Rename routing::router::test_utils to ::bench_utils
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
126         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
127         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
128         genesis_hash: BlockHash,
129         logger: L,
130         // Lock order: channels -> nodes
131         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
132         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
133 }
134
135 /// A read-only view of [`NetworkGraph`].
136 pub struct ReadOnlyNetworkGraph<'a> {
137         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
138         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
139 }
140
141 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
142 /// return packet by a node along the route. See [BOLT #4] for details.
143 ///
144 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
145 #[derive(Clone, Debug, PartialEq)]
146 pub enum NetworkUpdate {
147         /// An error indicating a `channel_update` messages should be applied via
148         /// [`NetworkGraph::update_channel`].
149         ChannelUpdateMessage {
150                 /// The update to apply via [`NetworkGraph::update_channel`].
151                 msg: ChannelUpdate,
152         },
153         /// An error indicating that a channel failed to route a payment, which should be applied via
154         /// [`NetworkGraph::channel_failed`].
155         ChannelFailure {
156                 /// The short channel id of the closed channel.
157                 short_channel_id: u64,
158                 /// Whether the channel should be permanently removed or temporarily disabled until a new
159                 /// `channel_update` message is received.
160                 is_permanent: bool,
161         },
162         /// An error indicating that a node failed to route a payment, which should be applied via
163         /// [`NetworkGraph::node_failed`].
164         NodeFailure {
165                 /// The node id of the failed node.
166                 node_id: PublicKey,
167                 /// Whether the node should be permanently removed from consideration or can be restored
168                 /// when a new `channel_update` message is received.
169                 is_permanent: bool,
170         }
171 }
172
173 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
174         (0, ChannelUpdateMessage) => {
175                 (0, msg, required),
176         },
177         (2, ChannelFailure) => {
178                 (0, short_channel_id, required),
179                 (2, is_permanent, required),
180         },
181         (4, NodeFailure) => {
182                 (0, node_id, required),
183                 (2, is_permanent, required),
184         },
185 );
186
187 /// Receives and validates network updates from peers,
188 /// stores authentic and relevant data as a network graph.
189 /// This network graph is then used for routing payments.
190 /// Provides interface to help with initial routing sync by
191 /// serving historical announcements.
192 ///
193 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
194 /// [`NetworkGraph`].
195 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
196 where C::Target: chain::Access, L::Target: Logger
197 {
198         network_graph: G,
199         chain_access: Option<C>,
200         #[cfg(feature = "std")]
201         full_syncs_requested: AtomicUsize,
202         pending_events: Mutex<Vec<MessageSendEvent>>,
203         logger: L,
204 }
205
206 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
207 where C::Target: chain::Access, L::Target: Logger
208 {
209         /// Creates a new tracker of the actual state of the network of channels and nodes,
210         /// assuming an existing Network Graph.
211         /// Chain monitor is used to make sure announced channels exist on-chain,
212         /// channel data is correct, and that the announcement is signed with
213         /// channel owners' keys.
214         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
215                 P2PGossipSync {
216                         network_graph,
217                         #[cfg(feature = "std")]
218                         full_syncs_requested: AtomicUsize::new(0),
219                         chain_access,
220                         pending_events: Mutex::new(vec![]),
221                         logger,
222                 }
223         }
224
225         /// Adds a provider used to check new announcements. Does not affect
226         /// existing announcements unless they are updated.
227         /// Add, update or remove the provider would replace the current one.
228         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
229                 self.chain_access = chain_access;
230         }
231
232         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
233         /// [`P2PGossipSync::new`].
234         ///
235         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
236         pub fn network_graph(&self) -> &G {
237                 &self.network_graph
238         }
239
240         #[cfg(feature = "std")]
241         /// Returns true when a full routing table sync should be performed with a peer.
242         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
243                 //TODO: Determine whether to request a full sync based on the network map.
244                 const FULL_SYNCS_TO_REQUEST: usize = 5;
245                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
246                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
247                         true
248                 } else {
249                         false
250                 }
251         }
252 }
253
254 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
255         fn handle_event(&self, event: &Event) {
256                 if let Event::PaymentPathFailed { network_update, .. } = event {
257                         if let Some(network_update) = network_update {
258                                 match *network_update {
259                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
260                                                 let short_channel_id = msg.contents.short_channel_id;
261                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
262                                                 let status = if is_enabled { "enabled" } else { "disabled" };
263                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
264                                                 let _ = self.update_channel(msg);
265                                         },
266                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
267                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
268                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
269                                                 self.channel_failed(short_channel_id, is_permanent);
270                                         },
271                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
272                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
273                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
274                                                 self.node_failed(node_id, is_permanent);
275                                         },
276                                 }
277                         }
278                 }
279         }
280 }
281
282 macro_rules! secp_verify_sig {
283         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
284                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
285                         Ok(_) => {},
286                         Err(_) => {
287                                 return Err(LightningError {
288                                         err: format!("Invalid signature on {} message", $msg_type),
289                                         action: ErrorAction::SendWarningMessage {
290                                                 msg: msgs::WarningMessage {
291                                                         channel_id: [0; 32],
292                                                         data: format!("Invalid signature on {} message", $msg_type),
293                                                 },
294                                                 log_level: Level::Trace,
295                                         },
296                                 });
297                         },
298                 }
299         };
300 }
301
302 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
303 where C::Target: chain::Access, L::Target: Logger
304 {
305         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
306                 self.network_graph.update_node_from_announcement(msg)?;
307                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
308                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
309                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
310         }
311
312         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
313                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
314                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
315                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
316         }
317
318         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
319                 self.network_graph.update_channel(msg)?;
320                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
321         }
322
323         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
324                 let channels = self.network_graph.channels.read().unwrap();
325                 for (_, ref chan) in channels.range(starting_point..) {
326                         if chan.announcement_message.is_some() {
327                                 let chan_announcement = chan.announcement_message.clone().unwrap();
328                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
329                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
330                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
331                                         one_to_two_announcement = one_to_two.last_update_message.clone();
332                                 }
333                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
334                                         two_to_one_announcement = two_to_one.last_update_message.clone();
335                                 }
336                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
337                         } else {
338                                 // TODO: We may end up sending un-announced channel_updates if we are sending
339                                 // initial sync data while receiving announce/updates for this channel.
340                         }
341                 }
342                 None
343         }
344
345         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
346                 let nodes = self.network_graph.nodes.read().unwrap();
347                 let iter = if let Some(pubkey) = starting_point {
348                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
349                         } else {
350                                 nodes.range(..)
351                         };
352                 for (_, ref node) in iter {
353                         if let Some(node_info) = node.announcement_info.as_ref() {
354                                 if let Some(msg) = node_info.announcement_message.clone() {
355                                         return Some(msg);
356                                 }
357                         }
358                 }
359                 None
360         }
361
362         /// Initiates a stateless sync of routing gossip information with a peer
363         /// using gossip_queries. The default strategy used by this implementation
364         /// is to sync the full block range with several peers.
365         ///
366         /// We should expect one or more reply_channel_range messages in response
367         /// to our query_channel_range. Each reply will enqueue a query_scid message
368         /// to request gossip messages for each channel. The sync is considered complete
369         /// when the final reply_scids_end message is received, though we are not
370         /// tracking this directly.
371         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
372                 // We will only perform a sync with peers that support gossip_queries.
373                 if !init_msg.features.supports_gossip_queries() {
374                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
375                         // channels with peers even without being able to exchange gossip.
376                         return Ok(());
377                 }
378
379                 // The lightning network's gossip sync system is completely broken in numerous ways.
380                 //
381                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
382                 // to do a full sync from the first few peers we connect to, and then receive gossip
383                 // updates from all our peers normally.
384                 //
385                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
386                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
387                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
388                 // seen.
389                 //
390                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
391                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
392                 // channel data which you are missing. Except there was no way at all to identify which
393                 // `channel_update`s you were missing, so you still had to request everything, just in a
394                 // very complicated way with some queries instead of just getting the dump.
395                 //
396                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
397                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
398                 // relying on it useless.
399                 //
400                 // After gossip queries were introduced, support for receiving a full gossip table dump on
401                 // connection was removed from several nodes, making it impossible to get a full sync
402                 // without using the "gossip queries" messages.
403                 //
404                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
405                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
406                 // message, as the name implies, tells the peer to not forward any gossip messages with a
407                 // timestamp older than a given value (not the time the peer received the filter, but the
408                 // timestamp in the update message, which is often hours behind when the peer received the
409                 // message).
410                 //
411                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
412                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
413                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
414                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
415                 // will simply not forward any new updates they see to you which were generated some time
416                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
417                 // ago), you will always get the full routing graph from all your peers.
418                 //
419                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
420                 // propagated some time after it was generated, and, worse, often disable gossiping with
421                 // several peers after their first connection. The second behavior can cause gossip to not
422                 // propagate fully if there are cuts in the gossiping subgraph.
423                 //
424                 // In an attempt to cut a middle ground between always fetching the full graph from all of
425                 // our peers and never receiving gossip from peers at all, we send all of our peers a
426                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
427                 //
428                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
429                 #[allow(unused_mut, unused_assignments)]
430                 let mut gossip_start_time = 0;
431                 #[cfg(feature = "std")]
432                 {
433                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
434                         if self.should_request_full_sync(&their_node_id) {
435                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
436                         } else {
437                                 gossip_start_time -= 60 * 60; // an hour ago
438                         }
439                 }
440
441                 let mut pending_events = self.pending_events.lock().unwrap();
442                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
443                         node_id: their_node_id.clone(),
444                         msg: GossipTimestampFilter {
445                                 chain_hash: self.network_graph.genesis_hash,
446                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
447                                 timestamp_range: u32::max_value(),
448                         },
449                 });
450                 Ok(())
451         }
452
453         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
454                 // We don't make queries, so should never receive replies. If, in the future, the set
455                 // reconciliation extensions to gossip queries become broadly supported, we should revert
456                 // this code to its state pre-0.0.106.
457                 Ok(())
458         }
459
460         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
461                 // We don't make queries, so should never receive replies. If, in the future, the set
462                 // reconciliation extensions to gossip queries become broadly supported, we should revert
463                 // this code to its state pre-0.0.106.
464                 Ok(())
465         }
466
467         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
468         /// are in the specified block range. Due to message size limits, large range
469         /// queries may result in several reply messages. This implementation enqueues
470         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
471         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
472         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
473         /// memory constrained systems.
474         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
475                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
476
477                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
478
479                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
480                 // If so, we manually cap the ending block to avoid this overflow.
481                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
482
483                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
484                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
485                         let mut pending_events = self.pending_events.lock().unwrap();
486                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
487                                 node_id: their_node_id.clone(),
488                                 msg: ReplyChannelRange {
489                                         chain_hash: msg.chain_hash.clone(),
490                                         first_blocknum: msg.first_blocknum,
491                                         number_of_blocks: msg.number_of_blocks,
492                                         sync_complete: true,
493                                         short_channel_ids: vec![],
494                                 }
495                         });
496                         return Err(LightningError {
497                                 err: String::from("query_channel_range could not be processed"),
498                                 action: ErrorAction::IgnoreError,
499                         });
500                 }
501
502                 // Creates channel batches. We are not checking if the channel is routable
503                 // (has at least one update). A peer may still want to know the channel
504                 // exists even if its not yet routable.
505                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
506                 let channels = self.network_graph.channels.read().unwrap();
507                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
508                         if let Some(chan_announcement) = &chan.announcement_message {
509                                 // Construct a new batch if last one is full
510                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
511                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
512                                 }
513
514                                 let batch = batches.last_mut().unwrap();
515                                 batch.push(chan_announcement.contents.short_channel_id);
516                         }
517                 }
518                 drop(channels);
519
520                 let mut pending_events = self.pending_events.lock().unwrap();
521                 let batch_count = batches.len();
522                 let mut prev_batch_endblock = msg.first_blocknum;
523                 for (batch_index, batch) in batches.into_iter().enumerate() {
524                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
525                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
526                         //
527                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
528                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
529                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
530                         // significant diversion from the requirements set by the spec, and, in case of blocks
531                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
532                         // and *not* derive the first_blocknum from the actual first block of the reply.
533                         let first_blocknum = prev_batch_endblock;
534
535                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
536                         // fit in. Though there is no requirement that we use exactly the number of blocks its
537                         // contents are from, except for the bogus requirements c-lightning enforces, above.
538                         //
539                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
540                         // >= the query's end block. Thus, for the last reply, we calculate the difference
541                         // between the query's end block and the start of the reply.
542                         //
543                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
544                         // first_blocknum will be either msg.first_blocknum or a higher block height.
545                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
546                                 (true, msg.end_blocknum() - first_blocknum)
547                         }
548                         // Prior replies should use the number of blocks that fit into the reply. Overflow
549                         // safe since first_blocknum is always <= last SCID's block.
550                         else {
551                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
552                         };
553
554                         prev_batch_endblock = first_blocknum + number_of_blocks;
555
556                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
557                                 node_id: their_node_id.clone(),
558                                 msg: ReplyChannelRange {
559                                         chain_hash: msg.chain_hash.clone(),
560                                         first_blocknum,
561                                         number_of_blocks,
562                                         sync_complete,
563                                         short_channel_ids: batch,
564                                 }
565                         });
566                 }
567
568                 Ok(())
569         }
570
571         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
572                 // TODO
573                 Err(LightningError {
574                         err: String::from("Not implemented"),
575                         action: ErrorAction::IgnoreError,
576                 })
577         }
578
579         fn provided_node_features(&self) -> NodeFeatures {
580                 let mut features = NodeFeatures::empty();
581                 features.set_gossip_queries_optional();
582                 features
583         }
584
585         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
586                 let mut features = InitFeatures::empty();
587                 features.set_gossip_queries_optional();
588                 features
589         }
590 }
591
592 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
593 where
594         C::Target: chain::Access,
595         L::Target: Logger,
596 {
597         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
598                 let mut ret = Vec::new();
599                 let mut pending_events = self.pending_events.lock().unwrap();
600                 core::mem::swap(&mut ret, &mut pending_events);
601                 ret
602         }
603 }
604
605 #[derive(Clone, Debug, PartialEq)]
606 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
607 pub struct ChannelUpdateInfo {
608         /// When the last update to the channel direction was issued.
609         /// Value is opaque, as set in the announcement.
610         pub last_update: u32,
611         /// Whether the channel can be currently used for payments (in this one direction).
612         pub enabled: bool,
613         /// The difference in CLTV values that you must have when routing through this channel.
614         pub cltv_expiry_delta: u16,
615         /// The minimum value, which must be relayed to the next hop via the channel
616         pub htlc_minimum_msat: u64,
617         /// The maximum value which may be relayed to the next hop via the channel.
618         pub htlc_maximum_msat: u64,
619         /// Fees charged when the channel is used for routing
620         pub fees: RoutingFees,
621         /// Most recent update for the channel received from the network
622         /// Mostly redundant with the data we store in fields explicitly.
623         /// Everything else is useful only for sending out for initial routing sync.
624         /// Not stored if contains excess data to prevent DoS.
625         pub last_update_message: Option<ChannelUpdate>,
626 }
627
628 impl fmt::Display for ChannelUpdateInfo {
629         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
630                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
631                 Ok(())
632         }
633 }
634
635 impl Writeable for ChannelUpdateInfo {
636         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
637                 write_tlv_fields!(writer, {
638                         (0, self.last_update, required),
639                         (2, self.enabled, required),
640                         (4, self.cltv_expiry_delta, required),
641                         (6, self.htlc_minimum_msat, required),
642                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
643                         // compatibility with LDK versions prior to v0.0.110.
644                         (8, Some(self.htlc_maximum_msat), required),
645                         (10, self.fees, required),
646                         (12, self.last_update_message, required),
647                 });
648                 Ok(())
649         }
650 }
651
652 impl Readable for ChannelUpdateInfo {
653         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
654                 init_tlv_field_var!(last_update, required);
655                 init_tlv_field_var!(enabled, required);
656                 init_tlv_field_var!(cltv_expiry_delta, required);
657                 init_tlv_field_var!(htlc_minimum_msat, required);
658                 init_tlv_field_var!(htlc_maximum_msat, option);
659                 init_tlv_field_var!(fees, required);
660                 init_tlv_field_var!(last_update_message, required);
661
662                 read_tlv_fields!(reader, {
663                         (0, last_update, required),
664                         (2, enabled, required),
665                         (4, cltv_expiry_delta, required),
666                         (6, htlc_minimum_msat, required),
667                         (8, htlc_maximum_msat, required),
668                         (10, fees, required),
669                         (12, last_update_message, required)
670                 });
671
672                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
673                         Ok(ChannelUpdateInfo {
674                                 last_update: init_tlv_based_struct_field!(last_update, required),
675                                 enabled: init_tlv_based_struct_field!(enabled, required),
676                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
677                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
678                                 htlc_maximum_msat,
679                                 fees: init_tlv_based_struct_field!(fees, required),
680                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
681                         })
682                 } else {
683                         Err(DecodeError::InvalidValue)
684                 }
685         }
686 }
687
688 #[derive(Clone, Debug, PartialEq)]
689 /// Details about a channel (both directions).
690 /// Received within a channel announcement.
691 pub struct ChannelInfo {
692         /// Protocol features of a channel communicated during its announcement
693         pub features: ChannelFeatures,
694         /// Source node of the first direction of a channel
695         pub node_one: NodeId,
696         /// Details about the first direction of a channel
697         pub one_to_two: Option<ChannelUpdateInfo>,
698         /// Source node of the second direction of a channel
699         pub node_two: NodeId,
700         /// Details about the second direction of a channel
701         pub two_to_one: Option<ChannelUpdateInfo>,
702         /// The channel capacity as seen on-chain, if chain lookup is available.
703         pub capacity_sats: Option<u64>,
704         /// An initial announcement of the channel
705         /// Mostly redundant with the data we store in fields explicitly.
706         /// Everything else is useful only for sending out for initial routing sync.
707         /// Not stored if contains excess data to prevent DoS.
708         pub announcement_message: Option<ChannelAnnouncement>,
709         /// The timestamp when we received the announcement, if we are running with feature = "std"
710         /// (which we can probably assume we are - no-std environments probably won't have a full
711         /// network graph in memory!).
712         announcement_received_time: u64,
713 }
714
715 impl ChannelInfo {
716         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
717         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
718         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
719                 let (direction, source) = {
720                         if target == &self.node_one {
721                                 (self.two_to_one.as_ref(), &self.node_two)
722                         } else if target == &self.node_two {
723                                 (self.one_to_two.as_ref(), &self.node_one)
724                         } else {
725                                 return None;
726                         }
727                 };
728                 Some((DirectedChannelInfo::new(self, direction), source))
729         }
730
731         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
732         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
733         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
734                 let (direction, target) = {
735                         if source == &self.node_one {
736                                 (self.one_to_two.as_ref(), &self.node_two)
737                         } else if source == &self.node_two {
738                                 (self.two_to_one.as_ref(), &self.node_one)
739                         } else {
740                                 return None;
741                         }
742                 };
743                 Some((DirectedChannelInfo::new(self, direction), target))
744         }
745
746         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
747         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
748                 let direction = channel_flags & 1u8;
749                 if direction == 0 {
750                         self.one_to_two.as_ref()
751                 } else {
752                         self.two_to_one.as_ref()
753                 }
754         }
755 }
756
757 impl fmt::Display for ChannelInfo {
758         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
759                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
760                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
761                 Ok(())
762         }
763 }
764
765 impl Writeable for ChannelInfo {
766         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
767                 write_tlv_fields!(writer, {
768                         (0, self.features, required),
769                         (1, self.announcement_received_time, (default_value, 0)),
770                         (2, self.node_one, required),
771                         (4, self.one_to_two, required),
772                         (6, self.node_two, required),
773                         (8, self.two_to_one, required),
774                         (10, self.capacity_sats, required),
775                         (12, self.announcement_message, required),
776                 });
777                 Ok(())
778         }
779 }
780
781 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
782 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
783 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
784 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
785 // channel updates via the gossip network.
786 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
787
788 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
789         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
790                 match ::util::ser::Readable::read(reader) {
791                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
792                         Err(DecodeError::ShortRead) => Ok(None),
793                         Err(DecodeError::InvalidValue) => Ok(None),
794                         Err(err) => Err(err),
795                 }
796         }
797 }
798
799 impl Readable for ChannelInfo {
800         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
801                 init_tlv_field_var!(features, required);
802                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
803                 init_tlv_field_var!(node_one, required);
804                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
805                 init_tlv_field_var!(node_two, required);
806                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
807                 init_tlv_field_var!(capacity_sats, required);
808                 init_tlv_field_var!(announcement_message, required);
809                 read_tlv_fields!(reader, {
810                         (0, features, required),
811                         (1, announcement_received_time, (default_value, 0)),
812                         (2, node_one, required),
813                         (4, one_to_two_wrap, ignorable),
814                         (6, node_two, required),
815                         (8, two_to_one_wrap, ignorable),
816                         (10, capacity_sats, required),
817                         (12, announcement_message, required),
818                 });
819
820                 Ok(ChannelInfo {
821                         features: init_tlv_based_struct_field!(features, required),
822                         node_one: init_tlv_based_struct_field!(node_one, required),
823                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
824                         node_two: init_tlv_based_struct_field!(node_two, required),
825                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
826                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
827                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
828                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
829                 })
830         }
831 }
832
833 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
834 /// source node to a target node.
835 #[derive(Clone)]
836 pub struct DirectedChannelInfo<'a> {
837         channel: &'a ChannelInfo,
838         direction: Option<&'a ChannelUpdateInfo>,
839         htlc_maximum_msat: u64,
840         effective_capacity: EffectiveCapacity,
841 }
842
843 impl<'a> DirectedChannelInfo<'a> {
844         #[inline]
845         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
846                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
847                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
848
849                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
850                         (Some(amount_msat), Some(capacity_msat)) => {
851                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
852                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
853                         },
854                         (Some(amount_msat), None) => {
855                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
856                         },
857                         (None, Some(capacity_msat)) => {
858                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
859                         },
860                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
861                 };
862
863                 Self {
864                         channel, direction, htlc_maximum_msat, effective_capacity
865                 }
866         }
867
868         /// Returns information for the channel.
869         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
870
871         /// Returns information for the direction.
872         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
873
874         /// Returns the maximum HTLC amount allowed over the channel in the direction.
875         pub fn htlc_maximum_msat(&self) -> u64 {
876                 self.htlc_maximum_msat
877         }
878
879         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
880         ///
881         /// This is either the total capacity from the funding transaction, if known, or the
882         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
883         /// otherwise.
884         pub fn effective_capacity(&self) -> EffectiveCapacity {
885                 self.effective_capacity
886         }
887
888         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
889         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
890                 match self.direction {
891                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
892                         None => None,
893                 }
894         }
895 }
896
897 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
898         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
899                 f.debug_struct("DirectedChannelInfo")
900                         .field("channel", &self.channel)
901                         .finish()
902         }
903 }
904
905 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
906 #[derive(Clone)]
907 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
908         inner: DirectedChannelInfo<'a>,
909 }
910
911 impl<'a> DirectedChannelInfoWithUpdate<'a> {
912         /// Returns information for the channel.
913         #[inline]
914         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
915
916         /// Returns information for the direction.
917         #[inline]
918         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
919
920         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
921         #[inline]
922         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
923 }
924
925 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
926         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
927                 self.inner.fmt(f)
928         }
929 }
930
931 /// The effective capacity of a channel for routing purposes.
932 ///
933 /// While this may be smaller than the actual channel capacity, amounts greater than
934 /// [`Self::as_msat`] should not be routed through the channel.
935 #[derive(Clone, Copy, Debug)]
936 pub enum EffectiveCapacity {
937         /// The available liquidity in the channel known from being a channel counterparty, and thus a
938         /// direct hop.
939         ExactLiquidity {
940                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
941                 /// millisatoshi.
942                 liquidity_msat: u64,
943         },
944         /// The maximum HTLC amount in one direction as advertised on the gossip network.
945         MaximumHTLC {
946                 /// The maximum HTLC amount denominated in millisatoshi.
947                 amount_msat: u64,
948         },
949         /// The total capacity of the channel as determined by the funding transaction.
950         Total {
951                 /// The funding amount denominated in millisatoshi.
952                 capacity_msat: u64,
953                 /// The maximum HTLC amount denominated in millisatoshi.
954                 htlc_maximum_msat: Option<u64>
955         },
956         /// A capacity sufficient to route any payment, typically used for private channels provided by
957         /// an invoice.
958         Infinite,
959         /// A capacity that is unknown possibly because either the chain state is unavailable to know
960         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
961         Unknown,
962 }
963
964 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
965 /// use when making routing decisions.
966 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
967
968 impl EffectiveCapacity {
969         /// Returns the effective capacity denominated in millisatoshi.
970         pub fn as_msat(&self) -> u64 {
971                 match self {
972                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
973                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
974                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
975                         EffectiveCapacity::Infinite => u64::max_value(),
976                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
977                 }
978         }
979 }
980
981 /// Fees for routing via a given channel or a node
982 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
983 pub struct RoutingFees {
984         /// Flat routing fee in satoshis
985         pub base_msat: u32,
986         /// Liquidity-based routing fee in millionths of a routed amount.
987         /// In other words, 10000 is 1%.
988         pub proportional_millionths: u32,
989 }
990
991 impl_writeable_tlv_based!(RoutingFees, {
992         (0, base_msat, required),
993         (2, proportional_millionths, required)
994 });
995
996 #[derive(Clone, Debug, PartialEq)]
997 /// Information received in the latest node_announcement from this node.
998 pub struct NodeAnnouncementInfo {
999         /// Protocol features the node announced support for
1000         pub features: NodeFeatures,
1001         /// When the last known update to the node state was issued.
1002         /// Value is opaque, as set in the announcement.
1003         pub last_update: u32,
1004         /// Color assigned to the node
1005         pub rgb: [u8; 3],
1006         /// Moniker assigned to the node.
1007         /// May be invalid or malicious (eg control chars),
1008         /// should not be exposed to the user.
1009         pub alias: NodeAlias,
1010         /// Internet-level addresses via which one can connect to the node
1011         pub addresses: Vec<NetAddress>,
1012         /// An initial announcement of the node
1013         /// Mostly redundant with the data we store in fields explicitly.
1014         /// Everything else is useful only for sending out for initial routing sync.
1015         /// Not stored if contains excess data to prevent DoS.
1016         pub announcement_message: Option<NodeAnnouncement>
1017 }
1018
1019 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1020         (0, features, required),
1021         (2, last_update, required),
1022         (4, rgb, required),
1023         (6, alias, required),
1024         (8, announcement_message, option),
1025         (10, addresses, vec_type),
1026 });
1027
1028 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1029 ///
1030 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1031 /// attacks. Care must be taken when processing.
1032 #[derive(Clone, Debug, PartialEq)]
1033 pub struct NodeAlias(pub [u8; 32]);
1034
1035 impl fmt::Display for NodeAlias {
1036         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1037                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1038                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1039                 let bytes = self.0.split_at(first_null).0;
1040                 match core::str::from_utf8(bytes) {
1041                         Ok(alias) => {
1042                                 for c in alias.chars() {
1043                                         let mut bytes = [0u8; 4];
1044                                         let c = if !c.is_control() { c } else { control_symbol };
1045                                         f.write_str(c.encode_utf8(&mut bytes))?;
1046                                 }
1047                         },
1048                         Err(_) => {
1049                                 for c in bytes.iter().map(|b| *b as char) {
1050                                         // Display printable ASCII characters
1051                                         let mut bytes = [0u8; 4];
1052                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1053                                         f.write_str(c.encode_utf8(&mut bytes))?;
1054                                 }
1055                         },
1056                 };
1057                 Ok(())
1058         }
1059 }
1060
1061 impl Writeable for NodeAlias {
1062         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1063                 self.0.write(w)
1064         }
1065 }
1066
1067 impl Readable for NodeAlias {
1068         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1069                 Ok(NodeAlias(Readable::read(r)?))
1070         }
1071 }
1072
1073 #[derive(Clone, Debug, PartialEq)]
1074 /// Details about a node in the network, known from the network announcement.
1075 pub struct NodeInfo {
1076         /// All valid channels a node has announced
1077         pub channels: Vec<u64>,
1078         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1079         /// The two fields (flat and proportional fee) are independent,
1080         /// meaning they don't have to refer to the same channel.
1081         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1082         /// More information about a node from node_announcement.
1083         /// Optional because we store a Node entry after learning about it from
1084         /// a channel announcement, but before receiving a node announcement.
1085         pub announcement_info: Option<NodeAnnouncementInfo>
1086 }
1087
1088 impl fmt::Display for NodeInfo {
1089         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1090                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1091                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1092                 Ok(())
1093         }
1094 }
1095
1096 impl Writeable for NodeInfo {
1097         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1098                 write_tlv_fields!(writer, {
1099                         (0, self.lowest_inbound_channel_fees, option),
1100                         (2, self.announcement_info, option),
1101                         (4, self.channels, vec_type),
1102                 });
1103                 Ok(())
1104         }
1105 }
1106
1107 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1108 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1109 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1110 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1111 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1112
1113 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1114         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1115                 match ::util::ser::Readable::read(reader) {
1116                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1117                         Err(_) => {
1118                                 copy(reader, &mut sink()).unwrap();
1119                                 return Ok(None)
1120                         },
1121                 };
1122         }
1123 }
1124
1125 impl Readable for NodeInfo {
1126         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1127                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1128                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1129                 init_tlv_field_var!(channels, vec_type);
1130
1131                 read_tlv_fields!(reader, {
1132                         (0, lowest_inbound_channel_fees, option),
1133                         (2, announcement_info_wrap, ignorable),
1134                         (4, channels, vec_type),
1135                 });
1136
1137                 Ok(NodeInfo {
1138                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1139                         announcement_info: announcement_info_wrap.map(|w| w.0),
1140                         channels: init_tlv_based_struct_field!(channels, vec_type),
1141                 })
1142         }
1143 }
1144
1145 const SERIALIZATION_VERSION: u8 = 1;
1146 const MIN_SERIALIZATION_VERSION: u8 = 1;
1147
1148 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1149         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1150                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1151
1152                 self.genesis_hash.write(writer)?;
1153                 let channels = self.channels.read().unwrap();
1154                 (channels.len() as u64).write(writer)?;
1155                 for (ref chan_id, ref chan_info) in channels.iter() {
1156                         (*chan_id).write(writer)?;
1157                         chan_info.write(writer)?;
1158                 }
1159                 let nodes = self.nodes.read().unwrap();
1160                 (nodes.len() as u64).write(writer)?;
1161                 for (ref node_id, ref node_info) in nodes.iter() {
1162                         node_id.write(writer)?;
1163                         node_info.write(writer)?;
1164                 }
1165
1166                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1167                 write_tlv_fields!(writer, {
1168                         (1, last_rapid_gossip_sync_timestamp, option),
1169                 });
1170                 Ok(())
1171         }
1172 }
1173
1174 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1175         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1176                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1177
1178                 let genesis_hash: BlockHash = Readable::read(reader)?;
1179                 let channels_count: u64 = Readable::read(reader)?;
1180                 let mut channels = BTreeMap::new();
1181                 for _ in 0..channels_count {
1182                         let chan_id: u64 = Readable::read(reader)?;
1183                         let chan_info = Readable::read(reader)?;
1184                         channels.insert(chan_id, chan_info);
1185                 }
1186                 let nodes_count: u64 = Readable::read(reader)?;
1187                 let mut nodes = BTreeMap::new();
1188                 for _ in 0..nodes_count {
1189                         let node_id = Readable::read(reader)?;
1190                         let node_info = Readable::read(reader)?;
1191                         nodes.insert(node_id, node_info);
1192                 }
1193
1194                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1195                 read_tlv_fields!(reader, {
1196                         (1, last_rapid_gossip_sync_timestamp, option),
1197                 });
1198
1199                 Ok(NetworkGraph {
1200                         secp_ctx: Secp256k1::verification_only(),
1201                         genesis_hash,
1202                         logger,
1203                         channels: RwLock::new(channels),
1204                         nodes: RwLock::new(nodes),
1205                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1206                 })
1207         }
1208 }
1209
1210 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1211         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1212                 writeln!(f, "Network map\n[Channels]")?;
1213                 for (key, val) in self.channels.read().unwrap().iter() {
1214                         writeln!(f, " {}: {}", key, val)?;
1215                 }
1216                 writeln!(f, "[Nodes]")?;
1217                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1218                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1219                 }
1220                 Ok(())
1221         }
1222 }
1223
1224 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1225         fn eq(&self, other: &Self) -> bool {
1226                 self.genesis_hash == other.genesis_hash &&
1227                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1228                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1229         }
1230 }
1231
1232 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1233         /// Creates a new, empty, network graph.
1234         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1235                 Self {
1236                         secp_ctx: Secp256k1::verification_only(),
1237                         genesis_hash,
1238                         logger,
1239                         channels: RwLock::new(BTreeMap::new()),
1240                         nodes: RwLock::new(BTreeMap::new()),
1241                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1242                 }
1243         }
1244
1245         /// Returns a read-only view of the network graph.
1246         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1247                 let channels = self.channels.read().unwrap();
1248                 let nodes = self.nodes.read().unwrap();
1249                 ReadOnlyNetworkGraph {
1250                         channels,
1251                         nodes,
1252                 }
1253         }
1254
1255         /// The unix timestamp provided by the most recent rapid gossip sync.
1256         /// It will be set by the rapid sync process after every sync completion.
1257         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1258                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1259         }
1260
1261         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1262         /// This should be done automatically by the rapid sync process after every sync completion.
1263         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1264                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1265         }
1266
1267         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1268         /// purposes.
1269         #[cfg(test)]
1270         pub fn clear_nodes_announcement_info(&self) {
1271                 for node in self.nodes.write().unwrap().iter_mut() {
1272                         node.1.announcement_info = None;
1273                 }
1274         }
1275
1276         /// For an already known node (from channel announcements), update its stored properties from a
1277         /// given node announcement.
1278         ///
1279         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1280         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1281         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1282         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1283                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1284                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1285                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1286         }
1287
1288         /// For an already known node (from channel announcements), update its stored properties from a
1289         /// given node announcement without verifying the associated signatures. Because we aren't
1290         /// given the associated signatures here we cannot relay the node announcement to any of our
1291         /// peers.
1292         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1293                 self.update_node_from_announcement_intern(msg, None)
1294         }
1295
1296         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1297                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1298                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1299                         Some(node) => {
1300                                 if let Some(node_info) = node.announcement_info.as_ref() {
1301                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1302                                         // updates to ensure you always have the latest one, only vaguely suggesting
1303                                         // that it be at least the current time.
1304                                         if node_info.last_update  > msg.timestamp {
1305                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1306                                         } else if node_info.last_update  == msg.timestamp {
1307                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1308                                         }
1309                                 }
1310
1311                                 let should_relay =
1312                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1313                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1314                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1315                                 node.announcement_info = Some(NodeAnnouncementInfo {
1316                                         features: msg.features.clone(),
1317                                         last_update: msg.timestamp,
1318                                         rgb: msg.rgb,
1319                                         alias: NodeAlias(msg.alias),
1320                                         addresses: msg.addresses.clone(),
1321                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1322                                 });
1323
1324                                 Ok(())
1325                         }
1326                 }
1327         }
1328
1329         /// Store or update channel info from a channel announcement.
1330         ///
1331         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1332         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1333         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1334         ///
1335         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1336         /// the corresponding UTXO exists on chain and is correctly-formatted.
1337         pub fn update_channel_from_announcement<C: Deref>(
1338                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1339         ) -> Result<(), LightningError>
1340         where
1341                 C::Target: chain::Access,
1342         {
1343                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1344                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1345                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1346                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1347                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1348                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1349         }
1350
1351         /// Store or update channel info from a channel announcement without verifying the associated
1352         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1353         /// channel announcement to any of our peers.
1354         ///
1355         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1356         /// the corresponding UTXO exists on chain and is correctly-formatted.
1357         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1358                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1359         ) -> Result<(), LightningError>
1360         where
1361                 C::Target: chain::Access,
1362         {
1363                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1364         }
1365
1366         /// Update channel from partial announcement data received via rapid gossip sync
1367         ///
1368         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1369         /// rapid gossip sync server)
1370         ///
1371         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1372         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1373                 if node_id_1 == node_id_2 {
1374                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1375                 };
1376
1377                 let node_1 = NodeId::from_pubkey(&node_id_1);
1378                 let node_2 = NodeId::from_pubkey(&node_id_2);
1379                 let channel_info = ChannelInfo {
1380                         features,
1381                         node_one: node_1.clone(),
1382                         one_to_two: None,
1383                         node_two: node_2.clone(),
1384                         two_to_one: None,
1385                         capacity_sats: None,
1386                         announcement_message: None,
1387                         announcement_received_time: timestamp,
1388                 };
1389
1390                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1391         }
1392
1393         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1394                 let mut channels = self.channels.write().unwrap();
1395                 let mut nodes = self.nodes.write().unwrap();
1396
1397                 let node_id_a = channel_info.node_one.clone();
1398                 let node_id_b = channel_info.node_two.clone();
1399
1400                 match channels.entry(short_channel_id) {
1401                         BtreeEntry::Occupied(mut entry) => {
1402                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1403                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1404                                 //exactly how...
1405                                 if utxo_value.is_some() {
1406                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1407                                         // only sometimes returns results. In any case remove the previous entry. Note
1408                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1409                                         // do that because
1410                                         // a) we don't *require* a UTXO provider that always returns results.
1411                                         // b) we don't track UTXOs of channels we know about and remove them if they
1412                                         //    get reorg'd out.
1413                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1414                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1415                                         *entry.get_mut() = channel_info;
1416                                 } else {
1417                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1418                                 }
1419                         },
1420                         BtreeEntry::Vacant(entry) => {
1421                                 entry.insert(channel_info);
1422                         }
1423                 };
1424
1425                 for current_node_id in [node_id_a, node_id_b].iter() {
1426                         match nodes.entry(current_node_id.clone()) {
1427                                 BtreeEntry::Occupied(node_entry) => {
1428                                         node_entry.into_mut().channels.push(short_channel_id);
1429                                 },
1430                                 BtreeEntry::Vacant(node_entry) => {
1431                                         node_entry.insert(NodeInfo {
1432                                                 channels: vec!(short_channel_id),
1433                                                 lowest_inbound_channel_fees: None,
1434                                                 announcement_info: None,
1435                                         });
1436                                 }
1437                         };
1438                 };
1439
1440                 Ok(())
1441         }
1442
1443         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1444                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1445         ) -> Result<(), LightningError>
1446         where
1447                 C::Target: chain::Access,
1448         {
1449                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1450                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1451                 }
1452
1453                 {
1454                         let channels = self.channels.read().unwrap();
1455
1456                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1457                                 if chan.capacity_sats.is_some() {
1458                                         // If we'd previously looked up the channel on-chain and checked the script
1459                                         // against what appears on-chain, ignore the duplicate announcement.
1460                                         //
1461                                         // Because a reorg could replace one channel with another at the same SCID, if
1462                                         // the channel appears to be different, we re-validate. This doesn't expose us
1463                                         // to any more DoS risk than not, as a peer can always flood us with
1464                                         // randomly-generated SCID values anyway.
1465                                         //
1466                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1467                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1468                                         // if the peers on the channel changed anyway.
1469                                         if NodeId::from_pubkey(&msg.node_id_1) == chan.node_one && NodeId::from_pubkey(&msg.node_id_2) == chan.node_two {
1470                                                 return Err(LightningError {
1471                                                         err: "Already have chain-validated channel".to_owned(),
1472                                                         action: ErrorAction::IgnoreDuplicateGossip
1473                                                 });
1474                                         }
1475                                 } else if chain_access.is_none() {
1476                                         // Similarly, if we can't check the chain right now anyway, ignore the
1477                                         // duplicate announcement without bothering to take the channels write lock.
1478                                         return Err(LightningError {
1479                                                 err: "Already have non-chain-validated channel".to_owned(),
1480                                                 action: ErrorAction::IgnoreDuplicateGossip
1481                                         });
1482                                 }
1483                         }
1484                 }
1485
1486                 let utxo_value = match &chain_access {
1487                         &None => {
1488                                 // Tentatively accept, potentially exposing us to DoS attacks
1489                                 None
1490                         },
1491                         &Some(ref chain_access) => {
1492                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1493                                         Ok(TxOut { value, script_pubkey }) => {
1494                                                 let expected_script =
1495                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1496                                                 if script_pubkey != expected_script {
1497                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1498                                                 }
1499                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1500                                                 //to the new HTLC max field in channel_update
1501                                                 Some(value)
1502                                         },
1503                                         Err(chain::AccessError::UnknownChain) => {
1504                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1505                                         },
1506                                         Err(chain::AccessError::UnknownTx) => {
1507                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1508                                         },
1509                                 }
1510                         },
1511                 };
1512
1513                 #[allow(unused_mut, unused_assignments)]
1514                 let mut announcement_received_time = 0;
1515                 #[cfg(feature = "std")]
1516                 {
1517                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1518                 }
1519
1520                 let chan_info = ChannelInfo {
1521                         features: msg.features.clone(),
1522                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1523                         one_to_two: None,
1524                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1525                         two_to_one: None,
1526                         capacity_sats: utxo_value,
1527                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1528                                 { full_msg.cloned() } else { None },
1529                         announcement_received_time,
1530                 };
1531
1532                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1533         }
1534
1535         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1536         /// If permanent, removes a channel from the local storage.
1537         /// May cause the removal of nodes too, if this was their last channel.
1538         /// If not permanent, makes channels unavailable for routing.
1539         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1540                 let mut channels = self.channels.write().unwrap();
1541                 if is_permanent {
1542                         if let Some(chan) = channels.remove(&short_channel_id) {
1543                                 let mut nodes = self.nodes.write().unwrap();
1544                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1545                         }
1546                 } else {
1547                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1548                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1549                                         one_to_two.enabled = false;
1550                                 }
1551                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1552                                         two_to_one.enabled = false;
1553                                 }
1554                         }
1555                 }
1556         }
1557
1558         /// Marks a node in the graph as failed.
1559         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1560                 if is_permanent {
1561                         // TODO: Wholly remove the node
1562                 } else {
1563                         // TODO: downgrade the node
1564                 }
1565         }
1566
1567         #[cfg(feature = "std")]
1568         /// Removes information about channels that we haven't heard any updates about in some time.
1569         /// This can be used regularly to prune the network graph of channels that likely no longer
1570         /// exist.
1571         ///
1572         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1573         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1574         /// pruning occur for updates which are at least two weeks old, which we implement here.
1575         ///
1576         /// Note that for users of the `lightning-background-processor` crate this method may be
1577         /// automatically called regularly for you.
1578         ///
1579         /// This method is only available with the `std` feature. See
1580         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1581         pub fn remove_stale_channels(&self) {
1582                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1583                 self.remove_stale_channels_with_time(time);
1584         }
1585
1586         /// Removes information about channels that we haven't heard any updates about in some time.
1587         /// This can be used regularly to prune the network graph of channels that likely no longer
1588         /// exist.
1589         ///
1590         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1591         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1592         /// pruning occur for updates which are at least two weeks old, which we implement here.
1593         ///
1594         /// This function takes the current unix time as an argument. For users with the `std` feature
1595         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1596         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1597                 let mut channels = self.channels.write().unwrap();
1598                 // Time out if we haven't received an update in at least 14 days.
1599                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1600                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1601                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1602                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1603                 // time.
1604                 let mut scids_to_remove = Vec::new();
1605                 for (scid, info) in channels.iter_mut() {
1606                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1607                                 info.one_to_two = None;
1608                         }
1609                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1610                                 info.two_to_one = None;
1611                         }
1612                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1613                                 // We check the announcement_received_time here to ensure we don't drop
1614                                 // announcements that we just received and are just waiting for our peer to send a
1615                                 // channel_update for.
1616                                 if info.announcement_received_time < min_time_unix as u64 {
1617                                         scids_to_remove.push(*scid);
1618                                 }
1619                         }
1620                 }
1621                 if !scids_to_remove.is_empty() {
1622                         let mut nodes = self.nodes.write().unwrap();
1623                         for scid in scids_to_remove {
1624                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1625                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1626                         }
1627                 }
1628         }
1629
1630         /// For an already known (from announcement) channel, update info about one of the directions
1631         /// of the channel.
1632         ///
1633         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1634         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1635         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1636         ///
1637         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1638         /// materially in the future will be rejected.
1639         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1640                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1641         }
1642
1643         /// For an already known (from announcement) channel, update info about one of the directions
1644         /// of the channel without verifying the associated signatures. Because we aren't given the
1645         /// associated signatures here we cannot relay the channel update to any of our peers.
1646         ///
1647         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1648         /// materially in the future will be rejected.
1649         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1650                 self.update_channel_intern(msg, None, None)
1651         }
1652
1653         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1654                 let dest_node_id;
1655                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1656                 let chan_was_enabled;
1657
1658                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1659                 {
1660                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1661                         // disable this check during tests!
1662                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1663                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1664                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1665                         }
1666                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1667                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1668                         }
1669                 }
1670
1671                 let mut channels = self.channels.write().unwrap();
1672                 match channels.get_mut(&msg.short_channel_id) {
1673                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1674                         Some(channel) => {
1675                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1676                                         return Err(LightningError{err:
1677                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1678                                                 action: ErrorAction::IgnoreError});
1679                                 }
1680
1681                                 if let Some(capacity_sats) = channel.capacity_sats {
1682                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1683                                         // Don't query UTXO set here to reduce DoS risks.
1684                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1685                                                 return Err(LightningError{err:
1686                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1687                                                         action: ErrorAction::IgnoreError});
1688                                         }
1689                                 }
1690                                 macro_rules! check_update_latest {
1691                                         ($target: expr) => {
1692                                                 if let Some(existing_chan_info) = $target.as_ref() {
1693                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1694                                                         // order updates to ensure you always have the latest one, only
1695                                                         // suggesting  that it be at least the current time. For
1696                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1697                                                         // pruning based on the timestamp field being more than two weeks old,
1698                                                         // but only in the non-normative section.
1699                                                         if existing_chan_info.last_update > msg.timestamp {
1700                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1701                                                         } else if existing_chan_info.last_update == msg.timestamp {
1702                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1703                                                         }
1704                                                         chan_was_enabled = existing_chan_info.enabled;
1705                                                 } else {
1706                                                         chan_was_enabled = false;
1707                                                 }
1708                                         }
1709                                 }
1710
1711                                 macro_rules! get_new_channel_info {
1712                                         () => { {
1713                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1714                                                         { full_msg.cloned() } else { None };
1715
1716                                                 let updated_channel_update_info = ChannelUpdateInfo {
1717                                                         enabled: chan_enabled,
1718                                                         last_update: msg.timestamp,
1719                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1720                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1721                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1722                                                         fees: RoutingFees {
1723                                                                 base_msat: msg.fee_base_msat,
1724                                                                 proportional_millionths: msg.fee_proportional_millionths,
1725                                                         },
1726                                                         last_update_message
1727                                                 };
1728                                                 Some(updated_channel_update_info)
1729                                         } }
1730                                 }
1731
1732                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1733                                 if msg.flags & 1 == 1 {
1734                                         dest_node_id = channel.node_one.clone();
1735                                         check_update_latest!(channel.two_to_one);
1736                                         if let Some(sig) = sig {
1737                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1738                                                         err: "Couldn't parse source node pubkey".to_owned(),
1739                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1740                                                 })?, "channel_update");
1741                                         }
1742                                         channel.two_to_one = get_new_channel_info!();
1743                                 } else {
1744                                         dest_node_id = channel.node_two.clone();
1745                                         check_update_latest!(channel.one_to_two);
1746                                         if let Some(sig) = sig {
1747                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1748                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1749                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1750                                                 })?, "channel_update");
1751                                         }
1752                                         channel.one_to_two = get_new_channel_info!();
1753                                 }
1754                         }
1755                 }
1756
1757                 let mut nodes = self.nodes.write().unwrap();
1758                 if chan_enabled {
1759                         let node = nodes.get_mut(&dest_node_id).unwrap();
1760                         let mut base_msat = msg.fee_base_msat;
1761                         let mut proportional_millionths = msg.fee_proportional_millionths;
1762                         if let Some(fees) = node.lowest_inbound_channel_fees {
1763                                 base_msat = cmp::min(base_msat, fees.base_msat);
1764                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1765                         }
1766                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1767                                 base_msat,
1768                                 proportional_millionths
1769                         });
1770                 } else if chan_was_enabled {
1771                         let node = nodes.get_mut(&dest_node_id).unwrap();
1772                         let mut lowest_inbound_channel_fees = None;
1773
1774                         for chan_id in node.channels.iter() {
1775                                 let chan = channels.get(chan_id).unwrap();
1776                                 let chan_info_opt;
1777                                 if chan.node_one == dest_node_id {
1778                                         chan_info_opt = chan.two_to_one.as_ref();
1779                                 } else {
1780                                         chan_info_opt = chan.one_to_two.as_ref();
1781                                 }
1782                                 if let Some(chan_info) = chan_info_opt {
1783                                         if chan_info.enabled {
1784                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1785                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1786                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1787                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1788                                         }
1789                                 }
1790                         }
1791
1792                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1793                 }
1794
1795                 Ok(())
1796         }
1797
1798         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1799                 macro_rules! remove_from_node {
1800                         ($node_id: expr) => {
1801                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1802                                         entry.get_mut().channels.retain(|chan_id| {
1803                                                 short_channel_id != *chan_id
1804                                         });
1805                                         if entry.get().channels.is_empty() {
1806                                                 entry.remove_entry();
1807                                         }
1808                                 } else {
1809                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1810                                 }
1811                         }
1812                 }
1813
1814                 remove_from_node!(chan.node_one);
1815                 remove_from_node!(chan.node_two);
1816         }
1817 }
1818
1819 impl ReadOnlyNetworkGraph<'_> {
1820         /// Returns all known valid channels' short ids along with announced channel info.
1821         ///
1822         /// (C-not exported) because we have no mapping for `BTreeMap`s
1823         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1824                 &*self.channels
1825         }
1826
1827         /// Returns information on a channel with the given id.
1828         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1829                 self.channels.get(&short_channel_id)
1830         }
1831
1832         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1833         /// Returns the list of channels in the graph
1834         pub fn list_channels(&self) -> Vec<u64> {
1835                 self.channels.keys().map(|c| *c).collect()
1836         }
1837
1838         /// Returns all known nodes' public keys along with announced node info.
1839         ///
1840         /// (C-not exported) because we have no mapping for `BTreeMap`s
1841         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1842                 &*self.nodes
1843         }
1844
1845         /// Returns information on a node with the given id.
1846         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1847                 self.nodes.get(node_id)
1848         }
1849
1850         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1851         /// Returns the list of nodes in the graph
1852         pub fn list_nodes(&self) -> Vec<NodeId> {
1853                 self.nodes.keys().map(|n| *n).collect()
1854         }
1855
1856         /// Get network addresses by node id.
1857         /// Returns None if the requested node is completely unknown,
1858         /// or if node announcement for the node was never received.
1859         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1860                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1861                         if let Some(node_info) = node.announcement_info.as_ref() {
1862                                 return Some(node_info.addresses.clone())
1863                         }
1864                 }
1865                 None
1866         }
1867 }
1868
1869 #[cfg(test)]
1870 mod tests {
1871         use chain;
1872         use ln::channelmanager;
1873         use ln::chan_utils::make_funding_redeemscript;
1874         use ln::PaymentHash;
1875         use ln::features::InitFeatures;
1876         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1877         use ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1878                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1879                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1880         use util::test_utils;
1881         use util::ser::{ReadableArgs, Writeable};
1882         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1883         use util::scid_utils::scid_from_parts;
1884
1885         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1886
1887         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1888         use bitcoin::hashes::Hash;
1889         use bitcoin::network::constants::Network;
1890         use bitcoin::blockdata::constants::genesis_block;
1891         use bitcoin::blockdata::script::Script;
1892         use bitcoin::blockdata::transaction::TxOut;
1893
1894         use hex;
1895
1896         use bitcoin::secp256k1::{PublicKey, SecretKey};
1897         use bitcoin::secp256k1::{All, Secp256k1};
1898
1899         use io;
1900         use bitcoin::secp256k1;
1901         use prelude::*;
1902         use sync::Arc;
1903
1904         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1905                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1906                 let logger = Arc::new(test_utils::TestLogger::new());
1907                 NetworkGraph::new(genesis_hash, logger)
1908         }
1909
1910         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1911                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1912                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1913         ) {
1914                 let secp_ctx = Secp256k1::new();
1915                 let logger = Arc::new(test_utils::TestLogger::new());
1916                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1917                 (secp_ctx, gossip_sync)
1918         }
1919
1920         #[test]
1921         #[cfg(feature = "std")]
1922         fn request_full_sync_finite_times() {
1923                 let network_graph = create_network_graph();
1924                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1925                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1926
1927                 assert!(gossip_sync.should_request_full_sync(&node_id));
1928                 assert!(gossip_sync.should_request_full_sync(&node_id));
1929                 assert!(gossip_sync.should_request_full_sync(&node_id));
1930                 assert!(gossip_sync.should_request_full_sync(&node_id));
1931                 assert!(gossip_sync.should_request_full_sync(&node_id));
1932                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1933         }
1934
1935         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1936                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1937                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1938                         features: channelmanager::provided_node_features(),
1939                         timestamp: 100,
1940                         node_id: node_id,
1941                         rgb: [0; 3],
1942                         alias: [0; 32],
1943                         addresses: Vec::new(),
1944                         excess_address_data: Vec::new(),
1945                         excess_data: Vec::new(),
1946                 };
1947                 f(&mut unsigned_announcement);
1948                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1949                 NodeAnnouncement {
1950                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1951                         contents: unsigned_announcement
1952                 }
1953         }
1954
1955         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1956                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1957                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1958                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1959                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1960
1961                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1962                         features: channelmanager::provided_channel_features(),
1963                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1964                         short_channel_id: 0,
1965                         node_id_1,
1966                         node_id_2,
1967                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1968                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1969                         excess_data: Vec::new(),
1970                 };
1971                 f(&mut unsigned_announcement);
1972                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1973                 ChannelAnnouncement {
1974                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1975                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1976                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1977                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1978                         contents: unsigned_announcement,
1979                 }
1980         }
1981
1982         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1983                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1984                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1985                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1986                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
1987         }
1988
1989         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1990                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1991                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1992                         short_channel_id: 0,
1993                         timestamp: 100,
1994                         flags: 0,
1995                         cltv_expiry_delta: 144,
1996                         htlc_minimum_msat: 1_000_000,
1997                         htlc_maximum_msat: 1_000_000,
1998                         fee_base_msat: 10_000,
1999                         fee_proportional_millionths: 20,
2000                         excess_data: Vec::new()
2001                 };
2002                 f(&mut unsigned_channel_update);
2003                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2004                 ChannelUpdate {
2005                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2006                         contents: unsigned_channel_update
2007                 }
2008         }
2009
2010         #[test]
2011         fn handling_node_announcements() {
2012                 let network_graph = create_network_graph();
2013                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2014
2015                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2016                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2017                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2018
2019                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2020                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2021                         Ok(_) => panic!(),
2022                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2023                 };
2024
2025                 {
2026                         // Announce a channel to add a corresponding node.
2027                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2028                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2029                                 Ok(res) => assert!(res),
2030                                 _ => panic!()
2031                         };
2032                 }
2033
2034                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2035                         Ok(res) => assert!(res),
2036                         Err(_) => panic!()
2037                 };
2038
2039                 let fake_msghash = hash_to_message!(&zero_hash);
2040                 match gossip_sync.handle_node_announcement(
2041                         &NodeAnnouncement {
2042                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2043                                 contents: valid_announcement.contents.clone()
2044                 }) {
2045                         Ok(_) => panic!(),
2046                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2047                 };
2048
2049                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2050                         unsigned_announcement.timestamp += 1000;
2051                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2052                 }, node_1_privkey, &secp_ctx);
2053                 // Return false because contains excess data.
2054                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2055                         Ok(res) => assert!(!res),
2056                         Err(_) => panic!()
2057                 };
2058
2059                 // Even though previous announcement was not relayed further, we still accepted it,
2060                 // so we now won't accept announcements before the previous one.
2061                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2062                         unsigned_announcement.timestamp += 1000 - 10;
2063                 }, node_1_privkey, &secp_ctx);
2064                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2065                         Ok(_) => panic!(),
2066                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2067                 };
2068         }
2069
2070         #[test]
2071         fn handling_channel_announcements() {
2072                 let secp_ctx = Secp256k1::new();
2073                 let logger = test_utils::TestLogger::new();
2074
2075                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2076                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2077
2078                 let good_script = get_channel_script(&secp_ctx);
2079                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2080
2081                 // Test if the UTXO lookups were not supported
2082                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2083                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2084                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2085                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2086                         Ok(res) => assert!(res),
2087                         _ => panic!()
2088                 };
2089
2090                 {
2091                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2092                                 None => panic!(),
2093                                 Some(_) => ()
2094                         };
2095                 }
2096
2097                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2098                 // drop new one on the floor, since we can't see any changes.
2099                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2100                         Ok(_) => panic!(),
2101                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2102                 };
2103
2104                 // Test if an associated transaction were not on-chain (or not confirmed).
2105                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2106                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2107                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2108                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2109
2110                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2111                         unsigned_announcement.short_channel_id += 1;
2112                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2113                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2114                         Ok(_) => panic!(),
2115                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2116                 };
2117
2118                 // Now test if the transaction is found in the UTXO set and the script is correct.
2119                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2120                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2121                         unsigned_announcement.short_channel_id += 2;
2122                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2123                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2124                         Ok(res) => assert!(res),
2125                         _ => panic!()
2126                 };
2127
2128                 {
2129                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2130                                 None => panic!(),
2131                                 Some(_) => ()
2132                         };
2133                 }
2134
2135                 // If we receive announcement for the same channel, once we've validated it against the
2136                 // chain, we simply ignore all new (duplicate) announcements.
2137                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2138                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2139                         Ok(_) => panic!(),
2140                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2141                 };
2142
2143                 // Don't relay valid channels with excess data
2144                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2145                         unsigned_announcement.short_channel_id += 3;
2146                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2147                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2148                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2149                         Ok(res) => assert!(!res),
2150                         _ => panic!()
2151                 };
2152
2153                 let mut invalid_sig_announcement = valid_announcement.clone();
2154                 invalid_sig_announcement.contents.excess_data = Vec::new();
2155                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2156                         Ok(_) => panic!(),
2157                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2158                 };
2159
2160                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2161                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2162                         Ok(_) => panic!(),
2163                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2164                 };
2165         }
2166
2167         #[test]
2168         fn handling_channel_update() {
2169                 let secp_ctx = Secp256k1::new();
2170                 let logger = test_utils::TestLogger::new();
2171                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2172                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2173                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2174                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2175
2176                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2177                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2178
2179                 let amount_sats = 1000_000;
2180                 let short_channel_id;
2181
2182                 {
2183                         // Announce a channel we will update
2184                         let good_script = get_channel_script(&secp_ctx);
2185                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2186
2187                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2188                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2189                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2190                                 Ok(_) => (),
2191                                 Err(_) => panic!()
2192                         };
2193
2194                 }
2195
2196                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2197                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2198                         Ok(res) => assert!(res),
2199                         _ => panic!(),
2200                 };
2201
2202                 {
2203                         match network_graph.read_only().channels().get(&short_channel_id) {
2204                                 None => panic!(),
2205                                 Some(channel_info) => {
2206                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2207                                         assert!(channel_info.two_to_one.is_none());
2208                                 }
2209                         };
2210                 }
2211
2212                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2213                         unsigned_channel_update.timestamp += 100;
2214                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2215                 }, node_1_privkey, &secp_ctx);
2216                 // Return false because contains excess data
2217                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2218                         Ok(res) => assert!(!res),
2219                         _ => panic!()
2220                 };
2221
2222                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2223                         unsigned_channel_update.timestamp += 110;
2224                         unsigned_channel_update.short_channel_id += 1;
2225                 }, node_1_privkey, &secp_ctx);
2226                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2227                         Ok(_) => panic!(),
2228                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2229                 };
2230
2231                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2232                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2233                         unsigned_channel_update.timestamp += 110;
2234                 }, node_1_privkey, &secp_ctx);
2235                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2236                         Ok(_) => panic!(),
2237                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2238                 };
2239
2240                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2241                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2242                         unsigned_channel_update.timestamp += 110;
2243                 }, node_1_privkey, &secp_ctx);
2244                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2245                         Ok(_) => panic!(),
2246                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2247                 };
2248
2249                 // Even though previous update was not relayed further, we still accepted it,
2250                 // so we now won't accept update before the previous one.
2251                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2252                         unsigned_channel_update.timestamp += 100;
2253                 }, node_1_privkey, &secp_ctx);
2254                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2255                         Ok(_) => panic!(),
2256                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2257                 };
2258
2259                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2260                         unsigned_channel_update.timestamp += 500;
2261                 }, node_1_privkey, &secp_ctx);
2262                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2263                 let fake_msghash = hash_to_message!(&zero_hash);
2264                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2265                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2266                         Ok(_) => panic!(),
2267                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2268                 };
2269         }
2270
2271         #[test]
2272         fn handling_network_update() {
2273                 let logger = test_utils::TestLogger::new();
2274                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2275                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2276                 let secp_ctx = Secp256k1::new();
2277
2278                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2279                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2280
2281                 {
2282                         // There is no nodes in the table at the beginning.
2283                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2284                 }
2285
2286                 let short_channel_id;
2287                 {
2288                         // Announce a channel we will update
2289                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2290                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2291                         let chain_source: Option<&test_utils::TestChainSource> = None;
2292                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2293                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2294
2295                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2296                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2297
2298                         network_graph.handle_event(&Event::PaymentPathFailed {
2299                                 payment_id: None,
2300                                 payment_hash: PaymentHash([0; 32]),
2301                                 payment_failed_permanently: false,
2302                                 all_paths_failed: true,
2303                                 path: vec![],
2304                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2305                                         msg: valid_channel_update,
2306                                 }),
2307                                 short_channel_id: None,
2308                                 retry: None,
2309                                 error_code: None,
2310                                 error_data: None,
2311                         });
2312
2313                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2314                 }
2315
2316                 // Non-permanent closing just disables a channel
2317                 {
2318                         match network_graph.read_only().channels().get(&short_channel_id) {
2319                                 None => panic!(),
2320                                 Some(channel_info) => {
2321                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2322                                 }
2323                         };
2324
2325                         network_graph.handle_event(&Event::PaymentPathFailed {
2326                                 payment_id: None,
2327                                 payment_hash: PaymentHash([0; 32]),
2328                                 payment_failed_permanently: false,
2329                                 all_paths_failed: true,
2330                                 path: vec![],
2331                                 network_update: Some(NetworkUpdate::ChannelFailure {
2332                                         short_channel_id,
2333                                         is_permanent: false,
2334                                 }),
2335                                 short_channel_id: None,
2336                                 retry: None,
2337                                 error_code: None,
2338                                 error_data: None,
2339                         });
2340
2341                         match network_graph.read_only().channels().get(&short_channel_id) {
2342                                 None => panic!(),
2343                                 Some(channel_info) => {
2344                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2345                                 }
2346                         };
2347                 }
2348
2349                 // Permanent closing deletes a channel
2350                 network_graph.handle_event(&Event::PaymentPathFailed {
2351                         payment_id: None,
2352                         payment_hash: PaymentHash([0; 32]),
2353                         payment_failed_permanently: false,
2354                         all_paths_failed: true,
2355                         path: vec![],
2356                         network_update: Some(NetworkUpdate::ChannelFailure {
2357                                 short_channel_id,
2358                                 is_permanent: true,
2359                         }),
2360                         short_channel_id: None,
2361                         retry: None,
2362                         error_code: None,
2363                         error_data: None,
2364                 });
2365
2366                 assert_eq!(network_graph.read_only().channels().len(), 0);
2367                 // Nodes are also deleted because there are no associated channels anymore
2368                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2369                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2370         }
2371
2372         #[test]
2373         fn test_channel_timeouts() {
2374                 // Test the removal of channels with `remove_stale_channels`.
2375                 let logger = test_utils::TestLogger::new();
2376                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2377                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2378                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2379                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2380                 let secp_ctx = Secp256k1::new();
2381
2382                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2383                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2384
2385                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2386                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2387                 let chain_source: Option<&test_utils::TestChainSource> = None;
2388                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2389                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2390
2391                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2392                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2393                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2394
2395                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2396                 assert_eq!(network_graph.read_only().channels().len(), 1);
2397                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2398
2399                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2400                 #[cfg(feature = "std")]
2401                 {
2402                         // In std mode, a further check is performed before fully removing the channel -
2403                         // the channel_announcement must have been received at least two weeks ago. We
2404                         // fudge that here by indicating the time has jumped two weeks. Note that the
2405                         // directional channel information will have been removed already..
2406                         assert_eq!(network_graph.read_only().channels().len(), 1);
2407                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2408                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2409
2410                         use std::time::{SystemTime, UNIX_EPOCH};
2411                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2412                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2413                 }
2414
2415                 assert_eq!(network_graph.read_only().channels().len(), 0);
2416                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2417         }
2418
2419         #[test]
2420         fn getting_next_channel_announcements() {
2421                 let network_graph = create_network_graph();
2422                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2423                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2424                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2425
2426                 // Channels were not announced yet.
2427                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2428                 assert!(channels_with_announcements.is_none());
2429
2430                 let short_channel_id;
2431                 {
2432                         // Announce a channel we will update
2433                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2434                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2435                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2436                                 Ok(_) => (),
2437                                 Err(_) => panic!()
2438                         };
2439                 }
2440
2441                 // Contains initial channel announcement now.
2442                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2443                 if let Some(channel_announcements) = channels_with_announcements {
2444                         let (_, ref update_1, ref update_2) = channel_announcements;
2445                         assert_eq!(update_1, &None);
2446                         assert_eq!(update_2, &None);
2447                 } else {
2448                         panic!();
2449                 }
2450
2451                 {
2452                         // Valid channel update
2453                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2454                                 unsigned_channel_update.timestamp = 101;
2455                         }, node_1_privkey, &secp_ctx);
2456                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2457                                 Ok(_) => (),
2458                                 Err(_) => panic!()
2459                         };
2460                 }
2461
2462                 // Now contains an initial announcement and an update.
2463                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2464                 if let Some(channel_announcements) = channels_with_announcements {
2465                         let (_, ref update_1, ref update_2) = channel_announcements;
2466                         assert_ne!(update_1, &None);
2467                         assert_eq!(update_2, &None);
2468                 } else {
2469                         panic!();
2470                 }
2471
2472                 {
2473                         // Channel update with excess data.
2474                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2475                                 unsigned_channel_update.timestamp = 102;
2476                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2477                         }, node_1_privkey, &secp_ctx);
2478                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2479                                 Ok(_) => (),
2480                                 Err(_) => panic!()
2481                         };
2482                 }
2483
2484                 // Test that announcements with excess data won't be returned
2485                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2486                 if let Some(channel_announcements) = channels_with_announcements {
2487                         let (_, ref update_1, ref update_2) = channel_announcements;
2488                         assert_eq!(update_1, &None);
2489                         assert_eq!(update_2, &None);
2490                 } else {
2491                         panic!();
2492                 }
2493
2494                 // Further starting point have no channels after it
2495                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2496                 assert!(channels_with_announcements.is_none());
2497         }
2498
2499         #[test]
2500         fn getting_next_node_announcements() {
2501                 let network_graph = create_network_graph();
2502                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2503                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2504                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2505                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2506
2507                 // No nodes yet.
2508                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2509                 assert!(next_announcements.is_none());
2510
2511                 {
2512                         // Announce a channel to add 2 nodes
2513                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2514                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2515                                 Ok(_) => (),
2516                                 Err(_) => panic!()
2517                         };
2518                 }
2519
2520                 // Nodes were never announced
2521                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2522                 assert!(next_announcements.is_none());
2523
2524                 {
2525                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2526                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2527                                 Ok(_) => (),
2528                                 Err(_) => panic!()
2529                         };
2530
2531                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2532                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2533                                 Ok(_) => (),
2534                                 Err(_) => panic!()
2535                         };
2536                 }
2537
2538                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2539                 assert!(next_announcements.is_some());
2540
2541                 // Skip the first node.
2542                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2543                 assert!(next_announcements.is_some());
2544
2545                 {
2546                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2547                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2548                                 unsigned_announcement.timestamp += 10;
2549                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2550                         }, node_2_privkey, &secp_ctx);
2551                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2552                                 Ok(res) => assert!(!res),
2553                                 Err(_) => panic!()
2554                         };
2555                 }
2556
2557                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2558                 assert!(next_announcements.is_none());
2559         }
2560
2561         #[test]
2562         fn network_graph_serialization() {
2563                 let network_graph = create_network_graph();
2564                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2565
2566                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2567                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2568
2569                 // Announce a channel to add a corresponding node.
2570                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2571                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2572                         Ok(res) => assert!(res),
2573                         _ => panic!()
2574                 };
2575
2576                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2577                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2578                         Ok(_) => (),
2579                         Err(_) => panic!()
2580                 };
2581
2582                 let mut w = test_utils::TestVecWriter(Vec::new());
2583                 assert!(!network_graph.read_only().nodes().is_empty());
2584                 assert!(!network_graph.read_only().channels().is_empty());
2585                 network_graph.write(&mut w).unwrap();
2586
2587                 let logger = Arc::new(test_utils::TestLogger::new());
2588                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2589         }
2590
2591         #[test]
2592         fn network_graph_tlv_serialization() {
2593                 let network_graph = create_network_graph();
2594                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2595
2596                 let mut w = test_utils::TestVecWriter(Vec::new());
2597                 network_graph.write(&mut w).unwrap();
2598
2599                 let logger = Arc::new(test_utils::TestLogger::new());
2600                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2601                 assert!(reassembled_network_graph == network_graph);
2602                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2603         }
2604
2605         #[test]
2606         #[cfg(feature = "std")]
2607         fn calling_sync_routing_table() {
2608                 use std::time::{SystemTime, UNIX_EPOCH};
2609                 use ln::msgs::Init;
2610
2611                 let network_graph = create_network_graph();
2612                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2613                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2614                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2615
2616                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2617
2618                 // It should ignore if gossip_queries feature is not enabled
2619                 {
2620                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2621                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2622                         let events = gossip_sync.get_and_clear_pending_msg_events();
2623                         assert_eq!(events.len(), 0);
2624                 }
2625
2626                 // It should send a gossip_timestamp_filter with the correct information
2627                 {
2628                         let mut features = InitFeatures::empty();
2629                         features.set_gossip_queries_optional();
2630                         let init_msg = Init { features, remote_network_address: None };
2631                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2632                         let events = gossip_sync.get_and_clear_pending_msg_events();
2633                         assert_eq!(events.len(), 1);
2634                         match &events[0] {
2635                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2636                                         assert_eq!(node_id, &node_id_1);
2637                                         assert_eq!(msg.chain_hash, chain_hash);
2638                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2639                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2640                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2641                                         assert_eq!(msg.timestamp_range, u32::max_value());
2642                                 },
2643                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2644                         };
2645                 }
2646         }
2647
2648         #[test]
2649         fn handling_query_channel_range() {
2650                 let network_graph = create_network_graph();
2651                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2652
2653                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2654                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2655                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2656                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2657
2658                 let mut scids: Vec<u64> = vec![
2659                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2660                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2661                 ];
2662
2663                 // used for testing multipart reply across blocks
2664                 for block in 100000..=108001 {
2665                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2666                 }
2667
2668                 // used for testing resumption on same block
2669                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2670
2671                 for scid in scids {
2672                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2673                                 unsigned_announcement.short_channel_id = scid;
2674                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2675                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2676                                 Ok(_) => (),
2677                                 _ => panic!()
2678                         };
2679                 }
2680
2681                 // Error when number_of_blocks=0
2682                 do_handling_query_channel_range(
2683                         &gossip_sync,
2684                         &node_id_2,
2685                         QueryChannelRange {
2686                                 chain_hash: chain_hash.clone(),
2687                                 first_blocknum: 0,
2688                                 number_of_blocks: 0,
2689                         },
2690                         false,
2691                         vec![ReplyChannelRange {
2692                                 chain_hash: chain_hash.clone(),
2693                                 first_blocknum: 0,
2694                                 number_of_blocks: 0,
2695                                 sync_complete: true,
2696                                 short_channel_ids: vec![]
2697                         }]
2698                 );
2699
2700                 // Error when wrong chain
2701                 do_handling_query_channel_range(
2702                         &gossip_sync,
2703                         &node_id_2,
2704                         QueryChannelRange {
2705                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2706                                 first_blocknum: 0,
2707                                 number_of_blocks: 0xffff_ffff,
2708                         },
2709                         false,
2710                         vec![ReplyChannelRange {
2711                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2712                                 first_blocknum: 0,
2713                                 number_of_blocks: 0xffff_ffff,
2714                                 sync_complete: true,
2715                                 short_channel_ids: vec![],
2716                         }]
2717                 );
2718
2719                 // Error when first_blocknum > 0xffffff
2720                 do_handling_query_channel_range(
2721                         &gossip_sync,
2722                         &node_id_2,
2723                         QueryChannelRange {
2724                                 chain_hash: chain_hash.clone(),
2725                                 first_blocknum: 0x01000000,
2726                                 number_of_blocks: 0xffff_ffff,
2727                         },
2728                         false,
2729                         vec![ReplyChannelRange {
2730                                 chain_hash: chain_hash.clone(),
2731                                 first_blocknum: 0x01000000,
2732                                 number_of_blocks: 0xffff_ffff,
2733                                 sync_complete: true,
2734                                 short_channel_ids: vec![]
2735                         }]
2736                 );
2737
2738                 // Empty reply when max valid SCID block num
2739                 do_handling_query_channel_range(
2740                         &gossip_sync,
2741                         &node_id_2,
2742                         QueryChannelRange {
2743                                 chain_hash: chain_hash.clone(),
2744                                 first_blocknum: 0xffffff,
2745                                 number_of_blocks: 1,
2746                         },
2747                         true,
2748                         vec![
2749                                 ReplyChannelRange {
2750                                         chain_hash: chain_hash.clone(),
2751                                         first_blocknum: 0xffffff,
2752                                         number_of_blocks: 1,
2753                                         sync_complete: true,
2754                                         short_channel_ids: vec![]
2755                                 },
2756                         ]
2757                 );
2758
2759                 // No results in valid query range
2760                 do_handling_query_channel_range(
2761                         &gossip_sync,
2762                         &node_id_2,
2763                         QueryChannelRange {
2764                                 chain_hash: chain_hash.clone(),
2765                                 first_blocknum: 1000,
2766                                 number_of_blocks: 1000,
2767                         },
2768                         true,
2769                         vec![
2770                                 ReplyChannelRange {
2771                                         chain_hash: chain_hash.clone(),
2772                                         first_blocknum: 1000,
2773                                         number_of_blocks: 1000,
2774                                         sync_complete: true,
2775                                         short_channel_ids: vec![],
2776                                 }
2777                         ]
2778                 );
2779
2780                 // Overflow first_blocknum + number_of_blocks
2781                 do_handling_query_channel_range(
2782                         &gossip_sync,
2783                         &node_id_2,
2784                         QueryChannelRange {
2785                                 chain_hash: chain_hash.clone(),
2786                                 first_blocknum: 0xfe0000,
2787                                 number_of_blocks: 0xffffffff,
2788                         },
2789                         true,
2790                         vec![
2791                                 ReplyChannelRange {
2792                                         chain_hash: chain_hash.clone(),
2793                                         first_blocknum: 0xfe0000,
2794                                         number_of_blocks: 0xffffffff - 0xfe0000,
2795                                         sync_complete: true,
2796                                         short_channel_ids: vec![
2797                                                 0xfffffe_ffffff_ffff, // max
2798                                         ]
2799                                 }
2800                         ]
2801                 );
2802
2803                 // Single block exactly full
2804                 do_handling_query_channel_range(
2805                         &gossip_sync,
2806                         &node_id_2,
2807                         QueryChannelRange {
2808                                 chain_hash: chain_hash.clone(),
2809                                 first_blocknum: 100000,
2810                                 number_of_blocks: 8000,
2811                         },
2812                         true,
2813                         vec![
2814                                 ReplyChannelRange {
2815                                         chain_hash: chain_hash.clone(),
2816                                         first_blocknum: 100000,
2817                                         number_of_blocks: 8000,
2818                                         sync_complete: true,
2819                                         short_channel_ids: (100000..=107999)
2820                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2821                                                 .collect(),
2822                                 },
2823                         ]
2824                 );
2825
2826                 // Multiple split on new block
2827                 do_handling_query_channel_range(
2828                         &gossip_sync,
2829                         &node_id_2,
2830                         QueryChannelRange {
2831                                 chain_hash: chain_hash.clone(),
2832                                 first_blocknum: 100000,
2833                                 number_of_blocks: 8001,
2834                         },
2835                         true,
2836                         vec![
2837                                 ReplyChannelRange {
2838                                         chain_hash: chain_hash.clone(),
2839                                         first_blocknum: 100000,
2840                                         number_of_blocks: 7999,
2841                                         sync_complete: false,
2842                                         short_channel_ids: (100000..=107999)
2843                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2844                                                 .collect(),
2845                                 },
2846                                 ReplyChannelRange {
2847                                         chain_hash: chain_hash.clone(),
2848                                         first_blocknum: 107999,
2849                                         number_of_blocks: 2,
2850                                         sync_complete: true,
2851                                         short_channel_ids: vec![
2852                                                 scid_from_parts(108000, 0, 0).unwrap(),
2853                                         ],
2854                                 }
2855                         ]
2856                 );
2857
2858                 // Multiple split on same block
2859                 do_handling_query_channel_range(
2860                         &gossip_sync,
2861                         &node_id_2,
2862                         QueryChannelRange {
2863                                 chain_hash: chain_hash.clone(),
2864                                 first_blocknum: 100002,
2865                                 number_of_blocks: 8000,
2866                         },
2867                         true,
2868                         vec![
2869                                 ReplyChannelRange {
2870                                         chain_hash: chain_hash.clone(),
2871                                         first_blocknum: 100002,
2872                                         number_of_blocks: 7999,
2873                                         sync_complete: false,
2874                                         short_channel_ids: (100002..=108001)
2875                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2876                                                 .collect(),
2877                                 },
2878                                 ReplyChannelRange {
2879                                         chain_hash: chain_hash.clone(),
2880                                         first_blocknum: 108001,
2881                                         number_of_blocks: 1,
2882                                         sync_complete: true,
2883                                         short_channel_ids: vec![
2884                                                 scid_from_parts(108001, 1, 0).unwrap(),
2885                                         ],
2886                                 }
2887                         ]
2888                 );
2889         }
2890
2891         fn do_handling_query_channel_range(
2892                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2893                 test_node_id: &PublicKey,
2894                 msg: QueryChannelRange,
2895                 expected_ok: bool,
2896                 expected_replies: Vec<ReplyChannelRange>
2897         ) {
2898                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2899                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2900                 let query_end_blocknum = msg.end_blocknum();
2901                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2902
2903                 if expected_ok {
2904                         assert!(result.is_ok());
2905                 } else {
2906                         assert!(result.is_err());
2907                 }
2908
2909                 let events = gossip_sync.get_and_clear_pending_msg_events();
2910                 assert_eq!(events.len(), expected_replies.len());
2911
2912                 for i in 0..events.len() {
2913                         let expected_reply = &expected_replies[i];
2914                         match &events[i] {
2915                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2916                                         assert_eq!(node_id, test_node_id);
2917                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2918                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2919                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2920                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2921                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2922
2923                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2924                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2925                                         assert!(msg.first_blocknum >= max_firstblocknum);
2926                                         max_firstblocknum = msg.first_blocknum;
2927                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2928
2929                                         // Check that the last block count is >= the query's end_blocknum
2930                                         if i == events.len() - 1 {
2931                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2932                                         }
2933                                 },
2934                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2935                         }
2936                 }
2937         }
2938
2939         #[test]
2940         fn handling_query_short_channel_ids() {
2941                 let network_graph = create_network_graph();
2942                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2943                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2944                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2945
2946                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2947
2948                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2949                         chain_hash,
2950                         short_channel_ids: vec![0x0003e8_000000_0000],
2951                 });
2952                 assert!(result.is_err());
2953         }
2954
2955         #[test]
2956         fn displays_node_alias() {
2957                 let format_str_alias = |alias: &str| {
2958                         let mut bytes = [0u8; 32];
2959                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2960                         format!("{}", NodeAlias(bytes))
2961                 };
2962
2963                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2964                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2965                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2966
2967                 let format_bytes_alias = |alias: &[u8]| {
2968                         let mut bytes = [0u8; 32];
2969                         bytes[..alias.len()].copy_from_slice(alias);
2970                         format!("{}", NodeAlias(bytes))
2971                 };
2972
2973                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2974                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2975                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2976         }
2977
2978         #[test]
2979         fn channel_info_is_readable() {
2980                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2981                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2982                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2983                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2984
2985                 // 1. Test encoding/decoding of ChannelUpdateInfo
2986                 let chan_update_info = ChannelUpdateInfo {
2987                         last_update: 23,
2988                         enabled: true,
2989                         cltv_expiry_delta: 42,
2990                         htlc_minimum_msat: 1234,
2991                         htlc_maximum_msat: 5678,
2992                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2993                         last_update_message: None,
2994                 };
2995
2996                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2997                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2998
2999                 // First make sure we can read ChannelUpdateInfos we just wrote
3000                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3001                 assert_eq!(chan_update_info, read_chan_update_info);
3002
3003                 // Check the serialization hasn't changed.
3004                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3005                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3006
3007                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3008                 // or the ChannelUpdate enclosed with `last_update_message`.
3009                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3010                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3011                 assert!(read_chan_update_info_res.is_err());
3012
3013                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3014                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3015                 assert!(read_chan_update_info_res.is_err());
3016
3017                 // 2. Test encoding/decoding of ChannelInfo
3018                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3019                 let chan_info_none_updates = ChannelInfo {
3020                         features: channelmanager::provided_channel_features(),
3021                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3022                         one_to_two: None,
3023                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3024                         two_to_one: None,
3025                         capacity_sats: None,
3026                         announcement_message: None,
3027                         announcement_received_time: 87654,
3028                 };
3029
3030                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3031                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3032
3033                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3034                 assert_eq!(chan_info_none_updates, read_chan_info);
3035
3036                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3037                 let chan_info_some_updates = ChannelInfo {
3038                         features: channelmanager::provided_channel_features(),
3039                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3040                         one_to_two: Some(chan_update_info.clone()),
3041                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3042                         two_to_one: Some(chan_update_info.clone()),
3043                         capacity_sats: None,
3044                         announcement_message: None,
3045                         announcement_received_time: 87654,
3046                 };
3047
3048                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3049                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3050
3051                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3052                 assert_eq!(chan_info_some_updates, read_chan_info);
3053
3054                 // Check the serialization hasn't changed.
3055                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3056                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3057
3058                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3059                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3060                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3061                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3062                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3063                 assert_eq!(read_chan_info.one_to_two, None);
3064                 assert_eq!(read_chan_info.two_to_one, None);
3065
3066                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3067                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3068                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3069                 assert_eq!(read_chan_info.one_to_two, None);
3070                 assert_eq!(read_chan_info.two_to_one, None);
3071         }
3072
3073         #[test]
3074         fn node_info_is_readable() {
3075                 use std::convert::TryFrom;
3076
3077                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3078                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3079                 let valid_node_ann_info = NodeAnnouncementInfo {
3080                         features: channelmanager::provided_node_features(),
3081                         last_update: 0,
3082                         rgb: [0u8; 3],
3083                         alias: NodeAlias([0u8; 32]),
3084                         addresses: vec![valid_netaddr],
3085                         announcement_message: None,
3086                 };
3087
3088                 let mut encoded_valid_node_ann_info = Vec::new();
3089                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3090                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3091                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3092
3093                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3094                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3095                 assert!(read_invalid_node_ann_info_res.is_err());
3096
3097                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3098                 let valid_node_info = NodeInfo {
3099                         channels: Vec::new(),
3100                         lowest_inbound_channel_fees: None,
3101                         announcement_info: Some(valid_node_ann_info),
3102                 };
3103
3104                 let mut encoded_valid_node_info = Vec::new();
3105                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3106                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3107                 assert_eq!(read_valid_node_info, valid_node_info);
3108
3109                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3110                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3111                 assert_eq!(read_invalid_node_info.announcement_info, None);
3112         }
3113 }
3114
3115 #[cfg(all(test, feature = "_bench_unstable"))]
3116 mod benches {
3117         use super::*;
3118
3119         use test::Bencher;
3120         use std::io::Read;
3121
3122         #[bench]
3123         fn read_network_graph(bench: &mut Bencher) {
3124                 let logger = ::util::test_utils::TestLogger::new();
3125                 let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
3126                 let mut v = Vec::new();
3127                 d.read_to_end(&mut v).unwrap();
3128                 bench.iter(|| {
3129                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3130                 });
3131         }
3132
3133         #[bench]
3134         fn write_network_graph(bench: &mut Bencher) {
3135                 let logger = ::util::test_utils::TestLogger::new();
3136                 let mut d = ::routing::router::bench_utils::get_route_file().unwrap();
3137                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3138                 bench.iter(|| {
3139                         let _ = net_graph.encode();
3140                 });
3141         }
3142 }