Merge pull request #1977 from jkczyz/2023-01-offers-fuzz
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
22 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
23 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
24 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
25 use crate::ln::msgs;
26 use crate::routing::utxo::{self, UtxoLookup};
27 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
28 use crate::util::logger::{Logger, Level};
29 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
31 use crate::util::string::PrintableString;
32 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
33
34 use crate::io;
35 use crate::io_extras::{copy, sink};
36 use crate::prelude::*;
37 use core::{cmp, fmt};
38 use crate::sync::{RwLock, RwLockReadGuard};
39 #[cfg(feature = "std")]
40 use core::sync::atomic::{AtomicUsize, Ordering};
41 use crate::sync::Mutex;
42 use core::ops::{Bound, Deref};
43
44 #[cfg(feature = "std")]
45 use std::time::{SystemTime, UNIX_EPOCH};
46
47 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
48 /// suggestion.
49 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
50
51 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
52 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83 impl fmt::Display for NodeId {
84         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85                 write!(f, "{}", log_bytes!(self.0))
86         }
87 }
88
89 impl core::hash::Hash for NodeId {
90         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
91                 self.0.hash(hasher);
92         }
93 }
94
95 impl Eq for NodeId {}
96
97 impl PartialEq for NodeId {
98         fn eq(&self, other: &Self) -> bool {
99                 self.0[..] == other.0[..]
100         }
101 }
102
103 impl cmp::PartialOrd for NodeId {
104         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
105                 Some(self.cmp(other))
106         }
107 }
108
109 impl Ord for NodeId {
110         fn cmp(&self, other: &Self) -> cmp::Ordering {
111                 self.0[..].cmp(&other.0[..])
112         }
113 }
114
115 impl Writeable for NodeId {
116         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
117                 writer.write_all(&self.0)?;
118                 Ok(())
119         }
120 }
121
122 impl Readable for NodeId {
123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
124                 let mut buf = [0; PUBLIC_KEY_SIZE];
125                 reader.read_exact(&mut buf)?;
126                 Ok(Self(buf))
127         }
128 }
129
130 /// Represents the network as nodes and channels between them
131 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
132         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
133         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
134         genesis_hash: BlockHash,
135         logger: L,
136         // Lock order: channels -> nodes
137         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
138         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
139         // Lock order: removed_channels -> removed_nodes
140         //
141         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
142         // of `std::time::Instant`s for a few reasons:
143         //   * We want it to be possible to do tracking in no-std environments where we can compare
144         //     a provided current UNIX timestamp with the time at which we started tracking.
145         //   * In the future, if we decide to persist these maps, they will already be serializable.
146         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
147         //     environment should be practical over the time period we are considering (on the order of a
148         //     week).
149         //
150         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
151         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
152         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
153         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
154         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
155         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
156         /// that once some time passes, we can potentially resync it from gossip again.
157         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
158         /// Announcement messages which are awaiting an on-chain lookup to be processed.
159         pub(super) pending_checks: utxo::PendingChecks,
160 }
161
162 /// A read-only view of [`NetworkGraph`].
163 pub struct ReadOnlyNetworkGraph<'a> {
164         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
165         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
166 }
167
168 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
169 /// return packet by a node along the route. See [BOLT #4] for details.
170 ///
171 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
172 #[derive(Clone, Debug, PartialEq, Eq)]
173 pub enum NetworkUpdate {
174         /// An error indicating a `channel_update` messages should be applied via
175         /// [`NetworkGraph::update_channel`].
176         ChannelUpdateMessage {
177                 /// The update to apply via [`NetworkGraph::update_channel`].
178                 msg: ChannelUpdate,
179         },
180         /// An error indicating that a channel failed to route a payment, which should be applied via
181         /// [`NetworkGraph::channel_failed`].
182         ChannelFailure {
183                 /// The short channel id of the closed channel.
184                 short_channel_id: u64,
185                 /// Whether the channel should be permanently removed or temporarily disabled until a new
186                 /// `channel_update` message is received.
187                 is_permanent: bool,
188         },
189         /// An error indicating that a node failed to route a payment, which should be applied via
190         /// [`NetworkGraph::node_failed_permanent`] if permanent.
191         NodeFailure {
192                 /// The node id of the failed node.
193                 node_id: PublicKey,
194                 /// Whether the node should be permanently removed from consideration or can be restored
195                 /// when a new `channel_update` message is received.
196                 is_permanent: bool,
197         }
198 }
199
200 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
201         (0, ChannelUpdateMessage) => {
202                 (0, msg, required),
203         },
204         (2, ChannelFailure) => {
205                 (0, short_channel_id, required),
206                 (2, is_permanent, required),
207         },
208         (4, NodeFailure) => {
209                 (0, node_id, required),
210                 (2, is_permanent, required),
211         },
212 );
213
214 /// Receives and validates network updates from peers,
215 /// stores authentic and relevant data as a network graph.
216 /// This network graph is then used for routing payments.
217 /// Provides interface to help with initial routing sync by
218 /// serving historical announcements.
219 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
220 where U::Target: UtxoLookup, L::Target: Logger
221 {
222         network_graph: G,
223         utxo_lookup: Option<U>,
224         #[cfg(feature = "std")]
225         full_syncs_requested: AtomicUsize,
226         pending_events: Mutex<Vec<MessageSendEvent>>,
227         logger: L,
228 }
229
230 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
231 where U::Target: UtxoLookup, L::Target: Logger
232 {
233         /// Creates a new tracker of the actual state of the network of channels and nodes,
234         /// assuming an existing Network Graph.
235         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
236         /// correct, and the announcement is signed with channel owners' keys.
237         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
238                 P2PGossipSync {
239                         network_graph,
240                         #[cfg(feature = "std")]
241                         full_syncs_requested: AtomicUsize::new(0),
242                         utxo_lookup,
243                         pending_events: Mutex::new(vec![]),
244                         logger,
245                 }
246         }
247
248         /// Adds a provider used to check new announcements. Does not affect
249         /// existing announcements unless they are updated.
250         /// Add, update or remove the provider would replace the current one.
251         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
252                 self.utxo_lookup = utxo_lookup;
253         }
254
255         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
256         /// [`P2PGossipSync::new`].
257         ///
258         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
259         pub fn network_graph(&self) -> &G {
260                 &self.network_graph
261         }
262
263         #[cfg(feature = "std")]
264         /// Returns true when a full routing table sync should be performed with a peer.
265         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
266                 //TODO: Determine whether to request a full sync based on the network map.
267                 const FULL_SYNCS_TO_REQUEST: usize = 5;
268                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
269                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
270                         true
271                 } else {
272                         false
273                 }
274         }
275
276         /// Used to broadcast forward gossip messages which were validated async.
277         ///
278         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
279         /// data.
280         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
281                 match &mut ev {
282                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
283                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
284                                 if update_msg.as_ref()
285                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
286                                 {
287                                         *update_msg = None;
288                                 }
289                         },
290                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
291                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
292                         },
293                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
294                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
295                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
296                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
297                                 {
298                                         return;
299                                 }
300                         },
301                         _ => return,
302                 }
303                 self.pending_events.lock().unwrap().push(ev);
304         }
305 }
306
307 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
308         /// Handles any network updates originating from [`Event`]s.
309         ///
310         /// [`Event`]: crate::util::events::Event
311         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
312                 match *network_update {
313                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
314                                 let short_channel_id = msg.contents.short_channel_id;
315                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
316                                 let status = if is_enabled { "enabled" } else { "disabled" };
317                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
318                                 let _ = self.update_channel(msg);
319                         },
320                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
321                                 let action = if is_permanent { "Removing" } else { "Disabling" };
322                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
323                                 self.channel_failed(short_channel_id, is_permanent);
324                         },
325                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
326                                 if is_permanent {
327                                         log_debug!(self.logger,
328                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
329                                         self.node_failed_permanent(node_id);
330                                 };
331                         },
332                 }
333         }
334 }
335
336 macro_rules! secp_verify_sig {
337         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
338                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
339                         Ok(_) => {},
340                         Err(_) => {
341                                 return Err(LightningError {
342                                         err: format!("Invalid signature on {} message", $msg_type),
343                                         action: ErrorAction::SendWarningMessage {
344                                                 msg: msgs::WarningMessage {
345                                                         channel_id: [0; 32],
346                                                         data: format!("Invalid signature on {} message", $msg_type),
347                                                 },
348                                                 log_level: Level::Trace,
349                                         },
350                                 });
351                         },
352                 }
353         };
354 }
355
356 macro_rules! get_pubkey_from_node_id {
357         ( $node_id: expr, $msg_type: expr ) => {
358                 PublicKey::from_slice($node_id.as_slice())
359                         .map_err(|_| LightningError {
360                                 err: format!("Invalid public key on {} message", $msg_type),
361                                 action: ErrorAction::SendWarningMessage {
362                                         msg: msgs::WarningMessage {
363                                                 channel_id: [0; 32],
364                                                 data: format!("Invalid public key on {} message", $msg_type),
365                                         },
366                                         log_level: Level::Trace
367                                 }
368                         })?
369         }
370 }
371
372 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
373 where U::Target: UtxoLookup, L::Target: Logger
374 {
375         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
376                 self.network_graph.update_node_from_announcement(msg)?;
377                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
378                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
379                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
380         }
381
382         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
383                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
384                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
385         }
386
387         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
388                 self.network_graph.update_channel(msg)?;
389                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
390         }
391
392         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
393                 let mut channels = self.network_graph.channels.write().unwrap();
394                 for (_, ref chan) in channels.range(starting_point..) {
395                         if chan.announcement_message.is_some() {
396                                 let chan_announcement = chan.announcement_message.clone().unwrap();
397                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
398                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
399                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
400                                         one_to_two_announcement = one_to_two.last_update_message.clone();
401                                 }
402                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
403                                         two_to_one_announcement = two_to_one.last_update_message.clone();
404                                 }
405                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
406                         } else {
407                                 // TODO: We may end up sending un-announced channel_updates if we are sending
408                                 // initial sync data while receiving announce/updates for this channel.
409                         }
410                 }
411                 None
412         }
413
414         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
415                 let mut nodes = self.network_graph.nodes.write().unwrap();
416                 let iter = if let Some(node_id) = starting_point {
417                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
418                         } else {
419                                 nodes.range(..)
420                         };
421                 for (_, ref node) in iter {
422                         if let Some(node_info) = node.announcement_info.as_ref() {
423                                 if let Some(msg) = node_info.announcement_message.clone() {
424                                         return Some(msg);
425                                 }
426                         }
427                 }
428                 None
429         }
430
431         /// Initiates a stateless sync of routing gossip information with a peer
432         /// using gossip_queries. The default strategy used by this implementation
433         /// is to sync the full block range with several peers.
434         ///
435         /// We should expect one or more reply_channel_range messages in response
436         /// to our query_channel_range. Each reply will enqueue a query_scid message
437         /// to request gossip messages for each channel. The sync is considered complete
438         /// when the final reply_scids_end message is received, though we are not
439         /// tracking this directly.
440         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
441                 // We will only perform a sync with peers that support gossip_queries.
442                 if !init_msg.features.supports_gossip_queries() {
443                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
444                         // channels with peers even without being able to exchange gossip.
445                         return Ok(());
446                 }
447
448                 // The lightning network's gossip sync system is completely broken in numerous ways.
449                 //
450                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
451                 // to do a full sync from the first few peers we connect to, and then receive gossip
452                 // updates from all our peers normally.
453                 //
454                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
455                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
456                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
457                 // seen.
458                 //
459                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
460                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
461                 // channel data which you are missing. Except there was no way at all to identify which
462                 // `channel_update`s you were missing, so you still had to request everything, just in a
463                 // very complicated way with some queries instead of just getting the dump.
464                 //
465                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
466                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
467                 // relying on it useless.
468                 //
469                 // After gossip queries were introduced, support for receiving a full gossip table dump on
470                 // connection was removed from several nodes, making it impossible to get a full sync
471                 // without using the "gossip queries" messages.
472                 //
473                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
474                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
475                 // message, as the name implies, tells the peer to not forward any gossip messages with a
476                 // timestamp older than a given value (not the time the peer received the filter, but the
477                 // timestamp in the update message, which is often hours behind when the peer received the
478                 // message).
479                 //
480                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
481                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
482                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
483                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
484                 // will simply not forward any new updates they see to you which were generated some time
485                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
486                 // ago), you will always get the full routing graph from all your peers.
487                 //
488                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
489                 // propagated some time after it was generated, and, worse, often disable gossiping with
490                 // several peers after their first connection. The second behavior can cause gossip to not
491                 // propagate fully if there are cuts in the gossiping subgraph.
492                 //
493                 // In an attempt to cut a middle ground between always fetching the full graph from all of
494                 // our peers and never receiving gossip from peers at all, we send all of our peers a
495                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
496                 //
497                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
498                 #[allow(unused_mut, unused_assignments)]
499                 let mut gossip_start_time = 0;
500                 #[cfg(feature = "std")]
501                 {
502                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
503                         if self.should_request_full_sync(&their_node_id) {
504                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
505                         } else {
506                                 gossip_start_time -= 60 * 60; // an hour ago
507                         }
508                 }
509
510                 let mut pending_events = self.pending_events.lock().unwrap();
511                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
512                         node_id: their_node_id.clone(),
513                         msg: GossipTimestampFilter {
514                                 chain_hash: self.network_graph.genesis_hash,
515                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
516                                 timestamp_range: u32::max_value(),
517                         },
518                 });
519                 Ok(())
520         }
521
522         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
523                 // We don't make queries, so should never receive replies. If, in the future, the set
524                 // reconciliation extensions to gossip queries become broadly supported, we should revert
525                 // this code to its state pre-0.0.106.
526                 Ok(())
527         }
528
529         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
530                 // We don't make queries, so should never receive replies. If, in the future, the set
531                 // reconciliation extensions to gossip queries become broadly supported, we should revert
532                 // this code to its state pre-0.0.106.
533                 Ok(())
534         }
535
536         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
537         /// are in the specified block range. Due to message size limits, large range
538         /// queries may result in several reply messages. This implementation enqueues
539         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
540         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
541         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
542         /// memory constrained systems.
543         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
544                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
545
546                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
547
548                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
549                 // If so, we manually cap the ending block to avoid this overflow.
550                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
551
552                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
553                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
554                         let mut pending_events = self.pending_events.lock().unwrap();
555                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
556                                 node_id: their_node_id.clone(),
557                                 msg: ReplyChannelRange {
558                                         chain_hash: msg.chain_hash.clone(),
559                                         first_blocknum: msg.first_blocknum,
560                                         number_of_blocks: msg.number_of_blocks,
561                                         sync_complete: true,
562                                         short_channel_ids: vec![],
563                                 }
564                         });
565                         return Err(LightningError {
566                                 err: String::from("query_channel_range could not be processed"),
567                                 action: ErrorAction::IgnoreError,
568                         });
569                 }
570
571                 // Creates channel batches. We are not checking if the channel is routable
572                 // (has at least one update). A peer may still want to know the channel
573                 // exists even if its not yet routable.
574                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
575                 let mut channels = self.network_graph.channels.write().unwrap();
576                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
577                         if let Some(chan_announcement) = &chan.announcement_message {
578                                 // Construct a new batch if last one is full
579                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
580                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
581                                 }
582
583                                 let batch = batches.last_mut().unwrap();
584                                 batch.push(chan_announcement.contents.short_channel_id);
585                         }
586                 }
587                 drop(channels);
588
589                 let mut pending_events = self.pending_events.lock().unwrap();
590                 let batch_count = batches.len();
591                 let mut prev_batch_endblock = msg.first_blocknum;
592                 for (batch_index, batch) in batches.into_iter().enumerate() {
593                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
594                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
595                         //
596                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
597                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
598                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
599                         // significant diversion from the requirements set by the spec, and, in case of blocks
600                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
601                         // and *not* derive the first_blocknum from the actual first block of the reply.
602                         let first_blocknum = prev_batch_endblock;
603
604                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
605                         // fit in. Though there is no requirement that we use exactly the number of blocks its
606                         // contents are from, except for the bogus requirements c-lightning enforces, above.
607                         //
608                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
609                         // >= the query's end block. Thus, for the last reply, we calculate the difference
610                         // between the query's end block and the start of the reply.
611                         //
612                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
613                         // first_blocknum will be either msg.first_blocknum or a higher block height.
614                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
615                                 (true, msg.end_blocknum() - first_blocknum)
616                         }
617                         // Prior replies should use the number of blocks that fit into the reply. Overflow
618                         // safe since first_blocknum is always <= last SCID's block.
619                         else {
620                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
621                         };
622
623                         prev_batch_endblock = first_blocknum + number_of_blocks;
624
625                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
626                                 node_id: their_node_id.clone(),
627                                 msg: ReplyChannelRange {
628                                         chain_hash: msg.chain_hash.clone(),
629                                         first_blocknum,
630                                         number_of_blocks,
631                                         sync_complete,
632                                         short_channel_ids: batch,
633                                 }
634                         });
635                 }
636
637                 Ok(())
638         }
639
640         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
641                 // TODO
642                 Err(LightningError {
643                         err: String::from("Not implemented"),
644                         action: ErrorAction::IgnoreError,
645                 })
646         }
647
648         fn provided_node_features(&self) -> NodeFeatures {
649                 let mut features = NodeFeatures::empty();
650                 features.set_gossip_queries_optional();
651                 features
652         }
653
654         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
655                 let mut features = InitFeatures::empty();
656                 features.set_gossip_queries_optional();
657                 features
658         }
659
660         fn processing_queue_high(&self) -> bool {
661                 self.network_graph.pending_checks.too_many_checks_pending()
662         }
663 }
664
665 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
666 where
667         U::Target: UtxoLookup,
668         L::Target: Logger,
669 {
670         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
671                 let mut ret = Vec::new();
672                 let mut pending_events = self.pending_events.lock().unwrap();
673                 core::mem::swap(&mut ret, &mut pending_events);
674                 ret
675         }
676 }
677
678 #[derive(Clone, Debug, PartialEq, Eq)]
679 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
680 pub struct ChannelUpdateInfo {
681         /// When the last update to the channel direction was issued.
682         /// Value is opaque, as set in the announcement.
683         pub last_update: u32,
684         /// Whether the channel can be currently used for payments (in this one direction).
685         pub enabled: bool,
686         /// The difference in CLTV values that you must have when routing through this channel.
687         pub cltv_expiry_delta: u16,
688         /// The minimum value, which must be relayed to the next hop via the channel
689         pub htlc_minimum_msat: u64,
690         /// The maximum value which may be relayed to the next hop via the channel.
691         pub htlc_maximum_msat: u64,
692         /// Fees charged when the channel is used for routing
693         pub fees: RoutingFees,
694         /// Most recent update for the channel received from the network
695         /// Mostly redundant with the data we store in fields explicitly.
696         /// Everything else is useful only for sending out for initial routing sync.
697         /// Not stored if contains excess data to prevent DoS.
698         pub last_update_message: Option<ChannelUpdate>,
699 }
700
701 impl fmt::Display for ChannelUpdateInfo {
702         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
703                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
704                 Ok(())
705         }
706 }
707
708 impl Writeable for ChannelUpdateInfo {
709         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
710                 write_tlv_fields!(writer, {
711                         (0, self.last_update, required),
712                         (2, self.enabled, required),
713                         (4, self.cltv_expiry_delta, required),
714                         (6, self.htlc_minimum_msat, required),
715                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
716                         // compatibility with LDK versions prior to v0.0.110.
717                         (8, Some(self.htlc_maximum_msat), required),
718                         (10, self.fees, required),
719                         (12, self.last_update_message, required),
720                 });
721                 Ok(())
722         }
723 }
724
725 impl Readable for ChannelUpdateInfo {
726         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
727                 _init_tlv_field_var!(last_update, required);
728                 _init_tlv_field_var!(enabled, required);
729                 _init_tlv_field_var!(cltv_expiry_delta, required);
730                 _init_tlv_field_var!(htlc_minimum_msat, required);
731                 _init_tlv_field_var!(htlc_maximum_msat, option);
732                 _init_tlv_field_var!(fees, required);
733                 _init_tlv_field_var!(last_update_message, required);
734
735                 read_tlv_fields!(reader, {
736                         (0, last_update, required),
737                         (2, enabled, required),
738                         (4, cltv_expiry_delta, required),
739                         (6, htlc_minimum_msat, required),
740                         (8, htlc_maximum_msat, required),
741                         (10, fees, required),
742                         (12, last_update_message, required)
743                 });
744
745                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
746                         Ok(ChannelUpdateInfo {
747                                 last_update: _init_tlv_based_struct_field!(last_update, required),
748                                 enabled: _init_tlv_based_struct_field!(enabled, required),
749                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
750                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
751                                 htlc_maximum_msat,
752                                 fees: _init_tlv_based_struct_field!(fees, required),
753                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
754                         })
755                 } else {
756                         Err(DecodeError::InvalidValue)
757                 }
758         }
759 }
760
761 #[derive(Clone, Debug, PartialEq, Eq)]
762 /// Details about a channel (both directions).
763 /// Received within a channel announcement.
764 pub struct ChannelInfo {
765         /// Protocol features of a channel communicated during its announcement
766         pub features: ChannelFeatures,
767         /// Source node of the first direction of a channel
768         pub node_one: NodeId,
769         /// Details about the first direction of a channel
770         pub one_to_two: Option<ChannelUpdateInfo>,
771         /// Source node of the second direction of a channel
772         pub node_two: NodeId,
773         /// Details about the second direction of a channel
774         pub two_to_one: Option<ChannelUpdateInfo>,
775         /// The channel capacity as seen on-chain, if chain lookup is available.
776         pub capacity_sats: Option<u64>,
777         /// An initial announcement of the channel
778         /// Mostly redundant with the data we store in fields explicitly.
779         /// Everything else is useful only for sending out for initial routing sync.
780         /// Not stored if contains excess data to prevent DoS.
781         pub announcement_message: Option<ChannelAnnouncement>,
782         /// The timestamp when we received the announcement, if we are running with feature = "std"
783         /// (which we can probably assume we are - no-std environments probably won't have a full
784         /// network graph in memory!).
785         announcement_received_time: u64,
786 }
787
788 impl ChannelInfo {
789         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
790         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
791         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
792                 let (direction, source) = {
793                         if target == &self.node_one {
794                                 (self.two_to_one.as_ref(), &self.node_two)
795                         } else if target == &self.node_two {
796                                 (self.one_to_two.as_ref(), &self.node_one)
797                         } else {
798                                 return None;
799                         }
800                 };
801                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
802         }
803
804         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
805         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
806         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
807                 let (direction, target) = {
808                         if source == &self.node_one {
809                                 (self.one_to_two.as_ref(), &self.node_two)
810                         } else if source == &self.node_two {
811                                 (self.two_to_one.as_ref(), &self.node_one)
812                         } else {
813                                 return None;
814                         }
815                 };
816                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
817         }
818
819         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
820         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
821                 let direction = channel_flags & 1u8;
822                 if direction == 0 {
823                         self.one_to_two.as_ref()
824                 } else {
825                         self.two_to_one.as_ref()
826                 }
827         }
828 }
829
830 impl fmt::Display for ChannelInfo {
831         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
832                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
833                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
834                 Ok(())
835         }
836 }
837
838 impl Writeable for ChannelInfo {
839         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
840                 write_tlv_fields!(writer, {
841                         (0, self.features, required),
842                         (1, self.announcement_received_time, (default_value, 0)),
843                         (2, self.node_one, required),
844                         (4, self.one_to_two, required),
845                         (6, self.node_two, required),
846                         (8, self.two_to_one, required),
847                         (10, self.capacity_sats, required),
848                         (12, self.announcement_message, required),
849                 });
850                 Ok(())
851         }
852 }
853
854 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
855 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
856 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
857 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
858 // channel updates via the gossip network.
859 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
860
861 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
862         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
863                 match crate::util::ser::Readable::read(reader) {
864                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
865                         Err(DecodeError::ShortRead) => Ok(None),
866                         Err(DecodeError::InvalidValue) => Ok(None),
867                         Err(err) => Err(err),
868                 }
869         }
870 }
871
872 impl Readable for ChannelInfo {
873         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
874                 _init_tlv_field_var!(features, required);
875                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
876                 _init_tlv_field_var!(node_one, required);
877                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
878                 _init_tlv_field_var!(node_two, required);
879                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
880                 _init_tlv_field_var!(capacity_sats, required);
881                 _init_tlv_field_var!(announcement_message, required);
882                 read_tlv_fields!(reader, {
883                         (0, features, required),
884                         (1, announcement_received_time, (default_value, 0)),
885                         (2, node_one, required),
886                         (4, one_to_two_wrap, ignorable),
887                         (6, node_two, required),
888                         (8, two_to_one_wrap, ignorable),
889                         (10, capacity_sats, required),
890                         (12, announcement_message, required),
891                 });
892
893                 Ok(ChannelInfo {
894                         features: _init_tlv_based_struct_field!(features, required),
895                         node_one: _init_tlv_based_struct_field!(node_one, required),
896                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
897                         node_two: _init_tlv_based_struct_field!(node_two, required),
898                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
899                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
900                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
901                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
902                 })
903         }
904 }
905
906 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
907 /// source node to a target node.
908 #[derive(Clone)]
909 pub struct DirectedChannelInfo<'a> {
910         channel: &'a ChannelInfo,
911         direction: &'a ChannelUpdateInfo,
912         htlc_maximum_msat: u64,
913         effective_capacity: EffectiveCapacity,
914 }
915
916 impl<'a> DirectedChannelInfo<'a> {
917         #[inline]
918         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
919                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
920                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
921
922                 let effective_capacity = match capacity_msat {
923                         Some(capacity_msat) => {
924                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
925                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
926                         },
927                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
928                 };
929
930                 Self {
931                         channel, direction, htlc_maximum_msat, effective_capacity
932                 }
933         }
934
935         /// Returns information for the channel.
936         #[inline]
937         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
938
939         /// Returns the maximum HTLC amount allowed over the channel in the direction.
940         #[inline]
941         pub fn htlc_maximum_msat(&self) -> u64 {
942                 self.htlc_maximum_msat
943         }
944
945         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
946         ///
947         /// This is either the total capacity from the funding transaction, if known, or the
948         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
949         /// otherwise.
950         pub fn effective_capacity(&self) -> EffectiveCapacity {
951                 self.effective_capacity
952         }
953
954         /// Returns information for the direction.
955         #[inline]
956         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
957 }
958
959 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
960         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
961                 f.debug_struct("DirectedChannelInfo")
962                         .field("channel", &self.channel)
963                         .finish()
964         }
965 }
966
967 /// The effective capacity of a channel for routing purposes.
968 ///
969 /// While this may be smaller than the actual channel capacity, amounts greater than
970 /// [`Self::as_msat`] should not be routed through the channel.
971 #[derive(Clone, Copy, Debug, PartialEq)]
972 pub enum EffectiveCapacity {
973         /// The available liquidity in the channel known from being a channel counterparty, and thus a
974         /// direct hop.
975         ExactLiquidity {
976                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
977                 /// millisatoshi.
978                 liquidity_msat: u64,
979         },
980         /// The maximum HTLC amount in one direction as advertised on the gossip network.
981         MaximumHTLC {
982                 /// The maximum HTLC amount denominated in millisatoshi.
983                 amount_msat: u64,
984         },
985         /// The total capacity of the channel as determined by the funding transaction.
986         Total {
987                 /// The funding amount denominated in millisatoshi.
988                 capacity_msat: u64,
989                 /// The maximum HTLC amount denominated in millisatoshi.
990                 htlc_maximum_msat: u64
991         },
992         /// A capacity sufficient to route any payment, typically used for private channels provided by
993         /// an invoice.
994         Infinite,
995         /// A capacity that is unknown possibly because either the chain state is unavailable to know
996         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
997         Unknown,
998 }
999
1000 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1001 /// use when making routing decisions.
1002 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1003
1004 impl EffectiveCapacity {
1005         /// Returns the effective capacity denominated in millisatoshi.
1006         pub fn as_msat(&self) -> u64 {
1007                 match self {
1008                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1009                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1010                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1011                         EffectiveCapacity::Infinite => u64::max_value(),
1012                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1013                 }
1014         }
1015 }
1016
1017 /// Fees for routing via a given channel or a node
1018 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1019 pub struct RoutingFees {
1020         /// Flat routing fee in millisatoshis.
1021         pub base_msat: u32,
1022         /// Liquidity-based routing fee in millionths of a routed amount.
1023         /// In other words, 10000 is 1%.
1024         pub proportional_millionths: u32,
1025 }
1026
1027 impl_writeable_tlv_based!(RoutingFees, {
1028         (0, base_msat, required),
1029         (2, proportional_millionths, required)
1030 });
1031
1032 #[derive(Clone, Debug, PartialEq, Eq)]
1033 /// Information received in the latest node_announcement from this node.
1034 pub struct NodeAnnouncementInfo {
1035         /// Protocol features the node announced support for
1036         pub features: NodeFeatures,
1037         /// When the last known update to the node state was issued.
1038         /// Value is opaque, as set in the announcement.
1039         pub last_update: u32,
1040         /// Color assigned to the node
1041         pub rgb: [u8; 3],
1042         /// Moniker assigned to the node.
1043         /// May be invalid or malicious (eg control chars),
1044         /// should not be exposed to the user.
1045         pub alias: NodeAlias,
1046         /// Internet-level addresses via which one can connect to the node
1047         pub addresses: Vec<NetAddress>,
1048         /// An initial announcement of the node
1049         /// Mostly redundant with the data we store in fields explicitly.
1050         /// Everything else is useful only for sending out for initial routing sync.
1051         /// Not stored if contains excess data to prevent DoS.
1052         pub announcement_message: Option<NodeAnnouncement>
1053 }
1054
1055 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1056         (0, features, required),
1057         (2, last_update, required),
1058         (4, rgb, required),
1059         (6, alias, required),
1060         (8, announcement_message, option),
1061         (10, addresses, vec_type),
1062 });
1063
1064 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1065 ///
1066 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1067 /// attacks. Care must be taken when processing.
1068 #[derive(Clone, Debug, PartialEq, Eq)]
1069 pub struct NodeAlias(pub [u8; 32]);
1070
1071 impl fmt::Display for NodeAlias {
1072         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1073                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1074                 let bytes = self.0.split_at(first_null).0;
1075                 match core::str::from_utf8(bytes) {
1076                         Ok(alias) => PrintableString(alias).fmt(f)?,
1077                         Err(_) => {
1078                                 use core::fmt::Write;
1079                                 for c in bytes.iter().map(|b| *b as char) {
1080                                         // Display printable ASCII characters
1081                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1082                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1083                                         f.write_char(c)?;
1084                                 }
1085                         },
1086                 };
1087                 Ok(())
1088         }
1089 }
1090
1091 impl Writeable for NodeAlias {
1092         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1093                 self.0.write(w)
1094         }
1095 }
1096
1097 impl Readable for NodeAlias {
1098         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1099                 Ok(NodeAlias(Readable::read(r)?))
1100         }
1101 }
1102
1103 #[derive(Clone, Debug, PartialEq, Eq)]
1104 /// Details about a node in the network, known from the network announcement.
1105 pub struct NodeInfo {
1106         /// All valid channels a node has announced
1107         pub channels: Vec<u64>,
1108         /// More information about a node from node_announcement.
1109         /// Optional because we store a Node entry after learning about it from
1110         /// a channel announcement, but before receiving a node announcement.
1111         pub announcement_info: Option<NodeAnnouncementInfo>
1112 }
1113
1114 impl fmt::Display for NodeInfo {
1115         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1116                 write!(f, " channels: {:?}, announcement_info: {:?}",
1117                         &self.channels[..], self.announcement_info)?;
1118                 Ok(())
1119         }
1120 }
1121
1122 impl Writeable for NodeInfo {
1123         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1124                 write_tlv_fields!(writer, {
1125                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1126                         (2, self.announcement_info, option),
1127                         (4, self.channels, vec_type),
1128                 });
1129                 Ok(())
1130         }
1131 }
1132
1133 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1134 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1135 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1136 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1137 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1138
1139 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1140         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1141                 match crate::util::ser::Readable::read(reader) {
1142                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1143                         Err(_) => {
1144                                 copy(reader, &mut sink()).unwrap();
1145                                 return Ok(None)
1146                         },
1147                 };
1148         }
1149 }
1150
1151 impl Readable for NodeInfo {
1152         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1153                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1154                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1155                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1156                 // requires additional complexity and lookups during routing, it ends up being a
1157                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1158                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1159                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1160                 _init_tlv_field_var!(channels, vec_type);
1161
1162                 read_tlv_fields!(reader, {
1163                         (0, _lowest_inbound_channel_fees, option),
1164                         (2, announcement_info_wrap, ignorable),
1165                         (4, channels, vec_type),
1166                 });
1167
1168                 Ok(NodeInfo {
1169                         announcement_info: announcement_info_wrap.map(|w| w.0),
1170                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1171                 })
1172         }
1173 }
1174
1175 const SERIALIZATION_VERSION: u8 = 1;
1176 const MIN_SERIALIZATION_VERSION: u8 = 1;
1177
1178 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1179         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1180                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1181
1182                 self.genesis_hash.write(writer)?;
1183                 let channels = self.channels.read().unwrap();
1184                 (channels.len() as u64).write(writer)?;
1185                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1186                         (*chan_id).write(writer)?;
1187                         chan_info.write(writer)?;
1188                 }
1189                 let nodes = self.nodes.read().unwrap();
1190                 (nodes.len() as u64).write(writer)?;
1191                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1192                         node_id.write(writer)?;
1193                         node_info.write(writer)?;
1194                 }
1195
1196                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1197                 write_tlv_fields!(writer, {
1198                         (1, last_rapid_gossip_sync_timestamp, option),
1199                 });
1200                 Ok(())
1201         }
1202 }
1203
1204 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1205         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1206                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1207
1208                 let genesis_hash: BlockHash = Readable::read(reader)?;
1209                 let channels_count: u64 = Readable::read(reader)?;
1210                 let mut channels = IndexedMap::new();
1211                 for _ in 0..channels_count {
1212                         let chan_id: u64 = Readable::read(reader)?;
1213                         let chan_info = Readable::read(reader)?;
1214                         channels.insert(chan_id, chan_info);
1215                 }
1216                 let nodes_count: u64 = Readable::read(reader)?;
1217                 let mut nodes = IndexedMap::new();
1218                 for _ in 0..nodes_count {
1219                         let node_id = Readable::read(reader)?;
1220                         let node_info = Readable::read(reader)?;
1221                         nodes.insert(node_id, node_info);
1222                 }
1223
1224                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1225                 read_tlv_fields!(reader, {
1226                         (1, last_rapid_gossip_sync_timestamp, option),
1227                 });
1228
1229                 Ok(NetworkGraph {
1230                         secp_ctx: Secp256k1::verification_only(),
1231                         genesis_hash,
1232                         logger,
1233                         channels: RwLock::new(channels),
1234                         nodes: RwLock::new(nodes),
1235                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1236                         removed_nodes: Mutex::new(HashMap::new()),
1237                         removed_channels: Mutex::new(HashMap::new()),
1238                         pending_checks: utxo::PendingChecks::new(),
1239                 })
1240         }
1241 }
1242
1243 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1244         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1245                 writeln!(f, "Network map\n[Channels]")?;
1246                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1247                         writeln!(f, " {}: {}", key, val)?;
1248                 }
1249                 writeln!(f, "[Nodes]")?;
1250                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1251                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1252                 }
1253                 Ok(())
1254         }
1255 }
1256
1257 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1258 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1259         fn eq(&self, other: &Self) -> bool {
1260                 self.genesis_hash == other.genesis_hash &&
1261                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1262                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1263         }
1264 }
1265
1266 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1267         /// Creates a new, empty, network graph.
1268         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1269                 Self {
1270                         secp_ctx: Secp256k1::verification_only(),
1271                         genesis_hash,
1272                         logger,
1273                         channels: RwLock::new(IndexedMap::new()),
1274                         nodes: RwLock::new(IndexedMap::new()),
1275                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1276                         removed_channels: Mutex::new(HashMap::new()),
1277                         removed_nodes: Mutex::new(HashMap::new()),
1278                         pending_checks: utxo::PendingChecks::new(),
1279                 }
1280         }
1281
1282         /// Returns a read-only view of the network graph.
1283         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1284                 let channels = self.channels.read().unwrap();
1285                 let nodes = self.nodes.read().unwrap();
1286                 ReadOnlyNetworkGraph {
1287                         channels,
1288                         nodes,
1289                 }
1290         }
1291
1292         /// The unix timestamp provided by the most recent rapid gossip sync.
1293         /// It will be set by the rapid sync process after every sync completion.
1294         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1295                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1296         }
1297
1298         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1299         /// This should be done automatically by the rapid sync process after every sync completion.
1300         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1301                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1302         }
1303
1304         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1305         /// purposes.
1306         #[cfg(test)]
1307         pub fn clear_nodes_announcement_info(&self) {
1308                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1309                         node.1.announcement_info = None;
1310                 }
1311         }
1312
1313         /// For an already known node (from channel announcements), update its stored properties from a
1314         /// given node announcement.
1315         ///
1316         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1317         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1318         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1319         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1320                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1321                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1322                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1323         }
1324
1325         /// For an already known node (from channel announcements), update its stored properties from a
1326         /// given node announcement without verifying the associated signatures. Because we aren't
1327         /// given the associated signatures here we cannot relay the node announcement to any of our
1328         /// peers.
1329         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1330                 self.update_node_from_announcement_intern(msg, None)
1331         }
1332
1333         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1334                 let mut nodes = self.nodes.write().unwrap();
1335                 match nodes.get_mut(&msg.node_id) {
1336                         None => {
1337                                 core::mem::drop(nodes);
1338                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1339                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1340                         },
1341                         Some(node) => {
1342                                 if let Some(node_info) = node.announcement_info.as_ref() {
1343                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1344                                         // updates to ensure you always have the latest one, only vaguely suggesting
1345                                         // that it be at least the current time.
1346                                         if node_info.last_update  > msg.timestamp {
1347                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1348                                         } else if node_info.last_update  == msg.timestamp {
1349                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1350                                         }
1351                                 }
1352
1353                                 let should_relay =
1354                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1355                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1356                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1357                                 node.announcement_info = Some(NodeAnnouncementInfo {
1358                                         features: msg.features.clone(),
1359                                         last_update: msg.timestamp,
1360                                         rgb: msg.rgb,
1361                                         alias: NodeAlias(msg.alias),
1362                                         addresses: msg.addresses.clone(),
1363                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1364                                 });
1365
1366                                 Ok(())
1367                         }
1368                 }
1369         }
1370
1371         /// Store or update channel info from a channel announcement.
1372         ///
1373         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1374         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1375         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1376         ///
1377         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1378         /// the corresponding UTXO exists on chain and is correctly-formatted.
1379         pub fn update_channel_from_announcement<U: Deref>(
1380                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1381         ) -> Result<(), LightningError>
1382         where
1383                 U::Target: UtxoLookup,
1384         {
1385                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1386                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1387                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1388                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1389                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1390                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1391         }
1392
1393         /// Store or update channel info from a channel announcement without verifying the associated
1394         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1395         /// channel announcement to any of our peers.
1396         ///
1397         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1398         /// the corresponding UTXO exists on chain and is correctly-formatted.
1399         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1400                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1401         ) -> Result<(), LightningError>
1402         where
1403                 U::Target: UtxoLookup,
1404         {
1405                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1406         }
1407
1408         /// Update channel from partial announcement data received via rapid gossip sync
1409         ///
1410         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1411         /// rapid gossip sync server)
1412         ///
1413         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1414         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1415                 if node_id_1 == node_id_2 {
1416                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1417                 };
1418
1419                 let node_1 = NodeId::from_pubkey(&node_id_1);
1420                 let node_2 = NodeId::from_pubkey(&node_id_2);
1421                 let channel_info = ChannelInfo {
1422                         features,
1423                         node_one: node_1.clone(),
1424                         one_to_two: None,
1425                         node_two: node_2.clone(),
1426                         two_to_one: None,
1427                         capacity_sats: None,
1428                         announcement_message: None,
1429                         announcement_received_time: timestamp,
1430                 };
1431
1432                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1433         }
1434
1435         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1436                 let mut channels = self.channels.write().unwrap();
1437                 let mut nodes = self.nodes.write().unwrap();
1438
1439                 let node_id_a = channel_info.node_one.clone();
1440                 let node_id_b = channel_info.node_two.clone();
1441
1442                 match channels.entry(short_channel_id) {
1443                         IndexedMapEntry::Occupied(mut entry) => {
1444                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1445                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1446                                 //exactly how...
1447                                 if utxo_value.is_some() {
1448                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1449                                         // only sometimes returns results. In any case remove the previous entry. Note
1450                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1451                                         // do that because
1452                                         // a) we don't *require* a UTXO provider that always returns results.
1453                                         // b) we don't track UTXOs of channels we know about and remove them if they
1454                                         //    get reorg'd out.
1455                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1456                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1457                                         *entry.get_mut() = channel_info;
1458                                 } else {
1459                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1460                                 }
1461                         },
1462                         IndexedMapEntry::Vacant(entry) => {
1463                                 entry.insert(channel_info);
1464                         }
1465                 };
1466
1467                 for current_node_id in [node_id_a, node_id_b].iter() {
1468                         match nodes.entry(current_node_id.clone()) {
1469                                 IndexedMapEntry::Occupied(node_entry) => {
1470                                         node_entry.into_mut().channels.push(short_channel_id);
1471                                 },
1472                                 IndexedMapEntry::Vacant(node_entry) => {
1473                                         node_entry.insert(NodeInfo {
1474                                                 channels: vec!(short_channel_id),
1475                                                 announcement_info: None,
1476                                         });
1477                                 }
1478                         };
1479                 };
1480
1481                 Ok(())
1482         }
1483
1484         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1485                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1486         ) -> Result<(), LightningError>
1487         where
1488                 U::Target: UtxoLookup,
1489         {
1490                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1491                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1492                 }
1493
1494                 {
1495                         let channels = self.channels.read().unwrap();
1496
1497                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1498                                 if chan.capacity_sats.is_some() {
1499                                         // If we'd previously looked up the channel on-chain and checked the script
1500                                         // against what appears on-chain, ignore the duplicate announcement.
1501                                         //
1502                                         // Because a reorg could replace one channel with another at the same SCID, if
1503                                         // the channel appears to be different, we re-validate. This doesn't expose us
1504                                         // to any more DoS risk than not, as a peer can always flood us with
1505                                         // randomly-generated SCID values anyway.
1506                                         //
1507                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1508                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1509                                         // if the peers on the channel changed anyway.
1510                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1511                                                 return Err(LightningError {
1512                                                         err: "Already have chain-validated channel".to_owned(),
1513                                                         action: ErrorAction::IgnoreDuplicateGossip
1514                                                 });
1515                                         }
1516                                 } else if utxo_lookup.is_none() {
1517                                         // Similarly, if we can't check the chain right now anyway, ignore the
1518                                         // duplicate announcement without bothering to take the channels write lock.
1519                                         return Err(LightningError {
1520                                                 err: "Already have non-chain-validated channel".to_owned(),
1521                                                 action: ErrorAction::IgnoreDuplicateGossip
1522                                         });
1523                                 }
1524                         }
1525                 }
1526
1527                 {
1528                         let removed_channels = self.removed_channels.lock().unwrap();
1529                         let removed_nodes = self.removed_nodes.lock().unwrap();
1530                         if removed_channels.contains_key(&msg.short_channel_id) ||
1531                                 removed_nodes.contains_key(&msg.node_id_1) ||
1532                                 removed_nodes.contains_key(&msg.node_id_2) {
1533                                 return Err(LightningError{
1534                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1535                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1536                         }
1537                 }
1538
1539                 let utxo_value = self.pending_checks.check_channel_announcement(
1540                         utxo_lookup, msg, full_msg)?;
1541
1542                 #[allow(unused_mut, unused_assignments)]
1543                 let mut announcement_received_time = 0;
1544                 #[cfg(feature = "std")]
1545                 {
1546                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1547                 }
1548
1549                 let chan_info = ChannelInfo {
1550                         features: msg.features.clone(),
1551                         node_one: msg.node_id_1,
1552                         one_to_two: None,
1553                         node_two: msg.node_id_2,
1554                         two_to_one: None,
1555                         capacity_sats: utxo_value,
1556                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1557                                 { full_msg.cloned() } else { None },
1558                         announcement_received_time,
1559                 };
1560
1561                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1562
1563                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1564                 Ok(())
1565         }
1566
1567         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1568         /// If permanent, removes a channel from the local storage.
1569         /// May cause the removal of nodes too, if this was their last channel.
1570         /// If not permanent, makes channels unavailable for routing.
1571         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1572                 #[cfg(feature = "std")]
1573                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1574                 #[cfg(not(feature = "std"))]
1575                 let current_time_unix = None;
1576
1577                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1578         }
1579
1580         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1581         /// If permanent, removes a channel from the local storage.
1582         /// May cause the removal of nodes too, if this was their last channel.
1583         /// If not permanent, makes channels unavailable for routing.
1584         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1585                 let mut channels = self.channels.write().unwrap();
1586                 if is_permanent {
1587                         if let Some(chan) = channels.remove(&short_channel_id) {
1588                                 let mut nodes = self.nodes.write().unwrap();
1589                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1590                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1591                         }
1592                 } else {
1593                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1594                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1595                                         one_to_two.enabled = false;
1596                                 }
1597                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1598                                         two_to_one.enabled = false;
1599                                 }
1600                         }
1601                 }
1602         }
1603
1604         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1605         /// from local storage.
1606         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1607                 #[cfg(feature = "std")]
1608                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1609                 #[cfg(not(feature = "std"))]
1610                 let current_time_unix = None;
1611
1612                 let node_id = NodeId::from_pubkey(node_id);
1613                 let mut channels = self.channels.write().unwrap();
1614                 let mut nodes = self.nodes.write().unwrap();
1615                 let mut removed_channels = self.removed_channels.lock().unwrap();
1616                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1617
1618                 if let Some(node) = nodes.remove(&node_id) {
1619                         for scid in node.channels.iter() {
1620                                 if let Some(chan_info) = channels.remove(scid) {
1621                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1622                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1623                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1624                                                         *scid != *chan_id
1625                                                 });
1626                                                 if other_node_entry.get().channels.is_empty() {
1627                                                         other_node_entry.remove_entry();
1628                                                 }
1629                                         }
1630                                         removed_channels.insert(*scid, current_time_unix);
1631                                 }
1632                         }
1633                         removed_nodes.insert(node_id, current_time_unix);
1634                 }
1635         }
1636
1637         #[cfg(feature = "std")]
1638         /// Removes information about channels that we haven't heard any updates about in some time.
1639         /// This can be used regularly to prune the network graph of channels that likely no longer
1640         /// exist.
1641         ///
1642         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1643         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1644         /// pruning occur for updates which are at least two weeks old, which we implement here.
1645         ///
1646         /// Note that for users of the `lightning-background-processor` crate this method may be
1647         /// automatically called regularly for you.
1648         ///
1649         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1650         /// in the map for a while so that these can be resynced from gossip in the future.
1651         ///
1652         /// This method is only available with the `std` feature. See
1653         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1654         pub fn remove_stale_channels_and_tracking(&self) {
1655                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1656                 self.remove_stale_channels_and_tracking_with_time(time);
1657         }
1658
1659         /// Removes information about channels that we haven't heard any updates about in some time.
1660         /// This can be used regularly to prune the network graph of channels that likely no longer
1661         /// exist.
1662         ///
1663         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1664         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1665         /// pruning occur for updates which are at least two weeks old, which we implement here.
1666         ///
1667         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1668         /// in the map for a while so that these can be resynced from gossip in the future.
1669         ///
1670         /// This function takes the current unix time as an argument. For users with the `std` feature
1671         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1672         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1673                 let mut channels = self.channels.write().unwrap();
1674                 // Time out if we haven't received an update in at least 14 days.
1675                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1676                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1677                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1678                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1679                 // time.
1680                 let mut scids_to_remove = Vec::new();
1681                 for (scid, info) in channels.unordered_iter_mut() {
1682                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1683                                 info.one_to_two = None;
1684                         }
1685                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1686                                 info.two_to_one = None;
1687                         }
1688                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1689                                 // We check the announcement_received_time here to ensure we don't drop
1690                                 // announcements that we just received and are just waiting for our peer to send a
1691                                 // channel_update for.
1692                                 if info.announcement_received_time < min_time_unix as u64 {
1693                                         scids_to_remove.push(*scid);
1694                                 }
1695                         }
1696                 }
1697                 if !scids_to_remove.is_empty() {
1698                         let mut nodes = self.nodes.write().unwrap();
1699                         for scid in scids_to_remove {
1700                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1701                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1702                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1703                         }
1704                 }
1705
1706                 let should_keep_tracking = |time: &mut Option<u64>| {
1707                         if let Some(time) = time {
1708                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1709                         } else {
1710                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1711                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1712                                 // of this function.
1713                                 #[cfg(feature = "no-std")]
1714                                 {
1715                                         let mut tracked_time = Some(current_time_unix);
1716                                         core::mem::swap(time, &mut tracked_time);
1717                                         return true;
1718                                 }
1719                                 #[allow(unreachable_code)]
1720                                 false
1721                         }};
1722
1723                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1724                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1725         }
1726
1727         /// For an already known (from announcement) channel, update info about one of the directions
1728         /// of the channel.
1729         ///
1730         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1731         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1732         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1733         ///
1734         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1735         /// materially in the future will be rejected.
1736         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1737                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1738         }
1739
1740         /// For an already known (from announcement) channel, update info about one of the directions
1741         /// of the channel without verifying the associated signatures. Because we aren't given the
1742         /// associated signatures here we cannot relay the channel update to any of our peers.
1743         ///
1744         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1745         /// materially in the future will be rejected.
1746         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1747                 self.update_channel_intern(msg, None, None)
1748         }
1749
1750         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1751                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1752
1753                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1754                 {
1755                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1756                         // disable this check during tests!
1757                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1758                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1759                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1760                         }
1761                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1762                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1763                         }
1764                 }
1765
1766                 let mut channels = self.channels.write().unwrap();
1767                 match channels.get_mut(&msg.short_channel_id) {
1768                         None => {
1769                                 core::mem::drop(channels);
1770                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1771                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1772                         },
1773                         Some(channel) => {
1774                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1775                                         return Err(LightningError{err:
1776                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1777                                                 action: ErrorAction::IgnoreError});
1778                                 }
1779
1780                                 if let Some(capacity_sats) = channel.capacity_sats {
1781                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1782                                         // Don't query UTXO set here to reduce DoS risks.
1783                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1784                                                 return Err(LightningError{err:
1785                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1786                                                         action: ErrorAction::IgnoreError});
1787                                         }
1788                                 }
1789                                 macro_rules! check_update_latest {
1790                                         ($target: expr) => {
1791                                                 if let Some(existing_chan_info) = $target.as_ref() {
1792                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1793                                                         // order updates to ensure you always have the latest one, only
1794                                                         // suggesting  that it be at least the current time. For
1795                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1796                                                         // pruning based on the timestamp field being more than two weeks old,
1797                                                         // but only in the non-normative section.
1798                                                         if existing_chan_info.last_update > msg.timestamp {
1799                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1800                                                         } else if existing_chan_info.last_update == msg.timestamp {
1801                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1802                                                         }
1803                                                 }
1804                                         }
1805                                 }
1806
1807                                 macro_rules! get_new_channel_info {
1808                                         () => { {
1809                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1810                                                         { full_msg.cloned() } else { None };
1811
1812                                                 let updated_channel_update_info = ChannelUpdateInfo {
1813                                                         enabled: chan_enabled,
1814                                                         last_update: msg.timestamp,
1815                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1816                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1817                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1818                                                         fees: RoutingFees {
1819                                                                 base_msat: msg.fee_base_msat,
1820                                                                 proportional_millionths: msg.fee_proportional_millionths,
1821                                                         },
1822                                                         last_update_message
1823                                                 };
1824                                                 Some(updated_channel_update_info)
1825                                         } }
1826                                 }
1827
1828                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1829                                 if msg.flags & 1 == 1 {
1830                                         check_update_latest!(channel.two_to_one);
1831                                         if let Some(sig) = sig {
1832                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1833                                                         err: "Couldn't parse source node pubkey".to_owned(),
1834                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1835                                                 })?, "channel_update");
1836                                         }
1837                                         channel.two_to_one = get_new_channel_info!();
1838                                 } else {
1839                                         check_update_latest!(channel.one_to_two);
1840                                         if let Some(sig) = sig {
1841                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1842                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1843                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1844                                                 })?, "channel_update");
1845                                         }
1846                                         channel.one_to_two = get_new_channel_info!();
1847                                 }
1848                         }
1849                 }
1850
1851                 Ok(())
1852         }
1853
1854         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1855                 macro_rules! remove_from_node {
1856                         ($node_id: expr) => {
1857                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1858                                         entry.get_mut().channels.retain(|chan_id| {
1859                                                 short_channel_id != *chan_id
1860                                         });
1861                                         if entry.get().channels.is_empty() {
1862                                                 entry.remove_entry();
1863                                         }
1864                                 } else {
1865                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1866                                 }
1867                         }
1868                 }
1869
1870                 remove_from_node!(chan.node_one);
1871                 remove_from_node!(chan.node_two);
1872         }
1873 }
1874
1875 impl ReadOnlyNetworkGraph<'_> {
1876         /// Returns all known valid channels' short ids along with announced channel info.
1877         ///
1878         /// (C-not exported) because we don't want to return lifetime'd references
1879         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1880                 &*self.channels
1881         }
1882
1883         /// Returns information on a channel with the given id.
1884         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1885                 self.channels.get(&short_channel_id)
1886         }
1887
1888         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1889         /// Returns the list of channels in the graph
1890         pub fn list_channels(&self) -> Vec<u64> {
1891                 self.channels.unordered_keys().map(|c| *c).collect()
1892         }
1893
1894         /// Returns all known nodes' public keys along with announced node info.
1895         ///
1896         /// (C-not exported) because we don't want to return lifetime'd references
1897         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1898                 &*self.nodes
1899         }
1900
1901         /// Returns information on a node with the given id.
1902         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1903                 self.nodes.get(node_id)
1904         }
1905
1906         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1907         /// Returns the list of nodes in the graph
1908         pub fn list_nodes(&self) -> Vec<NodeId> {
1909                 self.nodes.unordered_keys().map(|n| *n).collect()
1910         }
1911
1912         /// Get network addresses by node id.
1913         /// Returns None if the requested node is completely unknown,
1914         /// or if node announcement for the node was never received.
1915         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1916                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1917                         if let Some(node_info) = node.announcement_info.as_ref() {
1918                                 return Some(node_info.addresses.clone())
1919                         }
1920                 }
1921                 None
1922         }
1923 }
1924
1925 #[cfg(test)]
1926 pub(crate) mod tests {
1927         use crate::ln::channelmanager;
1928         use crate::ln::chan_utils::make_funding_redeemscript;
1929         #[cfg(feature = "std")]
1930         use crate::ln::features::InitFeatures;
1931         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1932         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1933         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1934                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1935                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1936         use crate::util::config::UserConfig;
1937         use crate::util::test_utils;
1938         use crate::util::ser::{ReadableArgs, Writeable};
1939         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1940         use crate::util::scid_utils::scid_from_parts;
1941
1942         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1943         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1944
1945         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1946         use bitcoin::hashes::Hash;
1947         use bitcoin::network::constants::Network;
1948         use bitcoin::blockdata::constants::genesis_block;
1949         use bitcoin::blockdata::script::Script;
1950         use bitcoin::blockdata::transaction::TxOut;
1951
1952         use hex;
1953
1954         use bitcoin::secp256k1::{PublicKey, SecretKey};
1955         use bitcoin::secp256k1::{All, Secp256k1};
1956
1957         use crate::io;
1958         use bitcoin::secp256k1;
1959         use crate::prelude::*;
1960         use crate::sync::Arc;
1961
1962         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1963                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1964                 let logger = Arc::new(test_utils::TestLogger::new());
1965                 NetworkGraph::new(genesis_hash, logger)
1966         }
1967
1968         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1969                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1970                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1971         ) {
1972                 let secp_ctx = Secp256k1::new();
1973                 let logger = Arc::new(test_utils::TestLogger::new());
1974                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1975                 (secp_ctx, gossip_sync)
1976         }
1977
1978         #[test]
1979         #[cfg(feature = "std")]
1980         fn request_full_sync_finite_times() {
1981                 let network_graph = create_network_graph();
1982                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1983                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1984
1985                 assert!(gossip_sync.should_request_full_sync(&node_id));
1986                 assert!(gossip_sync.should_request_full_sync(&node_id));
1987                 assert!(gossip_sync.should_request_full_sync(&node_id));
1988                 assert!(gossip_sync.should_request_full_sync(&node_id));
1989                 assert!(gossip_sync.should_request_full_sync(&node_id));
1990                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1991         }
1992
1993         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1994                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1995                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1996                         features: channelmanager::provided_node_features(&UserConfig::default()),
1997                         timestamp: 100,
1998                         node_id,
1999                         rgb: [0; 3],
2000                         alias: [0; 32],
2001                         addresses: Vec::new(),
2002                         excess_address_data: Vec::new(),
2003                         excess_data: Vec::new(),
2004                 };
2005                 f(&mut unsigned_announcement);
2006                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2007                 NodeAnnouncement {
2008                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2009                         contents: unsigned_announcement
2010                 }
2011         }
2012
2013         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2014                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2015                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2016                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2017                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2018
2019                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2020                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2021                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2022                         short_channel_id: 0,
2023                         node_id_1: NodeId::from_pubkey(&node_id_1),
2024                         node_id_2: NodeId::from_pubkey(&node_id_2),
2025                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2026                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2027                         excess_data: Vec::new(),
2028                 };
2029                 f(&mut unsigned_announcement);
2030                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2031                 ChannelAnnouncement {
2032                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2033                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2034                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2035                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2036                         contents: unsigned_announcement,
2037                 }
2038         }
2039
2040         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2041                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2042                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2043                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2044                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2045         }
2046
2047         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2048                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2049                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2050                         short_channel_id: 0,
2051                         timestamp: 100,
2052                         flags: 0,
2053                         cltv_expiry_delta: 144,
2054                         htlc_minimum_msat: 1_000_000,
2055                         htlc_maximum_msat: 1_000_000,
2056                         fee_base_msat: 10_000,
2057                         fee_proportional_millionths: 20,
2058                         excess_data: Vec::new()
2059                 };
2060                 f(&mut unsigned_channel_update);
2061                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2062                 ChannelUpdate {
2063                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2064                         contents: unsigned_channel_update
2065                 }
2066         }
2067
2068         #[test]
2069         fn handling_node_announcements() {
2070                 let network_graph = create_network_graph();
2071                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2072
2073                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2074                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2075                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2076
2077                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2078                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2079                         Ok(_) => panic!(),
2080                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2081                 };
2082
2083                 {
2084                         // Announce a channel to add a corresponding node.
2085                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2086                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2087                                 Ok(res) => assert!(res),
2088                                 _ => panic!()
2089                         };
2090                 }
2091
2092                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2093                         Ok(res) => assert!(res),
2094                         Err(_) => panic!()
2095                 };
2096
2097                 let fake_msghash = hash_to_message!(&zero_hash);
2098                 match gossip_sync.handle_node_announcement(
2099                         &NodeAnnouncement {
2100                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2101                                 contents: valid_announcement.contents.clone()
2102                 }) {
2103                         Ok(_) => panic!(),
2104                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2105                 };
2106
2107                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2108                         unsigned_announcement.timestamp += 1000;
2109                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2110                 }, node_1_privkey, &secp_ctx);
2111                 // Return false because contains excess data.
2112                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2113                         Ok(res) => assert!(!res),
2114                         Err(_) => panic!()
2115                 };
2116
2117                 // Even though previous announcement was not relayed further, we still accepted it,
2118                 // so we now won't accept announcements before the previous one.
2119                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2120                         unsigned_announcement.timestamp += 1000 - 10;
2121                 }, node_1_privkey, &secp_ctx);
2122                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2123                         Ok(_) => panic!(),
2124                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2125                 };
2126         }
2127
2128         #[test]
2129         fn handling_channel_announcements() {
2130                 let secp_ctx = Secp256k1::new();
2131                 let logger = test_utils::TestLogger::new();
2132
2133                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2134                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2135
2136                 let good_script = get_channel_script(&secp_ctx);
2137                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2138
2139                 // Test if the UTXO lookups were not supported
2140                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2141                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2142                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2143                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2144                         Ok(res) => assert!(res),
2145                         _ => panic!()
2146                 };
2147
2148                 {
2149                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2150                                 None => panic!(),
2151                                 Some(_) => ()
2152                         };
2153                 }
2154
2155                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2156                 // drop new one on the floor, since we can't see any changes.
2157                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2158                         Ok(_) => panic!(),
2159                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2160                 };
2161
2162                 // Test if an associated transaction were not on-chain (or not confirmed).
2163                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2164                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2165                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2166                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2167
2168                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2169                         unsigned_announcement.short_channel_id += 1;
2170                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2171                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2172                         Ok(_) => panic!(),
2173                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2174                 };
2175
2176                 // Now test if the transaction is found in the UTXO set and the script is correct.
2177                 *chain_source.utxo_ret.lock().unwrap() =
2178                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2179                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2180                         unsigned_announcement.short_channel_id += 2;
2181                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2182                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2183                         Ok(res) => assert!(res),
2184                         _ => panic!()
2185                 };
2186
2187                 {
2188                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2189                                 None => panic!(),
2190                                 Some(_) => ()
2191                         };
2192                 }
2193
2194                 // If we receive announcement for the same channel, once we've validated it against the
2195                 // chain, we simply ignore all new (duplicate) announcements.
2196                 *chain_source.utxo_ret.lock().unwrap() =
2197                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2198                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2199                         Ok(_) => panic!(),
2200                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2201                 };
2202
2203                 #[cfg(feature = "std")]
2204                 {
2205                         use std::time::{SystemTime, UNIX_EPOCH};
2206
2207                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2208                         // Mark a node as permanently failed so it's tracked as removed.
2209                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2210
2211                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2212                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2213                                 unsigned_announcement.short_channel_id += 3;
2214                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2215                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2216                                 Ok(_) => panic!(),
2217                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2218                         }
2219
2220                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2221
2222                         // The above channel announcement should be handled as per normal now.
2223                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2224                                 Ok(res) => assert!(res),
2225                                 _ => panic!()
2226                         }
2227                 }
2228
2229                 // Don't relay valid channels with excess data
2230                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2231                         unsigned_announcement.short_channel_id += 4;
2232                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2233                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2234                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2235                         Ok(res) => assert!(!res),
2236                         _ => panic!()
2237                 };
2238
2239                 let mut invalid_sig_announcement = valid_announcement.clone();
2240                 invalid_sig_announcement.contents.excess_data = Vec::new();
2241                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2242                         Ok(_) => panic!(),
2243                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2244                 };
2245
2246                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2247                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2248                         Ok(_) => panic!(),
2249                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2250                 };
2251         }
2252
2253         #[test]
2254         fn handling_channel_update() {
2255                 let secp_ctx = Secp256k1::new();
2256                 let logger = test_utils::TestLogger::new();
2257                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2258                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2259                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2260                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2261
2262                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2263                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2264
2265                 let amount_sats = 1000_000;
2266                 let short_channel_id;
2267
2268                 {
2269                         // Announce a channel we will update
2270                         let good_script = get_channel_script(&secp_ctx);
2271                         *chain_source.utxo_ret.lock().unwrap() =
2272                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2273
2274                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2275                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2276                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2277                                 Ok(_) => (),
2278                                 Err(_) => panic!()
2279                         };
2280
2281                 }
2282
2283                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2284                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2285                         Ok(res) => assert!(res),
2286                         _ => panic!(),
2287                 };
2288
2289                 {
2290                         match network_graph.read_only().channels().get(&short_channel_id) {
2291                                 None => panic!(),
2292                                 Some(channel_info) => {
2293                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2294                                         assert!(channel_info.two_to_one.is_none());
2295                                 }
2296                         };
2297                 }
2298
2299                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2300                         unsigned_channel_update.timestamp += 100;
2301                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2302                 }, node_1_privkey, &secp_ctx);
2303                 // Return false because contains excess data
2304                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2305                         Ok(res) => assert!(!res),
2306                         _ => panic!()
2307                 };
2308
2309                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2310                         unsigned_channel_update.timestamp += 110;
2311                         unsigned_channel_update.short_channel_id += 1;
2312                 }, node_1_privkey, &secp_ctx);
2313                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2314                         Ok(_) => panic!(),
2315                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2316                 };
2317
2318                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2319                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2320                         unsigned_channel_update.timestamp += 110;
2321                 }, node_1_privkey, &secp_ctx);
2322                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2323                         Ok(_) => panic!(),
2324                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2325                 };
2326
2327                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2328                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2329                         unsigned_channel_update.timestamp += 110;
2330                 }, node_1_privkey, &secp_ctx);
2331                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2332                         Ok(_) => panic!(),
2333                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2334                 };
2335
2336                 // Even though previous update was not relayed further, we still accepted it,
2337                 // so we now won't accept update before the previous one.
2338                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2339                         unsigned_channel_update.timestamp += 100;
2340                 }, node_1_privkey, &secp_ctx);
2341                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2342                         Ok(_) => panic!(),
2343                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2344                 };
2345
2346                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2347                         unsigned_channel_update.timestamp += 500;
2348                 }, node_1_privkey, &secp_ctx);
2349                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2350                 let fake_msghash = hash_to_message!(&zero_hash);
2351                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2352                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2353                         Ok(_) => panic!(),
2354                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2355                 };
2356         }
2357
2358         #[test]
2359         fn handling_network_update() {
2360                 let logger = test_utils::TestLogger::new();
2361                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2362                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2363                 let secp_ctx = Secp256k1::new();
2364
2365                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2366                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2367                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2368
2369                 {
2370                         // There is no nodes in the table at the beginning.
2371                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2372                 }
2373
2374                 let short_channel_id;
2375                 {
2376                         // Announce a channel we will update
2377                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2378                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2379                         let chain_source: Option<&test_utils::TestChainSource> = None;
2380                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2381                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2382
2383                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2384                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2385
2386                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2387                                 msg: valid_channel_update,
2388                         });
2389
2390                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2391                 }
2392
2393                 // Non-permanent closing just disables a channel
2394                 {
2395                         match network_graph.read_only().channels().get(&short_channel_id) {
2396                                 None => panic!(),
2397                                 Some(channel_info) => {
2398                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2399                                 }
2400                         };
2401
2402                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2403                                 short_channel_id,
2404                                 is_permanent: false,
2405                         });
2406
2407                         match network_graph.read_only().channels().get(&short_channel_id) {
2408                                 None => panic!(),
2409                                 Some(channel_info) => {
2410                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2411                                 }
2412                         };
2413                 }
2414
2415                 // Permanent closing deletes a channel
2416                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2417                         short_channel_id,
2418                         is_permanent: true,
2419                 });
2420
2421                 assert_eq!(network_graph.read_only().channels().len(), 0);
2422                 // Nodes are also deleted because there are no associated channels anymore
2423                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2424
2425                 {
2426                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2427                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2428
2429                         // Announce a channel to test permanent node failure
2430                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2431                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2432                         let chain_source: Option<&test_utils::TestChainSource> = None;
2433                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2434                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2435
2436                         // Non-permanent node failure does not delete any nodes or channels
2437                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2438                                 node_id: node_2_id,
2439                                 is_permanent: false,
2440                         });
2441
2442                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2443                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2444
2445                         // Permanent node failure deletes node and its channels
2446                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2447                                 node_id: node_2_id,
2448                                 is_permanent: true,
2449                         });
2450
2451                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2452                         // Channels are also deleted because the associated node has been deleted
2453                         assert_eq!(network_graph.read_only().channels().len(), 0);
2454                 }
2455         }
2456
2457         #[test]
2458         fn test_channel_timeouts() {
2459                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2460                 let logger = test_utils::TestLogger::new();
2461                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2462                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2463                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2464                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2465                 let secp_ctx = Secp256k1::new();
2466
2467                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2468                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2469
2470                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2471                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2472                 let chain_source: Option<&test_utils::TestChainSource> = None;
2473                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2474                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2475
2476                 // Submit two channel updates for each channel direction (update.flags bit).
2477                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2478                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2479                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2480
2481                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2482                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2483                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2484
2485                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2486                 assert_eq!(network_graph.read_only().channels().len(), 1);
2487                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2488
2489                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2490                 #[cfg(not(feature = "std"))] {
2491                         // Make sure removed channels are tracked.
2492                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2493                 }
2494                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2495                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2496
2497                 #[cfg(feature = "std")]
2498                 {
2499                         // In std mode, a further check is performed before fully removing the channel -
2500                         // the channel_announcement must have been received at least two weeks ago. We
2501                         // fudge that here by indicating the time has jumped two weeks.
2502                         assert_eq!(network_graph.read_only().channels().len(), 1);
2503                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2504
2505                         // Note that the directional channel information will have been removed already..
2506                         // We want to check that this will work even if *one* of the channel updates is recent,
2507                         // so we should add it with a recent timestamp.
2508                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2509                         use std::time::{SystemTime, UNIX_EPOCH};
2510                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2511                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2512                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2513                         }, node_1_privkey, &secp_ctx);
2514                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2515                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2516                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2517                         // Make sure removed channels are tracked.
2518                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2519                         // Provide a later time so that sufficient time has passed
2520                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2521                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2522                 }
2523
2524                 assert_eq!(network_graph.read_only().channels().len(), 0);
2525                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2526                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2527
2528                 #[cfg(feature = "std")]
2529                 {
2530                         use std::time::{SystemTime, UNIX_EPOCH};
2531
2532                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2533
2534                         // Clear tracked nodes and channels for clean slate
2535                         network_graph.removed_channels.lock().unwrap().clear();
2536                         network_graph.removed_nodes.lock().unwrap().clear();
2537
2538                         // Add a channel and nodes from channel announcement. So our network graph will
2539                         // now only consist of two nodes and one channel between them.
2540                         assert!(network_graph.update_channel_from_announcement(
2541                                 &valid_channel_announcement, &chain_source).is_ok());
2542
2543                         // Mark the channel as permanently failed. This will also remove the two nodes
2544                         // and all of the entries will be tracked as removed.
2545                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2546
2547                         // Should not remove from tracking if insufficient time has passed
2548                         network_graph.remove_stale_channels_and_tracking_with_time(
2549                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2550                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2551
2552                         // Provide a later time so that sufficient time has passed
2553                         network_graph.remove_stale_channels_and_tracking_with_time(
2554                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2555                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2556                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2557                 }
2558
2559                 #[cfg(not(feature = "std"))]
2560                 {
2561                         // When we don't have access to the system clock, the time we started tracking removal will only
2562                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2563                         // only if sufficient time has passed after that first call, will the next call remove it from
2564                         // tracking.
2565                         let removal_time = 1664619654;
2566
2567                         // Clear removed nodes and channels for clean slate
2568                         network_graph.removed_channels.lock().unwrap().clear();
2569                         network_graph.removed_nodes.lock().unwrap().clear();
2570
2571                         // Add a channel and nodes from channel announcement. So our network graph will
2572                         // now only consist of two nodes and one channel between them.
2573                         assert!(network_graph.update_channel_from_announcement(
2574                                 &valid_channel_announcement, &chain_source).is_ok());
2575
2576                         // Mark the channel as permanently failed. This will also remove the two nodes
2577                         // and all of the entries will be tracked as removed.
2578                         network_graph.channel_failed(short_channel_id, true);
2579
2580                         // The first time we call the following, the channel will have a removal time assigned.
2581                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2582                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2583
2584                         // Provide a later time so that sufficient time has passed
2585                         network_graph.remove_stale_channels_and_tracking_with_time(
2586                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2587                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2588                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2589                 }
2590         }
2591
2592         #[test]
2593         fn getting_next_channel_announcements() {
2594                 let network_graph = create_network_graph();
2595                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2596                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2597                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2598
2599                 // Channels were not announced yet.
2600                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2601                 assert!(channels_with_announcements.is_none());
2602
2603                 let short_channel_id;
2604                 {
2605                         // Announce a channel we will update
2606                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2607                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2608                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2609                                 Ok(_) => (),
2610                                 Err(_) => panic!()
2611                         };
2612                 }
2613
2614                 // Contains initial channel announcement now.
2615                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2616                 if let Some(channel_announcements) = channels_with_announcements {
2617                         let (_, ref update_1, ref update_2) = channel_announcements;
2618                         assert_eq!(update_1, &None);
2619                         assert_eq!(update_2, &None);
2620                 } else {
2621                         panic!();
2622                 }
2623
2624                 {
2625                         // Valid channel update
2626                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2627                                 unsigned_channel_update.timestamp = 101;
2628                         }, node_1_privkey, &secp_ctx);
2629                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2630                                 Ok(_) => (),
2631                                 Err(_) => panic!()
2632                         };
2633                 }
2634
2635                 // Now contains an initial announcement and an update.
2636                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2637                 if let Some(channel_announcements) = channels_with_announcements {
2638                         let (_, ref update_1, ref update_2) = channel_announcements;
2639                         assert_ne!(update_1, &None);
2640                         assert_eq!(update_2, &None);
2641                 } else {
2642                         panic!();
2643                 }
2644
2645                 {
2646                         // Channel update with excess data.
2647                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2648                                 unsigned_channel_update.timestamp = 102;
2649                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2650                         }, node_1_privkey, &secp_ctx);
2651                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2652                                 Ok(_) => (),
2653                                 Err(_) => panic!()
2654                         };
2655                 }
2656
2657                 // Test that announcements with excess data won't be returned
2658                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2659                 if let Some(channel_announcements) = channels_with_announcements {
2660                         let (_, ref update_1, ref update_2) = channel_announcements;
2661                         assert_eq!(update_1, &None);
2662                         assert_eq!(update_2, &None);
2663                 } else {
2664                         panic!();
2665                 }
2666
2667                 // Further starting point have no channels after it
2668                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2669                 assert!(channels_with_announcements.is_none());
2670         }
2671
2672         #[test]
2673         fn getting_next_node_announcements() {
2674                 let network_graph = create_network_graph();
2675                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2676                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2677                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2678                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2679
2680                 // No nodes yet.
2681                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2682                 assert!(next_announcements.is_none());
2683
2684                 {
2685                         // Announce a channel to add 2 nodes
2686                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2687                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2688                                 Ok(_) => (),
2689                                 Err(_) => panic!()
2690                         };
2691                 }
2692
2693                 // Nodes were never announced
2694                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2695                 assert!(next_announcements.is_none());
2696
2697                 {
2698                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2699                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2700                                 Ok(_) => (),
2701                                 Err(_) => panic!()
2702                         };
2703
2704                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2705                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2706                                 Ok(_) => (),
2707                                 Err(_) => panic!()
2708                         };
2709                 }
2710
2711                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2712                 assert!(next_announcements.is_some());
2713
2714                 // Skip the first node.
2715                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2716                 assert!(next_announcements.is_some());
2717
2718                 {
2719                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2720                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2721                                 unsigned_announcement.timestamp += 10;
2722                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2723                         }, node_2_privkey, &secp_ctx);
2724                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2725                                 Ok(res) => assert!(!res),
2726                                 Err(_) => panic!()
2727                         };
2728                 }
2729
2730                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2731                 assert!(next_announcements.is_none());
2732         }
2733
2734         #[test]
2735         fn network_graph_serialization() {
2736                 let network_graph = create_network_graph();
2737                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2738
2739                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2740                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2741
2742                 // Announce a channel to add a corresponding node.
2743                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2744                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2745                         Ok(res) => assert!(res),
2746                         _ => panic!()
2747                 };
2748
2749                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2750                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2751                         Ok(_) => (),
2752                         Err(_) => panic!()
2753                 };
2754
2755                 let mut w = test_utils::TestVecWriter(Vec::new());
2756                 assert!(!network_graph.read_only().nodes().is_empty());
2757                 assert!(!network_graph.read_only().channels().is_empty());
2758                 network_graph.write(&mut w).unwrap();
2759
2760                 let logger = Arc::new(test_utils::TestLogger::new());
2761                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2762         }
2763
2764         #[test]
2765         fn network_graph_tlv_serialization() {
2766                 let network_graph = create_network_graph();
2767                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2768
2769                 let mut w = test_utils::TestVecWriter(Vec::new());
2770                 network_graph.write(&mut w).unwrap();
2771
2772                 let logger = Arc::new(test_utils::TestLogger::new());
2773                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2774                 assert!(reassembled_network_graph == network_graph);
2775                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2776         }
2777
2778         #[test]
2779         #[cfg(feature = "std")]
2780         fn calling_sync_routing_table() {
2781                 use std::time::{SystemTime, UNIX_EPOCH};
2782                 use crate::ln::msgs::Init;
2783
2784                 let network_graph = create_network_graph();
2785                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2786                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2787                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2788
2789                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2790
2791                 // It should ignore if gossip_queries feature is not enabled
2792                 {
2793                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2794                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2795                         let events = gossip_sync.get_and_clear_pending_msg_events();
2796                         assert_eq!(events.len(), 0);
2797                 }
2798
2799                 // It should send a gossip_timestamp_filter with the correct information
2800                 {
2801                         let mut features = InitFeatures::empty();
2802                         features.set_gossip_queries_optional();
2803                         let init_msg = Init { features, remote_network_address: None };
2804                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2805                         let events = gossip_sync.get_and_clear_pending_msg_events();
2806                         assert_eq!(events.len(), 1);
2807                         match &events[0] {
2808                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2809                                         assert_eq!(node_id, &node_id_1);
2810                                         assert_eq!(msg.chain_hash, chain_hash);
2811                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2812                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2813                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2814                                         assert_eq!(msg.timestamp_range, u32::max_value());
2815                                 },
2816                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2817                         };
2818                 }
2819         }
2820
2821         #[test]
2822         fn handling_query_channel_range() {
2823                 let network_graph = create_network_graph();
2824                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2825
2826                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2827                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2828                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2829                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2830
2831                 let mut scids: Vec<u64> = vec![
2832                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2833                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2834                 ];
2835
2836                 // used for testing multipart reply across blocks
2837                 for block in 100000..=108001 {
2838                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2839                 }
2840
2841                 // used for testing resumption on same block
2842                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2843
2844                 for scid in scids {
2845                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2846                                 unsigned_announcement.short_channel_id = scid;
2847                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2848                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2849                                 Ok(_) => (),
2850                                 _ => panic!()
2851                         };
2852                 }
2853
2854                 // Error when number_of_blocks=0
2855                 do_handling_query_channel_range(
2856                         &gossip_sync,
2857                         &node_id_2,
2858                         QueryChannelRange {
2859                                 chain_hash: chain_hash.clone(),
2860                                 first_blocknum: 0,
2861                                 number_of_blocks: 0,
2862                         },
2863                         false,
2864                         vec![ReplyChannelRange {
2865                                 chain_hash: chain_hash.clone(),
2866                                 first_blocknum: 0,
2867                                 number_of_blocks: 0,
2868                                 sync_complete: true,
2869                                 short_channel_ids: vec![]
2870                         }]
2871                 );
2872
2873                 // Error when wrong chain
2874                 do_handling_query_channel_range(
2875                         &gossip_sync,
2876                         &node_id_2,
2877                         QueryChannelRange {
2878                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2879                                 first_blocknum: 0,
2880                                 number_of_blocks: 0xffff_ffff,
2881                         },
2882                         false,
2883                         vec![ReplyChannelRange {
2884                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2885                                 first_blocknum: 0,
2886                                 number_of_blocks: 0xffff_ffff,
2887                                 sync_complete: true,
2888                                 short_channel_ids: vec![],
2889                         }]
2890                 );
2891
2892                 // Error when first_blocknum > 0xffffff
2893                 do_handling_query_channel_range(
2894                         &gossip_sync,
2895                         &node_id_2,
2896                         QueryChannelRange {
2897                                 chain_hash: chain_hash.clone(),
2898                                 first_blocknum: 0x01000000,
2899                                 number_of_blocks: 0xffff_ffff,
2900                         },
2901                         false,
2902                         vec![ReplyChannelRange {
2903                                 chain_hash: chain_hash.clone(),
2904                                 first_blocknum: 0x01000000,
2905                                 number_of_blocks: 0xffff_ffff,
2906                                 sync_complete: true,
2907                                 short_channel_ids: vec![]
2908                         }]
2909                 );
2910
2911                 // Empty reply when max valid SCID block num
2912                 do_handling_query_channel_range(
2913                         &gossip_sync,
2914                         &node_id_2,
2915                         QueryChannelRange {
2916                                 chain_hash: chain_hash.clone(),
2917                                 first_blocknum: 0xffffff,
2918                                 number_of_blocks: 1,
2919                         },
2920                         true,
2921                         vec![
2922                                 ReplyChannelRange {
2923                                         chain_hash: chain_hash.clone(),
2924                                         first_blocknum: 0xffffff,
2925                                         number_of_blocks: 1,
2926                                         sync_complete: true,
2927                                         short_channel_ids: vec![]
2928                                 },
2929                         ]
2930                 );
2931
2932                 // No results in valid query range
2933                 do_handling_query_channel_range(
2934                         &gossip_sync,
2935                         &node_id_2,
2936                         QueryChannelRange {
2937                                 chain_hash: chain_hash.clone(),
2938                                 first_blocknum: 1000,
2939                                 number_of_blocks: 1000,
2940                         },
2941                         true,
2942                         vec![
2943                                 ReplyChannelRange {
2944                                         chain_hash: chain_hash.clone(),
2945                                         first_blocknum: 1000,
2946                                         number_of_blocks: 1000,
2947                                         sync_complete: true,
2948                                         short_channel_ids: vec![],
2949                                 }
2950                         ]
2951                 );
2952
2953                 // Overflow first_blocknum + number_of_blocks
2954                 do_handling_query_channel_range(
2955                         &gossip_sync,
2956                         &node_id_2,
2957                         QueryChannelRange {
2958                                 chain_hash: chain_hash.clone(),
2959                                 first_blocknum: 0xfe0000,
2960                                 number_of_blocks: 0xffffffff,
2961                         },
2962                         true,
2963                         vec![
2964                                 ReplyChannelRange {
2965                                         chain_hash: chain_hash.clone(),
2966                                         first_blocknum: 0xfe0000,
2967                                         number_of_blocks: 0xffffffff - 0xfe0000,
2968                                         sync_complete: true,
2969                                         short_channel_ids: vec![
2970                                                 0xfffffe_ffffff_ffff, // max
2971                                         ]
2972                                 }
2973                         ]
2974                 );
2975
2976                 // Single block exactly full
2977                 do_handling_query_channel_range(
2978                         &gossip_sync,
2979                         &node_id_2,
2980                         QueryChannelRange {
2981                                 chain_hash: chain_hash.clone(),
2982                                 first_blocknum: 100000,
2983                                 number_of_blocks: 8000,
2984                         },
2985                         true,
2986                         vec![
2987                                 ReplyChannelRange {
2988                                         chain_hash: chain_hash.clone(),
2989                                         first_blocknum: 100000,
2990                                         number_of_blocks: 8000,
2991                                         sync_complete: true,
2992                                         short_channel_ids: (100000..=107999)
2993                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2994                                                 .collect(),
2995                                 },
2996                         ]
2997                 );
2998
2999                 // Multiple split on new block
3000                 do_handling_query_channel_range(
3001                         &gossip_sync,
3002                         &node_id_2,
3003                         QueryChannelRange {
3004                                 chain_hash: chain_hash.clone(),
3005                                 first_blocknum: 100000,
3006                                 number_of_blocks: 8001,
3007                         },
3008                         true,
3009                         vec![
3010                                 ReplyChannelRange {
3011                                         chain_hash: chain_hash.clone(),
3012                                         first_blocknum: 100000,
3013                                         number_of_blocks: 7999,
3014                                         sync_complete: false,
3015                                         short_channel_ids: (100000..=107999)
3016                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3017                                                 .collect(),
3018                                 },
3019                                 ReplyChannelRange {
3020                                         chain_hash: chain_hash.clone(),
3021                                         first_blocknum: 107999,
3022                                         number_of_blocks: 2,
3023                                         sync_complete: true,
3024                                         short_channel_ids: vec![
3025                                                 scid_from_parts(108000, 0, 0).unwrap(),
3026                                         ],
3027                                 }
3028                         ]
3029                 );
3030
3031                 // Multiple split on same block
3032                 do_handling_query_channel_range(
3033                         &gossip_sync,
3034                         &node_id_2,
3035                         QueryChannelRange {
3036                                 chain_hash: chain_hash.clone(),
3037                                 first_blocknum: 100002,
3038                                 number_of_blocks: 8000,
3039                         },
3040                         true,
3041                         vec![
3042                                 ReplyChannelRange {
3043                                         chain_hash: chain_hash.clone(),
3044                                         first_blocknum: 100002,
3045                                         number_of_blocks: 7999,
3046                                         sync_complete: false,
3047                                         short_channel_ids: (100002..=108001)
3048                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3049                                                 .collect(),
3050                                 },
3051                                 ReplyChannelRange {
3052                                         chain_hash: chain_hash.clone(),
3053                                         first_blocknum: 108001,
3054                                         number_of_blocks: 1,
3055                                         sync_complete: true,
3056                                         short_channel_ids: vec![
3057                                                 scid_from_parts(108001, 1, 0).unwrap(),
3058                                         ],
3059                                 }
3060                         ]
3061                 );
3062         }
3063
3064         fn do_handling_query_channel_range(
3065                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3066                 test_node_id: &PublicKey,
3067                 msg: QueryChannelRange,
3068                 expected_ok: bool,
3069                 expected_replies: Vec<ReplyChannelRange>
3070         ) {
3071                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3072                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3073                 let query_end_blocknum = msg.end_blocknum();
3074                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3075
3076                 if expected_ok {
3077                         assert!(result.is_ok());
3078                 } else {
3079                         assert!(result.is_err());
3080                 }
3081
3082                 let events = gossip_sync.get_and_clear_pending_msg_events();
3083                 assert_eq!(events.len(), expected_replies.len());
3084
3085                 for i in 0..events.len() {
3086                         let expected_reply = &expected_replies[i];
3087                         match &events[i] {
3088                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3089                                         assert_eq!(node_id, test_node_id);
3090                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3091                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3092                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3093                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3094                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3095
3096                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3097                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3098                                         assert!(msg.first_blocknum >= max_firstblocknum);
3099                                         max_firstblocknum = msg.first_blocknum;
3100                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3101
3102                                         // Check that the last block count is >= the query's end_blocknum
3103                                         if i == events.len() - 1 {
3104                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3105                                         }
3106                                 },
3107                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3108                         }
3109                 }
3110         }
3111
3112         #[test]
3113         fn handling_query_short_channel_ids() {
3114                 let network_graph = create_network_graph();
3115                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3116                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3117                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3118
3119                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3120
3121                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3122                         chain_hash,
3123                         short_channel_ids: vec![0x0003e8_000000_0000],
3124                 });
3125                 assert!(result.is_err());
3126         }
3127
3128         #[test]
3129         fn displays_node_alias() {
3130                 let format_str_alias = |alias: &str| {
3131                         let mut bytes = [0u8; 32];
3132                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3133                         format!("{}", NodeAlias(bytes))
3134                 };
3135
3136                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3137                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3138                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3139
3140                 let format_bytes_alias = |alias: &[u8]| {
3141                         let mut bytes = [0u8; 32];
3142                         bytes[..alias.len()].copy_from_slice(alias);
3143                         format!("{}", NodeAlias(bytes))
3144                 };
3145
3146                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3147                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3148                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3149         }
3150
3151         #[test]
3152         fn channel_info_is_readable() {
3153                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3154                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3155                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3156                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3157                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3158
3159                 // 1. Test encoding/decoding of ChannelUpdateInfo
3160                 let chan_update_info = ChannelUpdateInfo {
3161                         last_update: 23,
3162                         enabled: true,
3163                         cltv_expiry_delta: 42,
3164                         htlc_minimum_msat: 1234,
3165                         htlc_maximum_msat: 5678,
3166                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3167                         last_update_message: None,
3168                 };
3169
3170                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3171                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3172
3173                 // First make sure we can read ChannelUpdateInfos we just wrote
3174                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3175                 assert_eq!(chan_update_info, read_chan_update_info);
3176
3177                 // Check the serialization hasn't changed.
3178                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3179                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3180
3181                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3182                 // or the ChannelUpdate enclosed with `last_update_message`.
3183                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3184                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3185                 assert!(read_chan_update_info_res.is_err());
3186
3187                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3188                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3189                 assert!(read_chan_update_info_res.is_err());
3190
3191                 // 2. Test encoding/decoding of ChannelInfo
3192                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3193                 let chan_info_none_updates = ChannelInfo {
3194                         features: channelmanager::provided_channel_features(&config),
3195                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3196                         one_to_two: None,
3197                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3198                         two_to_one: None,
3199                         capacity_sats: None,
3200                         announcement_message: None,
3201                         announcement_received_time: 87654,
3202                 };
3203
3204                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3205                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3206
3207                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3208                 assert_eq!(chan_info_none_updates, read_chan_info);
3209
3210                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3211                 let chan_info_some_updates = ChannelInfo {
3212                         features: channelmanager::provided_channel_features(&config),
3213                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3214                         one_to_two: Some(chan_update_info.clone()),
3215                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3216                         two_to_one: Some(chan_update_info.clone()),
3217                         capacity_sats: None,
3218                         announcement_message: None,
3219                         announcement_received_time: 87654,
3220                 };
3221
3222                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3223                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3224
3225                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3226                 assert_eq!(chan_info_some_updates, read_chan_info);
3227
3228                 // Check the serialization hasn't changed.
3229                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3230                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3231
3232                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3233                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3234                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3235                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3236                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3237                 assert_eq!(read_chan_info.one_to_two, None);
3238                 assert_eq!(read_chan_info.two_to_one, None);
3239
3240                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3241                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3242                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3243                 assert_eq!(read_chan_info.one_to_two, None);
3244                 assert_eq!(read_chan_info.two_to_one, None);
3245         }
3246
3247         #[test]
3248         fn node_info_is_readable() {
3249                 use std::convert::TryFrom;
3250
3251                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3252                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3253                 let valid_node_ann_info = NodeAnnouncementInfo {
3254                         features: channelmanager::provided_node_features(&UserConfig::default()),
3255                         last_update: 0,
3256                         rgb: [0u8; 3],
3257                         alias: NodeAlias([0u8; 32]),
3258                         addresses: vec![valid_netaddr],
3259                         announcement_message: None,
3260                 };
3261
3262                 let mut encoded_valid_node_ann_info = Vec::new();
3263                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3264                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3265                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3266
3267                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3268                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3269                 assert!(read_invalid_node_ann_info_res.is_err());
3270
3271                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3272                 let valid_node_info = NodeInfo {
3273                         channels: Vec::new(),
3274                         announcement_info: Some(valid_node_ann_info),
3275                 };
3276
3277                 let mut encoded_valid_node_info = Vec::new();
3278                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3279                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3280                 assert_eq!(read_valid_node_info, valid_node_info);
3281
3282                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3283                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3284                 assert_eq!(read_invalid_node_info.announcement_info, None);
3285         }
3286 }
3287
3288 #[cfg(all(test, feature = "_bench_unstable"))]
3289 mod benches {
3290         use super::*;
3291
3292         use test::Bencher;
3293         use std::io::Read;
3294
3295         #[bench]
3296         fn read_network_graph(bench: &mut Bencher) {
3297                 let logger = crate::util::test_utils::TestLogger::new();
3298                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3299                 let mut v = Vec::new();
3300                 d.read_to_end(&mut v).unwrap();
3301                 bench.iter(|| {
3302                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3303                 });
3304         }
3305
3306         #[bench]
3307         fn write_network_graph(bench: &mut Bencher) {
3308                 let logger = crate::util::test_utils::TestLogger::new();
3309                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3310                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3311                 bench.iter(|| {
3312                         let _ = net_graph.encode();
3313                 });
3314         }
3315 }