92a0e479a3de6a2d12266e8f67cd049243d6ca0c
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
126         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
127         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
128         genesis_hash: BlockHash,
129         logger: L,
130         // Lock order: channels -> nodes
131         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
132         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
133 }
134
135 /// A read-only view of [`NetworkGraph`].
136 pub struct ReadOnlyNetworkGraph<'a> {
137         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
138         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
139 }
140
141 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
142 /// return packet by a node along the route. See [BOLT #4] for details.
143 ///
144 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
145 #[derive(Clone, Debug, PartialEq)]
146 pub enum NetworkUpdate {
147         /// An error indicating a `channel_update` messages should be applied via
148         /// [`NetworkGraph::update_channel`].
149         ChannelUpdateMessage {
150                 /// The update to apply via [`NetworkGraph::update_channel`].
151                 msg: ChannelUpdate,
152         },
153         /// An error indicating that a channel failed to route a payment, which should be applied via
154         /// [`NetworkGraph::channel_failed`].
155         ChannelFailure {
156                 /// The short channel id of the closed channel.
157                 short_channel_id: u64,
158                 /// Whether the channel should be permanently removed or temporarily disabled until a new
159                 /// `channel_update` message is received.
160                 is_permanent: bool,
161         },
162         /// An error indicating that a node failed to route a payment, which should be applied via
163         /// [`NetworkGraph::node_failed`].
164         NodeFailure {
165                 /// The node id of the failed node.
166                 node_id: PublicKey,
167                 /// Whether the node should be permanently removed from consideration or can be restored
168                 /// when a new `channel_update` message is received.
169                 is_permanent: bool,
170         }
171 }
172
173 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
174         (0, ChannelUpdateMessage) => {
175                 (0, msg, required),
176         },
177         (2, ChannelFailure) => {
178                 (0, short_channel_id, required),
179                 (2, is_permanent, required),
180         },
181         (4, NodeFailure) => {
182                 (0, node_id, required),
183                 (2, is_permanent, required),
184         },
185 );
186
187 /// Receives and validates network updates from peers,
188 /// stores authentic and relevant data as a network graph.
189 /// This network graph is then used for routing payments.
190 /// Provides interface to help with initial routing sync by
191 /// serving historical announcements.
192 ///
193 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
194 /// [`NetworkGraph`].
195 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
196 where C::Target: chain::Access, L::Target: Logger
197 {
198         network_graph: G,
199         chain_access: Option<C>,
200         full_syncs_requested: AtomicUsize,
201         pending_events: Mutex<Vec<MessageSendEvent>>,
202         logger: L,
203 }
204
205 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
206 where C::Target: chain::Access, L::Target: Logger
207 {
208         /// Creates a new tracker of the actual state of the network of channels and nodes,
209         /// assuming an existing Network Graph.
210         /// Chain monitor is used to make sure announced channels exist on-chain,
211         /// channel data is correct, and that the announcement is signed with
212         /// channel owners' keys.
213         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
214                 P2PGossipSync {
215                         network_graph,
216                         full_syncs_requested: AtomicUsize::new(0),
217                         chain_access,
218                         pending_events: Mutex::new(vec![]),
219                         logger,
220                 }
221         }
222
223         /// Adds a provider used to check new announcements. Does not affect
224         /// existing announcements unless they are updated.
225         /// Add, update or remove the provider would replace the current one.
226         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
227                 self.chain_access = chain_access;
228         }
229
230         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
231         /// [`P2PGossipSync::new`].
232         ///
233         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
234         pub fn network_graph(&self) -> &G {
235                 &self.network_graph
236         }
237
238         /// Returns true when a full routing table sync should be performed with a peer.
239         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
240                 //TODO: Determine whether to request a full sync based on the network map.
241                 const FULL_SYNCS_TO_REQUEST: usize = 5;
242                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
243                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
244                         true
245                 } else {
246                         false
247                 }
248         }
249 }
250
251 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
252         fn handle_event(&self, event: &Event) {
253                 if let Event::PaymentPathFailed { network_update, .. } = event {
254                         if let Some(network_update) = network_update {
255                                 match *network_update {
256                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
257                                                 let short_channel_id = msg.contents.short_channel_id;
258                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
259                                                 let status = if is_enabled { "enabled" } else { "disabled" };
260                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
261                                                 let _ = self.update_channel(msg);
262                                         },
263                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
264                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
265                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
266                                                 self.channel_failed(short_channel_id, is_permanent);
267                                         },
268                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
269                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
270                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
271                                                 self.node_failed(node_id, is_permanent);
272                                         },
273                                 }
274                         }
275                 }
276         }
277 }
278
279 macro_rules! secp_verify_sig {
280         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
281                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
282                         Ok(_) => {},
283                         Err(_) => {
284                                 return Err(LightningError {
285                                         err: format!("Invalid signature on {} message", $msg_type),
286                                         action: ErrorAction::SendWarningMessage {
287                                                 msg: msgs::WarningMessage {
288                                                         channel_id: [0; 32],
289                                                         data: format!("Invalid signature on {} message", $msg_type),
290                                                 },
291                                                 log_level: Level::Trace,
292                                         },
293                                 });
294                         },
295                 }
296         };
297 }
298
299 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
300 where C::Target: chain::Access, L::Target: Logger
301 {
302         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
303                 self.network_graph.update_node_from_announcement(msg)?;
304                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
305                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
306                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
307         }
308
309         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
310                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
311                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
312                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
313         }
314
315         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
316                 self.network_graph.update_channel(msg)?;
317                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
318         }
319
320         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
321                 let channels = self.network_graph.channels.read().unwrap();
322                 for (_, ref chan) in channels.range(starting_point..) {
323                         if chan.announcement_message.is_some() {
324                                 let chan_announcement = chan.announcement_message.clone().unwrap();
325                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
326                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
327                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
328                                         one_to_two_announcement = one_to_two.last_update_message.clone();
329                                 }
330                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
331                                         two_to_one_announcement = two_to_one.last_update_message.clone();
332                                 }
333                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
334                         } else {
335                                 // TODO: We may end up sending un-announced channel_updates if we are sending
336                                 // initial sync data while receiving announce/updates for this channel.
337                         }
338                 }
339                 None
340         }
341
342         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
343                 let nodes = self.network_graph.nodes.read().unwrap();
344                 let iter = if let Some(pubkey) = starting_point {
345                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
346                         } else {
347                                 nodes.range(..)
348                         };
349                 for (_, ref node) in iter {
350                         if let Some(node_info) = node.announcement_info.as_ref() {
351                                 if let Some(msg) = node_info.announcement_message.clone() {
352                                         return Some(msg);
353                                 }
354                         }
355                 }
356                 None
357         }
358
359         /// Initiates a stateless sync of routing gossip information with a peer
360         /// using gossip_queries. The default strategy used by this implementation
361         /// is to sync the full block range with several peers.
362         ///
363         /// We should expect one or more reply_channel_range messages in response
364         /// to our query_channel_range. Each reply will enqueue a query_scid message
365         /// to request gossip messages for each channel. The sync is considered complete
366         /// when the final reply_scids_end message is received, though we are not
367         /// tracking this directly.
368         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
369                 // We will only perform a sync with peers that support gossip_queries.
370                 if !init_msg.features.supports_gossip_queries() {
371                         return ();
372                 }
373
374                 // The lightning network's gossip sync system is completely broken in numerous ways.
375                 //
376                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
377                 // to do a full sync from the first few peers we connect to, and then receive gossip
378                 // updates from all our peers normally.
379                 //
380                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
381                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
382                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
383                 // seen.
384                 //
385                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
386                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
387                 // channel data which you are missing. Except there was no way at all to identify which
388                 // `channel_update`s you were missing, so you still had to request everything, just in a
389                 // very complicated way with some queries instead of just getting the dump.
390                 //
391                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
392                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
393                 // relying on it useless.
394                 //
395                 // After gossip queries were introduced, support for receiving a full gossip table dump on
396                 // connection was removed from several nodes, making it impossible to get a full sync
397                 // without using the "gossip queries" messages.
398                 //
399                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
400                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
401                 // message, as the name implies, tells the peer to not forward any gossip messages with a
402                 // timestamp older than a given value (not the time the peer received the filter, but the
403                 // timestamp in the update message, which is often hours behind when the peer received the
404                 // message).
405                 //
406                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
407                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
408                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
409                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
410                 // will simply not forward any new updates they see to you which were generated some time
411                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
412                 // ago), you will always get the full routing graph from all your peers.
413                 //
414                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
415                 // propagated some time after it was generated, and, worse, often disable gossiping with
416                 // several peers after their first connection. The second behavior can cause gossip to not
417                 // propagate fully if there are cuts in the gossiping subgraph.
418                 //
419                 // In an attempt to cut a middle ground between always fetching the full graph from all of
420                 // our peers and never receiving gossip from peers at all, we send all of our peers a
421                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
422                 //
423                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
424                 let should_request_full_sync = self.should_request_full_sync(&their_node_id);
425                 #[allow(unused_mut, unused_assignments)]
426                 let mut gossip_start_time = 0;
427                 #[cfg(feature = "std")]
428                 {
429                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
430                         if should_request_full_sync {
431                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
432                         } else {
433                                 gossip_start_time -= 60 * 60; // an hour ago
434                         }
435                 }
436
437                 let mut pending_events = self.pending_events.lock().unwrap();
438                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
439                         node_id: their_node_id.clone(),
440                         msg: GossipTimestampFilter {
441                                 chain_hash: self.network_graph.genesis_hash,
442                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
443                                 timestamp_range: u32::max_value(),
444                         },
445                 });
446         }
447
448         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
449                 // We don't make queries, so should never receive replies. If, in the future, the set
450                 // reconciliation extensions to gossip queries become broadly supported, we should revert
451                 // this code to its state pre-0.0.106.
452                 Ok(())
453         }
454
455         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
456                 // We don't make queries, so should never receive replies. If, in the future, the set
457                 // reconciliation extensions to gossip queries become broadly supported, we should revert
458                 // this code to its state pre-0.0.106.
459                 Ok(())
460         }
461
462         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
463         /// are in the specified block range. Due to message size limits, large range
464         /// queries may result in several reply messages. This implementation enqueues
465         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
466         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
467         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
468         /// memory constrained systems.
469         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
470                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
471
472                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
473
474                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
475                 // If so, we manually cap the ending block to avoid this overflow.
476                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
477
478                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
479                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
480                         let mut pending_events = self.pending_events.lock().unwrap();
481                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
482                                 node_id: their_node_id.clone(),
483                                 msg: ReplyChannelRange {
484                                         chain_hash: msg.chain_hash.clone(),
485                                         first_blocknum: msg.first_blocknum,
486                                         number_of_blocks: msg.number_of_blocks,
487                                         sync_complete: true,
488                                         short_channel_ids: vec![],
489                                 }
490                         });
491                         return Err(LightningError {
492                                 err: String::from("query_channel_range could not be processed"),
493                                 action: ErrorAction::IgnoreError,
494                         });
495                 }
496
497                 // Creates channel batches. We are not checking if the channel is routable
498                 // (has at least one update). A peer may still want to know the channel
499                 // exists even if its not yet routable.
500                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
501                 let channels = self.network_graph.channels.read().unwrap();
502                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
503                         if let Some(chan_announcement) = &chan.announcement_message {
504                                 // Construct a new batch if last one is full
505                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
506                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
507                                 }
508
509                                 let batch = batches.last_mut().unwrap();
510                                 batch.push(chan_announcement.contents.short_channel_id);
511                         }
512                 }
513                 drop(channels);
514
515                 let mut pending_events = self.pending_events.lock().unwrap();
516                 let batch_count = batches.len();
517                 let mut prev_batch_endblock = msg.first_blocknum;
518                 for (batch_index, batch) in batches.into_iter().enumerate() {
519                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
520                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
521                         //
522                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
523                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
524                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
525                         // significant diversion from the requirements set by the spec, and, in case of blocks
526                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
527                         // and *not* derive the first_blocknum from the actual first block of the reply.
528                         let first_blocknum = prev_batch_endblock;
529
530                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
531                         // fit in. Though there is no requirement that we use exactly the number of blocks its
532                         // contents are from, except for the bogus requirements c-lightning enforces, above.
533                         //
534                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
535                         // >= the query's end block. Thus, for the last reply, we calculate the difference
536                         // between the query's end block and the start of the reply.
537                         //
538                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
539                         // first_blocknum will be either msg.first_blocknum or a higher block height.
540                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
541                                 (true, msg.end_blocknum() - first_blocknum)
542                         }
543                         // Prior replies should use the number of blocks that fit into the reply. Overflow
544                         // safe since first_blocknum is always <= last SCID's block.
545                         else {
546                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
547                         };
548
549                         prev_batch_endblock = first_blocknum + number_of_blocks;
550
551                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
552                                 node_id: their_node_id.clone(),
553                                 msg: ReplyChannelRange {
554                                         chain_hash: msg.chain_hash.clone(),
555                                         first_blocknum,
556                                         number_of_blocks,
557                                         sync_complete,
558                                         short_channel_ids: batch,
559                                 }
560                         });
561                 }
562
563                 Ok(())
564         }
565
566         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
567                 // TODO
568                 Err(LightningError {
569                         err: String::from("Not implemented"),
570                         action: ErrorAction::IgnoreError,
571                 })
572         }
573
574         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
575                 let mut features = InitFeatures::empty();
576                 features.set_gossip_queries_optional();
577                 features
578         }
579 }
580
581 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
582 where
583         C::Target: chain::Access,
584         L::Target: Logger,
585 {
586         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
587                 let mut ret = Vec::new();
588                 let mut pending_events = self.pending_events.lock().unwrap();
589                 core::mem::swap(&mut ret, &mut pending_events);
590                 ret
591         }
592 }
593
594 #[derive(Clone, Debug, PartialEq)]
595 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
596 pub struct ChannelUpdateInfo {
597         /// When the last update to the channel direction was issued.
598         /// Value is opaque, as set in the announcement.
599         pub last_update: u32,
600         /// Whether the channel can be currently used for payments (in this one direction).
601         pub enabled: bool,
602         /// The difference in CLTV values that you must have when routing through this channel.
603         pub cltv_expiry_delta: u16,
604         /// The minimum value, which must be relayed to the next hop via the channel
605         pub htlc_minimum_msat: u64,
606         /// The maximum value which may be relayed to the next hop via the channel.
607         pub htlc_maximum_msat: u64,
608         /// Fees charged when the channel is used for routing
609         pub fees: RoutingFees,
610         /// Most recent update for the channel received from the network
611         /// Mostly redundant with the data we store in fields explicitly.
612         /// Everything else is useful only for sending out for initial routing sync.
613         /// Not stored if contains excess data to prevent DoS.
614         pub last_update_message: Option<ChannelUpdate>,
615 }
616
617 impl fmt::Display for ChannelUpdateInfo {
618         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
619                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
620                 Ok(())
621         }
622 }
623
624 impl Writeable for ChannelUpdateInfo {
625         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
626                 write_tlv_fields!(writer, {
627                         (0, self.last_update, required),
628                         (2, self.enabled, required),
629                         (4, self.cltv_expiry_delta, required),
630                         (6, self.htlc_minimum_msat, required),
631                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
632                         // compatibility with LDK versions prior to v0.0.110.
633                         (8, Some(self.htlc_maximum_msat), required),
634                         (10, self.fees, required),
635                         (12, self.last_update_message, required),
636                 });
637                 Ok(())
638         }
639 }
640
641 impl Readable for ChannelUpdateInfo {
642         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
643                 init_tlv_field_var!(last_update, required);
644                 init_tlv_field_var!(enabled, required);
645                 init_tlv_field_var!(cltv_expiry_delta, required);
646                 init_tlv_field_var!(htlc_minimum_msat, required);
647                 init_tlv_field_var!(htlc_maximum_msat, option);
648                 init_tlv_field_var!(fees, required);
649                 init_tlv_field_var!(last_update_message, required);
650
651                 read_tlv_fields!(reader, {
652                         (0, last_update, required),
653                         (2, enabled, required),
654                         (4, cltv_expiry_delta, required),
655                         (6, htlc_minimum_msat, required),
656                         (8, htlc_maximum_msat, required),
657                         (10, fees, required),
658                         (12, last_update_message, required)
659                 });
660
661                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
662                         Ok(ChannelUpdateInfo {
663                                 last_update: init_tlv_based_struct_field!(last_update, required),
664                                 enabled: init_tlv_based_struct_field!(enabled, required),
665                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
666                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
667                                 htlc_maximum_msat,
668                                 fees: init_tlv_based_struct_field!(fees, required),
669                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
670                         })
671                 } else {
672                         Err(DecodeError::InvalidValue)
673                 }
674         }
675 }
676
677 #[derive(Clone, Debug, PartialEq)]
678 /// Details about a channel (both directions).
679 /// Received within a channel announcement.
680 pub struct ChannelInfo {
681         /// Protocol features of a channel communicated during its announcement
682         pub features: ChannelFeatures,
683         /// Source node of the first direction of a channel
684         pub node_one: NodeId,
685         /// Details about the first direction of a channel
686         pub one_to_two: Option<ChannelUpdateInfo>,
687         /// Source node of the second direction of a channel
688         pub node_two: NodeId,
689         /// Details about the second direction of a channel
690         pub two_to_one: Option<ChannelUpdateInfo>,
691         /// The channel capacity as seen on-chain, if chain lookup is available.
692         pub capacity_sats: Option<u64>,
693         /// An initial announcement of the channel
694         /// Mostly redundant with the data we store in fields explicitly.
695         /// Everything else is useful only for sending out for initial routing sync.
696         /// Not stored if contains excess data to prevent DoS.
697         pub announcement_message: Option<ChannelAnnouncement>,
698         /// The timestamp when we received the announcement, if we are running with feature = "std"
699         /// (which we can probably assume we are - no-std environments probably won't have a full
700         /// network graph in memory!).
701         announcement_received_time: u64,
702 }
703
704 impl ChannelInfo {
705         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
706         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
707         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
708                 let (direction, source) = {
709                         if target == &self.node_one {
710                                 (self.two_to_one.as_ref(), &self.node_two)
711                         } else if target == &self.node_two {
712                                 (self.one_to_two.as_ref(), &self.node_one)
713                         } else {
714                                 return None;
715                         }
716                 };
717                 Some((DirectedChannelInfo::new(self, direction), source))
718         }
719
720         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
721         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
722         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
723                 let (direction, target) = {
724                         if source == &self.node_one {
725                                 (self.one_to_two.as_ref(), &self.node_two)
726                         } else if source == &self.node_two {
727                                 (self.two_to_one.as_ref(), &self.node_one)
728                         } else {
729                                 return None;
730                         }
731                 };
732                 Some((DirectedChannelInfo::new(self, direction), target))
733         }
734
735         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
736         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
737                 let direction = channel_flags & 1u8;
738                 if direction == 0 {
739                         self.one_to_two.as_ref()
740                 } else {
741                         self.two_to_one.as_ref()
742                 }
743         }
744 }
745
746 impl fmt::Display for ChannelInfo {
747         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
748                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
749                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
750                 Ok(())
751         }
752 }
753
754 impl Writeable for ChannelInfo {
755         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
756                 write_tlv_fields!(writer, {
757                         (0, self.features, required),
758                         (1, self.announcement_received_time, (default_value, 0)),
759                         (2, self.node_one, required),
760                         (4, self.one_to_two, required),
761                         (6, self.node_two, required),
762                         (8, self.two_to_one, required),
763                         (10, self.capacity_sats, required),
764                         (12, self.announcement_message, required),
765                 });
766                 Ok(())
767         }
768 }
769
770 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
771 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
772 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
773 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
774 // channel updates via the gossip network.
775 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
776
777 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
778         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
779                 match ::util::ser::Readable::read(reader) {
780                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
781                         Err(DecodeError::ShortRead) => Ok(None),
782                         Err(DecodeError::InvalidValue) => Ok(None),
783                         Err(err) => Err(err),
784                 }
785         }
786 }
787
788 impl Readable for ChannelInfo {
789         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
790                 init_tlv_field_var!(features, required);
791                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
792                 init_tlv_field_var!(node_one, required);
793                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
794                 init_tlv_field_var!(node_two, required);
795                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
796                 init_tlv_field_var!(capacity_sats, required);
797                 init_tlv_field_var!(announcement_message, required);
798                 read_tlv_fields!(reader, {
799                         (0, features, required),
800                         (1, announcement_received_time, (default_value, 0)),
801                         (2, node_one, required),
802                         (4, one_to_two_wrap, ignorable),
803                         (6, node_two, required),
804                         (8, two_to_one_wrap, ignorable),
805                         (10, capacity_sats, required),
806                         (12, announcement_message, required),
807                 });
808
809                 Ok(ChannelInfo {
810                         features: init_tlv_based_struct_field!(features, required),
811                         node_one: init_tlv_based_struct_field!(node_one, required),
812                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
813                         node_two: init_tlv_based_struct_field!(node_two, required),
814                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
815                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
816                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
817                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
818                 })
819         }
820 }
821
822 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
823 /// source node to a target node.
824 #[derive(Clone)]
825 pub struct DirectedChannelInfo<'a> {
826         channel: &'a ChannelInfo,
827         direction: Option<&'a ChannelUpdateInfo>,
828         htlc_maximum_msat: u64,
829         effective_capacity: EffectiveCapacity,
830 }
831
832 impl<'a> DirectedChannelInfo<'a> {
833         #[inline]
834         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
835                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
836                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
837
838                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
839                         (Some(amount_msat), Some(capacity_msat)) => {
840                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
841                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
842                         },
843                         (Some(amount_msat), None) => {
844                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
845                         },
846                         (None, Some(capacity_msat)) => {
847                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
848                         },
849                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
850                 };
851
852                 Self {
853                         channel, direction, htlc_maximum_msat, effective_capacity
854                 }
855         }
856
857         /// Returns information for the channel.
858         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
859
860         /// Returns information for the direction.
861         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
862
863         /// Returns the maximum HTLC amount allowed over the channel in the direction.
864         pub fn htlc_maximum_msat(&self) -> u64 {
865                 self.htlc_maximum_msat
866         }
867
868         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
869         ///
870         /// This is either the total capacity from the funding transaction, if known, or the
871         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
872         /// otherwise.
873         pub fn effective_capacity(&self) -> EffectiveCapacity {
874                 self.effective_capacity
875         }
876
877         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
878         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
879                 match self.direction {
880                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
881                         None => None,
882                 }
883         }
884 }
885
886 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
887         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
888                 f.debug_struct("DirectedChannelInfo")
889                         .field("channel", &self.channel)
890                         .finish()
891         }
892 }
893
894 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
895 #[derive(Clone)]
896 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
897         inner: DirectedChannelInfo<'a>,
898 }
899
900 impl<'a> DirectedChannelInfoWithUpdate<'a> {
901         /// Returns information for the channel.
902         #[inline]
903         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
904
905         /// Returns information for the direction.
906         #[inline]
907         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
908
909         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
910         #[inline]
911         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
912 }
913
914 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
915         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
916                 self.inner.fmt(f)
917         }
918 }
919
920 /// The effective capacity of a channel for routing purposes.
921 ///
922 /// While this may be smaller than the actual channel capacity, amounts greater than
923 /// [`Self::as_msat`] should not be routed through the channel.
924 #[derive(Clone, Copy, Debug)]
925 pub enum EffectiveCapacity {
926         /// The available liquidity in the channel known from being a channel counterparty, and thus a
927         /// direct hop.
928         ExactLiquidity {
929                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
930                 /// millisatoshi.
931                 liquidity_msat: u64,
932         },
933         /// The maximum HTLC amount in one direction as advertised on the gossip network.
934         MaximumHTLC {
935                 /// The maximum HTLC amount denominated in millisatoshi.
936                 amount_msat: u64,
937         },
938         /// The total capacity of the channel as determined by the funding transaction.
939         Total {
940                 /// The funding amount denominated in millisatoshi.
941                 capacity_msat: u64,
942                 /// The maximum HTLC amount denominated in millisatoshi.
943                 htlc_maximum_msat: Option<u64>
944         },
945         /// A capacity sufficient to route any payment, typically used for private channels provided by
946         /// an invoice.
947         Infinite,
948         /// A capacity that is unknown possibly because either the chain state is unavailable to know
949         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
950         Unknown,
951 }
952
953 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
954 /// use when making routing decisions.
955 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
956
957 impl EffectiveCapacity {
958         /// Returns the effective capacity denominated in millisatoshi.
959         pub fn as_msat(&self) -> u64 {
960                 match self {
961                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
962                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
963                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
964                         EffectiveCapacity::Infinite => u64::max_value(),
965                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
966                 }
967         }
968 }
969
970 /// Fees for routing via a given channel or a node
971 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
972 pub struct RoutingFees {
973         /// Flat routing fee in satoshis
974         pub base_msat: u32,
975         /// Liquidity-based routing fee in millionths of a routed amount.
976         /// In other words, 10000 is 1%.
977         pub proportional_millionths: u32,
978 }
979
980 impl_writeable_tlv_based!(RoutingFees, {
981         (0, base_msat, required),
982         (2, proportional_millionths, required)
983 });
984
985 #[derive(Clone, Debug, PartialEq)]
986 /// Information received in the latest node_announcement from this node.
987 pub struct NodeAnnouncementInfo {
988         /// Protocol features the node announced support for
989         pub features: NodeFeatures,
990         /// When the last known update to the node state was issued.
991         /// Value is opaque, as set in the announcement.
992         pub last_update: u32,
993         /// Color assigned to the node
994         pub rgb: [u8; 3],
995         /// Moniker assigned to the node.
996         /// May be invalid or malicious (eg control chars),
997         /// should not be exposed to the user.
998         pub alias: NodeAlias,
999         /// Internet-level addresses via which one can connect to the node
1000         pub addresses: Vec<NetAddress>,
1001         /// An initial announcement of the node
1002         /// Mostly redundant with the data we store in fields explicitly.
1003         /// Everything else is useful only for sending out for initial routing sync.
1004         /// Not stored if contains excess data to prevent DoS.
1005         pub announcement_message: Option<NodeAnnouncement>
1006 }
1007
1008 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1009         (0, features, required),
1010         (2, last_update, required),
1011         (4, rgb, required),
1012         (6, alias, required),
1013         (8, announcement_message, option),
1014         (10, addresses, vec_type),
1015 });
1016
1017 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1018 ///
1019 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1020 /// attacks. Care must be taken when processing.
1021 #[derive(Clone, Debug, PartialEq)]
1022 pub struct NodeAlias(pub [u8; 32]);
1023
1024 impl fmt::Display for NodeAlias {
1025         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1026                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1027                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1028                 let bytes = self.0.split_at(first_null).0;
1029                 match core::str::from_utf8(bytes) {
1030                         Ok(alias) => {
1031                                 for c in alias.chars() {
1032                                         let mut bytes = [0u8; 4];
1033                                         let c = if !c.is_control() { c } else { control_symbol };
1034                                         f.write_str(c.encode_utf8(&mut bytes))?;
1035                                 }
1036                         },
1037                         Err(_) => {
1038                                 for c in bytes.iter().map(|b| *b as char) {
1039                                         // Display printable ASCII characters
1040                                         let mut bytes = [0u8; 4];
1041                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1042                                         f.write_str(c.encode_utf8(&mut bytes))?;
1043                                 }
1044                         },
1045                 };
1046                 Ok(())
1047         }
1048 }
1049
1050 impl Writeable for NodeAlias {
1051         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1052                 self.0.write(w)
1053         }
1054 }
1055
1056 impl Readable for NodeAlias {
1057         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1058                 Ok(NodeAlias(Readable::read(r)?))
1059         }
1060 }
1061
1062 #[derive(Clone, Debug, PartialEq)]
1063 /// Details about a node in the network, known from the network announcement.
1064 pub struct NodeInfo {
1065         /// All valid channels a node has announced
1066         pub channels: Vec<u64>,
1067         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1068         /// The two fields (flat and proportional fee) are independent,
1069         /// meaning they don't have to refer to the same channel.
1070         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1071         /// More information about a node from node_announcement.
1072         /// Optional because we store a Node entry after learning about it from
1073         /// a channel announcement, but before receiving a node announcement.
1074         pub announcement_info: Option<NodeAnnouncementInfo>
1075 }
1076
1077 impl fmt::Display for NodeInfo {
1078         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1079                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1080                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1081                 Ok(())
1082         }
1083 }
1084
1085 impl Writeable for NodeInfo {
1086         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1087                 write_tlv_fields!(writer, {
1088                         (0, self.lowest_inbound_channel_fees, option),
1089                         (2, self.announcement_info, option),
1090                         (4, self.channels, vec_type),
1091                 });
1092                 Ok(())
1093         }
1094 }
1095
1096 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1097 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1098 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1099 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1100 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1101
1102 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1103         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1104                 match ::util::ser::Readable::read(reader) {
1105                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1106                         Err(_) => {
1107                                 copy(reader, &mut sink()).unwrap();
1108                                 return Ok(None)
1109                         },
1110                 };
1111         }
1112 }
1113
1114 impl Readable for NodeInfo {
1115         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1116                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1117                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1118                 init_tlv_field_var!(channels, vec_type);
1119
1120                 read_tlv_fields!(reader, {
1121                         (0, lowest_inbound_channel_fees, option),
1122                         (2, announcement_info_wrap, ignorable),
1123                         (4, channels, vec_type),
1124                 });
1125
1126                 Ok(NodeInfo {
1127                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1128                         announcement_info: announcement_info_wrap.map(|w| w.0),
1129                         channels: init_tlv_based_struct_field!(channels, vec_type),
1130                 })
1131         }
1132 }
1133
1134 const SERIALIZATION_VERSION: u8 = 1;
1135 const MIN_SERIALIZATION_VERSION: u8 = 1;
1136
1137 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1138         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1139                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1140
1141                 self.genesis_hash.write(writer)?;
1142                 let channels = self.channels.read().unwrap();
1143                 (channels.len() as u64).write(writer)?;
1144                 for (ref chan_id, ref chan_info) in channels.iter() {
1145                         (*chan_id).write(writer)?;
1146                         chan_info.write(writer)?;
1147                 }
1148                 let nodes = self.nodes.read().unwrap();
1149                 (nodes.len() as u64).write(writer)?;
1150                 for (ref node_id, ref node_info) in nodes.iter() {
1151                         node_id.write(writer)?;
1152                         node_info.write(writer)?;
1153                 }
1154
1155                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1156                 write_tlv_fields!(writer, {
1157                         (1, last_rapid_gossip_sync_timestamp, option),
1158                 });
1159                 Ok(())
1160         }
1161 }
1162
1163 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1164         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1165                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1166
1167                 let genesis_hash: BlockHash = Readable::read(reader)?;
1168                 let channels_count: u64 = Readable::read(reader)?;
1169                 let mut channels = BTreeMap::new();
1170                 for _ in 0..channels_count {
1171                         let chan_id: u64 = Readable::read(reader)?;
1172                         let chan_info = Readable::read(reader)?;
1173                         channels.insert(chan_id, chan_info);
1174                 }
1175                 let nodes_count: u64 = Readable::read(reader)?;
1176                 let mut nodes = BTreeMap::new();
1177                 for _ in 0..nodes_count {
1178                         let node_id = Readable::read(reader)?;
1179                         let node_info = Readable::read(reader)?;
1180                         nodes.insert(node_id, node_info);
1181                 }
1182
1183                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1184                 read_tlv_fields!(reader, {
1185                         (1, last_rapid_gossip_sync_timestamp, option),
1186                 });
1187
1188                 Ok(NetworkGraph {
1189                         secp_ctx: Secp256k1::verification_only(),
1190                         genesis_hash,
1191                         logger,
1192                         channels: RwLock::new(channels),
1193                         nodes: RwLock::new(nodes),
1194                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1195                 })
1196         }
1197 }
1198
1199 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1200         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1201                 writeln!(f, "Network map\n[Channels]")?;
1202                 for (key, val) in self.channels.read().unwrap().iter() {
1203                         writeln!(f, " {}: {}", key, val)?;
1204                 }
1205                 writeln!(f, "[Nodes]")?;
1206                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1207                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1208                 }
1209                 Ok(())
1210         }
1211 }
1212
1213 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1214         fn eq(&self, other: &Self) -> bool {
1215                 self.genesis_hash == other.genesis_hash &&
1216                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1217                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1218         }
1219 }
1220
1221 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1222         /// Creates a new, empty, network graph.
1223         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1224                 Self {
1225                         secp_ctx: Secp256k1::verification_only(),
1226                         genesis_hash,
1227                         logger,
1228                         channels: RwLock::new(BTreeMap::new()),
1229                         nodes: RwLock::new(BTreeMap::new()),
1230                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1231                 }
1232         }
1233
1234         /// Returns a read-only view of the network graph.
1235         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1236                 let channels = self.channels.read().unwrap();
1237                 let nodes = self.nodes.read().unwrap();
1238                 ReadOnlyNetworkGraph {
1239                         channels,
1240                         nodes,
1241                 }
1242         }
1243
1244         /// The unix timestamp provided by the most recent rapid gossip sync.
1245         /// It will be set by the rapid sync process after every sync completion.
1246         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1247                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1248         }
1249
1250         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1251         /// This should be done automatically by the rapid sync process after every sync completion.
1252         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1253                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1254         }
1255
1256         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1257         /// purposes.
1258         #[cfg(test)]
1259         pub fn clear_nodes_announcement_info(&self) {
1260                 for node in self.nodes.write().unwrap().iter_mut() {
1261                         node.1.announcement_info = None;
1262                 }
1263         }
1264
1265         /// For an already known node (from channel announcements), update its stored properties from a
1266         /// given node announcement.
1267         ///
1268         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1269         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1270         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1271         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1272                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1273                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1274                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1275         }
1276
1277         /// For an already known node (from channel announcements), update its stored properties from a
1278         /// given node announcement without verifying the associated signatures. Because we aren't
1279         /// given the associated signatures here we cannot relay the node announcement to any of our
1280         /// peers.
1281         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1282                 self.update_node_from_announcement_intern(msg, None)
1283         }
1284
1285         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1286                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1287                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1288                         Some(node) => {
1289                                 if let Some(node_info) = node.announcement_info.as_ref() {
1290                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1291                                         // updates to ensure you always have the latest one, only vaguely suggesting
1292                                         // that it be at least the current time.
1293                                         if node_info.last_update  > msg.timestamp {
1294                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1295                                         } else if node_info.last_update  == msg.timestamp {
1296                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1297                                         }
1298                                 }
1299
1300                                 let should_relay =
1301                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1302                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1303                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1304                                 node.announcement_info = Some(NodeAnnouncementInfo {
1305                                         features: msg.features.clone(),
1306                                         last_update: msg.timestamp,
1307                                         rgb: msg.rgb,
1308                                         alias: NodeAlias(msg.alias),
1309                                         addresses: msg.addresses.clone(),
1310                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1311                                 });
1312
1313                                 Ok(())
1314                         }
1315                 }
1316         }
1317
1318         /// Store or update channel info from a channel announcement.
1319         ///
1320         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1321         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1322         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1323         ///
1324         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1325         /// the corresponding UTXO exists on chain and is correctly-formatted.
1326         pub fn update_channel_from_announcement<C: Deref>(
1327                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1328         ) -> Result<(), LightningError>
1329         where
1330                 C::Target: chain::Access,
1331         {
1332                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1333                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1334                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1335                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1336                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1337                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1338         }
1339
1340         /// Store or update channel info from a channel announcement without verifying the associated
1341         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1342         /// channel announcement to any of our peers.
1343         ///
1344         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1345         /// the corresponding UTXO exists on chain and is correctly-formatted.
1346         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1347                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1348         ) -> Result<(), LightningError>
1349         where
1350                 C::Target: chain::Access,
1351         {
1352                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1353         }
1354
1355         /// Update channel from partial announcement data received via rapid gossip sync
1356         ///
1357         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1358         /// rapid gossip sync server)
1359         ///
1360         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1361         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1362                 if node_id_1 == node_id_2 {
1363                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1364                 };
1365
1366                 let node_1 = NodeId::from_pubkey(&node_id_1);
1367                 let node_2 = NodeId::from_pubkey(&node_id_2);
1368                 let channel_info = ChannelInfo {
1369                         features,
1370                         node_one: node_1.clone(),
1371                         one_to_two: None,
1372                         node_two: node_2.clone(),
1373                         two_to_one: None,
1374                         capacity_sats: None,
1375                         announcement_message: None,
1376                         announcement_received_time: timestamp,
1377                 };
1378
1379                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1380         }
1381
1382         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1383                 let mut channels = self.channels.write().unwrap();
1384                 let mut nodes = self.nodes.write().unwrap();
1385
1386                 let node_id_a = channel_info.node_one.clone();
1387                 let node_id_b = channel_info.node_two.clone();
1388
1389                 match channels.entry(short_channel_id) {
1390                         BtreeEntry::Occupied(mut entry) => {
1391                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1392                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1393                                 //exactly how...
1394                                 if utxo_value.is_some() {
1395                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1396                                         // only sometimes returns results. In any case remove the previous entry. Note
1397                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1398                                         // do that because
1399                                         // a) we don't *require* a UTXO provider that always returns results.
1400                                         // b) we don't track UTXOs of channels we know about and remove them if they
1401                                         //    get reorg'd out.
1402                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1403                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1404                                         *entry.get_mut() = channel_info;
1405                                 } else {
1406                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1407                                 }
1408                         },
1409                         BtreeEntry::Vacant(entry) => {
1410                                 entry.insert(channel_info);
1411                         }
1412                 };
1413
1414                 for current_node_id in [node_id_a, node_id_b].iter() {
1415                         match nodes.entry(current_node_id.clone()) {
1416                                 BtreeEntry::Occupied(node_entry) => {
1417                                         node_entry.into_mut().channels.push(short_channel_id);
1418                                 },
1419                                 BtreeEntry::Vacant(node_entry) => {
1420                                         node_entry.insert(NodeInfo {
1421                                                 channels: vec!(short_channel_id),
1422                                                 lowest_inbound_channel_fees: None,
1423                                                 announcement_info: None,
1424                                         });
1425                                 }
1426                         };
1427                 };
1428
1429                 Ok(())
1430         }
1431
1432         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1433                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1434         ) -> Result<(), LightningError>
1435         where
1436                 C::Target: chain::Access,
1437         {
1438                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1439                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1440                 }
1441
1442                 {
1443                         let channels = self.channels.read().unwrap();
1444
1445                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1446                                 if chan.capacity_sats.is_some() {
1447                                         // If we'd previously looked up the channel on-chain and checked the script
1448                                         // against what appears on-chain, ignore the duplicate announcement.
1449                                         //
1450                                         // Because a reorg could replace one channel with another at the same SCID, if
1451                                         // the channel appears to be different, we re-validate. This doesn't expose us
1452                                         // to any more DoS risk than not, as a peer can always flood us with
1453                                         // randomly-generated SCID values anyway.
1454                                         //
1455                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1456                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1457                                         // if the peers on the channel changed anyway.
1458                                         if NodeId::from_pubkey(&msg.node_id_1) == chan.node_one && NodeId::from_pubkey(&msg.node_id_2) == chan.node_two {
1459                                                 return Err(LightningError {
1460                                                         err: "Already have chain-validated channel".to_owned(),
1461                                                         action: ErrorAction::IgnoreDuplicateGossip
1462                                                 });
1463                                         }
1464                                 } else if chain_access.is_none() {
1465                                         // Similarly, if we can't check the chain right now anyway, ignore the
1466                                         // duplicate announcement without bothering to take the channels write lock.
1467                                         return Err(LightningError {
1468                                                 err: "Already have non-chain-validated channel".to_owned(),
1469                                                 action: ErrorAction::IgnoreDuplicateGossip
1470                                         });
1471                                 }
1472                         }
1473                 }
1474
1475                 let utxo_value = match &chain_access {
1476                         &None => {
1477                                 // Tentatively accept, potentially exposing us to DoS attacks
1478                                 None
1479                         },
1480                         &Some(ref chain_access) => {
1481                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1482                                         Ok(TxOut { value, script_pubkey }) => {
1483                                                 let expected_script =
1484                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1485                                                 if script_pubkey != expected_script {
1486                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1487                                                 }
1488                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1489                                                 //to the new HTLC max field in channel_update
1490                                                 Some(value)
1491                                         },
1492                                         Err(chain::AccessError::UnknownChain) => {
1493                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1494                                         },
1495                                         Err(chain::AccessError::UnknownTx) => {
1496                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1497                                         },
1498                                 }
1499                         },
1500                 };
1501
1502                 #[allow(unused_mut, unused_assignments)]
1503                 let mut announcement_received_time = 0;
1504                 #[cfg(feature = "std")]
1505                 {
1506                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1507                 }
1508
1509                 let chan_info = ChannelInfo {
1510                         features: msg.features.clone(),
1511                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1512                         one_to_two: None,
1513                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1514                         two_to_one: None,
1515                         capacity_sats: utxo_value,
1516                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1517                                 { full_msg.cloned() } else { None },
1518                         announcement_received_time,
1519                 };
1520
1521                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1522         }
1523
1524         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1525         /// If permanent, removes a channel from the local storage.
1526         /// May cause the removal of nodes too, if this was their last channel.
1527         /// If not permanent, makes channels unavailable for routing.
1528         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1529                 let mut channels = self.channels.write().unwrap();
1530                 if is_permanent {
1531                         if let Some(chan) = channels.remove(&short_channel_id) {
1532                                 let mut nodes = self.nodes.write().unwrap();
1533                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1534                         }
1535                 } else {
1536                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1537                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1538                                         one_to_two.enabled = false;
1539                                 }
1540                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1541                                         two_to_one.enabled = false;
1542                                 }
1543                         }
1544                 }
1545         }
1546
1547         /// Marks a node in the graph as failed.
1548         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1549                 if is_permanent {
1550                         // TODO: Wholly remove the node
1551                 } else {
1552                         // TODO: downgrade the node
1553                 }
1554         }
1555
1556         #[cfg(feature = "std")]
1557         /// Removes information about channels that we haven't heard any updates about in some time.
1558         /// This can be used regularly to prune the network graph of channels that likely no longer
1559         /// exist.
1560         ///
1561         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1562         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1563         /// pruning occur for updates which are at least two weeks old, which we implement here.
1564         ///
1565         /// Note that for users of the `lightning-background-processor` crate this method may be
1566         /// automatically called regularly for you.
1567         ///
1568         /// This method is only available with the `std` feature. See
1569         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1570         pub fn remove_stale_channels(&self) {
1571                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1572                 self.remove_stale_channels_with_time(time);
1573         }
1574
1575         /// Removes information about channels that we haven't heard any updates about in some time.
1576         /// This can be used regularly to prune the network graph of channels that likely no longer
1577         /// exist.
1578         ///
1579         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1580         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1581         /// pruning occur for updates which are at least two weeks old, which we implement here.
1582         ///
1583         /// This function takes the current unix time as an argument. For users with the `std` feature
1584         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1585         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1586                 let mut channels = self.channels.write().unwrap();
1587                 // Time out if we haven't received an update in at least 14 days.
1588                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1589                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1590                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1591                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1592                 // time.
1593                 let mut scids_to_remove = Vec::new();
1594                 for (scid, info) in channels.iter_mut() {
1595                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1596                                 info.one_to_two = None;
1597                         }
1598                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1599                                 info.two_to_one = None;
1600                         }
1601                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1602                                 // We check the announcement_received_time here to ensure we don't drop
1603                                 // announcements that we just received and are just waiting for our peer to send a
1604                                 // channel_update for.
1605                                 if info.announcement_received_time < min_time_unix as u64 {
1606                                         scids_to_remove.push(*scid);
1607                                 }
1608                         }
1609                 }
1610                 if !scids_to_remove.is_empty() {
1611                         let mut nodes = self.nodes.write().unwrap();
1612                         for scid in scids_to_remove {
1613                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1614                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1615                         }
1616                 }
1617         }
1618
1619         /// For an already known (from announcement) channel, update info about one of the directions
1620         /// of the channel.
1621         ///
1622         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1623         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1624         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1625         ///
1626         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1627         /// materially in the future will be rejected.
1628         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1629                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1630         }
1631
1632         /// For an already known (from announcement) channel, update info about one of the directions
1633         /// of the channel without verifying the associated signatures. Because we aren't given the
1634         /// associated signatures here we cannot relay the channel update to any of our peers.
1635         ///
1636         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1637         /// materially in the future will be rejected.
1638         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1639                 self.update_channel_intern(msg, None, None)
1640         }
1641
1642         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1643                 let dest_node_id;
1644                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1645                 let chan_was_enabled;
1646
1647                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1648                 {
1649                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1650                         // disable this check during tests!
1651                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1652                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1653                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1654                         }
1655                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1656                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1657                         }
1658                 }
1659
1660                 let mut channels = self.channels.write().unwrap();
1661                 match channels.get_mut(&msg.short_channel_id) {
1662                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1663                         Some(channel) => {
1664                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1665                                         return Err(LightningError{err:
1666                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1667                                                 action: ErrorAction::IgnoreError});
1668                                 }
1669
1670                                 if let Some(capacity_sats) = channel.capacity_sats {
1671                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1672                                         // Don't query UTXO set here to reduce DoS risks.
1673                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1674                                                 return Err(LightningError{err:
1675                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1676                                                         action: ErrorAction::IgnoreError});
1677                                         }
1678                                 }
1679                                 macro_rules! check_update_latest {
1680                                         ($target: expr) => {
1681                                                 if let Some(existing_chan_info) = $target.as_ref() {
1682                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1683                                                         // order updates to ensure you always have the latest one, only
1684                                                         // suggesting  that it be at least the current time. For
1685                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1686                                                         // pruning based on the timestamp field being more than two weeks old,
1687                                                         // but only in the non-normative section.
1688                                                         if existing_chan_info.last_update > msg.timestamp {
1689                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1690                                                         } else if existing_chan_info.last_update == msg.timestamp {
1691                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1692                                                         }
1693                                                         chan_was_enabled = existing_chan_info.enabled;
1694                                                 } else {
1695                                                         chan_was_enabled = false;
1696                                                 }
1697                                         }
1698                                 }
1699
1700                                 macro_rules! get_new_channel_info {
1701                                         () => { {
1702                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1703                                                         { full_msg.cloned() } else { None };
1704
1705                                                 let updated_channel_update_info = ChannelUpdateInfo {
1706                                                         enabled: chan_enabled,
1707                                                         last_update: msg.timestamp,
1708                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1709                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1710                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1711                                                         fees: RoutingFees {
1712                                                                 base_msat: msg.fee_base_msat,
1713                                                                 proportional_millionths: msg.fee_proportional_millionths,
1714                                                         },
1715                                                         last_update_message
1716                                                 };
1717                                                 Some(updated_channel_update_info)
1718                                         } }
1719                                 }
1720
1721                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1722                                 if msg.flags & 1 == 1 {
1723                                         dest_node_id = channel.node_one.clone();
1724                                         check_update_latest!(channel.two_to_one);
1725                                         if let Some(sig) = sig {
1726                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1727                                                         err: "Couldn't parse source node pubkey".to_owned(),
1728                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1729                                                 })?, "channel_update");
1730                                         }
1731                                         channel.two_to_one = get_new_channel_info!();
1732                                 } else {
1733                                         dest_node_id = channel.node_two.clone();
1734                                         check_update_latest!(channel.one_to_two);
1735                                         if let Some(sig) = sig {
1736                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1737                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1738                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1739                                                 })?, "channel_update");
1740                                         }
1741                                         channel.one_to_two = get_new_channel_info!();
1742                                 }
1743                         }
1744                 }
1745
1746                 let mut nodes = self.nodes.write().unwrap();
1747                 if chan_enabled {
1748                         let node = nodes.get_mut(&dest_node_id).unwrap();
1749                         let mut base_msat = msg.fee_base_msat;
1750                         let mut proportional_millionths = msg.fee_proportional_millionths;
1751                         if let Some(fees) = node.lowest_inbound_channel_fees {
1752                                 base_msat = cmp::min(base_msat, fees.base_msat);
1753                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1754                         }
1755                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1756                                 base_msat,
1757                                 proportional_millionths
1758                         });
1759                 } else if chan_was_enabled {
1760                         let node = nodes.get_mut(&dest_node_id).unwrap();
1761                         let mut lowest_inbound_channel_fees = None;
1762
1763                         for chan_id in node.channels.iter() {
1764                                 let chan = channels.get(chan_id).unwrap();
1765                                 let chan_info_opt;
1766                                 if chan.node_one == dest_node_id {
1767                                         chan_info_opt = chan.two_to_one.as_ref();
1768                                 } else {
1769                                         chan_info_opt = chan.one_to_two.as_ref();
1770                                 }
1771                                 if let Some(chan_info) = chan_info_opt {
1772                                         if chan_info.enabled {
1773                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1774                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1775                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1776                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1777                                         }
1778                                 }
1779                         }
1780
1781                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1782                 }
1783
1784                 Ok(())
1785         }
1786
1787         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1788                 macro_rules! remove_from_node {
1789                         ($node_id: expr) => {
1790                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1791                                         entry.get_mut().channels.retain(|chan_id| {
1792                                                 short_channel_id != *chan_id
1793                                         });
1794                                         if entry.get().channels.is_empty() {
1795                                                 entry.remove_entry();
1796                                         }
1797                                 } else {
1798                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1799                                 }
1800                         }
1801                 }
1802
1803                 remove_from_node!(chan.node_one);
1804                 remove_from_node!(chan.node_two);
1805         }
1806 }
1807
1808 impl ReadOnlyNetworkGraph<'_> {
1809         /// Returns all known valid channels' short ids along with announced channel info.
1810         ///
1811         /// (C-not exported) because we have no mapping for `BTreeMap`s
1812         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1813                 &*self.channels
1814         }
1815
1816         /// Returns information on a channel with the given id.
1817         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1818                 self.channels.get(&short_channel_id)
1819         }
1820
1821         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1822         /// Returns the list of channels in the graph
1823         pub fn list_channels(&self) -> Vec<u64> {
1824                 self.channels.keys().map(|c| *c).collect()
1825         }
1826
1827         /// Returns all known nodes' public keys along with announced node info.
1828         ///
1829         /// (C-not exported) because we have no mapping for `BTreeMap`s
1830         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1831                 &*self.nodes
1832         }
1833
1834         /// Returns information on a node with the given id.
1835         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1836                 self.nodes.get(node_id)
1837         }
1838
1839         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1840         /// Returns the list of nodes in the graph
1841         pub fn list_nodes(&self) -> Vec<NodeId> {
1842                 self.nodes.keys().map(|n| *n).collect()
1843         }
1844
1845         /// Get network addresses by node id.
1846         /// Returns None if the requested node is completely unknown,
1847         /// or if node announcement for the node was never received.
1848         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1849                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1850                         if let Some(node_info) = node.announcement_info.as_ref() {
1851                                 return Some(node_info.addresses.clone())
1852                         }
1853                 }
1854                 None
1855         }
1856 }
1857
1858 #[cfg(test)]
1859 mod tests {
1860         use chain;
1861         use ln::chan_utils::make_funding_redeemscript;
1862         use ln::PaymentHash;
1863         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1864         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1865         use ln::msgs::{Init, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1866                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1867                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1868         use util::test_utils;
1869         use util::ser::{ReadableArgs, Writeable};
1870         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1871         use util::scid_utils::scid_from_parts;
1872
1873         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1874
1875         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1876         use bitcoin::hashes::Hash;
1877         use bitcoin::network::constants::Network;
1878         use bitcoin::blockdata::constants::genesis_block;
1879         use bitcoin::blockdata::script::Script;
1880         use bitcoin::blockdata::transaction::TxOut;
1881
1882         use hex;
1883
1884         use bitcoin::secp256k1::{PublicKey, SecretKey};
1885         use bitcoin::secp256k1::{All, Secp256k1};
1886
1887         use io;
1888         use bitcoin::secp256k1;
1889         use prelude::*;
1890         use sync::Arc;
1891
1892         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1893                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1894                 let logger = Arc::new(test_utils::TestLogger::new());
1895                 NetworkGraph::new(genesis_hash, logger)
1896         }
1897
1898         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1899                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1900                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1901         ) {
1902                 let secp_ctx = Secp256k1::new();
1903                 let logger = Arc::new(test_utils::TestLogger::new());
1904                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1905                 (secp_ctx, gossip_sync)
1906         }
1907
1908         #[test]
1909         fn request_full_sync_finite_times() {
1910                 let network_graph = create_network_graph();
1911                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1912                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1913
1914                 assert!(gossip_sync.should_request_full_sync(&node_id));
1915                 assert!(gossip_sync.should_request_full_sync(&node_id));
1916                 assert!(gossip_sync.should_request_full_sync(&node_id));
1917                 assert!(gossip_sync.should_request_full_sync(&node_id));
1918                 assert!(gossip_sync.should_request_full_sync(&node_id));
1919                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1920         }
1921
1922         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1923                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1924                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1925                         features: NodeFeatures::known(),
1926                         timestamp: 100,
1927                         node_id: node_id,
1928                         rgb: [0; 3],
1929                         alias: [0; 32],
1930                         addresses: Vec::new(),
1931                         excess_address_data: Vec::new(),
1932                         excess_data: Vec::new(),
1933                 };
1934                 f(&mut unsigned_announcement);
1935                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1936                 NodeAnnouncement {
1937                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1938                         contents: unsigned_announcement
1939                 }
1940         }
1941
1942         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1943                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1944                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1945                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1946                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1947
1948                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1949                         features: ChannelFeatures::known(),
1950                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1951                         short_channel_id: 0,
1952                         node_id_1,
1953                         node_id_2,
1954                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1955                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1956                         excess_data: Vec::new(),
1957                 };
1958                 f(&mut unsigned_announcement);
1959                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1960                 ChannelAnnouncement {
1961                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1962                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1963                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1964                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1965                         contents: unsigned_announcement,
1966                 }
1967         }
1968
1969         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1970                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1971                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1972                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1973                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
1974         }
1975
1976         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1977                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1978                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1979                         short_channel_id: 0,
1980                         timestamp: 100,
1981                         flags: 0,
1982                         cltv_expiry_delta: 144,
1983                         htlc_minimum_msat: 1_000_000,
1984                         htlc_maximum_msat: 1_000_000,
1985                         fee_base_msat: 10_000,
1986                         fee_proportional_millionths: 20,
1987                         excess_data: Vec::new()
1988                 };
1989                 f(&mut unsigned_channel_update);
1990                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1991                 ChannelUpdate {
1992                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1993                         contents: unsigned_channel_update
1994                 }
1995         }
1996
1997         #[test]
1998         fn handling_node_announcements() {
1999                 let network_graph = create_network_graph();
2000                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2001
2002                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2003                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2004                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2005
2006                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2007                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2008                         Ok(_) => panic!(),
2009                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2010                 };
2011
2012                 {
2013                         // Announce a channel to add a corresponding node.
2014                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2015                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2016                                 Ok(res) => assert!(res),
2017                                 _ => panic!()
2018                         };
2019                 }
2020
2021                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2022                         Ok(res) => assert!(res),
2023                         Err(_) => panic!()
2024                 };
2025
2026                 let fake_msghash = hash_to_message!(&zero_hash);
2027                 match gossip_sync.handle_node_announcement(
2028                         &NodeAnnouncement {
2029                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2030                                 contents: valid_announcement.contents.clone()
2031                 }) {
2032                         Ok(_) => panic!(),
2033                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2034                 };
2035
2036                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2037                         unsigned_announcement.timestamp += 1000;
2038                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2039                 }, node_1_privkey, &secp_ctx);
2040                 // Return false because contains excess data.
2041                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2042                         Ok(res) => assert!(!res),
2043                         Err(_) => panic!()
2044                 };
2045
2046                 // Even though previous announcement was not relayed further, we still accepted it,
2047                 // so we now won't accept announcements before the previous one.
2048                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2049                         unsigned_announcement.timestamp += 1000 - 10;
2050                 }, node_1_privkey, &secp_ctx);
2051                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2052                         Ok(_) => panic!(),
2053                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2054                 };
2055         }
2056
2057         #[test]
2058         fn handling_channel_announcements() {
2059                 let secp_ctx = Secp256k1::new();
2060                 let logger = test_utils::TestLogger::new();
2061
2062                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2063                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2064
2065                 let good_script = get_channel_script(&secp_ctx);
2066                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2067
2068                 // Test if the UTXO lookups were not supported
2069                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2070                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2071                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2072                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2073                         Ok(res) => assert!(res),
2074                         _ => panic!()
2075                 };
2076
2077                 {
2078                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2079                                 None => panic!(),
2080                                 Some(_) => ()
2081                         };
2082                 }
2083
2084                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2085                 // drop new one on the floor, since we can't see any changes.
2086                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2087                         Ok(_) => panic!(),
2088                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2089                 };
2090
2091                 // Test if an associated transaction were not on-chain (or not confirmed).
2092                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2093                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2094                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2095                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2096
2097                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2098                         unsigned_announcement.short_channel_id += 1;
2099                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2100                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2101                         Ok(_) => panic!(),
2102                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2103                 };
2104
2105                 // Now test if the transaction is found in the UTXO set and the script is correct.
2106                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2107                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2108                         unsigned_announcement.short_channel_id += 2;
2109                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2110                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2111                         Ok(res) => assert!(res),
2112                         _ => panic!()
2113                 };
2114
2115                 {
2116                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2117                                 None => panic!(),
2118                                 Some(_) => ()
2119                         };
2120                 }
2121
2122                 // If we receive announcement for the same channel, once we've validated it against the
2123                 // chain, we simply ignore all new (duplicate) announcements.
2124                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2125                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2126                         Ok(_) => panic!(),
2127                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2128                 };
2129
2130                 // Don't relay valid channels with excess data
2131                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2132                         unsigned_announcement.short_channel_id += 3;
2133                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2134                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2135                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2136                         Ok(res) => assert!(!res),
2137                         _ => panic!()
2138                 };
2139
2140                 let mut invalid_sig_announcement = valid_announcement.clone();
2141                 invalid_sig_announcement.contents.excess_data = Vec::new();
2142                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2143                         Ok(_) => panic!(),
2144                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2145                 };
2146
2147                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2148                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2149                         Ok(_) => panic!(),
2150                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2151                 };
2152         }
2153
2154         #[test]
2155         fn handling_channel_update() {
2156                 let secp_ctx = Secp256k1::new();
2157                 let logger = test_utils::TestLogger::new();
2158                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2159                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2160                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2161                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2162
2163                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2164                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2165
2166                 let amount_sats = 1000_000;
2167                 let short_channel_id;
2168
2169                 {
2170                         // Announce a channel we will update
2171                         let good_script = get_channel_script(&secp_ctx);
2172                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2173
2174                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2175                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2176                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2177                                 Ok(_) => (),
2178                                 Err(_) => panic!()
2179                         };
2180
2181                 }
2182
2183                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2184                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2185                         Ok(res) => assert!(res),
2186                         _ => panic!(),
2187                 };
2188
2189                 {
2190                         match network_graph.read_only().channels().get(&short_channel_id) {
2191                                 None => panic!(),
2192                                 Some(channel_info) => {
2193                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2194                                         assert!(channel_info.two_to_one.is_none());
2195                                 }
2196                         };
2197                 }
2198
2199                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2200                         unsigned_channel_update.timestamp += 100;
2201                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2202                 }, node_1_privkey, &secp_ctx);
2203                 // Return false because contains excess data
2204                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2205                         Ok(res) => assert!(!res),
2206                         _ => panic!()
2207                 };
2208
2209                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2210                         unsigned_channel_update.timestamp += 110;
2211                         unsigned_channel_update.short_channel_id += 1;
2212                 }, node_1_privkey, &secp_ctx);
2213                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2214                         Ok(_) => panic!(),
2215                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2216                 };
2217
2218                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2219                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2220                         unsigned_channel_update.timestamp += 110;
2221                 }, node_1_privkey, &secp_ctx);
2222                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2223                         Ok(_) => panic!(),
2224                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2225                 };
2226
2227                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2228                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2229                         unsigned_channel_update.timestamp += 110;
2230                 }, node_1_privkey, &secp_ctx);
2231                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2232                         Ok(_) => panic!(),
2233                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2234                 };
2235
2236                 // Even though previous update was not relayed further, we still accepted it,
2237                 // so we now won't accept update before the previous one.
2238                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2239                         unsigned_channel_update.timestamp += 100;
2240                 }, node_1_privkey, &secp_ctx);
2241                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2242                         Ok(_) => panic!(),
2243                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2244                 };
2245
2246                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2247                         unsigned_channel_update.timestamp += 500;
2248                 }, node_1_privkey, &secp_ctx);
2249                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2250                 let fake_msghash = hash_to_message!(&zero_hash);
2251                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2252                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2253                         Ok(_) => panic!(),
2254                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2255                 };
2256         }
2257
2258         #[test]
2259         fn handling_network_update() {
2260                 let logger = test_utils::TestLogger::new();
2261                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2262                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2263                 let secp_ctx = Secp256k1::new();
2264
2265                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2266                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2267
2268                 {
2269                         // There is no nodes in the table at the beginning.
2270                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2271                 }
2272
2273                 let short_channel_id;
2274                 {
2275                         // Announce a channel we will update
2276                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2277                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2278                         let chain_source: Option<&test_utils::TestChainSource> = None;
2279                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2280                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2281
2282                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2283                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2284
2285                         network_graph.handle_event(&Event::PaymentPathFailed {
2286                                 payment_id: None,
2287                                 payment_hash: PaymentHash([0; 32]),
2288                                 payment_failed_permanently: false,
2289                                 all_paths_failed: true,
2290                                 path: vec![],
2291                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2292                                         msg: valid_channel_update,
2293                                 }),
2294                                 short_channel_id: None,
2295                                 retry: None,
2296                                 error_code: None,
2297                                 error_data: None,
2298                         });
2299
2300                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2301                 }
2302
2303                 // Non-permanent closing just disables a channel
2304                 {
2305                         match network_graph.read_only().channels().get(&short_channel_id) {
2306                                 None => panic!(),
2307                                 Some(channel_info) => {
2308                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2309                                 }
2310                         };
2311
2312                         network_graph.handle_event(&Event::PaymentPathFailed {
2313                                 payment_id: None,
2314                                 payment_hash: PaymentHash([0; 32]),
2315                                 payment_failed_permanently: false,
2316                                 all_paths_failed: true,
2317                                 path: vec![],
2318                                 network_update: Some(NetworkUpdate::ChannelFailure {
2319                                         short_channel_id,
2320                                         is_permanent: false,
2321                                 }),
2322                                 short_channel_id: None,
2323                                 retry: None,
2324                                 error_code: None,
2325                                 error_data: None,
2326                         });
2327
2328                         match network_graph.read_only().channels().get(&short_channel_id) {
2329                                 None => panic!(),
2330                                 Some(channel_info) => {
2331                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2332                                 }
2333                         };
2334                 }
2335
2336                 // Permanent closing deletes a channel
2337                 network_graph.handle_event(&Event::PaymentPathFailed {
2338                         payment_id: None,
2339                         payment_hash: PaymentHash([0; 32]),
2340                         payment_failed_permanently: false,
2341                         all_paths_failed: true,
2342                         path: vec![],
2343                         network_update: Some(NetworkUpdate::ChannelFailure {
2344                                 short_channel_id,
2345                                 is_permanent: true,
2346                         }),
2347                         short_channel_id: None,
2348                         retry: None,
2349                         error_code: None,
2350                         error_data: None,
2351                 });
2352
2353                 assert_eq!(network_graph.read_only().channels().len(), 0);
2354                 // Nodes are also deleted because there are no associated channels anymore
2355                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2356                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2357         }
2358
2359         #[test]
2360         fn test_channel_timeouts() {
2361                 // Test the removal of channels with `remove_stale_channels`.
2362                 let logger = test_utils::TestLogger::new();
2363                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2364                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2365                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2366                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2367                 let secp_ctx = Secp256k1::new();
2368
2369                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2370                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2371
2372                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2373                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2374                 let chain_source: Option<&test_utils::TestChainSource> = None;
2375                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2376                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2377
2378                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2379                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2380                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2381
2382                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2383                 assert_eq!(network_graph.read_only().channels().len(), 1);
2384                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2385
2386                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2387                 #[cfg(feature = "std")]
2388                 {
2389                         // In std mode, a further check is performed before fully removing the channel -
2390                         // the channel_announcement must have been received at least two weeks ago. We
2391                         // fudge that here by indicating the time has jumped two weeks. Note that the
2392                         // directional channel information will have been removed already..
2393                         assert_eq!(network_graph.read_only().channels().len(), 1);
2394                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2395                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2396
2397                         use std::time::{SystemTime, UNIX_EPOCH};
2398                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2399                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2400                 }
2401
2402                 assert_eq!(network_graph.read_only().channels().len(), 0);
2403                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2404         }
2405
2406         #[test]
2407         fn getting_next_channel_announcements() {
2408                 let network_graph = create_network_graph();
2409                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2410                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2411                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2412
2413                 // Channels were not announced yet.
2414                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2415                 assert!(channels_with_announcements.is_none());
2416
2417                 let short_channel_id;
2418                 {
2419                         // Announce a channel we will update
2420                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2421                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2422                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2423                                 Ok(_) => (),
2424                                 Err(_) => panic!()
2425                         };
2426                 }
2427
2428                 // Contains initial channel announcement now.
2429                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2430                 if let Some(channel_announcements) = channels_with_announcements {
2431                         let (_, ref update_1, ref update_2) = channel_announcements;
2432                         assert_eq!(update_1, &None);
2433                         assert_eq!(update_2, &None);
2434                 } else {
2435                         panic!();
2436                 }
2437
2438                 {
2439                         // Valid channel update
2440                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2441                                 unsigned_channel_update.timestamp = 101;
2442                         }, node_1_privkey, &secp_ctx);
2443                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2444                                 Ok(_) => (),
2445                                 Err(_) => panic!()
2446                         };
2447                 }
2448
2449                 // Now contains an initial announcement and an update.
2450                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2451                 if let Some(channel_announcements) = channels_with_announcements {
2452                         let (_, ref update_1, ref update_2) = channel_announcements;
2453                         assert_ne!(update_1, &None);
2454                         assert_eq!(update_2, &None);
2455                 } else {
2456                         panic!();
2457                 }
2458
2459                 {
2460                         // Channel update with excess data.
2461                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2462                                 unsigned_channel_update.timestamp = 102;
2463                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2464                         }, node_1_privkey, &secp_ctx);
2465                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2466                                 Ok(_) => (),
2467                                 Err(_) => panic!()
2468                         };
2469                 }
2470
2471                 // Test that announcements with excess data won't be returned
2472                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2473                 if let Some(channel_announcements) = channels_with_announcements {
2474                         let (_, ref update_1, ref update_2) = channel_announcements;
2475                         assert_eq!(update_1, &None);
2476                         assert_eq!(update_2, &None);
2477                 } else {
2478                         panic!();
2479                 }
2480
2481                 // Further starting point have no channels after it
2482                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2483                 assert!(channels_with_announcements.is_none());
2484         }
2485
2486         #[test]
2487         fn getting_next_node_announcements() {
2488                 let network_graph = create_network_graph();
2489                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2490                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2491                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2492                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2493
2494                 // No nodes yet.
2495                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2496                 assert!(next_announcements.is_none());
2497
2498                 {
2499                         // Announce a channel to add 2 nodes
2500                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2501                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2502                                 Ok(_) => (),
2503                                 Err(_) => panic!()
2504                         };
2505                 }
2506
2507                 // Nodes were never announced
2508                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2509                 assert!(next_announcements.is_none());
2510
2511                 {
2512                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2513                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2514                                 Ok(_) => (),
2515                                 Err(_) => panic!()
2516                         };
2517
2518                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2519                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2520                                 Ok(_) => (),
2521                                 Err(_) => panic!()
2522                         };
2523                 }
2524
2525                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2526                 assert!(next_announcements.is_some());
2527
2528                 // Skip the first node.
2529                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2530                 assert!(next_announcements.is_some());
2531
2532                 {
2533                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2534                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2535                                 unsigned_announcement.timestamp += 10;
2536                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2537                         }, node_2_privkey, &secp_ctx);
2538                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2539                                 Ok(res) => assert!(!res),
2540                                 Err(_) => panic!()
2541                         };
2542                 }
2543
2544                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2545                 assert!(next_announcements.is_none());
2546         }
2547
2548         #[test]
2549         fn network_graph_serialization() {
2550                 let network_graph = create_network_graph();
2551                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2552
2553                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2554                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2555
2556                 // Announce a channel to add a corresponding node.
2557                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2558                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2559                         Ok(res) => assert!(res),
2560                         _ => panic!()
2561                 };
2562
2563                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2564                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2565                         Ok(_) => (),
2566                         Err(_) => panic!()
2567                 };
2568
2569                 let mut w = test_utils::TestVecWriter(Vec::new());
2570                 assert!(!network_graph.read_only().nodes().is_empty());
2571                 assert!(!network_graph.read_only().channels().is_empty());
2572                 network_graph.write(&mut w).unwrap();
2573
2574                 let logger = Arc::new(test_utils::TestLogger::new());
2575                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2576         }
2577
2578         #[test]
2579         fn network_graph_tlv_serialization() {
2580                 let network_graph = create_network_graph();
2581                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2582
2583                 let mut w = test_utils::TestVecWriter(Vec::new());
2584                 network_graph.write(&mut w).unwrap();
2585
2586                 let logger = Arc::new(test_utils::TestLogger::new());
2587                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2588                 assert!(reassembled_network_graph == network_graph);
2589                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2590         }
2591
2592         #[test]
2593         #[cfg(feature = "std")]
2594         fn calling_sync_routing_table() {
2595                 use std::time::{SystemTime, UNIX_EPOCH};
2596
2597                 let network_graph = create_network_graph();
2598                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2599                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2600                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2601
2602                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2603
2604                 // It should ignore if gossip_queries feature is not enabled
2605                 {
2606                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries(), remote_network_address: None };
2607                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2608                         let events = gossip_sync.get_and_clear_pending_msg_events();
2609                         assert_eq!(events.len(), 0);
2610                 }
2611
2612                 // It should send a gossip_timestamp_filter with the correct information
2613                 {
2614                         let init_msg = Init { features: InitFeatures::known(), remote_network_address: None };
2615                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2616                         let events = gossip_sync.get_and_clear_pending_msg_events();
2617                         assert_eq!(events.len(), 1);
2618                         match &events[0] {
2619                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2620                                         assert_eq!(node_id, &node_id_1);
2621                                         assert_eq!(msg.chain_hash, chain_hash);
2622                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2623                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2624                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2625                                         assert_eq!(msg.timestamp_range, u32::max_value());
2626                                 },
2627                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2628                         };
2629                 }
2630         }
2631
2632         #[test]
2633         fn handling_query_channel_range() {
2634                 let network_graph = create_network_graph();
2635                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2636
2637                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2638                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2639                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2640                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2641
2642                 let mut scids: Vec<u64> = vec![
2643                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2644                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2645                 ];
2646
2647                 // used for testing multipart reply across blocks
2648                 for block in 100000..=108001 {
2649                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2650                 }
2651
2652                 // used for testing resumption on same block
2653                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2654
2655                 for scid in scids {
2656                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2657                                 unsigned_announcement.short_channel_id = scid;
2658                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2659                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2660                                 Ok(_) => (),
2661                                 _ => panic!()
2662                         };
2663                 }
2664
2665                 // Error when number_of_blocks=0
2666                 do_handling_query_channel_range(
2667                         &gossip_sync,
2668                         &node_id_2,
2669                         QueryChannelRange {
2670                                 chain_hash: chain_hash.clone(),
2671                                 first_blocknum: 0,
2672                                 number_of_blocks: 0,
2673                         },
2674                         false,
2675                         vec![ReplyChannelRange {
2676                                 chain_hash: chain_hash.clone(),
2677                                 first_blocknum: 0,
2678                                 number_of_blocks: 0,
2679                                 sync_complete: true,
2680                                 short_channel_ids: vec![]
2681                         }]
2682                 );
2683
2684                 // Error when wrong chain
2685                 do_handling_query_channel_range(
2686                         &gossip_sync,
2687                         &node_id_2,
2688                         QueryChannelRange {
2689                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2690                                 first_blocknum: 0,
2691                                 number_of_blocks: 0xffff_ffff,
2692                         },
2693                         false,
2694                         vec![ReplyChannelRange {
2695                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2696                                 first_blocknum: 0,
2697                                 number_of_blocks: 0xffff_ffff,
2698                                 sync_complete: true,
2699                                 short_channel_ids: vec![],
2700                         }]
2701                 );
2702
2703                 // Error when first_blocknum > 0xffffff
2704                 do_handling_query_channel_range(
2705                         &gossip_sync,
2706                         &node_id_2,
2707                         QueryChannelRange {
2708                                 chain_hash: chain_hash.clone(),
2709                                 first_blocknum: 0x01000000,
2710                                 number_of_blocks: 0xffff_ffff,
2711                         },
2712                         false,
2713                         vec![ReplyChannelRange {
2714                                 chain_hash: chain_hash.clone(),
2715                                 first_blocknum: 0x01000000,
2716                                 number_of_blocks: 0xffff_ffff,
2717                                 sync_complete: true,
2718                                 short_channel_ids: vec![]
2719                         }]
2720                 );
2721
2722                 // Empty reply when max valid SCID block num
2723                 do_handling_query_channel_range(
2724                         &gossip_sync,
2725                         &node_id_2,
2726                         QueryChannelRange {
2727                                 chain_hash: chain_hash.clone(),
2728                                 first_blocknum: 0xffffff,
2729                                 number_of_blocks: 1,
2730                         },
2731                         true,
2732                         vec![
2733                                 ReplyChannelRange {
2734                                         chain_hash: chain_hash.clone(),
2735                                         first_blocknum: 0xffffff,
2736                                         number_of_blocks: 1,
2737                                         sync_complete: true,
2738                                         short_channel_ids: vec![]
2739                                 },
2740                         ]
2741                 );
2742
2743                 // No results in valid query range
2744                 do_handling_query_channel_range(
2745                         &gossip_sync,
2746                         &node_id_2,
2747                         QueryChannelRange {
2748                                 chain_hash: chain_hash.clone(),
2749                                 first_blocknum: 1000,
2750                                 number_of_blocks: 1000,
2751                         },
2752                         true,
2753                         vec![
2754                                 ReplyChannelRange {
2755                                         chain_hash: chain_hash.clone(),
2756                                         first_blocknum: 1000,
2757                                         number_of_blocks: 1000,
2758                                         sync_complete: true,
2759                                         short_channel_ids: vec![],
2760                                 }
2761                         ]
2762                 );
2763
2764                 // Overflow first_blocknum + number_of_blocks
2765                 do_handling_query_channel_range(
2766                         &gossip_sync,
2767                         &node_id_2,
2768                         QueryChannelRange {
2769                                 chain_hash: chain_hash.clone(),
2770                                 first_blocknum: 0xfe0000,
2771                                 number_of_blocks: 0xffffffff,
2772                         },
2773                         true,
2774                         vec![
2775                                 ReplyChannelRange {
2776                                         chain_hash: chain_hash.clone(),
2777                                         first_blocknum: 0xfe0000,
2778                                         number_of_blocks: 0xffffffff - 0xfe0000,
2779                                         sync_complete: true,
2780                                         short_channel_ids: vec![
2781                                                 0xfffffe_ffffff_ffff, // max
2782                                         ]
2783                                 }
2784                         ]
2785                 );
2786
2787                 // Single block exactly full
2788                 do_handling_query_channel_range(
2789                         &gossip_sync,
2790                         &node_id_2,
2791                         QueryChannelRange {
2792                                 chain_hash: chain_hash.clone(),
2793                                 first_blocknum: 100000,
2794                                 number_of_blocks: 8000,
2795                         },
2796                         true,
2797                         vec![
2798                                 ReplyChannelRange {
2799                                         chain_hash: chain_hash.clone(),
2800                                         first_blocknum: 100000,
2801                                         number_of_blocks: 8000,
2802                                         sync_complete: true,
2803                                         short_channel_ids: (100000..=107999)
2804                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2805                                                 .collect(),
2806                                 },
2807                         ]
2808                 );
2809
2810                 // Multiple split on new block
2811                 do_handling_query_channel_range(
2812                         &gossip_sync,
2813                         &node_id_2,
2814                         QueryChannelRange {
2815                                 chain_hash: chain_hash.clone(),
2816                                 first_blocknum: 100000,
2817                                 number_of_blocks: 8001,
2818                         },
2819                         true,
2820                         vec![
2821                                 ReplyChannelRange {
2822                                         chain_hash: chain_hash.clone(),
2823                                         first_blocknum: 100000,
2824                                         number_of_blocks: 7999,
2825                                         sync_complete: false,
2826                                         short_channel_ids: (100000..=107999)
2827                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2828                                                 .collect(),
2829                                 },
2830                                 ReplyChannelRange {
2831                                         chain_hash: chain_hash.clone(),
2832                                         first_blocknum: 107999,
2833                                         number_of_blocks: 2,
2834                                         sync_complete: true,
2835                                         short_channel_ids: vec![
2836                                                 scid_from_parts(108000, 0, 0).unwrap(),
2837                                         ],
2838                                 }
2839                         ]
2840                 );
2841
2842                 // Multiple split on same block
2843                 do_handling_query_channel_range(
2844                         &gossip_sync,
2845                         &node_id_2,
2846                         QueryChannelRange {
2847                                 chain_hash: chain_hash.clone(),
2848                                 first_blocknum: 100002,
2849                                 number_of_blocks: 8000,
2850                         },
2851                         true,
2852                         vec![
2853                                 ReplyChannelRange {
2854                                         chain_hash: chain_hash.clone(),
2855                                         first_blocknum: 100002,
2856                                         number_of_blocks: 7999,
2857                                         sync_complete: false,
2858                                         short_channel_ids: (100002..=108001)
2859                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2860                                                 .collect(),
2861                                 },
2862                                 ReplyChannelRange {
2863                                         chain_hash: chain_hash.clone(),
2864                                         first_blocknum: 108001,
2865                                         number_of_blocks: 1,
2866                                         sync_complete: true,
2867                                         short_channel_ids: vec![
2868                                                 scid_from_parts(108001, 1, 0).unwrap(),
2869                                         ],
2870                                 }
2871                         ]
2872                 );
2873         }
2874
2875         fn do_handling_query_channel_range(
2876                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2877                 test_node_id: &PublicKey,
2878                 msg: QueryChannelRange,
2879                 expected_ok: bool,
2880                 expected_replies: Vec<ReplyChannelRange>
2881         ) {
2882                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2883                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2884                 let query_end_blocknum = msg.end_blocknum();
2885                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2886
2887                 if expected_ok {
2888                         assert!(result.is_ok());
2889                 } else {
2890                         assert!(result.is_err());
2891                 }
2892
2893                 let events = gossip_sync.get_and_clear_pending_msg_events();
2894                 assert_eq!(events.len(), expected_replies.len());
2895
2896                 for i in 0..events.len() {
2897                         let expected_reply = &expected_replies[i];
2898                         match &events[i] {
2899                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2900                                         assert_eq!(node_id, test_node_id);
2901                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2902                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2903                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2904                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2905                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2906
2907                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2908                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2909                                         assert!(msg.first_blocknum >= max_firstblocknum);
2910                                         max_firstblocknum = msg.first_blocknum;
2911                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2912
2913                                         // Check that the last block count is >= the query's end_blocknum
2914                                         if i == events.len() - 1 {
2915                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2916                                         }
2917                                 },
2918                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2919                         }
2920                 }
2921         }
2922
2923         #[test]
2924         fn handling_query_short_channel_ids() {
2925                 let network_graph = create_network_graph();
2926                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2927                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2928                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2929
2930                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2931
2932                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2933                         chain_hash,
2934                         short_channel_ids: vec![0x0003e8_000000_0000],
2935                 });
2936                 assert!(result.is_err());
2937         }
2938
2939         #[test]
2940         fn displays_node_alias() {
2941                 let format_str_alias = |alias: &str| {
2942                         let mut bytes = [0u8; 32];
2943                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2944                         format!("{}", NodeAlias(bytes))
2945                 };
2946
2947                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2948                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2949                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2950
2951                 let format_bytes_alias = |alias: &[u8]| {
2952                         let mut bytes = [0u8; 32];
2953                         bytes[..alias.len()].copy_from_slice(alias);
2954                         format!("{}", NodeAlias(bytes))
2955                 };
2956
2957                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2958                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2959                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2960         }
2961
2962         #[test]
2963         fn channel_info_is_readable() {
2964                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2965                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2966                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2967                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2968
2969                 // 1. Test encoding/decoding of ChannelUpdateInfo
2970                 let chan_update_info = ChannelUpdateInfo {
2971                         last_update: 23,
2972                         enabled: true,
2973                         cltv_expiry_delta: 42,
2974                         htlc_minimum_msat: 1234,
2975                         htlc_maximum_msat: 5678,
2976                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2977                         last_update_message: None,
2978                 };
2979
2980                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2981                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2982
2983                 // First make sure we can read ChannelUpdateInfos we just wrote
2984                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
2985                 assert_eq!(chan_update_info, read_chan_update_info);
2986
2987                 // Check the serialization hasn't changed.
2988                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
2989                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
2990
2991                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
2992                 // or the ChannelUpdate enclosed with `last_update_message`.
2993                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
2994                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
2995                 assert!(read_chan_update_info_res.is_err());
2996
2997                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
2998                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
2999                 assert!(read_chan_update_info_res.is_err());
3000
3001                 // 2. Test encoding/decoding of ChannelInfo
3002                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3003                 let chan_info_none_updates = ChannelInfo {
3004                         features: ChannelFeatures::known(),
3005                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3006                         one_to_two: None,
3007                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3008                         two_to_one: None,
3009                         capacity_sats: None,
3010                         announcement_message: None,
3011                         announcement_received_time: 87654,
3012                 };
3013
3014                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3015                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3016
3017                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3018                 assert_eq!(chan_info_none_updates, read_chan_info);
3019
3020                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3021                 let chan_info_some_updates = ChannelInfo {
3022                         features: ChannelFeatures::known(),
3023                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3024                         one_to_two: Some(chan_update_info.clone()),
3025                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3026                         two_to_one: Some(chan_update_info.clone()),
3027                         capacity_sats: None,
3028                         announcement_message: None,
3029                         announcement_received_time: 87654,
3030                 };
3031
3032                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3033                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3034
3035                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3036                 assert_eq!(chan_info_some_updates, read_chan_info);
3037
3038                 // Check the serialization hasn't changed.
3039                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3040                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3041
3042                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3043                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3044                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3045                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3046                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3047                 assert_eq!(read_chan_info.one_to_two, None);
3048                 assert_eq!(read_chan_info.two_to_one, None);
3049
3050                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3051                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3052                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3053                 assert_eq!(read_chan_info.one_to_two, None);
3054                 assert_eq!(read_chan_info.two_to_one, None);
3055         }
3056
3057         #[test]
3058         fn node_info_is_readable() {
3059                 use std::convert::TryFrom;
3060
3061                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3062                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3063                 let valid_node_ann_info = NodeAnnouncementInfo {
3064                         features: NodeFeatures::known(),
3065                         last_update: 0,
3066                         rgb: [0u8; 3],
3067                         alias: NodeAlias([0u8; 32]),
3068                         addresses: vec![valid_netaddr],
3069                         announcement_message: None,
3070                 };
3071
3072                 let mut encoded_valid_node_ann_info = Vec::new();
3073                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3074                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3075                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3076
3077                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3078                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3079                 assert!(read_invalid_node_ann_info_res.is_err());
3080
3081                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3082                 let valid_node_info = NodeInfo {
3083                         channels: Vec::new(),
3084                         lowest_inbound_channel_fees: None,
3085                         announcement_info: Some(valid_node_ann_info),
3086                 };
3087
3088                 let mut encoded_valid_node_info = Vec::new();
3089                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3090                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3091                 assert_eq!(read_valid_node_info, valid_node_info);
3092
3093                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3094                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3095                 assert_eq!(read_invalid_node_info.announcement_info, None);
3096         }
3097 }
3098
3099 #[cfg(all(test, feature = "_bench_unstable"))]
3100 mod benches {
3101         use super::*;
3102
3103         use test::Bencher;
3104         use std::io::Read;
3105
3106         #[bench]
3107         fn read_network_graph(bench: &mut Bencher) {
3108                 let logger = ::util::test_utils::TestLogger::new();
3109                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3110                 let mut v = Vec::new();
3111                 d.read_to_end(&mut v).unwrap();
3112                 bench.iter(|| {
3113                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3114                 });
3115         }
3116
3117         #[bench]
3118         fn write_network_graph(bench: &mut Bencher) {
3119                 let logger = ::util::test_utils::TestLogger::new();
3120                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3121                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3122                 bench.iter(|| {
3123                         let _ = net_graph.encode();
3124                 });
3125         }
3126 }