49ffbee5bc5febf738d0cf0f948fdd57989b4650
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::blockdata::constants::ChainHash;
13
14 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
15 use bitcoin::secp256k1::{PublicKey, Verification};
16 use bitcoin::secp256k1::Secp256k1;
17 use bitcoin::secp256k1;
18
19 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
20 use bitcoin::hashes::Hash;
21 use bitcoin::network::constants::Network;
22
23 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
24 use crate::ln::ChannelId;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, SocketAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use core::convert::TryFrom;
42 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46 use core::str::FromStr;
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80
81         /// Get the public key as an array from this NodeId
82         pub fn as_array(&self) -> &[u8; PUBLIC_KEY_SIZE] {
83                 &self.0
84         }
85
86         /// Get the public key from this NodeId
87         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
88                 PublicKey::from_slice(&self.0)
89         }
90 }
91
92 impl fmt::Debug for NodeId {
93         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
94                 write!(f, "NodeId({})", crate::util::logger::DebugBytes(&self.0))
95         }
96 }
97 impl fmt::Display for NodeId {
98         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
99                 crate::util::logger::DebugBytes(&self.0).fmt(f)
100         }
101 }
102
103 impl core::hash::Hash for NodeId {
104         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
105                 self.0.hash(hasher);
106         }
107 }
108
109 impl Eq for NodeId {}
110
111 impl PartialEq for NodeId {
112         fn eq(&self, other: &Self) -> bool {
113                 self.0[..] == other.0[..]
114         }
115 }
116
117 impl cmp::PartialOrd for NodeId {
118         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
119                 Some(self.cmp(other))
120         }
121 }
122
123 impl Ord for NodeId {
124         fn cmp(&self, other: &Self) -> cmp::Ordering {
125                 self.0[..].cmp(&other.0[..])
126         }
127 }
128
129 impl Writeable for NodeId {
130         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
131                 writer.write_all(&self.0)?;
132                 Ok(())
133         }
134 }
135
136 impl Readable for NodeId {
137         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
138                 let mut buf = [0; PUBLIC_KEY_SIZE];
139                 reader.read_exact(&mut buf)?;
140                 Ok(Self(buf))
141         }
142 }
143
144 impl From<PublicKey> for NodeId {
145         fn from(pubkey: PublicKey) -> Self {
146                 Self::from_pubkey(&pubkey)
147         }
148 }
149
150 impl TryFrom<NodeId> for PublicKey {
151         type Error = secp256k1::Error;
152
153         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
154                 node_id.as_pubkey()
155         }
156 }
157
158 impl FromStr for NodeId {
159         type Err = hex::parse::HexToArrayError;
160
161         fn from_str(s: &str) -> Result<Self, Self::Err> {
162                 let data: [u8; PUBLIC_KEY_SIZE] = hex::FromHex::from_hex(s)?;
163                 Ok(NodeId(data))
164         }
165 }
166
167 /// Represents the network as nodes and channels between them
168 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
169         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
170         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
171         chain_hash: ChainHash,
172         logger: L,
173         // Lock order: channels -> nodes
174         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
175         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
176         removed_node_counters: Mutex<Vec<u32>>,
177         next_node_counter: AtomicUsize,
178         // Lock order: removed_channels -> removed_nodes
179         //
180         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
181         // of `std::time::Instant`s for a few reasons:
182         //   * We want it to be possible to do tracking in no-std environments where we can compare
183         //     a provided current UNIX timestamp with the time at which we started tracking.
184         //   * In the future, if we decide to persist these maps, they will already be serializable.
185         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
186         //     environment should be practical over the time period we are considering (on the order of a
187         //     week).
188         //
189         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
190         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
191         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
192         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
193         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
194         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
195         /// that once some time passes, we can potentially resync it from gossip again.
196         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
197         /// Announcement messages which are awaiting an on-chain lookup to be processed.
198         pub(super) pending_checks: utxo::PendingChecks,
199 }
200
201 /// A read-only view of [`NetworkGraph`].
202 pub struct ReadOnlyNetworkGraph<'a> {
203         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
204         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
205 }
206
207 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
208 /// return packet by a node along the route. See [BOLT #4] for details.
209 ///
210 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
211 #[derive(Clone, Debug, PartialEq, Eq)]
212 pub enum NetworkUpdate {
213         /// An error indicating a `channel_update` messages should be applied via
214         /// [`NetworkGraph::update_channel`].
215         ChannelUpdateMessage {
216                 /// The update to apply via [`NetworkGraph::update_channel`].
217                 msg: ChannelUpdate,
218         },
219         /// An error indicating that a channel failed to route a payment, which should be applied via
220         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
221         ChannelFailure {
222                 /// The short channel id of the closed channel.
223                 short_channel_id: u64,
224                 /// Whether the channel should be permanently removed or temporarily disabled until a new
225                 /// `channel_update` message is received.
226                 is_permanent: bool,
227         },
228         /// An error indicating that a node failed to route a payment, which should be applied via
229         /// [`NetworkGraph::node_failed_permanent`] if permanent.
230         NodeFailure {
231                 /// The node id of the failed node.
232                 node_id: PublicKey,
233                 /// Whether the node should be permanently removed from consideration or can be restored
234                 /// when a new `channel_update` message is received.
235                 is_permanent: bool,
236         }
237 }
238
239 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
240         (0, ChannelUpdateMessage) => {
241                 (0, msg, required),
242         },
243         (2, ChannelFailure) => {
244                 (0, short_channel_id, required),
245                 (2, is_permanent, required),
246         },
247         (4, NodeFailure) => {
248                 (0, node_id, required),
249                 (2, is_permanent, required),
250         },
251 );
252
253 /// Receives and validates network updates from peers,
254 /// stores authentic and relevant data as a network graph.
255 /// This network graph is then used for routing payments.
256 /// Provides interface to help with initial routing sync by
257 /// serving historical announcements.
258 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
259 where U::Target: UtxoLookup, L::Target: Logger
260 {
261         network_graph: G,
262         utxo_lookup: RwLock<Option<U>>,
263         #[cfg(feature = "std")]
264         full_syncs_requested: AtomicUsize,
265         pending_events: Mutex<Vec<MessageSendEvent>>,
266         logger: L,
267 }
268
269 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
270 where U::Target: UtxoLookup, L::Target: Logger
271 {
272         /// Creates a new tracker of the actual state of the network of channels and nodes,
273         /// assuming an existing [`NetworkGraph`].
274         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
275         /// correct, and the announcement is signed with channel owners' keys.
276         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
277                 P2PGossipSync {
278                         network_graph,
279                         #[cfg(feature = "std")]
280                         full_syncs_requested: AtomicUsize::new(0),
281                         utxo_lookup: RwLock::new(utxo_lookup),
282                         pending_events: Mutex::new(vec![]),
283                         logger,
284                 }
285         }
286
287         /// Adds a provider used to check new announcements. Does not affect
288         /// existing announcements unless they are updated.
289         /// Add, update or remove the provider would replace the current one.
290         pub fn add_utxo_lookup(&self, utxo_lookup: Option<U>) {
291                 *self.utxo_lookup.write().unwrap() = utxo_lookup;
292         }
293
294         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
295         /// [`P2PGossipSync::new`].
296         ///
297         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
298         pub fn network_graph(&self) -> &G {
299                 &self.network_graph
300         }
301
302         #[cfg(feature = "std")]
303         /// Returns true when a full routing table sync should be performed with a peer.
304         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
305                 //TODO: Determine whether to request a full sync based on the network map.
306                 const FULL_SYNCS_TO_REQUEST: usize = 5;
307                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
308                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
309                         true
310                 } else {
311                         false
312                 }
313         }
314
315         /// Used to broadcast forward gossip messages which were validated async.
316         ///
317         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
318         /// data.
319         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
320                 match &mut ev {
321                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
322                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
323                                 if update_msg.as_ref()
324                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
325                                 {
326                                         *update_msg = None;
327                                 }
328                         },
329                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
330                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
331                         },
332                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
333                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
334                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
335                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
336                                 {
337                                         return;
338                                 }
339                         },
340                         _ => return,
341                 }
342                 self.pending_events.lock().unwrap().push(ev);
343         }
344 }
345
346 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
347         /// Handles any network updates originating from [`Event`]s.
348         //
349         /// Note that this will skip applying any [`NetworkUpdate::ChannelUpdateMessage`] to avoid
350         /// leaking possibly identifying information of the sender to the public network.
351         ///
352         /// [`Event`]: crate::events::Event
353         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
354                 match *network_update {
355                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
356                                 let short_channel_id = msg.contents.short_channel_id;
357                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
358                                 let status = if is_enabled { "enabled" } else { "disabled" };
359                                 log_debug!(self.logger, "Skipping application of a channel update from a payment failure. Channel {} is {}.", short_channel_id, status);
360                         },
361                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
362                                 if is_permanent {
363                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
364                                         self.channel_failed_permanent(short_channel_id);
365                                 }
366                         },
367                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
368                                 if is_permanent {
369                                         log_debug!(self.logger,
370                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
371                                         self.node_failed_permanent(node_id);
372                                 };
373                         },
374                 }
375         }
376
377         /// Gets the chain hash for this network graph.
378         pub fn get_chain_hash(&self) -> ChainHash {
379                 self.chain_hash
380         }
381 }
382
383 macro_rules! secp_verify_sig {
384         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
385                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
386                         Ok(_) => {},
387                         Err(_) => {
388                                 return Err(LightningError {
389                                         err: format!("Invalid signature on {} message", $msg_type),
390                                         action: ErrorAction::SendWarningMessage {
391                                                 msg: msgs::WarningMessage {
392                                                         channel_id: ChannelId::new_zero(),
393                                                         data: format!("Invalid signature on {} message", $msg_type),
394                                                 },
395                                                 log_level: Level::Trace,
396                                         },
397                                 });
398                         },
399                 }
400         };
401 }
402
403 macro_rules! get_pubkey_from_node_id {
404         ( $node_id: expr, $msg_type: expr ) => {
405                 PublicKey::from_slice($node_id.as_slice())
406                         .map_err(|_| LightningError {
407                                 err: format!("Invalid public key on {} message", $msg_type),
408                                 action: ErrorAction::SendWarningMessage {
409                                         msg: msgs::WarningMessage {
410                                                 channel_id: ChannelId::new_zero(),
411                                                 data: format!("Invalid public key on {} message", $msg_type),
412                                         },
413                                         log_level: Level::Trace
414                                 }
415                         })?
416         }
417 }
418
419 fn message_sha256d_hash<M: Writeable>(msg: &M) -> Sha256dHash {
420         let mut engine = Sha256dHash::engine();
421         msg.write(&mut engine).expect("In-memory structs should not fail to serialize");
422         Sha256dHash::from_engine(engine)
423 }
424
425 /// Verifies the signature of a [`NodeAnnouncement`].
426 ///
427 /// Returns an error if it is invalid.
428 pub fn verify_node_announcement<C: Verification>(msg: &NodeAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
429         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
430         secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
431
432         Ok(())
433 }
434
435 /// Verifies all signatures included in a [`ChannelAnnouncement`].
436 ///
437 /// Returns an error if one of the signatures is invalid.
438 pub fn verify_channel_announcement<C: Verification>(msg: &ChannelAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
439         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
440         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
441         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
442         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
443         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
444
445         Ok(())
446 }
447
448 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
449 where U::Target: UtxoLookup, L::Target: Logger
450 {
451         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
452                 self.network_graph.update_node_from_announcement(msg)?;
453                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
454                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
455                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
456         }
457
458         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
459                 self.network_graph.update_channel_from_announcement(msg, &*self.utxo_lookup.read().unwrap())?;
460                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
461         }
462
463         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
464                 self.network_graph.update_channel(msg)?;
465                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
466         }
467
468         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
469                 let mut channels = self.network_graph.channels.write().unwrap();
470                 for (_, ref chan) in channels.range(starting_point..) {
471                         if chan.announcement_message.is_some() {
472                                 let chan_announcement = chan.announcement_message.clone().unwrap();
473                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
474                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
475                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
476                                         one_to_two_announcement = one_to_two.last_update_message.clone();
477                                 }
478                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
479                                         two_to_one_announcement = two_to_one.last_update_message.clone();
480                                 }
481                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
482                         } else {
483                                 // TODO: We may end up sending un-announced channel_updates if we are sending
484                                 // initial sync data while receiving announce/updates for this channel.
485                         }
486                 }
487                 None
488         }
489
490         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
491                 let mut nodes = self.network_graph.nodes.write().unwrap();
492                 let iter = if let Some(node_id) = starting_point {
493                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
494                         } else {
495                                 nodes.range(..)
496                         };
497                 for (_, ref node) in iter {
498                         if let Some(node_info) = node.announcement_info.as_ref() {
499                                 if let Some(msg) = node_info.announcement_message.clone() {
500                                         return Some(msg);
501                                 }
502                         }
503                 }
504                 None
505         }
506
507         /// Initiates a stateless sync of routing gossip information with a peer
508         /// using [`gossip_queries`]. The default strategy used by this implementation
509         /// is to sync the full block range with several peers.
510         ///
511         /// We should expect one or more [`reply_channel_range`] messages in response
512         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
513         /// to request gossip messages for each channel. The sync is considered complete
514         /// when the final [`reply_scids_end`] message is received, though we are not
515         /// tracking this directly.
516         ///
517         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
518         /// [`reply_channel_range`]: msgs::ReplyChannelRange
519         /// [`query_channel_range`]: msgs::QueryChannelRange
520         /// [`query_scid`]: msgs::QueryShortChannelIds
521         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
522         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
523                 // We will only perform a sync with peers that support gossip_queries.
524                 if !init_msg.features.supports_gossip_queries() {
525                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
526                         // channels with peers even without being able to exchange gossip.
527                         return Ok(());
528                 }
529
530                 // The lightning network's gossip sync system is completely broken in numerous ways.
531                 //
532                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
533                 // to do a full sync from the first few peers we connect to, and then receive gossip
534                 // updates from all our peers normally.
535                 //
536                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
537                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
538                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
539                 // seen.
540                 //
541                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
542                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
543                 // channel data which you are missing. Except there was no way at all to identify which
544                 // `channel_update`s you were missing, so you still had to request everything, just in a
545                 // very complicated way with some queries instead of just getting the dump.
546                 //
547                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
548                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
549                 // relying on it useless.
550                 //
551                 // After gossip queries were introduced, support for receiving a full gossip table dump on
552                 // connection was removed from several nodes, making it impossible to get a full sync
553                 // without using the "gossip queries" messages.
554                 //
555                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
556                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
557                 // message, as the name implies, tells the peer to not forward any gossip messages with a
558                 // timestamp older than a given value (not the time the peer received the filter, but the
559                 // timestamp in the update message, which is often hours behind when the peer received the
560                 // message).
561                 //
562                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
563                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
564                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
565                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
566                 // will simply not forward any new updates they see to you which were generated some time
567                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
568                 // ago), you will always get the full routing graph from all your peers.
569                 //
570                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
571                 // propagated some time after it was generated, and, worse, often disable gossiping with
572                 // several peers after their first connection. The second behavior can cause gossip to not
573                 // propagate fully if there are cuts in the gossiping subgraph.
574                 //
575                 // In an attempt to cut a middle ground between always fetching the full graph from all of
576                 // our peers and never receiving gossip from peers at all, we send all of our peers a
577                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
578                 //
579                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
580                 #[allow(unused_mut, unused_assignments)]
581                 let mut gossip_start_time = 0;
582                 #[cfg(feature = "std")]
583                 {
584                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
585                         if self.should_request_full_sync(&their_node_id) {
586                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
587                         } else {
588                                 gossip_start_time -= 60 * 60; // an hour ago
589                         }
590                 }
591
592                 let mut pending_events = self.pending_events.lock().unwrap();
593                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
594                         node_id: their_node_id.clone(),
595                         msg: GossipTimestampFilter {
596                                 chain_hash: self.network_graph.chain_hash,
597                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
598                                 timestamp_range: u32::max_value(),
599                         },
600                 });
601                 Ok(())
602         }
603
604         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
605                 // We don't make queries, so should never receive replies. If, in the future, the set
606                 // reconciliation extensions to gossip queries become broadly supported, we should revert
607                 // this code to its state pre-0.0.106.
608                 Ok(())
609         }
610
611         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
612                 // We don't make queries, so should never receive replies. If, in the future, the set
613                 // reconciliation extensions to gossip queries become broadly supported, we should revert
614                 // this code to its state pre-0.0.106.
615                 Ok(())
616         }
617
618         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
619         /// are in the specified block range. Due to message size limits, large range
620         /// queries may result in several reply messages. This implementation enqueues
621         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
622         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
623         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
624         /// memory constrained systems.
625         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
626                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
627
628                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
629
630                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
631                 // If so, we manually cap the ending block to avoid this overflow.
632                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
633
634                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
635                 if msg.chain_hash != self.network_graph.chain_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
636                         let mut pending_events = self.pending_events.lock().unwrap();
637                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
638                                 node_id: their_node_id.clone(),
639                                 msg: ReplyChannelRange {
640                                         chain_hash: msg.chain_hash.clone(),
641                                         first_blocknum: msg.first_blocknum,
642                                         number_of_blocks: msg.number_of_blocks,
643                                         sync_complete: true,
644                                         short_channel_ids: vec![],
645                                 }
646                         });
647                         return Err(LightningError {
648                                 err: String::from("query_channel_range could not be processed"),
649                                 action: ErrorAction::IgnoreError,
650                         });
651                 }
652
653                 // Creates channel batches. We are not checking if the channel is routable
654                 // (has at least one update). A peer may still want to know the channel
655                 // exists even if its not yet routable.
656                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
657                 let mut channels = self.network_graph.channels.write().unwrap();
658                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
659                         if let Some(chan_announcement) = &chan.announcement_message {
660                                 // Construct a new batch if last one is full
661                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
662                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
663                                 }
664
665                                 let batch = batches.last_mut().unwrap();
666                                 batch.push(chan_announcement.contents.short_channel_id);
667                         }
668                 }
669                 drop(channels);
670
671                 let mut pending_events = self.pending_events.lock().unwrap();
672                 let batch_count = batches.len();
673                 let mut prev_batch_endblock = msg.first_blocknum;
674                 for (batch_index, batch) in batches.into_iter().enumerate() {
675                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
676                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
677                         //
678                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
679                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
680                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
681                         // significant diversion from the requirements set by the spec, and, in case of blocks
682                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
683                         // and *not* derive the first_blocknum from the actual first block of the reply.
684                         let first_blocknum = prev_batch_endblock;
685
686                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
687                         // fit in. Though there is no requirement that we use exactly the number of blocks its
688                         // contents are from, except for the bogus requirements c-lightning enforces, above.
689                         //
690                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
691                         // >= the query's end block. Thus, for the last reply, we calculate the difference
692                         // between the query's end block and the start of the reply.
693                         //
694                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
695                         // first_blocknum will be either msg.first_blocknum or a higher block height.
696                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
697                                 (true, msg.end_blocknum() - first_blocknum)
698                         }
699                         // Prior replies should use the number of blocks that fit into the reply. Overflow
700                         // safe since first_blocknum is always <= last SCID's block.
701                         else {
702                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
703                         };
704
705                         prev_batch_endblock = first_blocknum + number_of_blocks;
706
707                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
708                                 node_id: their_node_id.clone(),
709                                 msg: ReplyChannelRange {
710                                         chain_hash: msg.chain_hash.clone(),
711                                         first_blocknum,
712                                         number_of_blocks,
713                                         sync_complete,
714                                         short_channel_ids: batch,
715                                 }
716                         });
717                 }
718
719                 Ok(())
720         }
721
722         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
723                 // TODO
724                 Err(LightningError {
725                         err: String::from("Not implemented"),
726                         action: ErrorAction::IgnoreError,
727                 })
728         }
729
730         fn provided_node_features(&self) -> NodeFeatures {
731                 let mut features = NodeFeatures::empty();
732                 features.set_gossip_queries_optional();
733                 features
734         }
735
736         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
737                 let mut features = InitFeatures::empty();
738                 features.set_gossip_queries_optional();
739                 features
740         }
741
742         fn processing_queue_high(&self) -> bool {
743                 self.network_graph.pending_checks.too_many_checks_pending()
744         }
745 }
746
747 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
748 where
749         U::Target: UtxoLookup,
750         L::Target: Logger,
751 {
752         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
753                 let mut ret = Vec::new();
754                 let mut pending_events = self.pending_events.lock().unwrap();
755                 core::mem::swap(&mut ret, &mut pending_events);
756                 ret
757         }
758 }
759
760 #[derive(Clone, Debug, PartialEq, Eq)]
761 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
762 pub struct ChannelUpdateInfo {
763         /// When the last update to the channel direction was issued.
764         /// Value is opaque, as set in the announcement.
765         pub last_update: u32,
766         /// Whether the channel can be currently used for payments (in this one direction).
767         pub enabled: bool,
768         /// The difference in CLTV values that you must have when routing through this channel.
769         pub cltv_expiry_delta: u16,
770         /// The minimum value, which must be relayed to the next hop via the channel
771         pub htlc_minimum_msat: u64,
772         /// The maximum value which may be relayed to the next hop via the channel.
773         pub htlc_maximum_msat: u64,
774         /// Fees charged when the channel is used for routing
775         pub fees: RoutingFees,
776         /// Most recent update for the channel received from the network
777         /// Mostly redundant with the data we store in fields explicitly.
778         /// Everything else is useful only for sending out for initial routing sync.
779         /// Not stored if contains excess data to prevent DoS.
780         pub last_update_message: Option<ChannelUpdate>,
781 }
782
783 impl fmt::Display for ChannelUpdateInfo {
784         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
785                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
786                 Ok(())
787         }
788 }
789
790 impl Writeable for ChannelUpdateInfo {
791         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
792                 write_tlv_fields!(writer, {
793                         (0, self.last_update, required),
794                         (2, self.enabled, required),
795                         (4, self.cltv_expiry_delta, required),
796                         (6, self.htlc_minimum_msat, required),
797                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
798                         // compatibility with LDK versions prior to v0.0.110.
799                         (8, Some(self.htlc_maximum_msat), required),
800                         (10, self.fees, required),
801                         (12, self.last_update_message, required),
802                 });
803                 Ok(())
804         }
805 }
806
807 impl Readable for ChannelUpdateInfo {
808         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
809                 _init_tlv_field_var!(last_update, required);
810                 _init_tlv_field_var!(enabled, required);
811                 _init_tlv_field_var!(cltv_expiry_delta, required);
812                 _init_tlv_field_var!(htlc_minimum_msat, required);
813                 _init_tlv_field_var!(htlc_maximum_msat, option);
814                 _init_tlv_field_var!(fees, required);
815                 _init_tlv_field_var!(last_update_message, required);
816
817                 read_tlv_fields!(reader, {
818                         (0, last_update, required),
819                         (2, enabled, required),
820                         (4, cltv_expiry_delta, required),
821                         (6, htlc_minimum_msat, required),
822                         (8, htlc_maximum_msat, required),
823                         (10, fees, required),
824                         (12, last_update_message, required)
825                 });
826
827                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
828                         Ok(ChannelUpdateInfo {
829                                 last_update: _init_tlv_based_struct_field!(last_update, required),
830                                 enabled: _init_tlv_based_struct_field!(enabled, required),
831                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
832                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
833                                 htlc_maximum_msat,
834                                 fees: _init_tlv_based_struct_field!(fees, required),
835                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
836                         })
837                 } else {
838                         Err(DecodeError::InvalidValue)
839                 }
840         }
841 }
842
843 #[derive(Clone, Debug, PartialEq, Eq)]
844 /// Details about a channel (both directions).
845 /// Received within a channel announcement.
846 pub struct ChannelInfo {
847         /// Protocol features of a channel communicated during its announcement
848         pub features: ChannelFeatures,
849         /// Source node of the first direction of a channel
850         pub node_one: NodeId,
851         /// Details about the first direction of a channel
852         pub one_to_two: Option<ChannelUpdateInfo>,
853         /// Source node of the second direction of a channel
854         pub node_two: NodeId,
855         /// Details about the second direction of a channel
856         pub two_to_one: Option<ChannelUpdateInfo>,
857         /// The channel capacity as seen on-chain, if chain lookup is available.
858         pub capacity_sats: Option<u64>,
859         /// An initial announcement of the channel
860         /// Mostly redundant with the data we store in fields explicitly.
861         /// Everything else is useful only for sending out for initial routing sync.
862         /// Not stored if contains excess data to prevent DoS.
863         pub announcement_message: Option<ChannelAnnouncement>,
864         /// The timestamp when we received the announcement, if we are running with feature = "std"
865         /// (which we can probably assume we are - no-std environments probably won't have a full
866         /// network graph in memory!).
867         announcement_received_time: u64,
868 }
869
870 impl ChannelInfo {
871         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
872         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
873         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
874                 let (direction, source, outbound) = {
875                         if target == &self.node_one {
876                                 (self.two_to_one.as_ref(), &self.node_two, false)
877                         } else if target == &self.node_two {
878                                 (self.one_to_two.as_ref(), &self.node_one, true)
879                         } else {
880                                 return None;
881                         }
882                 };
883                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), source))
884         }
885
886         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
887         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
888         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
889                 let (direction, target, outbound) = {
890                         if source == &self.node_one {
891                                 (self.one_to_two.as_ref(), &self.node_two, true)
892                         } else if source == &self.node_two {
893                                 (self.two_to_one.as_ref(), &self.node_one, false)
894                         } else {
895                                 return None;
896                         }
897                 };
898                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), target))
899         }
900
901         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
902         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
903                 let direction = channel_flags & 1u8;
904                 if direction == 0 {
905                         self.one_to_two.as_ref()
906                 } else {
907                         self.two_to_one.as_ref()
908                 }
909         }
910 }
911
912 impl fmt::Display for ChannelInfo {
913         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
914                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
915                    log_bytes!(self.features.encode()), &self.node_one, self.one_to_two, &self.node_two, self.two_to_one)?;
916                 Ok(())
917         }
918 }
919
920 impl Writeable for ChannelInfo {
921         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
922                 write_tlv_fields!(writer, {
923                         (0, self.features, required),
924                         (1, self.announcement_received_time, (default_value, 0)),
925                         (2, self.node_one, required),
926                         (4, self.one_to_two, required),
927                         (6, self.node_two, required),
928                         (8, self.two_to_one, required),
929                         (10, self.capacity_sats, required),
930                         (12, self.announcement_message, required),
931                 });
932                 Ok(())
933         }
934 }
935
936 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
937 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
938 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
939 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
940 // channel updates via the gossip network.
941 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
942
943 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
944         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
945                 match crate::util::ser::Readable::read(reader) {
946                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
947                         Err(DecodeError::ShortRead) => Ok(None),
948                         Err(DecodeError::InvalidValue) => Ok(None),
949                         Err(err) => Err(err),
950                 }
951         }
952 }
953
954 impl Readable for ChannelInfo {
955         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
956                 _init_tlv_field_var!(features, required);
957                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
958                 _init_tlv_field_var!(node_one, required);
959                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
960                 _init_tlv_field_var!(node_two, required);
961                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
962                 _init_tlv_field_var!(capacity_sats, required);
963                 _init_tlv_field_var!(announcement_message, required);
964                 read_tlv_fields!(reader, {
965                         (0, features, required),
966                         (1, announcement_received_time, (default_value, 0)),
967                         (2, node_one, required),
968                         (4, one_to_two_wrap, upgradable_option),
969                         (6, node_two, required),
970                         (8, two_to_one_wrap, upgradable_option),
971                         (10, capacity_sats, required),
972                         (12, announcement_message, required),
973                 });
974
975                 Ok(ChannelInfo {
976                         features: _init_tlv_based_struct_field!(features, required),
977                         node_one: _init_tlv_based_struct_field!(node_one, required),
978                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
979                         node_two: _init_tlv_based_struct_field!(node_two, required),
980                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
981                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
982                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
983                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
984                 })
985         }
986 }
987
988 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
989 /// source node to a target node.
990 #[derive(Clone)]
991 pub struct DirectedChannelInfo<'a> {
992         channel: &'a ChannelInfo,
993         direction: &'a ChannelUpdateInfo,
994         /// The direction this channel is in - if set, it indicates that we're traversing the channel
995         /// from [`ChannelInfo::node_one`] to [`ChannelInfo::node_two`].
996         from_node_one: bool,
997 }
998
999 impl<'a> DirectedChannelInfo<'a> {
1000         #[inline]
1001         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo, from_node_one: bool) -> Self {
1002                 Self { channel, direction, from_node_one }
1003         }
1004
1005         /// Returns information for the channel.
1006         #[inline]
1007         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
1008
1009         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
1010         ///
1011         /// This is either the total capacity from the funding transaction, if known, or the
1012         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
1013         /// otherwise.
1014         #[inline]
1015         pub fn effective_capacity(&self) -> EffectiveCapacity {
1016                 let mut htlc_maximum_msat = self.direction().htlc_maximum_msat;
1017                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
1018
1019                 match capacity_msat {
1020                         Some(capacity_msat) => {
1021                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
1022                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat }
1023                         },
1024                         None => EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: htlc_maximum_msat },
1025                 }
1026         }
1027
1028         /// Returns information for the direction.
1029         #[inline]
1030         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1031
1032         /// Returns the `node_id` of the source hop.
1033         ///
1034         /// Refers to the `node_id` forwarding the payment to the next hop.
1035         #[inline]
1036         pub(super) fn source(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_one } else { &self.channel.node_two } }
1037
1038         /// Returns the `node_id` of the target hop.
1039         ///
1040         /// Refers to the `node_id` receiving the payment from the previous hop.
1041         #[inline]
1042         pub(super) fn target(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_two } else { &self.channel.node_one } }
1043 }
1044
1045 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1046         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1047                 f.debug_struct("DirectedChannelInfo")
1048                         .field("channel", &self.channel)
1049                         .finish()
1050         }
1051 }
1052
1053 /// The effective capacity of a channel for routing purposes.
1054 ///
1055 /// While this may be smaller than the actual channel capacity, amounts greater than
1056 /// [`Self::as_msat`] should not be routed through the channel.
1057 #[derive(Clone, Copy, Debug, PartialEq)]
1058 pub enum EffectiveCapacity {
1059         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1060         /// direct hop.
1061         ExactLiquidity {
1062                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1063                 /// millisatoshi.
1064                 liquidity_msat: u64,
1065         },
1066         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1067         AdvertisedMaxHTLC {
1068                 /// The maximum HTLC amount denominated in millisatoshi.
1069                 amount_msat: u64,
1070         },
1071         /// The total capacity of the channel as determined by the funding transaction.
1072         Total {
1073                 /// The funding amount denominated in millisatoshi.
1074                 capacity_msat: u64,
1075                 /// The maximum HTLC amount denominated in millisatoshi.
1076                 htlc_maximum_msat: u64
1077         },
1078         /// A capacity sufficient to route any payment, typically used for private channels provided by
1079         /// an invoice.
1080         Infinite,
1081         /// The maximum HTLC amount as provided by an invoice route hint.
1082         HintMaxHTLC {
1083                 /// The maximum HTLC amount denominated in millisatoshi.
1084                 amount_msat: u64,
1085         },
1086         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1087         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1088         Unknown,
1089 }
1090
1091 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1092 /// use when making routing decisions.
1093 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1094
1095 impl EffectiveCapacity {
1096         /// Returns the effective capacity denominated in millisatoshi.
1097         pub fn as_msat(&self) -> u64 {
1098                 match self {
1099                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1100                         EffectiveCapacity::AdvertisedMaxHTLC { amount_msat } => *amount_msat,
1101                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1102                         EffectiveCapacity::HintMaxHTLC { amount_msat } => *amount_msat,
1103                         EffectiveCapacity::Infinite => u64::max_value(),
1104                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1105                 }
1106         }
1107 }
1108
1109 /// Fees for routing via a given channel or a node
1110 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1111 pub struct RoutingFees {
1112         /// Flat routing fee in millisatoshis.
1113         pub base_msat: u32,
1114         /// Liquidity-based routing fee in millionths of a routed amount.
1115         /// In other words, 10000 is 1%.
1116         pub proportional_millionths: u32,
1117 }
1118
1119 impl_writeable_tlv_based!(RoutingFees, {
1120         (0, base_msat, required),
1121         (2, proportional_millionths, required)
1122 });
1123
1124 #[derive(Clone, Debug, PartialEq, Eq)]
1125 /// Information received in the latest node_announcement from this node.
1126 pub struct NodeAnnouncementInfo {
1127         /// Protocol features the node announced support for
1128         pub features: NodeFeatures,
1129         /// When the last known update to the node state was issued.
1130         /// Value is opaque, as set in the announcement.
1131         pub last_update: u32,
1132         /// Color assigned to the node
1133         pub rgb: [u8; 3],
1134         /// Moniker assigned to the node.
1135         /// May be invalid or malicious (eg control chars),
1136         /// should not be exposed to the user.
1137         pub alias: NodeAlias,
1138         /// An initial announcement of the node
1139         /// Mostly redundant with the data we store in fields explicitly.
1140         /// Everything else is useful only for sending out for initial routing sync.
1141         /// Not stored if contains excess data to prevent DoS.
1142         pub announcement_message: Option<NodeAnnouncement>
1143 }
1144
1145 impl NodeAnnouncementInfo {
1146         /// Internet-level addresses via which one can connect to the node
1147         pub fn addresses(&self) -> &[SocketAddress] {
1148                 self.announcement_message.as_ref()
1149                         .map(|msg| msg.contents.addresses.as_slice())
1150                         .unwrap_or_default()
1151         }
1152 }
1153
1154 impl Writeable for NodeAnnouncementInfo {
1155         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1156                 let empty_addresses = Vec::<SocketAddress>::new();
1157                 write_tlv_fields!(writer, {
1158                         (0, self.features, required),
1159                         (2, self.last_update, required),
1160                         (4, self.rgb, required),
1161                         (6, self.alias, required),
1162                         (8, self.announcement_message, option),
1163                         (10, empty_addresses, required_vec), // Versions prior to 0.0.115 require this field
1164                 });
1165                 Ok(())
1166         }
1167 }
1168
1169 impl Readable for NodeAnnouncementInfo {
1170         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1171                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1172                         (0, features, required),
1173                         (2, last_update, required),
1174                         (4, rgb, required),
1175                         (6, alias, required),
1176                         (8, announcement_message, option),
1177                         (10, _addresses, optional_vec), // deprecated, not used anymore
1178                 });
1179                 let _: Option<Vec<SocketAddress>> = _addresses;
1180                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1181                         alias: alias.0.unwrap(), announcement_message })
1182         }
1183 }
1184
1185 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1186 ///
1187 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1188 /// attacks. Care must be taken when processing.
1189 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
1190 pub struct NodeAlias(pub [u8; 32]);
1191
1192 impl fmt::Display for NodeAlias {
1193         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1194                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1195                 let bytes = self.0.split_at(first_null).0;
1196                 match core::str::from_utf8(bytes) {
1197                         Ok(alias) => PrintableString(alias).fmt(f)?,
1198                         Err(_) => {
1199                                 use core::fmt::Write;
1200                                 for c in bytes.iter().map(|b| *b as char) {
1201                                         // Display printable ASCII characters
1202                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1203                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1204                                         f.write_char(c)?;
1205                                 }
1206                         },
1207                 };
1208                 Ok(())
1209         }
1210 }
1211
1212 impl Writeable for NodeAlias {
1213         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1214                 self.0.write(w)
1215         }
1216 }
1217
1218 impl Readable for NodeAlias {
1219         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1220                 Ok(NodeAlias(Readable::read(r)?))
1221         }
1222 }
1223
1224 #[derive(Clone, Debug, Eq)]
1225 /// Details about a node in the network, known from the network announcement.
1226 pub struct NodeInfo {
1227         /// All valid channels a node has announced
1228         pub channels: Vec<u64>,
1229         /// More information about a node from node_announcement.
1230         /// Optional because we store a Node entry after learning about it from
1231         /// a channel announcement, but before receiving a node announcement.
1232         pub announcement_info: Option<NodeAnnouncementInfo>,
1233         /// In memory, each node is assigned a unique ID. They are eagerly reused, ensuring they remain
1234         /// relatively dense.
1235         ///
1236         /// These IDs allow the router to avoid a `HashMap` lookup by simply using this value as an
1237         /// index in a `Vec`, skipping a big step in some of the hottest code when routing.
1238         pub(crate) node_counter: u32,
1239 }
1240
1241 impl PartialEq for NodeInfo {
1242         fn eq(&self, o: &NodeInfo) -> bool {
1243                 self.channels == o.channels && self.announcement_info == o.announcement_info
1244         }
1245 }
1246
1247 impl fmt::Display for NodeInfo {
1248         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1249                 write!(f, " channels: {:?}, announcement_info: {:?}",
1250                         &self.channels[..], self.announcement_info)?;
1251                 Ok(())
1252         }
1253 }
1254
1255 impl Writeable for NodeInfo {
1256         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1257                 write_tlv_fields!(writer, {
1258                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1259                         (2, self.announcement_info, option),
1260                         (4, self.channels, required_vec),
1261                 });
1262                 Ok(())
1263         }
1264 }
1265
1266 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1267 // necessary to maintain compatibility with previous serializations of `SocketAddress` that have an
1268 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1269 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1270 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1271
1272 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1273         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1274                 match crate::util::ser::Readable::read(reader) {
1275                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1276                         Err(_) => {
1277                                 copy(reader, &mut sink()).unwrap();
1278                                 return Ok(None)
1279                         },
1280                 };
1281         }
1282 }
1283
1284 impl Readable for NodeInfo {
1285         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1286                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1287                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1288                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1289                 // requires additional complexity and lookups during routing, it ends up being a
1290                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1291                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1292                         (0, _lowest_inbound_channel_fees, option),
1293                         (2, announcement_info_wrap, upgradable_option),
1294                         (4, channels, required_vec),
1295                 });
1296                 let _: Option<RoutingFees> = _lowest_inbound_channel_fees;
1297                 let announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = announcement_info_wrap;
1298
1299                 Ok(NodeInfo {
1300                         announcement_info: announcement_info_wrap.map(|w| w.0),
1301                         channels,
1302                         node_counter: u32::max_value(),
1303                 })
1304         }
1305 }
1306
1307 const SERIALIZATION_VERSION: u8 = 1;
1308 const MIN_SERIALIZATION_VERSION: u8 = 1;
1309
1310 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1311         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1312                 self.test_node_counter_consistency();
1313
1314                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1315
1316                 self.chain_hash.write(writer)?;
1317                 let channels = self.channels.read().unwrap();
1318                 (channels.len() as u64).write(writer)?;
1319                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1320                         (*chan_id).write(writer)?;
1321                         chan_info.write(writer)?;
1322                 }
1323                 let nodes = self.nodes.read().unwrap();
1324                 (nodes.len() as u64).write(writer)?;
1325                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1326                         node_id.write(writer)?;
1327                         node_info.write(writer)?;
1328                 }
1329
1330                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1331                 write_tlv_fields!(writer, {
1332                         (1, last_rapid_gossip_sync_timestamp, option),
1333                 });
1334                 Ok(())
1335         }
1336 }
1337
1338 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1339         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1340                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1341
1342                 let chain_hash: ChainHash = Readable::read(reader)?;
1343                 let channels_count: u64 = Readable::read(reader)?;
1344                 // In Nov, 2023 there were about 15,000 nodes; we cap allocations to 1.5x that.
1345                 let mut channels = IndexedMap::with_capacity(cmp::min(channels_count as usize, 22500));
1346                 for _ in 0..channels_count {
1347                         let chan_id: u64 = Readable::read(reader)?;
1348                         let chan_info = Readable::read(reader)?;
1349                         channels.insert(chan_id, chan_info);
1350                 }
1351                 let nodes_count: u64 = Readable::read(reader)?;
1352                 if nodes_count > u32::max_value() as u64 / 2 { return Err(DecodeError::InvalidValue); }
1353                 // In Nov, 2023 there were about 69K channels; we cap allocations to 1.5x that.
1354                 let mut nodes = IndexedMap::with_capacity(cmp::min(nodes_count as usize, 103500));
1355                 for i in 0..nodes_count {
1356                         let node_id = Readable::read(reader)?;
1357                         let mut node_info: NodeInfo = Readable::read(reader)?;
1358                         node_info.node_counter = i as u32;
1359                         nodes.insert(node_id, node_info);
1360                 }
1361
1362                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1363                 read_tlv_fields!(reader, {
1364                         (1, last_rapid_gossip_sync_timestamp, option),
1365                 });
1366
1367                 Ok(NetworkGraph {
1368                         secp_ctx: Secp256k1::verification_only(),
1369                         chain_hash,
1370                         logger,
1371                         channels: RwLock::new(channels),
1372                         nodes: RwLock::new(nodes),
1373                         removed_node_counters: Mutex::new(Vec::new()),
1374                         next_node_counter: AtomicUsize::new(nodes_count as usize),
1375                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1376                         removed_nodes: Mutex::new(HashMap::new()),
1377                         removed_channels: Mutex::new(HashMap::new()),
1378                         pending_checks: utxo::PendingChecks::new(),
1379                 })
1380         }
1381 }
1382
1383 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1384         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1385                 writeln!(f, "Network map\n[Channels]")?;
1386                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1387                         writeln!(f, " {}: {}", key, val)?;
1388                 }
1389                 writeln!(f, "[Nodes]")?;
1390                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1391                         writeln!(f, " {}: {}", &node_id, val)?;
1392                 }
1393                 Ok(())
1394         }
1395 }
1396
1397 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1398 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1399         fn eq(&self, other: &Self) -> bool {
1400                 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1401                 // (Assumes that we can't move within memory while a lock is held).
1402                 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1403                 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1404                 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1405                 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1406                 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1407                 self.chain_hash.eq(&other.chain_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1408         }
1409 }
1410
1411 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1412         /// Creates a new, empty, network graph.
1413         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1414                 Self {
1415                         secp_ctx: Secp256k1::verification_only(),
1416                         chain_hash: ChainHash::using_genesis_block(network),
1417                         logger,
1418                         channels: RwLock::new(IndexedMap::new()),
1419                         nodes: RwLock::new(IndexedMap::new()),
1420                         next_node_counter: AtomicUsize::new(0),
1421                         removed_node_counters: Mutex::new(Vec::new()),
1422                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1423                         removed_channels: Mutex::new(HashMap::new()),
1424                         removed_nodes: Mutex::new(HashMap::new()),
1425                         pending_checks: utxo::PendingChecks::new(),
1426                 }
1427         }
1428
1429         fn test_node_counter_consistency(&self) {
1430                 #[cfg(debug_assertions)] {
1431                         let nodes = self.nodes.read().unwrap();
1432                         let removed_node_counters = self.removed_node_counters.lock().unwrap();
1433                         let next_counter = self.next_node_counter.load(Ordering::Acquire);
1434                         assert!(next_counter < (u32::max_value() as usize) / 2);
1435                         let mut used_node_counters = vec![0u8; next_counter / 8 + 1];
1436
1437                         for counter in removed_node_counters.iter() {
1438                                 let pos = (*counter as usize) / 8;
1439                                 let bit = 1 << (counter % 8);
1440                                 assert_eq!(used_node_counters[pos] & bit, 0);
1441                                 used_node_counters[pos] |= bit;
1442                         }
1443                         for (_, node) in nodes.unordered_iter() {
1444                                 assert!((node.node_counter as usize) < next_counter);
1445                                 let pos = (node.node_counter as usize) / 8;
1446                                 let bit = 1 << (node.node_counter % 8);
1447                                 assert_eq!(used_node_counters[pos] & bit, 0);
1448                                 used_node_counters[pos] |= bit;
1449                         }
1450                 }
1451         }
1452
1453         /// Returns a read-only view of the network graph.
1454         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1455                 self.test_node_counter_consistency();
1456                 let channels = self.channels.read().unwrap();
1457                 let nodes = self.nodes.read().unwrap();
1458                 ReadOnlyNetworkGraph {
1459                         channels,
1460                         nodes,
1461                 }
1462         }
1463
1464         /// The unix timestamp provided by the most recent rapid gossip sync.
1465         /// It will be set by the rapid sync process after every sync completion.
1466         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1467                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1468         }
1469
1470         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1471         /// This should be done automatically by the rapid sync process after every sync completion.
1472         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1473                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1474         }
1475
1476         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1477         /// purposes.
1478         #[cfg(test)]
1479         pub fn clear_nodes_announcement_info(&self) {
1480                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1481                         node.1.announcement_info = None;
1482                 }
1483         }
1484
1485         /// For an already known node (from channel announcements), update its stored properties from a
1486         /// given node announcement.
1487         ///
1488         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1489         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1490         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1491         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1492                 verify_node_announcement(msg, &self.secp_ctx)?;
1493                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1494         }
1495
1496         /// For an already known node (from channel announcements), update its stored properties from a
1497         /// given node announcement without verifying the associated signatures. Because we aren't
1498         /// given the associated signatures here we cannot relay the node announcement to any of our
1499         /// peers.
1500         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1501                 self.update_node_from_announcement_intern(msg, None)
1502         }
1503
1504         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1505                 let mut nodes = self.nodes.write().unwrap();
1506                 match nodes.get_mut(&msg.node_id) {
1507                         None => {
1508                                 core::mem::drop(nodes);
1509                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1510                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1511                         },
1512                         Some(node) => {
1513                                 if let Some(node_info) = node.announcement_info.as_ref() {
1514                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1515                                         // updates to ensure you always have the latest one, only vaguely suggesting
1516                                         // that it be at least the current time.
1517                                         if node_info.last_update  > msg.timestamp {
1518                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1519                                         } else if node_info.last_update  == msg.timestamp {
1520                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1521                                         }
1522                                 }
1523
1524                                 let should_relay =
1525                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1526                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1527                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1528                                 node.announcement_info = Some(NodeAnnouncementInfo {
1529                                         features: msg.features.clone(),
1530                                         last_update: msg.timestamp,
1531                                         rgb: msg.rgb,
1532                                         alias: msg.alias,
1533                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1534                                 });
1535
1536                                 Ok(())
1537                         }
1538                 }
1539         }
1540
1541         /// Store or update channel info from a channel announcement.
1542         ///
1543         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1544         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1545         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1546         ///
1547         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1548         /// the corresponding UTXO exists on chain and is correctly-formatted.
1549         pub fn update_channel_from_announcement<U: Deref>(
1550                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1551         ) -> Result<(), LightningError>
1552         where
1553                 U::Target: UtxoLookup,
1554         {
1555                 verify_channel_announcement(msg, &self.secp_ctx)?;
1556                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1557         }
1558
1559         /// Store or update channel info from a channel announcement.
1560         ///
1561         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1562         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1563         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1564         ///
1565         /// This will skip verification of if the channel is actually on-chain.
1566         pub fn update_channel_from_announcement_no_lookup(
1567                 &self, msg: &ChannelAnnouncement
1568         ) -> Result<(), LightningError> {
1569                 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1570         }
1571
1572         /// Store or update channel info from a channel announcement without verifying the associated
1573         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1574         /// channel announcement to any of our peers.
1575         ///
1576         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1577         /// the corresponding UTXO exists on chain and is correctly-formatted.
1578         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1579                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1580         ) -> Result<(), LightningError>
1581         where
1582                 U::Target: UtxoLookup,
1583         {
1584                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1585         }
1586
1587         /// Update channel from partial announcement data received via rapid gossip sync
1588         ///
1589         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1590         /// rapid gossip sync server)
1591         ///
1592         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1593         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1594                 if node_id_1 == node_id_2 {
1595                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1596                 };
1597
1598                 let node_1 = NodeId::from_pubkey(&node_id_1);
1599                 let node_2 = NodeId::from_pubkey(&node_id_2);
1600                 let channel_info = ChannelInfo {
1601                         features,
1602                         node_one: node_1.clone(),
1603                         one_to_two: None,
1604                         node_two: node_2.clone(),
1605                         two_to_one: None,
1606                         capacity_sats: None,
1607                         announcement_message: None,
1608                         announcement_received_time: timestamp,
1609                 };
1610
1611                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1612         }
1613
1614         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1615                 let mut channels = self.channels.write().unwrap();
1616                 let mut nodes = self.nodes.write().unwrap();
1617
1618                 let node_id_a = channel_info.node_one.clone();
1619                 let node_id_b = channel_info.node_two.clone();
1620
1621                 log_gossip!(self.logger, "Adding channel {} between nodes {} and {}", short_channel_id, node_id_a, node_id_b);
1622
1623                 match channels.entry(short_channel_id) {
1624                         IndexedMapEntry::Occupied(mut entry) => {
1625                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1626                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1627                                 //exactly how...
1628                                 if utxo_value.is_some() {
1629                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1630                                         // only sometimes returns results. In any case remove the previous entry. Note
1631                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1632                                         // do that because
1633                                         // a) we don't *require* a UTXO provider that always returns results.
1634                                         // b) we don't track UTXOs of channels we know about and remove them if they
1635                                         //    get reorg'd out.
1636                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1637                                         self.remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1638                                         *entry.get_mut() = channel_info;
1639                                 } else {
1640                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1641                                 }
1642                         },
1643                         IndexedMapEntry::Vacant(entry) => {
1644                                 entry.insert(channel_info);
1645                         }
1646                 };
1647
1648                 for current_node_id in [node_id_a, node_id_b].iter() {
1649                         match nodes.entry(current_node_id.clone()) {
1650                                 IndexedMapEntry::Occupied(node_entry) => {
1651                                         node_entry.into_mut().channels.push(short_channel_id);
1652                                 },
1653                                 IndexedMapEntry::Vacant(node_entry) => {
1654                                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1655                                         let node_counter = removed_node_counters.pop()
1656                                                 .unwrap_or(self.next_node_counter.fetch_add(1, Ordering::Relaxed) as u32);
1657                                         node_entry.insert(NodeInfo {
1658                                                 channels: vec!(short_channel_id),
1659                                                 announcement_info: None,
1660                                                 node_counter,
1661                                         });
1662                                 }
1663                         };
1664                 };
1665
1666                 Ok(())
1667         }
1668
1669         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1670                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1671         ) -> Result<(), LightningError>
1672         where
1673                 U::Target: UtxoLookup,
1674         {
1675                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1676                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1677                 }
1678
1679                 if msg.chain_hash != self.chain_hash {
1680                         return Err(LightningError {
1681                                 err: "Channel announcement chain hash does not match genesis hash".to_owned(),
1682                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1683                         });
1684                 }
1685
1686                 {
1687                         let channels = self.channels.read().unwrap();
1688
1689                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1690                                 if chan.capacity_sats.is_some() {
1691                                         // If we'd previously looked up the channel on-chain and checked the script
1692                                         // against what appears on-chain, ignore the duplicate announcement.
1693                                         //
1694                                         // Because a reorg could replace one channel with another at the same SCID, if
1695                                         // the channel appears to be different, we re-validate. This doesn't expose us
1696                                         // to any more DoS risk than not, as a peer can always flood us with
1697                                         // randomly-generated SCID values anyway.
1698                                         //
1699                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1700                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1701                                         // if the peers on the channel changed anyway.
1702                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1703                                                 return Err(LightningError {
1704                                                         err: "Already have chain-validated channel".to_owned(),
1705                                                         action: ErrorAction::IgnoreDuplicateGossip
1706                                                 });
1707                                         }
1708                                 } else if utxo_lookup.is_none() {
1709                                         // Similarly, if we can't check the chain right now anyway, ignore the
1710                                         // duplicate announcement without bothering to take the channels write lock.
1711                                         return Err(LightningError {
1712                                                 err: "Already have non-chain-validated channel".to_owned(),
1713                                                 action: ErrorAction::IgnoreDuplicateGossip
1714                                         });
1715                                 }
1716                         }
1717                 }
1718
1719                 {
1720                         let removed_channels = self.removed_channels.lock().unwrap();
1721                         let removed_nodes = self.removed_nodes.lock().unwrap();
1722                         if removed_channels.contains_key(&msg.short_channel_id) ||
1723                                 removed_nodes.contains_key(&msg.node_id_1) ||
1724                                 removed_nodes.contains_key(&msg.node_id_2) {
1725                                 return Err(LightningError{
1726                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1727                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1728                         }
1729                 }
1730
1731                 let utxo_value = self.pending_checks.check_channel_announcement(
1732                         utxo_lookup, msg, full_msg)?;
1733
1734                 #[allow(unused_mut, unused_assignments)]
1735                 let mut announcement_received_time = 0;
1736                 #[cfg(feature = "std")]
1737                 {
1738                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1739                 }
1740
1741                 let chan_info = ChannelInfo {
1742                         features: msg.features.clone(),
1743                         node_one: msg.node_id_1,
1744                         one_to_two: None,
1745                         node_two: msg.node_id_2,
1746                         two_to_one: None,
1747                         capacity_sats: utxo_value,
1748                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1749                                 { full_msg.cloned() } else { None },
1750                         announcement_received_time,
1751                 };
1752
1753                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1754
1755                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1756                 Ok(())
1757         }
1758
1759         /// Marks a channel in the graph as failed permanently.
1760         ///
1761         /// The channel and any node for which this was their last channel are removed from the graph.
1762         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1763                 #[cfg(feature = "std")]
1764                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1765                 #[cfg(not(feature = "std"))]
1766                 let current_time_unix = None;
1767
1768                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1769         }
1770
1771         /// Marks a channel in the graph as failed permanently.
1772         ///
1773         /// The channel and any node for which this was their last channel are removed from the graph.
1774         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1775                 let mut channels = self.channels.write().unwrap();
1776                 if let Some(chan) = channels.remove(&short_channel_id) {
1777                         let mut nodes = self.nodes.write().unwrap();
1778                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1779                         self.remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1780                 }
1781         }
1782
1783         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1784         /// from local storage.
1785         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1786                 #[cfg(feature = "std")]
1787                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1788                 #[cfg(not(feature = "std"))]
1789                 let current_time_unix = None;
1790
1791                 let node_id = NodeId::from_pubkey(node_id);
1792                 let mut channels = self.channels.write().unwrap();
1793                 let mut nodes = self.nodes.write().unwrap();
1794                 let mut removed_channels = self.removed_channels.lock().unwrap();
1795                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1796
1797                 if let Some(node) = nodes.remove(&node_id) {
1798                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1799                         for scid in node.channels.iter() {
1800                                 if let Some(chan_info) = channels.remove(scid) {
1801                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1802                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1803                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1804                                                         *scid != *chan_id
1805                                                 });
1806                                                 if other_node_entry.get().channels.is_empty() {
1807                                                         removed_node_counters.push(other_node_entry.get().node_counter);
1808                                                         other_node_entry.remove_entry();
1809                                                 }
1810                                         }
1811                                         removed_channels.insert(*scid, current_time_unix);
1812                                 }
1813                         }
1814                         removed_node_counters.push(node.node_counter);
1815                         removed_nodes.insert(node_id, current_time_unix);
1816                 }
1817         }
1818
1819         #[cfg(feature = "std")]
1820         /// Removes information about channels that we haven't heard any updates about in some time.
1821         /// This can be used regularly to prune the network graph of channels that likely no longer
1822         /// exist.
1823         ///
1824         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1825         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1826         /// pruning occur for updates which are at least two weeks old, which we implement here.
1827         ///
1828         /// Note that for users of the `lightning-background-processor` crate this method may be
1829         /// automatically called regularly for you.
1830         ///
1831         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1832         /// in the map for a while so that these can be resynced from gossip in the future.
1833         ///
1834         /// This method is only available with the `std` feature. See
1835         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1836         pub fn remove_stale_channels_and_tracking(&self) {
1837                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1838                 self.remove_stale_channels_and_tracking_with_time(time);
1839         }
1840
1841         /// Removes information about channels that we haven't heard any updates about in some time.
1842         /// This can be used regularly to prune the network graph of channels that likely no longer
1843         /// exist.
1844         ///
1845         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1846         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1847         /// pruning occur for updates which are at least two weeks old, which we implement here.
1848         ///
1849         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1850         /// in the map for a while so that these can be resynced from gossip in the future.
1851         ///
1852         /// This function takes the current unix time as an argument. For users with the `std` feature
1853         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1854         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1855                 let mut channels = self.channels.write().unwrap();
1856                 // Time out if we haven't received an update in at least 14 days.
1857                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1858                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1859                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1860                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1861                 // time.
1862                 let mut scids_to_remove = Vec::new();
1863                 for (scid, info) in channels.unordered_iter_mut() {
1864                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1865                                 log_gossip!(self.logger, "Removing directional update one_to_two (0) for channel {} due to its timestamp {} being below {}",
1866                                         scid, info.one_to_two.as_ref().unwrap().last_update, min_time_unix);
1867                                 info.one_to_two = None;
1868                         }
1869                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1870                                 log_gossip!(self.logger, "Removing directional update two_to_one (1) for channel {} due to its timestamp {} being below {}",
1871                                         scid, info.two_to_one.as_ref().unwrap().last_update, min_time_unix);
1872                                 info.two_to_one = None;
1873                         }
1874                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1875                                 // We check the announcement_received_time here to ensure we don't drop
1876                                 // announcements that we just received and are just waiting for our peer to send a
1877                                 // channel_update for.
1878                                 let announcement_received_timestamp = info.announcement_received_time;
1879                                 if announcement_received_timestamp < min_time_unix as u64 {
1880                                         log_gossip!(self.logger, "Removing channel {} because both directional updates are missing and its announcement timestamp {} being below {}",
1881                                                 scid, announcement_received_timestamp, min_time_unix);
1882                                         scids_to_remove.push(*scid);
1883                                 }
1884                         }
1885                 }
1886                 if !scids_to_remove.is_empty() {
1887                         let mut nodes = self.nodes.write().unwrap();
1888                         for scid in scids_to_remove {
1889                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1890                                 self.remove_channel_in_nodes(&mut nodes, &info, scid);
1891                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1892                         }
1893                 }
1894
1895                 let should_keep_tracking = |time: &mut Option<u64>| {
1896                         if let Some(time) = time {
1897                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1898                         } else {
1899                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1900                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1901                                 // of this function.
1902                                 #[cfg(feature = "no-std")]
1903                                 {
1904                                         let mut tracked_time = Some(current_time_unix);
1905                                         core::mem::swap(time, &mut tracked_time);
1906                                         return true;
1907                                 }
1908                                 #[allow(unreachable_code)]
1909                                 false
1910                         }};
1911
1912                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1913                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1914         }
1915
1916         /// For an already known (from announcement) channel, update info about one of the directions
1917         /// of the channel.
1918         ///
1919         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1920         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1921         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1922         ///
1923         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1924         /// materially in the future will be rejected.
1925         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1926                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), false)
1927         }
1928
1929         /// For an already known (from announcement) channel, update info about one of the directions
1930         /// of the channel without verifying the associated signatures. Because we aren't given the
1931         /// associated signatures here we cannot relay the channel update to any of our peers.
1932         ///
1933         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1934         /// materially in the future will be rejected.
1935         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1936                 self.update_channel_internal(msg, None, None, false)
1937         }
1938
1939         /// For an already known (from announcement) channel, verify the given [`ChannelUpdate`].
1940         ///
1941         /// This checks whether the update currently is applicable by [`Self::update_channel`].
1942         ///
1943         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1944         /// materially in the future will be rejected.
1945         pub fn verify_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1946                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), true)
1947         }
1948
1949         fn update_channel_internal(&self, msg: &msgs::UnsignedChannelUpdate,
1950                 full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>,
1951                 only_verify: bool) -> Result<(), LightningError>
1952         {
1953                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1954
1955                 if msg.chain_hash != self.chain_hash {
1956                         return Err(LightningError {
1957                                 err: "Channel update chain hash does not match genesis hash".to_owned(),
1958                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1959                         });
1960                 }
1961
1962                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1963                 {
1964                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1965                         // disable this check during tests!
1966                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1967                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1968                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1969                         }
1970                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1971                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1972                         }
1973                 }
1974
1975                 log_gossip!(self.logger, "Updating channel {} in direction {} with timestamp {}", msg.short_channel_id, msg.flags & 1, msg.timestamp);
1976
1977                 let mut channels = self.channels.write().unwrap();
1978                 match channels.get_mut(&msg.short_channel_id) {
1979                         None => {
1980                                 core::mem::drop(channels);
1981                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1982                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1983                         },
1984                         Some(channel) => {
1985                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1986                                         return Err(LightningError{err:
1987                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1988                                                 action: ErrorAction::IgnoreError});
1989                                 }
1990
1991                                 if let Some(capacity_sats) = channel.capacity_sats {
1992                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1993                                         // Don't query UTXO set here to reduce DoS risks.
1994                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1995                                                 return Err(LightningError{err:
1996                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1997                                                         action: ErrorAction::IgnoreError});
1998                                         }
1999                                 }
2000                                 macro_rules! check_update_latest {
2001                                         ($target: expr) => {
2002                                                 if let Some(existing_chan_info) = $target.as_ref() {
2003                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
2004                                                         // order updates to ensure you always have the latest one, only
2005                                                         // suggesting  that it be at least the current time. For
2006                                                         // channel_updates specifically, the BOLTs discuss the possibility of
2007                                                         // pruning based on the timestamp field being more than two weeks old,
2008                                                         // but only in the non-normative section.
2009                                                         if existing_chan_info.last_update > msg.timestamp {
2010                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2011                                                         } else if existing_chan_info.last_update == msg.timestamp {
2012                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2013                                                         }
2014                                                 }
2015                                         }
2016                                 }
2017
2018                                 macro_rules! get_new_channel_info {
2019                                         () => { {
2020                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
2021                                                         { full_msg.cloned() } else { None };
2022
2023                                                 let updated_channel_update_info = ChannelUpdateInfo {
2024                                                         enabled: chan_enabled,
2025                                                         last_update: msg.timestamp,
2026                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
2027                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
2028                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
2029                                                         fees: RoutingFees {
2030                                                                 base_msat: msg.fee_base_msat,
2031                                                                 proportional_millionths: msg.fee_proportional_millionths,
2032                                                         },
2033                                                         last_update_message
2034                                                 };
2035                                                 Some(updated_channel_update_info)
2036                                         } }
2037                                 }
2038
2039                                 let msg_hash = hash_to_message!(&message_sha256d_hash(&msg)[..]);
2040                                 if msg.flags & 1 == 1 {
2041                                         check_update_latest!(channel.two_to_one);
2042                                         if let Some(sig) = sig {
2043                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
2044                                                         err: "Couldn't parse source node pubkey".to_owned(),
2045                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2046                                                 })?, "channel_update");
2047                                         }
2048                                         if !only_verify {
2049                                                 channel.two_to_one = get_new_channel_info!();
2050                                         }
2051                                 } else {
2052                                         check_update_latest!(channel.one_to_two);
2053                                         if let Some(sig) = sig {
2054                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
2055                                                         err: "Couldn't parse destination node pubkey".to_owned(),
2056                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2057                                                 })?, "channel_update");
2058                                         }
2059                                         if !only_verify {
2060                                                 channel.one_to_two = get_new_channel_info!();
2061                                         }
2062                                 }
2063                         }
2064                 }
2065
2066                 Ok(())
2067         }
2068
2069         fn remove_channel_in_nodes(&self, nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
2070                 macro_rules! remove_from_node {
2071                         ($node_id: expr) => {
2072                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
2073                                         entry.get_mut().channels.retain(|chan_id| {
2074                                                 short_channel_id != *chan_id
2075                                         });
2076                                         if entry.get().channels.is_empty() {
2077                                                 self.removed_node_counters.lock().unwrap().push(entry.get().node_counter);
2078                                                 entry.remove_entry();
2079                                         }
2080                                 } else {
2081                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
2082                                 }
2083                         }
2084                 }
2085
2086                 remove_from_node!(chan.node_one);
2087                 remove_from_node!(chan.node_two);
2088         }
2089 }
2090
2091 impl ReadOnlyNetworkGraph<'_> {
2092         /// Returns all known valid channels' short ids along with announced channel info.
2093         ///
2094         /// This is not exported to bindings users because we don't want to return lifetime'd references
2095         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
2096                 &*self.channels
2097         }
2098
2099         /// Returns information on a channel with the given id.
2100         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
2101                 self.channels.get(&short_channel_id)
2102         }
2103
2104         #[cfg(c_bindings)] // Non-bindings users should use `channels`
2105         /// Returns the list of channels in the graph
2106         pub fn list_channels(&self) -> Vec<u64> {
2107                 self.channels.unordered_keys().map(|c| *c).collect()
2108         }
2109
2110         /// Returns all known nodes' public keys along with announced node info.
2111         ///
2112         /// This is not exported to bindings users because we don't want to return lifetime'd references
2113         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
2114                 &*self.nodes
2115         }
2116
2117         /// Returns information on a node with the given id.
2118         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
2119                 self.nodes.get(node_id)
2120         }
2121
2122         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2123         /// Returns the list of nodes in the graph
2124         pub fn list_nodes(&self) -> Vec<NodeId> {
2125                 self.nodes.unordered_keys().map(|n| *n).collect()
2126         }
2127
2128         /// Get network addresses by node id.
2129         /// Returns None if the requested node is completely unknown,
2130         /// or if node announcement for the node was never received.
2131         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<SocketAddress>> {
2132                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2133                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2134         }
2135 }
2136
2137 #[cfg(test)]
2138 pub(crate) mod tests {
2139         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2140         use crate::ln::channelmanager;
2141         use crate::ln::chan_utils::make_funding_redeemscript;
2142         #[cfg(feature = "std")]
2143         use crate::ln::features::InitFeatures;
2144         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2145         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2146         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2147                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2148                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2149         use crate::util::config::UserConfig;
2150         use crate::util::test_utils;
2151         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2152         use crate::util::scid_utils::scid_from_parts;
2153
2154         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2155         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2156
2157         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2158         use bitcoin::hashes::Hash;
2159         use bitcoin::hashes::hex::FromHex;
2160         use bitcoin::network::constants::Network;
2161         use bitcoin::blockdata::constants::ChainHash;
2162         use bitcoin::blockdata::script::ScriptBuf;
2163         use bitcoin::blockdata::transaction::TxOut;
2164         use bitcoin::secp256k1::{PublicKey, SecretKey};
2165         use bitcoin::secp256k1::{All, Secp256k1};
2166
2167         use crate::io;
2168         use bitcoin::secp256k1;
2169         use crate::prelude::*;
2170         use crate::sync::Arc;
2171
2172         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2173                 let logger = Arc::new(test_utils::TestLogger::new());
2174                 NetworkGraph::new(Network::Testnet, logger)
2175         }
2176
2177         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2178                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2179                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2180         ) {
2181                 let secp_ctx = Secp256k1::new();
2182                 let logger = Arc::new(test_utils::TestLogger::new());
2183                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2184                 (secp_ctx, gossip_sync)
2185         }
2186
2187         #[test]
2188         #[cfg(feature = "std")]
2189         fn request_full_sync_finite_times() {
2190                 let network_graph = create_network_graph();
2191                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2192                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&<Vec<u8>>::from_hex("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2193
2194                 assert!(gossip_sync.should_request_full_sync(&node_id));
2195                 assert!(gossip_sync.should_request_full_sync(&node_id));
2196                 assert!(gossip_sync.should_request_full_sync(&node_id));
2197                 assert!(gossip_sync.should_request_full_sync(&node_id));
2198                 assert!(gossip_sync.should_request_full_sync(&node_id));
2199                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2200         }
2201
2202         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2203                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2204                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2205                         features: channelmanager::provided_node_features(&UserConfig::default()),
2206                         timestamp: 100,
2207                         node_id,
2208                         rgb: [0; 3],
2209                         alias: NodeAlias([0; 32]),
2210                         addresses: Vec::new(),
2211                         excess_address_data: Vec::new(),
2212                         excess_data: Vec::new(),
2213                 };
2214                 f(&mut unsigned_announcement);
2215                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2216                 NodeAnnouncement {
2217                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2218                         contents: unsigned_announcement
2219                 }
2220         }
2221
2222         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2223                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2224                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2225                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2226                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2227
2228                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2229                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2230                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2231                         short_channel_id: 0,
2232                         node_id_1: NodeId::from_pubkey(&node_id_1),
2233                         node_id_2: NodeId::from_pubkey(&node_id_2),
2234                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2235                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2236                         excess_data: Vec::new(),
2237                 };
2238                 f(&mut unsigned_announcement);
2239                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2240                 ChannelAnnouncement {
2241                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2242                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2243                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2244                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2245                         contents: unsigned_announcement,
2246                 }
2247         }
2248
2249         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> ScriptBuf {
2250                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2251                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2252                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2253                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2254         }
2255
2256         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2257                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2258                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2259                         short_channel_id: 0,
2260                         timestamp: 100,
2261                         flags: 0,
2262                         cltv_expiry_delta: 144,
2263                         htlc_minimum_msat: 1_000_000,
2264                         htlc_maximum_msat: 1_000_000,
2265                         fee_base_msat: 10_000,
2266                         fee_proportional_millionths: 20,
2267                         excess_data: Vec::new()
2268                 };
2269                 f(&mut unsigned_channel_update);
2270                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2271                 ChannelUpdate {
2272                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2273                         contents: unsigned_channel_update
2274                 }
2275         }
2276
2277         #[test]
2278         fn handling_node_announcements() {
2279                 let network_graph = create_network_graph();
2280                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2281
2282                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2283                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2284                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2285
2286                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2287                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2288                         Ok(_) => panic!(),
2289                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2290                 };
2291
2292                 {
2293                         // Announce a channel to add a corresponding node.
2294                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2295                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2296                                 Ok(res) => assert!(res),
2297                                 _ => panic!()
2298                         };
2299                 }
2300
2301                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2302                         Ok(res) => assert!(res),
2303                         Err(_) => panic!()
2304                 };
2305
2306                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2307                 match gossip_sync.handle_node_announcement(
2308                         &NodeAnnouncement {
2309                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2310                                 contents: valid_announcement.contents.clone()
2311                 }) {
2312                         Ok(_) => panic!(),
2313                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2314                 };
2315
2316                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2317                         unsigned_announcement.timestamp += 1000;
2318                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2319                 }, node_1_privkey, &secp_ctx);
2320                 // Return false because contains excess data.
2321                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2322                         Ok(res) => assert!(!res),
2323                         Err(_) => panic!()
2324                 };
2325
2326                 // Even though previous announcement was not relayed further, we still accepted it,
2327                 // so we now won't accept announcements before the previous one.
2328                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2329                         unsigned_announcement.timestamp += 1000 - 10;
2330                 }, node_1_privkey, &secp_ctx);
2331                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2332                         Ok(_) => panic!(),
2333                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2334                 };
2335         }
2336
2337         #[test]
2338         fn handling_channel_announcements() {
2339                 let secp_ctx = Secp256k1::new();
2340                 let logger = test_utils::TestLogger::new();
2341
2342                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2343                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2344
2345                 let good_script = get_channel_script(&secp_ctx);
2346                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2347
2348                 // Test if the UTXO lookups were not supported
2349                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2350                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2351                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2352                         Ok(res) => assert!(res),
2353                         _ => panic!()
2354                 };
2355
2356                 {
2357                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2358                                 None => panic!(),
2359                                 Some(_) => ()
2360                         };
2361                 }
2362
2363                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2364                 // drop new one on the floor, since we can't see any changes.
2365                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2366                         Ok(_) => panic!(),
2367                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2368                 };
2369
2370                 // Test if an associated transaction were not on-chain (or not confirmed).
2371                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2372                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2373                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2374                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2375
2376                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2377                         unsigned_announcement.short_channel_id += 1;
2378                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2379                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2380                         Ok(_) => panic!(),
2381                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2382                 };
2383
2384                 // Now test if the transaction is found in the UTXO set and the script is correct.
2385                 *chain_source.utxo_ret.lock().unwrap() =
2386                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2387                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2388                         unsigned_announcement.short_channel_id += 2;
2389                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2390                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2391                         Ok(res) => assert!(res),
2392                         _ => panic!()
2393                 };
2394
2395                 {
2396                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2397                                 None => panic!(),
2398                                 Some(_) => ()
2399                         };
2400                 }
2401
2402                 // If we receive announcement for the same channel, once we've validated it against the
2403                 // chain, we simply ignore all new (duplicate) announcements.
2404                 *chain_source.utxo_ret.lock().unwrap() =
2405                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2406                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2407                         Ok(_) => panic!(),
2408                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2409                 };
2410
2411                 #[cfg(feature = "std")]
2412                 {
2413                         use std::time::{SystemTime, UNIX_EPOCH};
2414
2415                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2416                         // Mark a node as permanently failed so it's tracked as removed.
2417                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2418
2419                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2420                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2421                                 unsigned_announcement.short_channel_id += 3;
2422                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2423                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2424                                 Ok(_) => panic!(),
2425                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2426                         }
2427
2428                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2429
2430                         // The above channel announcement should be handled as per normal now.
2431                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2432                                 Ok(res) => assert!(res),
2433                                 _ => panic!()
2434                         }
2435                 }
2436
2437                 // Don't relay valid channels with excess data
2438                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2439                         unsigned_announcement.short_channel_id += 4;
2440                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2441                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2442                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2443                         Ok(res) => assert!(!res),
2444                         _ => panic!()
2445                 };
2446
2447                 let mut invalid_sig_announcement = valid_announcement.clone();
2448                 invalid_sig_announcement.contents.excess_data = Vec::new();
2449                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2450                         Ok(_) => panic!(),
2451                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2452                 };
2453
2454                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2455                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2456                         Ok(_) => panic!(),
2457                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2458                 };
2459
2460                 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2461                 // announcement is mainnet).
2462                 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2463                         unsigned_announcement.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2464                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2465                 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2466                         Ok(_) => panic!(),
2467                         Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2468                 };
2469         }
2470
2471         #[test]
2472         fn handling_channel_update() {
2473                 let secp_ctx = Secp256k1::new();
2474                 let logger = test_utils::TestLogger::new();
2475                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2476                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2477                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2478
2479                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2480                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2481
2482                 let amount_sats = 1000_000;
2483                 let short_channel_id;
2484
2485                 {
2486                         // Announce a channel we will update
2487                         let good_script = get_channel_script(&secp_ctx);
2488                         *chain_source.utxo_ret.lock().unwrap() =
2489                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2490
2491                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2492                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2493                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2494                                 Ok(_) => (),
2495                                 Err(_) => panic!()
2496                         };
2497
2498                 }
2499
2500                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2501                 network_graph.verify_channel_update(&valid_channel_update).unwrap();
2502                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2503                         Ok(res) => assert!(res),
2504                         _ => panic!(),
2505                 };
2506
2507                 {
2508                         match network_graph.read_only().channels().get(&short_channel_id) {
2509                                 None => panic!(),
2510                                 Some(channel_info) => {
2511                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2512                                         assert!(channel_info.two_to_one.is_none());
2513                                 }
2514                         };
2515                 }
2516
2517                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2518                         unsigned_channel_update.timestamp += 100;
2519                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2520                 }, node_1_privkey, &secp_ctx);
2521                 // Return false because contains excess data
2522                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2523                         Ok(res) => assert!(!res),
2524                         _ => panic!()
2525                 };
2526
2527                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2528                         unsigned_channel_update.timestamp += 110;
2529                         unsigned_channel_update.short_channel_id += 1;
2530                 }, node_1_privkey, &secp_ctx);
2531                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2532                         Ok(_) => panic!(),
2533                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2534                 };
2535
2536                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2537                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2538                         unsigned_channel_update.timestamp += 110;
2539                 }, node_1_privkey, &secp_ctx);
2540                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2541                         Ok(_) => panic!(),
2542                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2543                 };
2544
2545                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2546                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2547                         unsigned_channel_update.timestamp += 110;
2548                 }, node_1_privkey, &secp_ctx);
2549                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2550                         Ok(_) => panic!(),
2551                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2552                 };
2553
2554                 // Even though previous update was not relayed further, we still accepted it,
2555                 // so we now won't accept update before the previous one.
2556                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2557                         unsigned_channel_update.timestamp += 100;
2558                 }, node_1_privkey, &secp_ctx);
2559                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2560                         Ok(_) => panic!(),
2561                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2562                 };
2563
2564                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2565                         unsigned_channel_update.timestamp += 500;
2566                 }, node_1_privkey, &secp_ctx);
2567                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2568                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2569                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2570                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2571                         Ok(_) => panic!(),
2572                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2573                 };
2574
2575                 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2576                 // update is mainet).
2577                 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2578                         unsigned_channel_update.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2579                 }, node_1_privkey, &secp_ctx);
2580
2581                 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2582                         Ok(_) => panic!(),
2583                         Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2584                 };
2585         }
2586
2587         #[test]
2588         fn handling_network_update() {
2589                 let logger = test_utils::TestLogger::new();
2590                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2591                 let secp_ctx = Secp256k1::new();
2592
2593                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2594                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2595                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2596
2597                 {
2598                         // There is no nodes in the table at the beginning.
2599                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2600                 }
2601
2602                 let short_channel_id;
2603                 {
2604                         // Check we won't apply an update via `handle_network_update` for privacy reasons, but
2605                         // can continue fine if we manually apply it.
2606                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2607                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2608                         let chain_source: Option<&test_utils::TestChainSource> = None;
2609                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2610                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2611
2612                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2613                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2614
2615                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2616                                 msg: valid_channel_update.clone(),
2617                         });
2618
2619                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2620                         network_graph.update_channel(&valid_channel_update).unwrap();
2621                 }
2622
2623                 // Non-permanent failure doesn't touch the channel at all
2624                 {
2625                         match network_graph.read_only().channels().get(&short_channel_id) {
2626                                 None => panic!(),
2627                                 Some(channel_info) => {
2628                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2629                                 }
2630                         };
2631
2632                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2633                                 short_channel_id,
2634                                 is_permanent: false,
2635                         });
2636
2637                         match network_graph.read_only().channels().get(&short_channel_id) {
2638                                 None => panic!(),
2639                                 Some(channel_info) => {
2640                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2641                                 }
2642                         };
2643                 }
2644
2645                 // Permanent closing deletes a channel
2646                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2647                         short_channel_id,
2648                         is_permanent: true,
2649                 });
2650
2651                 assert_eq!(network_graph.read_only().channels().len(), 0);
2652                 // Nodes are also deleted because there are no associated channels anymore
2653                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2654
2655                 {
2656                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2657                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2658
2659                         // Announce a channel to test permanent node failure
2660                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2661                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2662                         let chain_source: Option<&test_utils::TestChainSource> = None;
2663                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2664                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2665
2666                         // Non-permanent node failure does not delete any nodes or channels
2667                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2668                                 node_id: node_2_id,
2669                                 is_permanent: false,
2670                         });
2671
2672                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2673                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2674
2675                         // Permanent node failure deletes node and its channels
2676                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2677                                 node_id: node_2_id,
2678                                 is_permanent: true,
2679                         });
2680
2681                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2682                         // Channels are also deleted because the associated node has been deleted
2683                         assert_eq!(network_graph.read_only().channels().len(), 0);
2684                 }
2685         }
2686
2687         #[test]
2688         fn test_channel_timeouts() {
2689                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2690                 let logger = test_utils::TestLogger::new();
2691                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2692                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2693                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2694                 let secp_ctx = Secp256k1::new();
2695
2696                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2697                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2698
2699                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2700                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2701                 let chain_source: Option<&test_utils::TestChainSource> = None;
2702                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2703                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2704
2705                 // Submit two channel updates for each channel direction (update.flags bit).
2706                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2707                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2708                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2709
2710                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2711                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2712                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2713
2714                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2715                 assert_eq!(network_graph.read_only().channels().len(), 1);
2716                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2717
2718                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2719                 #[cfg(not(feature = "std"))] {
2720                         // Make sure removed channels are tracked.
2721                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2722                 }
2723                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2724                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2725
2726                 #[cfg(feature = "std")]
2727                 {
2728                         // In std mode, a further check is performed before fully removing the channel -
2729                         // the channel_announcement must have been received at least two weeks ago. We
2730                         // fudge that here by indicating the time has jumped two weeks.
2731                         assert_eq!(network_graph.read_only().channels().len(), 1);
2732                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2733
2734                         // Note that the directional channel information will have been removed already..
2735                         // We want to check that this will work even if *one* of the channel updates is recent,
2736                         // so we should add it with a recent timestamp.
2737                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2738                         use std::time::{SystemTime, UNIX_EPOCH};
2739                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2740                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2741                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2742                         }, node_1_privkey, &secp_ctx);
2743                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2744                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2745                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2746                         // Make sure removed channels are tracked.
2747                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2748                         // Provide a later time so that sufficient time has passed
2749                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2750                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2751                 }
2752
2753                 assert_eq!(network_graph.read_only().channels().len(), 0);
2754                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2755                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2756
2757                 #[cfg(feature = "std")]
2758                 {
2759                         use std::time::{SystemTime, UNIX_EPOCH};
2760
2761                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2762
2763                         // Clear tracked nodes and channels for clean slate
2764                         network_graph.removed_channels.lock().unwrap().clear();
2765                         network_graph.removed_nodes.lock().unwrap().clear();
2766
2767                         // Add a channel and nodes from channel announcement. So our network graph will
2768                         // now only consist of two nodes and one channel between them.
2769                         assert!(network_graph.update_channel_from_announcement(
2770                                 &valid_channel_announcement, &chain_source).is_ok());
2771
2772                         // Mark the channel as permanently failed. This will also remove the two nodes
2773                         // and all of the entries will be tracked as removed.
2774                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2775
2776                         // Should not remove from tracking if insufficient time has passed
2777                         network_graph.remove_stale_channels_and_tracking_with_time(
2778                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2779                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2780
2781                         // Provide a later time so that sufficient time has passed
2782                         network_graph.remove_stale_channels_and_tracking_with_time(
2783                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2784                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2785                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2786                 }
2787
2788                 #[cfg(not(feature = "std"))]
2789                 {
2790                         // When we don't have access to the system clock, the time we started tracking removal will only
2791                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2792                         // only if sufficient time has passed after that first call, will the next call remove it from
2793                         // tracking.
2794                         let removal_time = 1664619654;
2795
2796                         // Clear removed nodes and channels for clean slate
2797                         network_graph.removed_channels.lock().unwrap().clear();
2798                         network_graph.removed_nodes.lock().unwrap().clear();
2799
2800                         // Add a channel and nodes from channel announcement. So our network graph will
2801                         // now only consist of two nodes and one channel between them.
2802                         assert!(network_graph.update_channel_from_announcement(
2803                                 &valid_channel_announcement, &chain_source).is_ok());
2804
2805                         // Mark the channel as permanently failed. This will also remove the two nodes
2806                         // and all of the entries will be tracked as removed.
2807                         network_graph.channel_failed_permanent(short_channel_id);
2808
2809                         // The first time we call the following, the channel will have a removal time assigned.
2810                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2811                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2812
2813                         // Provide a later time so that sufficient time has passed
2814                         network_graph.remove_stale_channels_and_tracking_with_time(
2815                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2816                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2817                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2818                 }
2819         }
2820
2821         #[test]
2822         fn getting_next_channel_announcements() {
2823                 let network_graph = create_network_graph();
2824                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2825                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2826                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2827
2828                 // Channels were not announced yet.
2829                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2830                 assert!(channels_with_announcements.is_none());
2831
2832                 let short_channel_id;
2833                 {
2834                         // Announce a channel we will update
2835                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2836                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2837                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2838                                 Ok(_) => (),
2839                                 Err(_) => panic!()
2840                         };
2841                 }
2842
2843                 // Contains initial channel announcement now.
2844                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2845                 if let Some(channel_announcements) = channels_with_announcements {
2846                         let (_, ref update_1, ref update_2) = channel_announcements;
2847                         assert_eq!(update_1, &None);
2848                         assert_eq!(update_2, &None);
2849                 } else {
2850                         panic!();
2851                 }
2852
2853                 {
2854                         // Valid channel update
2855                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2856                                 unsigned_channel_update.timestamp = 101;
2857                         }, node_1_privkey, &secp_ctx);
2858                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2859                                 Ok(_) => (),
2860                                 Err(_) => panic!()
2861                         };
2862                 }
2863
2864                 // Now contains an initial announcement and an update.
2865                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2866                 if let Some(channel_announcements) = channels_with_announcements {
2867                         let (_, ref update_1, ref update_2) = channel_announcements;
2868                         assert_ne!(update_1, &None);
2869                         assert_eq!(update_2, &None);
2870                 } else {
2871                         panic!();
2872                 }
2873
2874                 {
2875                         // Channel update with excess data.
2876                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2877                                 unsigned_channel_update.timestamp = 102;
2878                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2879                         }, node_1_privkey, &secp_ctx);
2880                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2881                                 Ok(_) => (),
2882                                 Err(_) => panic!()
2883                         };
2884                 }
2885
2886                 // Test that announcements with excess data won't be returned
2887                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2888                 if let Some(channel_announcements) = channels_with_announcements {
2889                         let (_, ref update_1, ref update_2) = channel_announcements;
2890                         assert_eq!(update_1, &None);
2891                         assert_eq!(update_2, &None);
2892                 } else {
2893                         panic!();
2894                 }
2895
2896                 // Further starting point have no channels after it
2897                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2898                 assert!(channels_with_announcements.is_none());
2899         }
2900
2901         #[test]
2902         fn getting_next_node_announcements() {
2903                 let network_graph = create_network_graph();
2904                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2905                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2906                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2907                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2908
2909                 // No nodes yet.
2910                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2911                 assert!(next_announcements.is_none());
2912
2913                 {
2914                         // Announce a channel to add 2 nodes
2915                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2916                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2917                                 Ok(_) => (),
2918                                 Err(_) => panic!()
2919                         };
2920                 }
2921
2922                 // Nodes were never announced
2923                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2924                 assert!(next_announcements.is_none());
2925
2926                 {
2927                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2928                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2929                                 Ok(_) => (),
2930                                 Err(_) => panic!()
2931                         };
2932
2933                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2934                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2935                                 Ok(_) => (),
2936                                 Err(_) => panic!()
2937                         };
2938                 }
2939
2940                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2941                 assert!(next_announcements.is_some());
2942
2943                 // Skip the first node.
2944                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2945                 assert!(next_announcements.is_some());
2946
2947                 {
2948                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2949                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2950                                 unsigned_announcement.timestamp += 10;
2951                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2952                         }, node_2_privkey, &secp_ctx);
2953                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2954                                 Ok(res) => assert!(!res),
2955                                 Err(_) => panic!()
2956                         };
2957                 }
2958
2959                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2960                 assert!(next_announcements.is_none());
2961         }
2962
2963         #[test]
2964         fn network_graph_serialization() {
2965                 let network_graph = create_network_graph();
2966                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2967
2968                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2969                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2970
2971                 // Announce a channel to add a corresponding node.
2972                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2973                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2974                         Ok(res) => assert!(res),
2975                         _ => panic!()
2976                 };
2977
2978                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2979                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2980                         Ok(_) => (),
2981                         Err(_) => panic!()
2982                 };
2983
2984                 let mut w = test_utils::TestVecWriter(Vec::new());
2985                 assert!(!network_graph.read_only().nodes().is_empty());
2986                 assert!(!network_graph.read_only().channels().is_empty());
2987                 network_graph.write(&mut w).unwrap();
2988
2989                 let logger = Arc::new(test_utils::TestLogger::new());
2990                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2991         }
2992
2993         #[test]
2994         fn network_graph_tlv_serialization() {
2995                 let network_graph = create_network_graph();
2996                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2997
2998                 let mut w = test_utils::TestVecWriter(Vec::new());
2999                 network_graph.write(&mut w).unwrap();
3000
3001                 let logger = Arc::new(test_utils::TestLogger::new());
3002                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
3003                 assert!(reassembled_network_graph == network_graph);
3004                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
3005         }
3006
3007         #[test]
3008         #[cfg(feature = "std")]
3009         fn calling_sync_routing_table() {
3010                 use std::time::{SystemTime, UNIX_EPOCH};
3011                 use crate::ln::msgs::Init;
3012
3013                 let network_graph = create_network_graph();
3014                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3015                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
3016                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
3017
3018                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3019
3020                 // It should ignore if gossip_queries feature is not enabled
3021                 {
3022                         let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
3023                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3024                         let events = gossip_sync.get_and_clear_pending_msg_events();
3025                         assert_eq!(events.len(), 0);
3026                 }
3027
3028                 // It should send a gossip_timestamp_filter with the correct information
3029                 {
3030                         let mut features = InitFeatures::empty();
3031                         features.set_gossip_queries_optional();
3032                         let init_msg = Init { features, networks: None, remote_network_address: None };
3033                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3034                         let events = gossip_sync.get_and_clear_pending_msg_events();
3035                         assert_eq!(events.len(), 1);
3036                         match &events[0] {
3037                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
3038                                         assert_eq!(node_id, &node_id_1);
3039                                         assert_eq!(msg.chain_hash, chain_hash);
3040                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
3041                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
3042                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
3043                                         assert_eq!(msg.timestamp_range, u32::max_value());
3044                                 },
3045                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
3046                         };
3047                 }
3048         }
3049
3050         #[test]
3051         fn handling_query_channel_range() {
3052                 let network_graph = create_network_graph();
3053                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3054
3055                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3056                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3057                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3058                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
3059
3060                 let mut scids: Vec<u64> = vec![
3061                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
3062                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
3063                 ];
3064
3065                 // used for testing multipart reply across blocks
3066                 for block in 100000..=108001 {
3067                         scids.push(scid_from_parts(block, 0, 0).unwrap());
3068                 }
3069
3070                 // used for testing resumption on same block
3071                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
3072
3073                 for scid in scids {
3074                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
3075                                 unsigned_announcement.short_channel_id = scid;
3076                         }, node_1_privkey, node_2_privkey, &secp_ctx);
3077                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
3078                                 Ok(_) => (),
3079                                 _ => panic!()
3080                         };
3081                 }
3082
3083                 // Error when number_of_blocks=0
3084                 do_handling_query_channel_range(
3085                         &gossip_sync,
3086                         &node_id_2,
3087                         QueryChannelRange {
3088                                 chain_hash: chain_hash.clone(),
3089                                 first_blocknum: 0,
3090                                 number_of_blocks: 0,
3091                         },
3092                         false,
3093                         vec![ReplyChannelRange {
3094                                 chain_hash: chain_hash.clone(),
3095                                 first_blocknum: 0,
3096                                 number_of_blocks: 0,
3097                                 sync_complete: true,
3098                                 short_channel_ids: vec![]
3099                         }]
3100                 );
3101
3102                 // Error when wrong chain
3103                 do_handling_query_channel_range(
3104                         &gossip_sync,
3105                         &node_id_2,
3106                         QueryChannelRange {
3107                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3108                                 first_blocknum: 0,
3109                                 number_of_blocks: 0xffff_ffff,
3110                         },
3111                         false,
3112                         vec![ReplyChannelRange {
3113                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3114                                 first_blocknum: 0,
3115                                 number_of_blocks: 0xffff_ffff,
3116                                 sync_complete: true,
3117                                 short_channel_ids: vec![],
3118                         }]
3119                 );
3120
3121                 // Error when first_blocknum > 0xffffff
3122                 do_handling_query_channel_range(
3123                         &gossip_sync,
3124                         &node_id_2,
3125                         QueryChannelRange {
3126                                 chain_hash: chain_hash.clone(),
3127                                 first_blocknum: 0x01000000,
3128                                 number_of_blocks: 0xffff_ffff,
3129                         },
3130                         false,
3131                         vec![ReplyChannelRange {
3132                                 chain_hash: chain_hash.clone(),
3133                                 first_blocknum: 0x01000000,
3134                                 number_of_blocks: 0xffff_ffff,
3135                                 sync_complete: true,
3136                                 short_channel_ids: vec![]
3137                         }]
3138                 );
3139
3140                 // Empty reply when max valid SCID block num
3141                 do_handling_query_channel_range(
3142                         &gossip_sync,
3143                         &node_id_2,
3144                         QueryChannelRange {
3145                                 chain_hash: chain_hash.clone(),
3146                                 first_blocknum: 0xffffff,
3147                                 number_of_blocks: 1,
3148                         },
3149                         true,
3150                         vec![
3151                                 ReplyChannelRange {
3152                                         chain_hash: chain_hash.clone(),
3153                                         first_blocknum: 0xffffff,
3154                                         number_of_blocks: 1,
3155                                         sync_complete: true,
3156                                         short_channel_ids: vec![]
3157                                 },
3158                         ]
3159                 );
3160
3161                 // No results in valid query range
3162                 do_handling_query_channel_range(
3163                         &gossip_sync,
3164                         &node_id_2,
3165                         QueryChannelRange {
3166                                 chain_hash: chain_hash.clone(),
3167                                 first_blocknum: 1000,
3168                                 number_of_blocks: 1000,
3169                         },
3170                         true,
3171                         vec![
3172                                 ReplyChannelRange {
3173                                         chain_hash: chain_hash.clone(),
3174                                         first_blocknum: 1000,
3175                                         number_of_blocks: 1000,
3176                                         sync_complete: true,
3177                                         short_channel_ids: vec![],
3178                                 }
3179                         ]
3180                 );
3181
3182                 // Overflow first_blocknum + number_of_blocks
3183                 do_handling_query_channel_range(
3184                         &gossip_sync,
3185                         &node_id_2,
3186                         QueryChannelRange {
3187                                 chain_hash: chain_hash.clone(),
3188                                 first_blocknum: 0xfe0000,
3189                                 number_of_blocks: 0xffffffff,
3190                         },
3191                         true,
3192                         vec![
3193                                 ReplyChannelRange {
3194                                         chain_hash: chain_hash.clone(),
3195                                         first_blocknum: 0xfe0000,
3196                                         number_of_blocks: 0xffffffff - 0xfe0000,
3197                                         sync_complete: true,
3198                                         short_channel_ids: vec![
3199                                                 0xfffffe_ffffff_ffff, // max
3200                                         ]
3201                                 }
3202                         ]
3203                 );
3204
3205                 // Single block exactly full
3206                 do_handling_query_channel_range(
3207                         &gossip_sync,
3208                         &node_id_2,
3209                         QueryChannelRange {
3210                                 chain_hash: chain_hash.clone(),
3211                                 first_blocknum: 100000,
3212                                 number_of_blocks: 8000,
3213                         },
3214                         true,
3215                         vec![
3216                                 ReplyChannelRange {
3217                                         chain_hash: chain_hash.clone(),
3218                                         first_blocknum: 100000,
3219                                         number_of_blocks: 8000,
3220                                         sync_complete: true,
3221                                         short_channel_ids: (100000..=107999)
3222                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3223                                                 .collect(),
3224                                 },
3225                         ]
3226                 );
3227
3228                 // Multiple split on new block
3229                 do_handling_query_channel_range(
3230                         &gossip_sync,
3231                         &node_id_2,
3232                         QueryChannelRange {
3233                                 chain_hash: chain_hash.clone(),
3234                                 first_blocknum: 100000,
3235                                 number_of_blocks: 8001,
3236                         },
3237                         true,
3238                         vec![
3239                                 ReplyChannelRange {
3240                                         chain_hash: chain_hash.clone(),
3241                                         first_blocknum: 100000,
3242                                         number_of_blocks: 7999,
3243                                         sync_complete: false,
3244                                         short_channel_ids: (100000..=107999)
3245                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3246                                                 .collect(),
3247                                 },
3248                                 ReplyChannelRange {
3249                                         chain_hash: chain_hash.clone(),
3250                                         first_blocknum: 107999,
3251                                         number_of_blocks: 2,
3252                                         sync_complete: true,
3253                                         short_channel_ids: vec![
3254                                                 scid_from_parts(108000, 0, 0).unwrap(),
3255                                         ],
3256                                 }
3257                         ]
3258                 );
3259
3260                 // Multiple split on same block
3261                 do_handling_query_channel_range(
3262                         &gossip_sync,
3263                         &node_id_2,
3264                         QueryChannelRange {
3265                                 chain_hash: chain_hash.clone(),
3266                                 first_blocknum: 100002,
3267                                 number_of_blocks: 8000,
3268                         },
3269                         true,
3270                         vec![
3271                                 ReplyChannelRange {
3272                                         chain_hash: chain_hash.clone(),
3273                                         first_blocknum: 100002,
3274                                         number_of_blocks: 7999,
3275                                         sync_complete: false,
3276                                         short_channel_ids: (100002..=108001)
3277                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3278                                                 .collect(),
3279                                 },
3280                                 ReplyChannelRange {
3281                                         chain_hash: chain_hash.clone(),
3282                                         first_blocknum: 108001,
3283                                         number_of_blocks: 1,
3284                                         sync_complete: true,
3285                                         short_channel_ids: vec![
3286                                                 scid_from_parts(108001, 1, 0).unwrap(),
3287                                         ],
3288                                 }
3289                         ]
3290                 );
3291         }
3292
3293         fn do_handling_query_channel_range(
3294                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3295                 test_node_id: &PublicKey,
3296                 msg: QueryChannelRange,
3297                 expected_ok: bool,
3298                 expected_replies: Vec<ReplyChannelRange>
3299         ) {
3300                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3301                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3302                 let query_end_blocknum = msg.end_blocknum();
3303                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3304
3305                 if expected_ok {
3306                         assert!(result.is_ok());
3307                 } else {
3308                         assert!(result.is_err());
3309                 }
3310
3311                 let events = gossip_sync.get_and_clear_pending_msg_events();
3312                 assert_eq!(events.len(), expected_replies.len());
3313
3314                 for i in 0..events.len() {
3315                         let expected_reply = &expected_replies[i];
3316                         match &events[i] {
3317                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3318                                         assert_eq!(node_id, test_node_id);
3319                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3320                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3321                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3322                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3323                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3324
3325                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3326                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3327                                         assert!(msg.first_blocknum >= max_firstblocknum);
3328                                         max_firstblocknum = msg.first_blocknum;
3329                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3330
3331                                         // Check that the last block count is >= the query's end_blocknum
3332                                         if i == events.len() - 1 {
3333                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3334                                         }
3335                                 },
3336                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3337                         }
3338                 }
3339         }
3340
3341         #[test]
3342         fn handling_query_short_channel_ids() {
3343                 let network_graph = create_network_graph();
3344                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3345                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3346                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3347
3348                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3349
3350                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3351                         chain_hash,
3352                         short_channel_ids: vec![0x0003e8_000000_0000],
3353                 });
3354                 assert!(result.is_err());
3355         }
3356
3357         #[test]
3358         fn displays_node_alias() {
3359                 let format_str_alias = |alias: &str| {
3360                         let mut bytes = [0u8; 32];
3361                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3362                         format!("{}", NodeAlias(bytes))
3363                 };
3364
3365                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3366                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3367                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3368
3369                 let format_bytes_alias = |alias: &[u8]| {
3370                         let mut bytes = [0u8; 32];
3371                         bytes[..alias.len()].copy_from_slice(alias);
3372                         format!("{}", NodeAlias(bytes))
3373                 };
3374
3375                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3376                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3377                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3378         }
3379
3380         #[test]
3381         fn channel_info_is_readable() {
3382                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3383                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3384                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3385                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3386                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3387
3388                 // 1. Test encoding/decoding of ChannelUpdateInfo
3389                 let chan_update_info = ChannelUpdateInfo {
3390                         last_update: 23,
3391                         enabled: true,
3392                         cltv_expiry_delta: 42,
3393                         htlc_minimum_msat: 1234,
3394                         htlc_maximum_msat: 5678,
3395                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3396                         last_update_message: None,
3397                 };
3398
3399                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3400                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3401
3402                 // First make sure we can read ChannelUpdateInfos we just wrote
3403                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3404                 assert_eq!(chan_update_info, read_chan_update_info);
3405
3406                 // Check the serialization hasn't changed.
3407                 let legacy_chan_update_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3408                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3409
3410                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3411                 // or the ChannelUpdate enclosed with `last_update_message`.
3412                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = <Vec<u8>>::from_hex("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3413                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3414                 assert!(read_chan_update_info_res.is_err());
3415
3416                 let legacy_chan_update_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3417                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3418                 assert!(read_chan_update_info_res.is_err());
3419
3420                 // 2. Test encoding/decoding of ChannelInfo
3421                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3422                 let chan_info_none_updates = ChannelInfo {
3423                         features: channelmanager::provided_channel_features(&config),
3424                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3425                         one_to_two: None,
3426                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3427                         two_to_one: None,
3428                         capacity_sats: None,
3429                         announcement_message: None,
3430                         announcement_received_time: 87654,
3431                 };
3432
3433                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3434                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3435
3436                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3437                 assert_eq!(chan_info_none_updates, read_chan_info);
3438
3439                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3440                 let chan_info_some_updates = ChannelInfo {
3441                         features: channelmanager::provided_channel_features(&config),
3442                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3443                         one_to_two: Some(chan_update_info.clone()),
3444                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3445                         two_to_one: Some(chan_update_info.clone()),
3446                         capacity_sats: None,
3447                         announcement_message: None,
3448                         announcement_received_time: 87654,
3449                 };
3450
3451                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3452                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3453
3454                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3455                 assert_eq!(chan_info_some_updates, read_chan_info);
3456
3457                 // Check the serialization hasn't changed.
3458                 let legacy_chan_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3459                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3460
3461                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3462                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3463                 let legacy_chan_info_with_some_and_fail_update = <Vec<u8>>::from_hex("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3464                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3465                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3466                 assert_eq!(read_chan_info.one_to_two, None);
3467                 assert_eq!(read_chan_info.two_to_one, None);
3468
3469                 let legacy_chan_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3470                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3471                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3472                 assert_eq!(read_chan_info.one_to_two, None);
3473                 assert_eq!(read_chan_info.two_to_one, None);
3474         }
3475
3476         #[test]
3477         fn node_info_is_readable() {
3478                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3479                 let announcement_message = <Vec<u8>>::from_hex("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3480                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3481                 let valid_node_ann_info = NodeAnnouncementInfo {
3482                         features: channelmanager::provided_node_features(&UserConfig::default()),
3483                         last_update: 0,
3484                         rgb: [0u8; 3],
3485                         alias: NodeAlias([0u8; 32]),
3486                         announcement_message: Some(announcement_message)
3487                 };
3488
3489                 let mut encoded_valid_node_ann_info = Vec::new();
3490                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3491                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3492                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3493                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3494
3495                 let encoded_invalid_node_ann_info = <Vec<u8>>::from_hex("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3496                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3497                 assert!(read_invalid_node_ann_info_res.is_err());
3498
3499                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3500                 let valid_node_info = NodeInfo {
3501                         channels: Vec::new(),
3502                         announcement_info: Some(valid_node_ann_info),
3503                         node_counter: 0,
3504                 };
3505
3506                 let mut encoded_valid_node_info = Vec::new();
3507                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3508                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3509                 assert_eq!(read_valid_node_info, valid_node_info);
3510
3511                 let encoded_invalid_node_info_hex = <Vec<u8>>::from_hex("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3512                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3513                 assert_eq!(read_invalid_node_info.announcement_info, None);
3514         }
3515
3516         #[test]
3517         fn test_node_info_keeps_compatibility() {
3518                 let old_ann_info_with_addresses = <Vec<u8>>::from_hex("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3519                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3520                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3521                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3522                 assert!(ann_info_with_addresses.addresses().is_empty());
3523         }
3524
3525         #[test]
3526         fn test_node_id_display() {
3527                 let node_id = NodeId([42; 33]);
3528                 assert_eq!(format!("{}", &node_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
3529         }
3530 }
3531
3532 #[cfg(ldk_bench)]
3533 pub mod benches {
3534         use super::*;
3535         use std::io::Read;
3536         use criterion::{black_box, Criterion};
3537
3538         pub fn read_network_graph(bench: &mut Criterion) {
3539                 let logger = crate::util::test_utils::TestLogger::new();
3540                 let (mut d, _) = crate::routing::router::bench_utils::get_graph_scorer_file().unwrap();
3541                 let mut v = Vec::new();
3542                 d.read_to_end(&mut v).unwrap();
3543                 bench.bench_function("read_network_graph", |b| b.iter(||
3544                         NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3545                 ));
3546         }
3547
3548         pub fn write_network_graph(bench: &mut Criterion) {
3549                 let logger = crate::util::test_utils::TestLogger::new();
3550                 let (mut d, _) = crate::routing::router::bench_utils::get_graph_scorer_file().unwrap();
3551                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3552                 bench.bench_function("write_network_graph", |b| b.iter(||
3553                         black_box(&net_graph).encode()
3554                 ));
3555         }
3556 }