement_info = None;
1302                 }
1303         }
1304
1305         /// For an already known node (from channel announcements), update its stored properties from a
1306         /// given node announcement.
1307         ///
1308         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1309         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1310         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1311         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1312                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1313                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1314                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1315         }
1316
1317         /// For an already known node (from channel announcements), update its stored properties from a
1318         /// given node announcement without verifying the associated signatures. Because we aren't
1319         /// given the associated signatures here we cannot relay the node announcement to any of our
1320         /// peers.
1321         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1322                 self.update_node_from_announcement_intern(msg, None)
1323         }
1324
1325         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1326                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1327                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1328                         Some(node) => {
1329                                 if let Some(node_info) = node.announcement_info.as_ref() {
1330                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1331                                         // updates to ensure you always have the latest one, only vaguely suggesting
1332                                         // that it be at least the current time.
1333                                         if node_info.last_update  > msg.timestamp {
1334                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1335                                         } else if node_info.last_update  == msg.timestamp {
1336                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1337                                         }
1338                                 }
1339
1340                                 let should_relay =
1341                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1342                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1343                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1344                                 node.announcement_info = Some(NodeAnnouncementInfo {
1345                                         features: msg.features.clone(),
1346                                         last_update: msg.timestamp,
1347                                         rgb: msg.rgb,
1348                                         alias: NodeAlias(msg.alias),
1349                                         addresses: msg.addresses.clone(),
1350                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1351                                 });
1352
1353                                 Ok(())
1354                         }
1355                 }
1356         }
1357
1358         /// Store or update channel info from a channel announcement.
1359         ///
1360         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1361         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1362         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1363         ///
1364         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1365         /// the corresponding UTXO exists on chain and is correctly-formatted.
1366         pub fn update_channel_from_announcement<C: Deref>(
1367                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1368         ) -> Result<(), LightningError>
1369         where
1370                 C::Target: chain::Access,
1371         {
1372                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1373                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1374                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1375                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1376                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1377                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1378         }
1379
1380         /// Store or update channel info from a channel announcement without verifying the associated
1381         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1382         /// channel announcement to any of our peers.
1383         ///
1384         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1385         /// the corresponding UTXO exists on chain and is correctly-formatted.
1386         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1387                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1388         ) -> Result<(), LightningError>
1389         where
1390                 C::Target: chain::Access,
1391         {
1392                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1393         }
1394
1395         /// Update channel from partial announcement data received via rapid gossip sync
1396         ///
1397         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1398         /// rapid gossip sync server)
1399         ///
1400         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1401         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1402                 if node_id_1 == node_id_2 {
1403                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1404                 };
1405
1406                 let node_1 = NodeId::from_pubkey(&node_id_1);
1407                 let node_2 = NodeId::from_pubkey(&node_id_2);
1408                 let channel_info = ChannelInfo {
1409                         features,
1410                         node_one: node_1.clone(),
1411                         one_to_two: None,
1412                         node_two: node_2.clone(),
1413                         two_to_one: None,
1414                         capacity_sats: None,
1415                         announcement_message: None,
1416                         announcement_received_time: timestamp,
1417                 };
1418
1419                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1420         }
1421
1422         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1423                 let mut channels = self.channels.write().unwrap();
1424                 let mut nodes = self.nodes.write().unwrap();
1425
1426                 let node_id_a = channel_info.node_one.clone();
1427                 let node_id_b = channel_info.node_two.clone();
1428
1429                 match channels.entry(short_channel_id) {
1430                         BtreeEntry::Occupied(mut entry) => {
1431                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1432                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1433                                 //exactly how...
1434                                 if utxo_value.is_some() {
1435                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1436                                         // only sometimes returns results. In any case remove the previous entry. Note
1437                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1438                                         // do that because
1439                                         // a) we don't *require* a UTXO provider that always returns results.
1440                                         // b) we don't track UTXOs of channels we know about and remove them if they
1441                                         //    get reorg'd out.
1442                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1443                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1444                                         *entry.get_mut() = channel_info;
1445                                 } else {
1446                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1447                                 }
1448                         },
1449                         BtreeEntry::Vacant(entry) => {
1450                                 entry.insert(channel_info);
1451                         }
1452                 };
1453
1454                 for current_node_id in [node_id_a, node_id_b].iter() {
1455                         match nodes.entry(current_node_id.clone()) {
1456                                 BtreeEntry::Occupied(node_entry) => {
1457                                         node_entry.into_mut().channels.push(short_channel_id);
1458                                 },
1459                                 BtreeEntry::Vacant(node_entry) => {
1460                                         node_entry.insert(NodeInfo {
1461                                                 channels: vec!(short_channel_id),
1462                                                 lowest_inbound_channel_fees: None,
1463                                                 announcement_info: None,
1464                                         });
1465                                 }
1466                         };
1467                 };
1468
1469                 Ok(())
1470         }
1471
1472         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1473                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1474         ) -> Result<(), LightningError>
1475         where
1476                 C::Target: chain::Access,
1477         {
1478                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1479                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1480                 }
1481
1482                 let node_one = NodeId::from_pubkey(&msg.node_id_1);
1483                 let node_two = NodeId::from_pubkey(&msg.node_id_2);
1484
1485                 {
1486                         let channels = self.channels.read().unwrap();
1487
1488                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1489                                 if chan.capacity_sats.is_some() {
1490                                         // If we'd previously looked up the channel on-chain and checked the script
1491                                         // against what appears on-chain, ignore the duplicate announcement.
1492                                         //
1493                                         // Because a reorg could replace one channel with another at the same SCID, if
1494                                         // the channel appears to be different, we re-validate. This doesn't expose us
1495                                         // to any more DoS risk than not, as a peer can always flood us with
1496                                         // randomly-generated SCID values anyway.
1497                                         //
1498                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1499                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1500                                         // if the peers on the channel changed anyway.
1501                                         if node_one == chan.node_one && node_two == chan.node_two {
1502                                                 return Err(LightningError {
1503                                                         err: "Already have chain-validated channel".to_owned(),
1504                                                         action: ErrorAction::IgnoreDuplicateGossip
1505                                                 });
1506                                         }
1507                                 } else if chain_access.is_none() {
1508                                         // Similarly, if we can't check the chain right now anyway, ignore the
1509                                         // duplicate announcement without bothering to take the channels write lock.
1510                                         return Err(LightningError {
1511                                                 err: "Already have non-chain-validated channel".to_owned(),
1512                                                 action: ErrorAction::IgnoreDuplicateGossip
1513                                         });
1514                                 }
1515                         }
1516                 }
1517
1518                 {
1519                         let removed_channels = self.removed_channels.lock().unwrap();
1520                         let removed_nodes = self.removed_nodes.lock().unwrap();
1521                         if removed_channels.contains_key(&msg.short_channel_id) ||
1522                                 removed_nodes.contains_key(&node_one) ||
1523                                 removed_nodes.contains_key(&node_two) {
1524                                 return Err(LightningError{
1525                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1526                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1527                         }
1528                 }
1529
1530                 let utxo_value = match &chain_access {
1531                         &None => {
1532                                 // Tentatively accept, potentially exposing us to DoS attacks
1533                                 None
1534                         },
1535                         &Some(ref chain_access) => {
1536                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1537                                         Ok(TxOut { value, script_pubkey }) => {
1538                                                 let expected_script =
1539                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1540                                                 if script_pubkey != expected_script {
1541                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1542                                                 }
1543                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1544                                                 //to the new HTLC max field in channel_update
1545                                                 Some(value)
1546                                         },
1547                                         Err(chain::AccessError::UnknownChain) => {
1548                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1549                                         },
1550                                         Err(chain::AccessError::UnknownTx) => {
1551                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1552                                         },
1553                                 }
1554                         },
1555                 };
1556
1557                 #[allow(unused_mut, unused_assignments)]
1558                 let mut announcement_received_time = 0;
1559                 #[cfg(feature = "std")]
1560                 {
1561                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1562                 }
1563
1564                 let chan_info = ChannelInfo {
1565                         features: msg.features.clone(),
1566                         node_one,
1567                         one_to_two: None,
1568                         node_two,
1569                         two_to_one: None,
1570                         capacity_sats: utxo_value,
1571                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1572                                 { full_msg.cloned() } else { None },
1573                         announcement_received_time,
1574                 };
1575
1576                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1577         }
1578
1579         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1580         /// If permanent, removes a channel from the local storage.
1581         /// May cause the removal of nodes too, if this was their last channel.
1582         /// If not permanent, makes channels unavailable for routing.
1583         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1584                 #[cfg(feature = "std")]
1585                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1586                 #[cfg(not(feature = "std"))]
1587                 let current_time_unix = None;
1588
1589                 let mut channels = self.channels.write().unwrap();
1590                 if is_permanent {
1591                         if let Some(chan) = channels.remove(&short_channel_id) {
1592                                 let mut nodes = self.nodes.write().unwrap();
1593                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1594                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1595                         }
1596                 } else {
1597                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1598                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1599                                         one_to_two.enabled = false;
1600                                 }
1601                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1602                                         two_to_one.enabled = false;
1603                                 }
1604                         }
1605                 }
1606         }
1607
1608         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1609         /// from local storage.
1610         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1611                 #[cfg(feature = "std")]
1612                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1613                 #[cfg(not(feature = "std"))]
1614                 let current_time_unix = None;
1615
1616                 let node_id = NodeId::from_pubkey(node_id);
1617                 let mut channels = self.channels.write().unwrap();
1618                 let mut nodes = self.nodes.write().unwrap();
1619                 let mut removed_channels = self.removed_channels.lock().unwrap();
1620                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1621
1622                 if let Some(node) = nodes.remove(&node_id) {
1623                         for scid in node.channels.iter() {
1624                                 if let Some(chan_info) = channels.remove(scid) {
1625                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1626                                         if let BtreeEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1627                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1628                                                         *scid != *chan_id
1629                                                 });
1630                                                 if other_node_entry.get().channels.is_empty() {
1631                                                         other_node_entry.remove_entry();
1632                                                 }
1633                                         }
1634                                         removed_channels.insert(*scid, current_time_unix);
1635                                 }
1636                         }
1637                         removed_nodes.insert(node_id, current_time_unix);
1638                 }
1639         }
1640
1641         #[cfg(feature = "std")]
1642         /// Removes information about channels that we haven't heard any updates about in some time.
1643         /// This can be used regularly to prune the network graph of channels that likely no longer
1644         /// exist.
1645         ///
1646         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1647         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1648         /// pruning occur for updates which are at least two weeks old, which we implement here.
1649         ///
1650         /// Note that for users of the `lightning-background-processor` crate this method may be
1651         /// automatically called regularly for you.
1652         ///
1653         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1654         /// in the map for a while so that these can be resynced from gossip in the future.
1655         ///
1656         /// This method is only available with the `std` feature. See
1657         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1658         pub fn remove_stale_channels_and_tracking(&self) {
1659                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1660                 self.remove_stale_channels_and_tracking_with_time(time);
1661         }
1662
1663         /// Removes information about channels that we haven't heard any updates about in some time.
1664         /// This can be used regularly to prune the network graph of channels that likely no longer
1665         /// exist.
1666         ///
1667         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1668         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1669         /// pruning occur for updates which are at least two weeks old, which we implement here.
1670         ///
1671         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1672         /// in the map for a while so that these can be resynced from gossip in the future.
1673         ///
1674         /// This function takes the current unix time as an argument. For users with the `std` feature
1675         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1676         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1677                 let mut channels = self.channels.write().unwrap();
1678                 // Time out if we haven't received an update in at least 14 days.
1679                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1680                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1681                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1682                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1683                 // time.
1684                 let mut scids_to_remove = Vec::new();
1685                 for (scid, info) in channels.iter_mut() {
1686                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1687                                 info.one_to_two = None;
1688                         }
1689                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1690                                 info.two_to_one = None;
1691                         }
1692                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1693                                 // We check the announcement_received_time here to ensure we don't drop
1694                                 // announcements that we just received and are just waiting for our peer to send a
1695                                 // channel_update for.
1696                                 if info.announcement_received_time < min_time_unix as u64 {
1697                                         scids_to_remove.push(*scid);
1698                                 }
1699                         }
1700                 }
1701                 if !scids_to_remove.is_empty() {
1702                         let mut nodes = self.nodes.write().unwrap();
1703                         for scid in scids_to_remove {
1704                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1705                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1706                         }
1707                 }
1708
1709                 let should_keep_tracking = |time: &mut Option<u64>| {
1710                         if let Some(time) = time {
1711                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1712                         } else {
1713                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1714                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1715                                 // of this function.
1716                                 #[cfg(feature = "no-std")]
1717                                 {
1718                                         let mut tracked_time = Some(current_time_unix);
1719                                         core::mem::swap(time, &mut tracked_time);
1720                                         return true;
1721                                 }
1722                                 #[allow(unreachable_code)]
1723                                 false
1724                         }};
1725
1726                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1727                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1728         }
1729
1730         /// For an already known (from announcement) channel, update info about one of the directions
1731         /// of the channel.
1732         ///
1733         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1734         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1735         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1736         ///
1737         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1738         /// materially in the future will be rejected.
1739         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1740                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1741         }
1742
1743         /// For an already known (from announcement) channel, update info about one of the directions
1744         /// of the channel without verifying the associated signatures. Because we aren't given the
1745         /// associated signatures here we cannot relay the channel update to any of our peers.
1746         ///
1747         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1748         /// materially in the future will be rejected.
1749         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1750                 self.update_channel_intern(msg, None, None)
1751         }
1752
1753         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1754                 let dest_node_id;
1755                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1756                 let chan_was_enabled;
1757
1758                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1759                 {
1760                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1761                         // disable this check during tests!
1762                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1763                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1764                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1765                         }
1766                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1767                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1768                         }
1769                 }
1770
1771                 let mut channels = self.channels.write().unwrap();
1772                 match channels.get_mut(&msg.short_channel_id) {
1773                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1774                         Some(channel) => {
1775                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1776                                         return Err(LightningError{err:
1777                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1778                                                 action: ErrorAction::IgnoreError});
1779                                 }
1780
1781                                 if let Some(capacity_sats) = channel.capacity_sats {
1782                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1783                                         // Don't query UTXO set here to reduce DoS risks.
1784                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1785                                                 return Err(LightningError{err:
1786                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1787                                                         action: ErrorAction::IgnoreError});
1788                                         }
1789                                 }
1790                                 macro_rules! check_update_latest {
1791                                         ($target: expr) => {
1792                                                 if let Some(existing_chan_info) = $target.as_ref() {
1793                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1794                                                         // order updates to ensure you always have the latest one, only
1795                                                         // suggesting  that it be at least the current time. For
1796                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1797                                                         // pruning based on the timestamp field being more than two weeks old,
1798                                                         // but only in the non-normative section.
1799                                                         if existing_chan_info.last_update > msg.timestamp {
1800                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1801                                                         } else if existing_chan_info.last_update == msg.timestamp {
1802                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1803                                                         }
1804                                                         chan_was_enabled = existing_chan_info.enabled;
1805                                                 } else {
1806                                                         chan_was_enabled = false;
1807                                                 }
1808                                         }
1809                                 }
1810
1811                                 macro_rules! get_new_channel_info {
1812                                         () => { {
1813                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1814                                                         { full_msg.cloned() } else { None };
1815
1816                                                 let updated_channel_update_info = ChannelUpdateInfo {
1817                                                         enabled: chan_enabled,
1818                                                         last_update: msg.timestamp,
1819                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1820                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1821                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1822                                                         fees: RoutingFees {
1823                                                                 base_msat: msg.fee_base_msat,
1824                                                                 proportional_millionths: msg.fee_proportional_millionths,
1825                                                         },
1826                                                         last_update_message
1827                                                 };
1828                                                 Some(updated_channel_update_info)
1829                                         } }
1830                                 }
1831
1832                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1833                                 if msg.flags & 1 == 1 {
1834                                         dest_node_id = channel.node_one.clone();
1835                                         check_update_latest!(channel.two_to_one);
1836                                         if let Some(sig) = sig {
1837                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1838                                                         err: "Couldn't parse source node pubkey".to_owned(),
1839                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1840                                                 })?, "channel_update");
1841                                         }
1842                                         channel.two_to_one = get_new_channel_info!();
1843                                 } else {
1844                                         dest_node_id = channel.node_two.clone();
1845                                         check_update_latest!(channel.one_to_two);
1846                                         if let Some(sig) = sig {
1847                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1848                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1849                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1850                                                 })?, "channel_update");
1851                                         }
1852                                         channel.one_to_two = get_new_channel_info!();
1853                                 }
1854                         }
1855                 }
1856
1857                 let mut nodes = self.nodes.write().unwrap();
1858                 if chan_enabled {
1859                         let node = nodes.get_mut(&dest_node_id).unwrap();
1860                         let mut base_msat = msg.fee_base_msat;
1861                         let mut proportional_millionths = msg.fee_proportional_millionths;
1862                         if let Some(fees) = node.lowest_inbound_channel_fees {
1863                                 base_msat = cmp::min(base_msat, fees.base_msat);
1864                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1865                         }
1866                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1867                                 base_msat,
1868                                 proportional_millionths
1869                         });
1870                 } else if chan_was_enabled {
1871                         let node = nodes.get_mut(&dest_node_id).unwrap();
1872                         let mut lowest_inbound_channel_fees = None;
1873
1874                         for chan_id in node.channels.iter() {
1875                                 let chan = channels.get(chan_id).unwrap();
1876                                 let chan_info_opt;
1877                                 if chan.node_one == dest_node_id {
1878                                         chan_info_opt = chan.two_to_one.as_ref();
1879                                 } else {
1880                                         chan_info_opt = chan.one_to_two.as_ref();
1881                                 }
1882                                 if let Some(chan_info) = chan_info_opt {
1883                                         if chan_info.enabled {
1884                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1885                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1886                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1887                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1888                                         }
1889                                 }
1890                         }
1891
1892                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1893                 }
1894
1895                 Ok(())
1896         }
1897
1898         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1899                 macro_rules! remove_from_node {
1900                         ($node_id: expr) => {
1901                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1902                                         entry.get_mut().channels.retain(|chan_id| {
1903                                                 short_channel_id != *chan_id
1904                                         });
1905                                         if entry.get().channels.is_empty() {
1906                                                 entry.remove_entry();
1907                                         }
1908                                 } else {
1909                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1910                                 }
1911                         }
1912                 }
1913
1914                 remove_from_node!(chan.node_one);
1915                 remove_from_node!(chan.node_two);
1916         }
1917 }
1918
1919 impl ReadOnlyNetworkGraph<'_> {
1920         /// Returns all known valid channels' short ids along with announced channel info.
1921         ///
1922         /// (C-not exported) because we have no mapping for `BTreeMap`s
1923         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1924                 &*self.channels
1925         }
1926
1927         /// Returns information on a channel with the given id.
1928         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1929                 self.channels.get(&short_channel_id)
1930         }
1931
1932         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1933         /// Returns the list of channels in the graph
1934         pub fn list_channels(&self) -> Vec<u64> {
1935                 self.channels.keys().map(|c| *c).collect()
1936         }
1937
1938         /// Returns all known nodes' public keys along with announced node info.
1939         ///
1940         /// (C-not exported) because we have no mapping for `BTreeMap`s
1941         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1942                 &*self.nodes
1943         }
1944
1945         /// Returns information on a node with the given id.
1946         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1947                 self.nodes.get(node_id)
1948         }
1949
1950         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1951         /// Returns the list of nodes in the graph
1952         pub fn list_nodes(&self) -> Vec<NodeId> {
1953                 self.nodes.keys().map(|n| *n).collect()
1954         }
1955
1956         /// Get network addresses by node id.
1957         /// Returns None if the requested node is completely unknown,
1958         /// or if node announcement for the node was never received.
1959         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1960                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1961                         if let Some(node_info) = node.announcement_info.as_ref() {
1962                                 return Some(node_info.addresses.clone())
1963                         }
1964                 }
1965                 None
1966         }
1967 }
1968
1969 #[cfg(test)]
1970 mod tests {
1971         use chain;
1972         use ln::channelmanager;
1973         use ln::chan_utils::make_funding_redeemscript;
1974         use ln::PaymentHash;
1975         use ln::features::InitFeatures;
1976         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1977         use ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1978                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1979                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1980         use util::test_utils;
1981         use util::ser::{ReadableArgs, Writeable};
1982         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1983         use util::scid_utils::scid_from_parts;
1984
1985         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1986         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1987
1988         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1989         use bitcoin::hashes::Hash;
1990         use bitcoin::network::constants::Network;
1991         use bitcoin::blockdata::constants::genesis_block;
1992         use bitcoin::blockdata::script::Script;
1993         use bitcoin::blockdata::transaction::TxOut;
1994
1995         use hex;
1996
1997         use bitcoin::secp256k1::{PublicKey, SecretKey};
1998         use bitcoin::secp256k1::{All, Secp256k1};
1999
2000         use io;
2001         use bitcoin::secp256k1;
2002         use prelude::*;
2003         use sync::Arc;
2004
2005         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2006                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2007                 let logger = Arc::new(test_utils::TestLogger::new());
2008                 NetworkGraph::new(genesis_hash, logger)
2009         }
2010
2011         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2012                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2013                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2014         ) {
2015                 let secp_ctx = Secp256k1::new();
2016                 let logger = Arc::new(test_utils::TestLogger::new());
2017                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2018                 (secp_ctx, gossip_sync)
2019         }
2020
2021         #[test]
2022         #[cfg(feature = "std")]
2023         fn request_full_sync_finite_times() {
2024                 let network_graph = create_network_graph();
2025                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2026                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2027
2028                 assert!(gossip_sync.should_request_full_sync(&node_id));
2029                 assert!(gossip_sync.should_request_full_sync(&node_id));
2030                 assert!(gossip_sync.should_request_full_sync(&node_id));
2031                 assert!(gossip_sync.should_request_full_sync(&node_id));
2032                 assert!(gossip_sync.should_request_full_sync(&node_id));
2033                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2034         }
2035
2036         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2037                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
2038                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2039                         features: channelmanager::provided_node_features(),
2040                         timestamp: 100,
2041                         node_id: node_id,
2042                         rgb: [0; 3],
2043                         alias: [0; 32],
2044                         addresses: Vec::new(),
2045                         excess_address_data: Vec::new(),
2046                         excess_data: Vec::new(),
2047                 };
2048                 f(&mut unsigned_announcement);
2049                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2050                 NodeAnnouncement {
2051                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2052                         contents: unsigned_announcement
2053                 }
2054         }
2055
2056         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2057                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2058                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2059                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2060                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2061
2062                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2063                         features: channelmanager::provided_channel_features(),
2064                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2065                         short_channel_id: 0,
2066                         node_id_1,
2067                         node_id_2,
2068                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
2069                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
2070                         excess_data: Vec::new(),
2071                 };
2072                 f(&mut unsigned_announcement);
2073                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2074                 ChannelAnnouncement {
2075                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2076                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2077                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2078                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2079                         contents: unsigned_announcement,
2080                 }
2081         }
2082
2083         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2084                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2085                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2086                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2087                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2088         }
2089
2090         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2091                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2092                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2093                         short_channel_id: 0,
2094                         timestamp: 100,
2095                         flags: 0,
2096                         cltv_expiry_delta: 144,
2097                         htlc_minimum_msat: 1_000_000,
2098                         htlc_maximum_msat: 1_000_000,
2099                         fee_base_msat: 10_000,
2100                         fee_proportional_millionths: 20,
2101                         excess_data: Vec::new()
2102                 };
2103                 f(&mut unsigned_channel_update);
2104                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2105                 ChannelUpdate {
2106                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2107                         contents: unsigned_channel_update
2108                 }
2109         }
2110
2111         #[test]
2112         fn handling_node_announcements() {
2113                 let network_graph = create_network_graph();
2114                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2115
2116                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2117                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2118                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2119
2120                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2121                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2122                         Ok(_) => panic!(),
2123                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2124                 };
2125
2126                 {
2127                         // Announce a channel to add a corresponding node.
2128                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2129                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2130                                 Ok(res) => assert!(res),
2131                                 _ => panic!()
2132                         };
2133                 }
2134
2135                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2136                         Ok(res) => assert!(res),
2137                         Err(_) => panic!()
2138                 };
2139
2140                 let fake_msghash = hash_to_message!(&zero_hash);
2141                 match gossip_sync.handle_node_announcement(
2142                         &NodeAnnouncement {
2143                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2144                                 contents: valid_announcement.contents.clone()
2145                 }) {
2146                         Ok(_) => panic!(),
2147                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2148                 };
2149
2150                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2151                         unsigned_announcement.timestamp += 1000;
2152                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2153                 }, node_1_privkey, &secp_ctx);
2154                 // Return false because contains excess data.
2155                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2156                         Ok(res) => assert!(!res),
2157                         Err(_) => panic!()
2158                 };
2159
2160                 // Even though previous announcement was not relayed further, we still accepted it,
2161                 // so we now won't accept announcements before the previous one.
2162                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2163                         unsigned_announcement.timestamp += 1000 - 10;
2164                 }, node_1_privkey, &secp_ctx);
2165                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2166                         Ok(_) => panic!(),
2167                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2168                 };
2169         }
2170
2171         #[test]
2172         fn handling_channel_announcements() {
2173                 let secp_ctx = Secp256k1::new();
2174                 let logger = test_utils::TestLogger::new();
2175
2176                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2177                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2178
2179                 let good_script = get_channel_script(&secp_ctx);
2180                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2181
2182                 // Test if the UTXO lookups were not supported
2183                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2184                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2185                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2186                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2187                         Ok(res) => assert!(res),
2188                         _ => panic!()
2189                 };
2190
2191                 {
2192                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2193                                 None => panic!(),
2194                                 Some(_) => ()
2195                         };
2196                 }
2197
2198                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2199                 // drop new one on the floor, since we can't see any changes.
2200                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2201                         Ok(_) => panic!(),
2202                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2203                 };
2204
2205                 // Test if an associated transaction were not on-chain (or not confirmed).
2206                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2207                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2208                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2209                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2210
2211                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2212                         unsigned_announcement.short_channel_id += 1;
2213                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2214                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2215                         Ok(_) => panic!(),
2216                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2217                 };
2218
2219                 // Now test if the transaction is found in the UTXO set and the script is correct.
2220                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2221                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2222                         unsigned_announcement.short_channel_id += 2;
2223                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2224                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2225                         Ok(res) => assert!(res),
2226                         _ => panic!()
2227                 };
2228
2229                 {
2230                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2231                                 None => panic!(),
2232                                 Some(_) => ()
2233                         };
2234                 }
2235
2236                 // If we receive announcement for the same channel, once we've validated it against the
2237                 // chain, we simply ignore all new (duplicate) announcements.
2238                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2239                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2240                         Ok(_) => panic!(),
2241                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2242                 };
2243
2244                 #[cfg(feature = "std")]
2245                 {
2246                         use std::time::{SystemTime, UNIX_EPOCH};
2247
2248                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2249                         // Mark a node as permanently failed so it's tracked as removed.
2250                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2251
2252                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2253                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2254                                 unsigned_announcement.short_channel_id += 3;
2255                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2256                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2257                                 Ok(_) => panic!(),
2258                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2259                         }
2260
2261                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2262
2263                         // The above channel announcement should be handled as per normal now.
2264                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2265                                 Ok(res) => assert!(res),
2266                                 _ => panic!()
2267                         }
2268                 }
2269
2270                 // Don't relay valid channels with excess data
2271                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2272                         unsigned_announcement.short_channel_id += 4;
2273                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2274                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2275                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2276                         Ok(res) => assert!(!res),
2277                         _ => panic!()
2278                 };
2279
2280                 let mut invalid_sig_announcement = valid_announcement.clone();
2281                 invalid_sig_announcement.contents.excess_data = Vec::new();
2282                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2283                         Ok(_) => panic!(),
2284                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2285                 };
2286
2287                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2288                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2289                         Ok(_) => panic!(),
2290                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2291                 };
2292         }
2293
2294         #[test]
2295         fn handling_channel_update() {
2296                 let secp_ctx = Secp256k1::new();
2297                 let logger = test_utils::TestLogger::new();
2298                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2299                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2300                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2301                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2302
2303                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2304                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2305
2306                 let amount_sats = 1000_000;
2307                 let short_channel_id;
2308
2309                 {
2310                         // Announce a channel we will update
2311                         let good_script = get_channel_script(&secp_ctx);
2312                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2313
2314                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2315                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2316                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2317                                 Ok(_) => (),
2318                                 Err(_) => panic!()
2319                         };
2320
2321                 }
2322
2323                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2324                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2325                         Ok(res) => assert!(res),
2326                         _ => panic!(),
2327                 };
2328
2329                 {
2330                         match network_graph.read_only().channels().get(&short_channel_id) {
2331                                 None => panic!(),
2332                                 Some(channel_info) => {
2333                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2334                                         assert!(channel_info.two_to_one.is_none());
2335                                 }
2336                         };
2337                 }
2338
2339                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2340                         unsigned_channel_update.timestamp += 100;
2341                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2342                 }, node_1_privkey, &secp_ctx);
2343                 // Return false because contains excess data
2344                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2345                         Ok(res) => assert!(!res),
2346                         _ => panic!()
2347                 };
2348
2349                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2350                         unsigned_channel_update.timestamp += 110;
2351                         unsigned_channel_update.short_channel_id += 1;
2352                 }, node_1_privkey, &secp_ctx);
2353                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2354                         Ok(_) => panic!(),
2355                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2356                 };
2357
2358                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2359                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2360                         unsigned_channel_update.timestamp += 110;
2361                 }, node_1_privkey, &secp_ctx);
2362                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2363                         Ok(_) => panic!(),
2364                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2365                 };
2366
2367                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2368                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2369                         unsigned_channel_update.timestamp += 110;
2370                 }, node_1_privkey, &secp_ctx);
2371                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2372                         Ok(_) => panic!(),
2373                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2374                 };
2375
2376                 // Even though previous update was not relayed further, we still accepted it,
2377                 // so we now won't accept update before the previous one.
2378                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2379                         unsigned_channel_update.timestamp += 100;
2380                 }, node_1_privkey, &secp_ctx);
2381                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2382                         Ok(_) => panic!(),
2383                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2384                 };
2385
2386                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2387                         unsigned_channel_update.timestamp += 500;
2388                 }, node_1_privkey, &secp_ctx);
2389                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2390                 let fake_msghash = hash_to_message!(&zero_hash);
2391                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2392                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2393                         Ok(_) => panic!(),
2394                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2395                 };
2396         }
2397
2398         #[test]
2399         fn handling_network_update() {
2400                 let logger = test_utils::TestLogger::new();
2401                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2402                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2403                 let secp_ctx = Secp256k1::new();
2404
2405                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2406                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2407                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2408
2409                 {
2410                         // There is no nodes in the table at the beginning.
2411                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2412                 }
2413
2414                 let short_channel_id;
2415                 {
2416                         // Announce a channel we will update
2417                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2418                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2419                         let chain_source: Option<&test_utils::TestChainSource> = None;
2420                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2421                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2422
2423                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2424                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2425
2426                         network_graph.handle_event(&Event::PaymentPathFailed {
2427                                 payment_id: None,
2428                                 payment_hash: PaymentHash([0; 32]),
2429                                 payment_failed_permanently: false,
2430                                 all_paths_failed: true,
2431                                 path: vec![],
2432                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2433                                         msg: valid_channel_update,
2434                                 }),
2435                                 short_channel_id: None,
2436                                 retry: None,
2437                                 error_code: None,
2438                                 error_data: None,
2439                         });
2440
2441                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2442                 }
2443
2444                 // Non-permanent closing just disables a channel
2445                 {
2446                         match network_graph.read_only().channels().get(&short_channel_id) {
2447                                 None => panic!(),
2448                                 Some(channel_info) => {
2449                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2450                                 }
2451                         };
2452
2453                         network_graph.handle_event(&Event::PaymentPathFailed {
2454                                 payment_id: None,
2455                                 payment_hash: PaymentHash([0; 32]),
2456                                 payment_failed_permanently: false,
2457                                 all_paths_failed: true,
2458                                 path: vec![],
2459                                 network_update: Some(NetworkUpdate::ChannelFailure {
2460                                         short_channel_id,
2461                                         is_permanent: false,
2462                                 }),
2463                                 short_channel_id: None,
2464                                 retry: None,
2465                                 error_code: None,
2466                                 error_data: None,
2467                         });
2468
2469                         match network_graph.read_only().channels().get(&short_channel_id) {
2470                                 None => panic!(),
2471                                 Some(channel_info) => {
2472                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2473                                 }
2474                         };
2475                 }
2476
2477                 // Permanent closing deletes a channel
2478                 network_graph.handle_event(&Event::PaymentPathFailed {
2479                         payment_id: None,
2480                         payment_hash: PaymentHash([0; 32]),
2481                         payment_failed_permanently: false,
2482                         all_paths_failed: true,
2483                         path: vec![],
2484                         network_update: Some(NetworkUpdate::ChannelFailure {
2485                                 short_channel_id,
2486                                 is_permanent: true,
2487                         }),
2488                         short_channel_id: None,
2489                         retry: None,
2490                         error_code: None,
2491                         error_data: None,
2492                 });
2493
2494                 assert_eq!(network_graph.read_only().channels().len(), 0);
2495                 // Nodes are also deleted because there are no associated channels anymore
2496                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2497
2498                 {
2499                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2500                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2501
2502                         // Announce a channel to test permanent node failure
2503                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2504                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2505                         let chain_source: Option<&test_utils::TestChainSource> = None;
2506                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2507                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2508
2509                         // Non-permanent node failure does not delete any nodes or channels
2510                         network_graph.handle_event(&Event::PaymentPathFailed {
2511                                 payment_id: None,
2512                                 payment_hash: PaymentHash([0; 32]),
2513                                 payment_failed_permanently: false,
2514                                 all_paths_failed: true,
2515                                 path: vec![],
2516                                 network_update: Some(NetworkUpdate::NodeFailure {
2517                                         node_id: node_2_id,
2518                                         is_permanent: false,
2519                                 }),
2520                                 short_channel_id: None,
2521                                 retry: None,
2522                                 error_code: None,
2523                                 error_data: None,
2524                         });
2525
2526                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2527                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2528
2529                         // Permanent node failure deletes node and its channels
2530                         network_graph.handle_event(&Event::PaymentPathFailed {
2531                                 payment_id: None,
2532                                 payment_hash: PaymentHash([0; 32]),
2533                                 payment_failed_permanently: false,
2534                                 all_paths_failed: true,
2535                                 path: vec![],
2536                                 network_update: Some(NetworkUpdate::NodeFailure {
2537                                         node_id: node_2_id,
2538                                         is_permanent: true,
2539                                 }),
2540                                 short_channel_id: None,
2541                                 retry: None,
2542                                 error_code: None,
2543                                 error_data: None,
2544                         });
2545
2546                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2547                         // Channels are also deleted because the associated node has been deleted
2548                         assert_eq!(network_graph.read_only().channels().len(), 0);
2549                 }
2550         }
2551
2552         #[test]
2553         fn test_channel_timeouts() {
2554                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2555                 let logger = test_utils::TestLogger::new();
2556                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2557                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2558                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2559                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2560                 let secp_ctx = Secp256k1::new();
2561
2562                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2563                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2564
2565                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2566                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2567                 let chain_source: Option<&test_utils::TestChainSource> = None;
2568                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2569                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2570
2571                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2572                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2573                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2574
2575                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2576                 assert_eq!(network_graph.read_only().channels().len(), 1);
2577                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2578
2579                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2580                 #[cfg(feature = "std")]
2581                 {
2582                         // In std mode, a further check is performed before fully removing the channel -
2583                         // the channel_announcement must have been received at least two weeks ago. We
2584                         // fudge that here by indicating the time has jumped two weeks. Note that the
2585                         // directional channel information will have been removed already..
2586                         assert_eq!(network_graph.read_only().channels().len(), 1);
2587                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2588                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2589
2590                         use std::time::{SystemTime, UNIX_EPOCH};
2591                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2592                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2593                 }
2594
2595                 assert_eq!(network_graph.read_only().channels().len(), 0);
2596                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2597
2598                 #[cfg(feature = "std")]
2599                 {
2600                         use std::time::{SystemTime, UNIX_EPOCH};
2601
2602                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2603
2604                         // Clear tracked nodes and channels for clean slate
2605                         network_graph.removed_channels.lock().unwrap().clear();
2606                         network_graph.removed_nodes.lock().unwrap().clear();
2607
2608                         // Add a channel and nodes from channel announcement. So our network graph will
2609                         // now only consist of two nodes and one channel between them.
2610                         assert!(network_graph.update_channel_from_announcement(
2611                                 &valid_channel_announcement, &chain_source).is_ok());
2612
2613                         // Mark the channel as permanently failed. This will also remove the two nodes
2614                         // and all of the entries will be tracked as removed.
2615                         network_graph.channel_failed(short_channel_id, true);
2616
2617                         // Should not remove from tracking if insufficient time has passed
2618                         network_graph.remove_stale_channels_and_tracking_with_time(
2619                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2620                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2621
2622                         // Provide a later time so that sufficient time has passed
2623                         network_graph.remove_stale_channels_and_tracking_with_time(
2624                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2625                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2626                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2627                 }
2628
2629                 #[cfg(not(feature = "std"))]
2630                 {
2631                         // When we don't have access to the system clock, the time we started tracking removal will only
2632                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2633                         // only if sufficient time has passed after that first call, will the next call remove it from
2634                         // tracking.
2635                         let removal_time = 1664619654;
2636
2637                         // Clear removed nodes and channels for clean slate
2638                         network_graph.removed_channels.lock().unwrap().clear();
2639                         network_graph.removed_nodes.lock().unwrap().clear();
2640
2641                         // Add a channel and nodes from channel announcement. So our network graph will
2642                         // now only consist of two nodes and one channel between them.
2643                         assert!(network_graph.update_channel_from_announcement(
2644                                 &valid_channel_announcement, &chain_source).is_ok());
2645
2646                         // Mark the channel as permanently failed. This will also remove the two nodes
2647                         // and all of the entries will be tracked as removed.
2648                         network_graph.channel_failed(short_channel_id, true);
2649
2650                         // The first time we call the following, the channel will have a removal time assigned.
2651                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2652                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2653
2654                         // Provide a later time so that sufficient time has passed
2655                         network_graph.remove_stale_channels_and_tracking_with_time(
2656                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2657                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2658                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2659                 }
2660         }
2661
2662         #[test]
2663         fn getting_next_channel_announcements() {
2664                 let network_graph = create_network_graph();
2665                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2666                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2667                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2668
2669                 // Channels were not announced yet.
2670                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2671                 assert!(channels_with_announcements.is_none());
2672
2673                 let short_channel_id;
2674                 {
2675                         // Announce a channel we will update
2676                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2677                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2678                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2679                                 Ok(_) => (),
2680                                 Err(_) => panic!()
2681                         };
2682                 }
2683
2684                 // Contains initial channel announcement now.
2685                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2686                 if let Some(channel_announcements) = channels_with_announcements {
2687                         let (_, ref update_1, ref update_2) = channel_announcements;
2688                         assert_eq!(update_1, &None);
2689                         assert_eq!(update_2, &None);
2690                 } else {
2691                         panic!();
2692                 }
2693
2694                 {
2695                         // Valid channel update
2696                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2697                                 unsigned_channel_update.timestamp = 101;
2698                         }, node_1_privkey, &secp_ctx);
2699                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2700                                 Ok(_) => (),
2701                                 Err(_) => panic!()
2702                         };
2703                 }
2704
2705                 // Now contains an initial announcement and an update.
2706                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2707                 if let Some(channel_announcements) = channels_with_announcements {
2708                         let (_, ref update_1, ref update_2) = channel_announcements;
2709                         assert_ne!(update_1, &None);
2710                         assert_eq!(update_2, &None);
2711                 } else {
2712                         panic!();
2713                 }
2714
2715                 {
2716                         // Channel update with excess data.
2717                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2718                                 unsigned_channel_update.timestamp = 102;
2719                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2720                         }, node_1_privkey, &secp_ctx);
2721                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2722                                 Ok(_) => (),
2723                                 Err(_) => panic!()
2724                         };
2725                 }
2726
2727                 // Test that announcements with excess data won't be returned
2728                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2729                 if let Some(channel_announcements) = channels_with_announcements {
2730                         let (_, ref update_1, ref update_2) = channel_announcements;
2731                         assert_eq!(update_1, &None);
2732                         assert_eq!(update_2, &None);
2733                 } else {
2734                         panic!();
2735                 }
2736
2737                 // Further starting point have no channels after it
2738                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2739                 assert!(channels_with_announcements.is_none());
2740         }
2741
2742         #[test]
2743         fn getting_next_node_announcements() {
2744                 let network_graph = create_network_graph();
2745                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2746                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2747                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2748                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2749
2750                 // No nodes yet.
2751                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2752                 assert!(next_announcements.is_none());
2753
2754                 {
2755                         // Announce a channel to add 2 nodes
2756                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2757                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2758                                 Ok(_) => (),
2759                                 Err(_) => panic!()
2760                         };
2761                 }
2762
2763                 // Nodes were never announced
2764                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2765                 assert!(next_announcements.is_none());
2766
2767                 {
2768                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2769                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2770                                 Ok(_) => (),
2771                                 Err(_) => panic!()
2772                         };
2773
2774                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2775                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2776                                 Ok(_) => (),
2777                                 Err(_) => panic!()
2778                         };
2779                 }
2780
2781                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2782                 assert!(next_announcements.is_some());
2783
2784                 // Skip the first node.
2785                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2786                 assert!(next_announcements.is_some());
2787
2788                 {
2789                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2790                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2791                                 unsigned_announcement.timestamp += 10;
2792                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2793                         }, node_2_privkey, &secp_ctx);
2794                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2795                                 Ok(res) => assert!(!res),
2796                                 Err(_) => panic!()
2797                         };
2798                 }
2799
2800                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2801                 assert!(next_announcements.is_none());
2802         }
2803
2804         #[test]
2805         fn network_graph_serialization() {
2806                 let network_graph = create_network_graph();
2807                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2808
2809                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2810                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2811
2812                 // Announce a channel to add a corresponding node.
2813                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2814                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2815                         Ok(res) => assert!(res),
2816                         _ => panic!()
2817                 };
2818
2819                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2820                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2821                         Ok(_) => (),
2822                         Err(_) => panic!()
2823                 };
2824
2825                 let mut w = test_utils::TestVecWriter(Vec::new());
2826                 assert!(!network_graph.read_only().nodes().is_empty());
2827                 assert!(!network_graph.read_only().channels().is_empty());
2828                 network_graph.write(&mut w).unwrap();
2829
2830                 let logger = Arc::new(test_utils::TestLogger::new());
2831                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2832         }
2833
2834         #[test]
2835         fn network_graph_tlv_serialization() {
2836                 let network_graph = create_network_graph();
2837                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2838
2839                 let mut w = test_utils::TestVecWriter(Vec::new());
2840                 network_graph.write(&mut w).unwrap();
2841
2842                 let logger = Arc::new(test_utils::TestLogger::new());
2843                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2844                 assert!(reassembled_network_graph == network_graph);
2845                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2846         }
2847
2848         #[test]
2849         #[cfg(feature = "std")]
2850         fn calling_sync_routing_table() {
2851                 use std::time::{SystemTime, UNIX_EPOCH};
2852                 use ln::msgs::Init;
2853
2854                 let network_graph = create_network_graph();
2855                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2856                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2857                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2858
2859                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2860
2861                 // It should ignore if gossip_queries feature is not enabled
2862                 {
2863                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2864                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2865                         let events = gossip_sync.get_and_clear_pending_msg_events();
2866                         assert_eq!(events.len(), 0);
2867                 }
2868
2869                 // It should send a gossip_timestamp_filter with the correct information
2870                 {
2871                         let mut features = InitFeatures::empty();
2872                         features.set_gossip_queries_optional();
2873                         let init_msg = Init { features, remote_network_address: None };
2874                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2875                         let events = gossip_sync.get_and_clear_pending_msg_events();
2876                         assert_eq!(events.len(), 1);
2877                         match &events[0] {
2878                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2879                                         assert_eq!(node_id, &node_id_1);
2880                                         assert_eq!(msg.chain_hash, chain_hash);
2881                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2882                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2883                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2884                                         assert_eq!(msg.timestamp_range, u32::max_value());
2885                                 },
2886                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2887                         };
2888                 }
2889         }
2890
2891         #[test]
2892         fn handling_query_channel_range() {
2893                 let network_graph = create_network_graph();
2894                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2895
2896                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2897                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2898                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2899                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2900
2901                 let mut scids: Vec<u64> = vec![
2902                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2903                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2904                 ];
2905
2906                 // used for testing multipart reply across blocks
2907                 for block in 100000..=108001 {
2908                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2909                 }
2910
2911                 // used for testing resumption on same block
2912                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2913
2914                 for scid in scids {
2915                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2916                                 unsigned_announcement.short_channel_id = scid;
2917                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2918                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2919                                 Ok(_) => (),
2920                                 _ => panic!()
2921                         };
2922                 }
2923
2924                 // Error when number_of_blocks=0
2925                 do_handling_query_channel_range(
2926                         &gossip_sync,
2927                         &node_id_2,
2928                         QueryChannelRange {
2929                                 chain_hash: chain_hash.clone(),
2930                                 first_blocknum: 0,
2931                                 number_of_blocks: 0,
2932                         },
2933                         false,
2934                         vec![ReplyChannelRange {
2935                                 chain_hash: chain_hash.clone(),
2936                                 first_blocknum: 0,
2937                                 number_of_blocks: 0,
2938                                 sync_complete: true,
2939                                 short_channel_ids: vec![]
2940                         }]
2941                 );
2942
2943                 // Error when wrong chain
2944                 do_handling_query_channel_range(
2945                         &gossip_sync,
2946                         &node_id_2,
2947                         QueryChannelRange {
2948                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2949                                 first_blocknum: 0,
2950                                 number_of_blocks: 0xffff_ffff,
2951                         },
2952                         false,
2953                         vec![ReplyChannelRange {
2954                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2955                                 first_blocknum: 0,
2956                                 number_of_blocks: 0xffff_ffff,
2957                                 sync_complete: true,
2958                                 short_channel_ids: vec![],
2959                         }]
2960                 );
2961
2962                 // Error when first_blocknum > 0xffffff
2963                 do_handling_query_channel_range(
2964                         &gossip_sync,
2965                         &node_id_2,
2966                         QueryChannelRange {
2967                                 chain_hash: chain_hash.clone(),
2968                                 first_blocknum: 0x01000000,
2969                                 number_of_blocks: 0xffff_ffff,
2970                         },
2971                         false,
2972                         vec![ReplyChannelRange {
2973                                 chain_hash: chain_hash.clone(),
2974                                 first_blocknum: 0x01000000,
2975                                 number_of_blocks: 0xffff_ffff,
2976                                 sync_complete: true,
2977                                 short_channel_ids: vec![]
2978                         }]
2979                 );
2980
2981                 // Empty reply when max valid SCID block num
2982                 do_handling_query_channel_range(
2983                         &gossip_sync,
2984                         &node_id_2,
2985                         QueryChannelRange {
2986                                 chain_hash: chain_hash.clone(),
2987                                 first_blocknum: 0xffffff,
2988                                 number_of_blocks: 1,
2989                         },
2990                         true,
2991                         vec![
2992                                 ReplyChannelRange {
2993                                         chain_hash: chain_hash.clone(),
2994                                         first_blocknum: 0xffffff,
2995                                         number_of_blocks: 1,
2996                                         sync_complete: true,
2997                                         short_channel_ids: vec![]
2998                                 },
2999                         ]
3000                 );
3001
3002                 // No results in valid query range
3003                 do_handling_query_channel_range(
3004                         &gossip_sync,
3005                         &node_id_2,
3006                         QueryChannelRange {
3007                                 chain_hash: chain_hash.clone(),
3008                                 first_blocknum: 1000,
3009                                 number_of_blocks: 1000,
3010                         },
3011                         true,
3012                         vec![
3013                                 ReplyChannelRange {
3014                                         chain_hash: chain_hash.clone(),
3015                                         first_blocknum: 1000,
3016                                         number_of_blocks: 1000,
3017                                         sync_complete: true,
3018                                         short_channel_ids: vec![],
3019                                 }
3020                         ]
3021                 );
3022
3023                 // Overflow first_blocknum + number_of_blocks
3024                 do_handling_query_channel_range(
3025                         &gossip_sync,
3026                         &node_id_2,
3027                         QueryChannelRange {
3028                                 chain_hash: chain_hash.clone(),
3029                                 first_blocknum: 0xfe0000,
3030                                 number_of_blocks: 0xffffffff,
3031                         },
3032                         true,
3033                         vec![
3034                                 ReplyChannelRange {
3035                                         chain_hash: chain_hash.clone(),
3036                                         first_blocknum: 0xfe0000,
3037                                         number_of_blocks: 0xffffffff - 0xfe0000,
3038                                         sync_complete: true,
3039                                         short_channel_ids: vec![
3040                                                 0xfffffe_ffffff_ffff, // max
3041                                         ]
3042                                 }
3043                         ]
3044                 );
3045
3046                 // Single block exactly full
3047                 do_handling_query_channel_range(
3048                         &gossip_sync,
3049                         &node_id_2,
3050                         QueryChannelRange {
3051                                 chain_hash: chain_hash.clone(),
3052                                 first_blocknum: 100000,
3053                                 number_of_blocks: 8000,
3054                         },
3055                         true,
3056                         vec![
3057                                 ReplyChannelRange {
3058                                         chain_hash: chain_hash.clone(),
3059                                         first_blocknum: 100000,
3060                                         number_of_blocks: 8000,
3061                                         sync_complete: true,
3062                                         short_channel_ids: (100000..=107999)
3063                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3064                                                 .collect(),
3065                                 },
3066                         ]
3067                 );
3068
3069                 // Multiple split on new block
3070                 do_handling_query_channel_range(
3071                         &gossip_sync,
3072                         &node_id_2,
3073                         QueryChannelRange {
3074                                 chain_hash: chain_hash.clone(),
3075                                 first_blocknum: 100000,
3076                                 number_of_blocks: 8001,
3077                         },
3078                         true,
3079                         vec![
3080                                 ReplyChannelRange {
3081                                         chain_hash: chain_hash.clone(),
3082                                         first_blocknum: 100000,
3083                                         number_of_blocks: 7999,
3084                                         sync_complete: false,
3085                                         short_channel_ids: (100000..=107999)
3086                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3087                                                 .collect(),
3088                                 },
3089                                 ReplyChannelRange {
3090                                         chain_hash: chain_hash.clone(),
3091                                         first_blocknum: 107999,
3092                                         number_of_blocks: 2,
3093                                         sync_complete: true,
3094                                         short_channel_ids: vec![
3095                                                 scid_from_parts(108000, 0, 0).unwrap(),
3096                                         ],
3097                                 }
3098                         ]
3099                 );
3100
3101                 // Multiple split on same block
3102                 do_handling_query_channel_range(
3103                         &gossip_sync,
3104                         &node_id_2,
3105                         QueryChannelRange {
3106                                 chain_hash: chain_hash.clone(),
3107                                 first_blocknum: 100002,
3108                                 number_of_blocks: 8000,
3109                         },
3110                         true,
3111                         vec![
3112                                 ReplyChannelRange {
3113                                         chain_hash: chain_hash.clone(),
3114                                         first_blocknum: 100002,
3115                                         number_of_blocks: 7999,
3116                                         sync_complete: false,
3117                                         short_channel_ids: (100002..=108001)
3118                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3119                                                 .collect(),
3120                                 },
3121                                 ReplyChannelRange {
3122                                         chain_hash: chain_hash.clone(),
3123                                         first_blocknum: 108001,
3124                                         number_of_blocks: 1,
3125                                         sync_complete: true,
3126                                         short_channel_ids: vec![
3127                                                 scid_from_parts(108001, 1, 0).unwrap(),
3128                                         ],
3129                                 }
3130                         ]
3131                 );
3132         }
3133
3134         fn do_handling_query_channel_range(
3135                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3136                 test_node_id: &PublicKey,
3137                 msg: QueryChannelRange,
3138                 expected_ok: bool,
3139                 expected_replies: Vec<ReplyChannelRange>
3140         ) {
3141                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3142                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3143                 let query_end_blocknum = msg.end_blocknum();
3144                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3145
3146                 if expected_ok {
3147                         assert!(result.is_ok());
3148                 } else {
3149                         assert!(result.is_err());
3150                 }
3151
3152                 let events = gossip_sync.get_and_clear_pending_msg_events();
3153                 assert_eq!(events.len(), expected_replies.len());
3154
3155                 for i in 0..events.len() {
3156                         let expected_reply = &expected_replies[i];
3157                         match &events[i] {
3158                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3159                                         assert_eq!(node_id, test_node_id);
3160                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3161                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3162                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3163                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3164                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3165
3166                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3167                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3168                                         assert!(msg.first_blocknum >= max_firstblocknum);
3169                                         max_firstblocknum = msg.first_blocknum;
3170                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3171
3172                                         // Check that the last block count is >= the query's end_blocknum
3173                                         if i == events.len() - 1 {
3174                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3175                                         }
3176                                 },
3177                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3178                         }
3179                 }
3180         }
3181
3182         #[test]
3183         fn handling_query_short_channel_ids() {
3184                 let network_graph = create_network_graph();
3185                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3186                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3187                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3188
3189                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3190
3191                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3192                         chain_hash,
3193                         short_channel_ids: vec![0x0003e8_000000_0000],
3194                 });
3195                 assert!(result.is_err());
3196         }
3197
3198         #[test]
3199         fn displays_node_alias() {
3200                 let format_str_alias = |alias: &str| {
3201                         let mut bytes = [0u8; 32];
3202                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3203                         format!("{}", NodeAlias(bytes))
3204                 };
3205
3206                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3207                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3208                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3209
3210                 let format_bytes_alias = |alias: &[u8]| {
3211                         let mut bytes = [0u8; 32];
3212                         bytes[..alias.len()].copy_from_slice(alias);
3213                         format!("{}", NodeAlias(bytes))
3214                 };
3215
3216                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3217                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3218                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3219         }
3220
3221         #[test]
3222         fn channel_info_is_readable() {
3223                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
3224                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3225                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3226                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3227
3228                 // 1. Test encoding/decoding of ChannelUpdateInfo
3229                 let chan_update_info = ChannelUpdateInfo {
3230                         last_update: 23,
3231                         enabled: true,
3232                         cltv_expiry_delta: 42,
3233                         htlc_minimum_msat: 1234,
3234                         htlc_maximum_msat: 5678,
3235                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3236                         last_update_message: None,
3237                 };
3238
3239                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3240                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3241
3242                 // First make sure we can read ChannelUpdateInfos we just wrote
3243                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3244                 assert_eq!(chan_update_info, read_chan_update_info);
3245
3246                 // Check the serialization hasn't changed.
3247                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3248                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3249
3250                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3251                 // or the ChannelUpdate enclosed with `last_update_message`.
3252                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3253                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3254                 assert!(read_chan_update_info_res.is_err());
3255
3256                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3257                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3258                 assert!(read_chan_update_info_res.is_err());
3259
3260                 // 2. Test encoding/decoding of ChannelInfo
3261                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3262                 let chan_info_none_updates = ChannelInfo {
3263                         features: channelmanager::provided_channel_features(),
3264                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3265                         one_to_two: None,
3266                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3267                         two_to_one: None,
3268                         capacity_sats: None,
3269                         announcement_message: None,
3270                         announcement_received_time: 87654,
3271                 };
3272
3273                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3274                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3275
3276                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3277                 assert_eq!(chan_info_none_updates, read_chan_info);
3278
3279                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3280                 let chan_info_some_updates = ChannelInfo {
3281                         features: channelmanager::provided_channel_features(),
3282                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3283                         one_to_two: Some(chan_update_info.clone()),
3284                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3285                         two_to_one: Some(chan_update_info.clone()),
3286                         capacity_sats: None,
3287                         announcement_message: None,
3288                         announcement_received_time: 87654,
3289                 };
3290
3291                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3292                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3293
3294                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3295                 assert_eq!(chan_info_some_updates, read_chan_info);
3296
3297                 // Check the serialization hasn't changed.
3298                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3299                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3300
3301                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3302                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3303                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3304                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3305                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3306                 assert_eq!(read_chan_info.one_to_two, None);
3307                 assert_eq!(read_chan_info.two_to_one, None);
3308
3309                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3310                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3311                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3312                 assert_eq!(read_chan_info.one_to_two, None);
3313                 assert_eq!(read_chan_info.two_to_one, None);
3314         }
3315
3316         #[test]
3317         fn node_info_is_readable() {
3318                 use std::convert::TryFrom;
3319
3320                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3321                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3322                 let valid_node_ann_info = NodeAnnouncementInfo {
3323                         features: channelmanager::provided_node_features(),
3324                         last_update: 0,
3325                         rgb: [0u8; 3],
3326                         alias: NodeAlias([0u8; 32]),
3327                         addresses: vec![valid_netaddr],
3328                         announcement_message: None,
3329                 };
3330
3331                 let mut encoded_valid_node_ann_info = Vec::new();
3332                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3333                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3334                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3335
3336                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3337                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3338                 assert!(read_invalid_node_ann_info_res.is_err());
3339
3340                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3341                 let valid_node_info = NodeInfo {
3342                         channels: Vec::new(),
3343                         lowest_inbound_channel_fees: None,
3344                         announcement_info: Some(valid_node_ann_info),
3345                 };
3346
3347                 let mut encoded_valid_node_info = Vec::new();
3348                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3349                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3350                 assert_eq!(read_valid_node_info, valid_node_info);
3351
3352                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3353                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3354                 assert_eq!(read_invalid_node_info.announcement_info, None);
3355         }
3356 }
3357
3358 #[cfg(all(test, feature = "_bench_unstable"))]
3359 mod benches {
3360         use super::*;
3361
3362         use test::Bencher;
3363         use std::io::Read;
3364
3365         #[bench]
3366         fn read_network_graph(bench: &mut Bencher) {
3367                 let logger = ::util::test_utils::TestLogger::new();
3368                 let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
3369                 let mut v = Vec::new();
3370                 d.read_to_end(&mut v).unwrap();
3371                 bench.iter(|| {
3372                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3373                 });
3374         }
3375
3376         #[bench]
3377         fn write_network_graph(bench: &mut Bencher) {
3378                 let logger = ::util::test_utils::TestLogger::new();
3379                 let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
3380                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3381                 bench.iter(|| {
3382                         let _ = net_graph.encode();
3383                 });
3384         }
3385 }