ae2378c38242b82fc467f1bc9322ca588ec75cc4
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use bitcoin::network::constants::Network;
22 use bitcoin::blockdata::constants::genesis_block;
23
24 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
25 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
26 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
27 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
28 use crate::ln::msgs;
29 use crate::routing::utxo::{self, UtxoLookup};
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
49
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
51 /// suggestion.
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
53
54 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
55 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
56
57 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
58 /// refuse to relay the message.
59 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
60
61 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
62 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
63 const MAX_SCIDS_PER_REPLY: usize = 8000;
64
65 /// Represents the compressed public key of a node
66 #[derive(Clone, Copy)]
67 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
68
69 impl NodeId {
70         /// Create a new NodeId from a public key
71         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
72                 NodeId(pubkey.serialize())
73         }
74
75         /// Get the public key slice from this NodeId
76         pub fn as_slice(&self) -> &[u8] {
77                 &self.0
78         }
79 }
80
81 impl fmt::Debug for NodeId {
82         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83                 write!(f, "NodeId({})", log_bytes!(self.0))
84         }
85 }
86 impl fmt::Display for NodeId {
87         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
88                 write!(f, "{}", log_bytes!(self.0))
89         }
90 }
91
92 impl core::hash::Hash for NodeId {
93         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
94                 self.0.hash(hasher);
95         }
96 }
97
98 impl Eq for NodeId {}
99
100 impl PartialEq for NodeId {
101         fn eq(&self, other: &Self) -> bool {
102                 self.0[..] == other.0[..]
103         }
104 }
105
106 impl cmp::PartialOrd for NodeId {
107         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
108                 Some(self.cmp(other))
109         }
110 }
111
112 impl Ord for NodeId {
113         fn cmp(&self, other: &Self) -> cmp::Ordering {
114                 self.0[..].cmp(&other.0[..])
115         }
116 }
117
118 impl Writeable for NodeId {
119         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
120                 writer.write_all(&self.0)?;
121                 Ok(())
122         }
123 }
124
125 impl Readable for NodeId {
126         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
127                 let mut buf = [0; PUBLIC_KEY_SIZE];
128                 reader.read_exact(&mut buf)?;
129                 Ok(Self(buf))
130         }
131 }
132
133 /// Represents the network as nodes and channels between them
134 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
135         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
136         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
137         genesis_hash: BlockHash,
138         logger: L,
139         // Lock order: channels -> nodes
140         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
141         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
142         // Lock order: removed_channels -> removed_nodes
143         //
144         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
145         // of `std::time::Instant`s for a few reasons:
146         //   * We want it to be possible to do tracking in no-std environments where we can compare
147         //     a provided current UNIX timestamp with the time at which we started tracking.
148         //   * In the future, if we decide to persist these maps, they will already be serializable.
149         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
150         //     environment should be practical over the time period we are considering (on the order of a
151         //     week).
152         //
153         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
154         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
155         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
156         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
157         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
158         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
159         /// that once some time passes, we can potentially resync it from gossip again.
160         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
161         /// Announcement messages which are awaiting an on-chain lookup to be processed.
162         pub(super) pending_checks: utxo::PendingChecks,
163 }
164
165 /// A read-only view of [`NetworkGraph`].
166 pub struct ReadOnlyNetworkGraph<'a> {
167         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
168         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
169 }
170
171 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
172 /// return packet by a node along the route. See [BOLT #4] for details.
173 ///
174 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
175 #[derive(Clone, Debug, PartialEq, Eq)]
176 pub enum NetworkUpdate {
177         /// An error indicating a `channel_update` messages should be applied via
178         /// [`NetworkGraph::update_channel`].
179         ChannelUpdateMessage {
180                 /// The update to apply via [`NetworkGraph::update_channel`].
181                 msg: ChannelUpdate,
182         },
183         /// An error indicating that a channel failed to route a payment, which should be applied via
184         /// [`NetworkGraph::channel_failed`].
185         ChannelFailure {
186                 /// The short channel id of the closed channel.
187                 short_channel_id: u64,
188                 /// Whether the channel should be permanently removed or temporarily disabled until a new
189                 /// `channel_update` message is received.
190                 is_permanent: bool,
191         },
192         /// An error indicating that a node failed to route a payment, which should be applied via
193         /// [`NetworkGraph::node_failed_permanent`] if permanent.
194         NodeFailure {
195                 /// The node id of the failed node.
196                 node_id: PublicKey,
197                 /// Whether the node should be permanently removed from consideration or can be restored
198                 /// when a new `channel_update` message is received.
199                 is_permanent: bool,
200         }
201 }
202
203 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
204         (0, ChannelUpdateMessage) => {
205                 (0, msg, required),
206         },
207         (2, ChannelFailure) => {
208                 (0, short_channel_id, required),
209                 (2, is_permanent, required),
210         },
211         (4, NodeFailure) => {
212                 (0, node_id, required),
213                 (2, is_permanent, required),
214         },
215 );
216
217 /// Receives and validates network updates from peers,
218 /// stores authentic and relevant data as a network graph.
219 /// This network graph is then used for routing payments.
220 /// Provides interface to help with initial routing sync by
221 /// serving historical announcements.
222 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
223 where U::Target: UtxoLookup, L::Target: Logger
224 {
225         network_graph: G,
226         utxo_lookup: Option<U>,
227         #[cfg(feature = "std")]
228         full_syncs_requested: AtomicUsize,
229         pending_events: Mutex<Vec<MessageSendEvent>>,
230         logger: L,
231 }
232
233 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
234 where U::Target: UtxoLookup, L::Target: Logger
235 {
236         /// Creates a new tracker of the actual state of the network of channels and nodes,
237         /// assuming an existing Network Graph.
238         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
239         /// correct, and the announcement is signed with channel owners' keys.
240         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
241                 P2PGossipSync {
242                         network_graph,
243                         #[cfg(feature = "std")]
244                         full_syncs_requested: AtomicUsize::new(0),
245                         utxo_lookup,
246                         pending_events: Mutex::new(vec![]),
247                         logger,
248                 }
249         }
250
251         /// Adds a provider used to check new announcements. Does not affect
252         /// existing announcements unless they are updated.
253         /// Add, update or remove the provider would replace the current one.
254         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
255                 self.utxo_lookup = utxo_lookup;
256         }
257
258         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
259         /// [`P2PGossipSync::new`].
260         ///
261         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
262         pub fn network_graph(&self) -> &G {
263                 &self.network_graph
264         }
265
266         #[cfg(feature = "std")]
267         /// Returns true when a full routing table sync should be performed with a peer.
268         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
269                 //TODO: Determine whether to request a full sync based on the network map.
270                 const FULL_SYNCS_TO_REQUEST: usize = 5;
271                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
272                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
273                         true
274                 } else {
275                         false
276                 }
277         }
278
279         /// Used to broadcast forward gossip messages which were validated async.
280         ///
281         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
282         /// data.
283         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
284                 match &mut ev {
285                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
286                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
287                                 if update_msg.as_ref()
288                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
289                                 {
290                                         *update_msg = None;
291                                 }
292                         },
293                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
294                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
295                         },
296                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
297                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
298                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
299                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
300                                 {
301                                         return;
302                                 }
303                         },
304                         _ => return,
305                 }
306                 self.pending_events.lock().unwrap().push(ev);
307         }
308 }
309
310 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
311         /// Handles any network updates originating from [`Event`]s.
312         ///
313         /// [`Event`]: crate::util::events::Event
314         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
315                 match *network_update {
316                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
317                                 let short_channel_id = msg.contents.short_channel_id;
318                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
319                                 let status = if is_enabled { "enabled" } else { "disabled" };
320                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
321                                 let _ = self.update_channel(msg);
322                         },
323                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
324                                 let action = if is_permanent { "Removing" } else { "Disabling" };
325                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
326                                 self.channel_failed(short_channel_id, is_permanent);
327                         },
328                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
329                                 if is_permanent {
330                                         log_debug!(self.logger,
331                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
332                                         self.node_failed_permanent(node_id);
333                                 };
334                         },
335                 }
336         }
337 }
338
339 macro_rules! secp_verify_sig {
340         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
341                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
342                         Ok(_) => {},
343                         Err(_) => {
344                                 return Err(LightningError {
345                                         err: format!("Invalid signature on {} message", $msg_type),
346                                         action: ErrorAction::SendWarningMessage {
347                                                 msg: msgs::WarningMessage {
348                                                         channel_id: [0; 32],
349                                                         data: format!("Invalid signature on {} message", $msg_type),
350                                                 },
351                                                 log_level: Level::Trace,
352                                         },
353                                 });
354                         },
355                 }
356         };
357 }
358
359 macro_rules! get_pubkey_from_node_id {
360         ( $node_id: expr, $msg_type: expr ) => {
361                 PublicKey::from_slice($node_id.as_slice())
362                         .map_err(|_| LightningError {
363                                 err: format!("Invalid public key on {} message", $msg_type),
364                                 action: ErrorAction::SendWarningMessage {
365                                         msg: msgs::WarningMessage {
366                                                 channel_id: [0; 32],
367                                                 data: format!("Invalid public key on {} message", $msg_type),
368                                         },
369                                         log_level: Level::Trace
370                                 }
371                         })?
372         }
373 }
374
375 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
376 where U::Target: UtxoLookup, L::Target: Logger
377 {
378         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
379                 self.network_graph.update_node_from_announcement(msg)?;
380                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
381                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
382                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
383         }
384
385         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
386                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
387                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
388         }
389
390         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
391                 self.network_graph.update_channel(msg)?;
392                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
393         }
394
395         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
396                 let mut channels = self.network_graph.channels.write().unwrap();
397                 for (_, ref chan) in channels.range(starting_point..) {
398                         if chan.announcement_message.is_some() {
399                                 let chan_announcement = chan.announcement_message.clone().unwrap();
400                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
401                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
402                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
403                                         one_to_two_announcement = one_to_two.last_update_message.clone();
404                                 }
405                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
406                                         two_to_one_announcement = two_to_one.last_update_message.clone();
407                                 }
408                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
409                         } else {
410                                 // TODO: We may end up sending un-announced channel_updates if we are sending
411                                 // initial sync data while receiving announce/updates for this channel.
412                         }
413                 }
414                 None
415         }
416
417         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
418                 let mut nodes = self.network_graph.nodes.write().unwrap();
419                 let iter = if let Some(node_id) = starting_point {
420                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
421                         } else {
422                                 nodes.range(..)
423                         };
424                 for (_, ref node) in iter {
425                         if let Some(node_info) = node.announcement_info.as_ref() {
426                                 if let Some(msg) = node_info.announcement_message.clone() {
427                                         return Some(msg);
428                                 }
429                         }
430                 }
431                 None
432         }
433
434         /// Initiates a stateless sync of routing gossip information with a peer
435         /// using gossip_queries. The default strategy used by this implementation
436         /// is to sync the full block range with several peers.
437         ///
438         /// We should expect one or more reply_channel_range messages in response
439         /// to our query_channel_range. Each reply will enqueue a query_scid message
440         /// to request gossip messages for each channel. The sync is considered complete
441         /// when the final reply_scids_end message is received, though we are not
442         /// tracking this directly.
443         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
444                 // We will only perform a sync with peers that support gossip_queries.
445                 if !init_msg.features.supports_gossip_queries() {
446                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
447                         // channels with peers even without being able to exchange gossip.
448                         return Ok(());
449                 }
450
451                 // The lightning network's gossip sync system is completely broken in numerous ways.
452                 //
453                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
454                 // to do a full sync from the first few peers we connect to, and then receive gossip
455                 // updates from all our peers normally.
456                 //
457                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
458                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
459                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
460                 // seen.
461                 //
462                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
463                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
464                 // channel data which you are missing. Except there was no way at all to identify which
465                 // `channel_update`s you were missing, so you still had to request everything, just in a
466                 // very complicated way with some queries instead of just getting the dump.
467                 //
468                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
469                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
470                 // relying on it useless.
471                 //
472                 // After gossip queries were introduced, support for receiving a full gossip table dump on
473                 // connection was removed from several nodes, making it impossible to get a full sync
474                 // without using the "gossip queries" messages.
475                 //
476                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
477                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
478                 // message, as the name implies, tells the peer to not forward any gossip messages with a
479                 // timestamp older than a given value (not the time the peer received the filter, but the
480                 // timestamp in the update message, which is often hours behind when the peer received the
481                 // message).
482                 //
483                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
484                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
485                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
486                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
487                 // will simply not forward any new updates they see to you which were generated some time
488                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
489                 // ago), you will always get the full routing graph from all your peers.
490                 //
491                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
492                 // propagated some time after it was generated, and, worse, often disable gossiping with
493                 // several peers after their first connection. The second behavior can cause gossip to not
494                 // propagate fully if there are cuts in the gossiping subgraph.
495                 //
496                 // In an attempt to cut a middle ground between always fetching the full graph from all of
497                 // our peers and never receiving gossip from peers at all, we send all of our peers a
498                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
499                 //
500                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
501                 #[allow(unused_mut, unused_assignments)]
502                 let mut gossip_start_time = 0;
503                 #[cfg(feature = "std")]
504                 {
505                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
506                         if self.should_request_full_sync(&their_node_id) {
507                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
508                         } else {
509                                 gossip_start_time -= 60 * 60; // an hour ago
510                         }
511                 }
512
513                 let mut pending_events = self.pending_events.lock().unwrap();
514                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
515                         node_id: their_node_id.clone(),
516                         msg: GossipTimestampFilter {
517                                 chain_hash: self.network_graph.genesis_hash,
518                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
519                                 timestamp_range: u32::max_value(),
520                         },
521                 });
522                 Ok(())
523         }
524
525         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
526                 // We don't make queries, so should never receive replies. If, in the future, the set
527                 // reconciliation extensions to gossip queries become broadly supported, we should revert
528                 // this code to its state pre-0.0.106.
529                 Ok(())
530         }
531
532         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
533                 // We don't make queries, so should never receive replies. If, in the future, the set
534                 // reconciliation extensions to gossip queries become broadly supported, we should revert
535                 // this code to its state pre-0.0.106.
536                 Ok(())
537         }
538
539         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
540         /// are in the specified block range. Due to message size limits, large range
541         /// queries may result in several reply messages. This implementation enqueues
542         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
543         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
544         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
545         /// memory constrained systems.
546         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
547                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
548
549                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
550
551                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
552                 // If so, we manually cap the ending block to avoid this overflow.
553                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
554
555                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
556                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
557                         let mut pending_events = self.pending_events.lock().unwrap();
558                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
559                                 node_id: their_node_id.clone(),
560                                 msg: ReplyChannelRange {
561                                         chain_hash: msg.chain_hash.clone(),
562                                         first_blocknum: msg.first_blocknum,
563                                         number_of_blocks: msg.number_of_blocks,
564                                         sync_complete: true,
565                                         short_channel_ids: vec![],
566                                 }
567                         });
568                         return Err(LightningError {
569                                 err: String::from("query_channel_range could not be processed"),
570                                 action: ErrorAction::IgnoreError,
571                         });
572                 }
573
574                 // Creates channel batches. We are not checking if the channel is routable
575                 // (has at least one update). A peer may still want to know the channel
576                 // exists even if its not yet routable.
577                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
578                 let mut channels = self.network_graph.channels.write().unwrap();
579                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
580                         if let Some(chan_announcement) = &chan.announcement_message {
581                                 // Construct a new batch if last one is full
582                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
583                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
584                                 }
585
586                                 let batch = batches.last_mut().unwrap();
587                                 batch.push(chan_announcement.contents.short_channel_id);
588                         }
589                 }
590                 drop(channels);
591
592                 let mut pending_events = self.pending_events.lock().unwrap();
593                 let batch_count = batches.len();
594                 let mut prev_batch_endblock = msg.first_blocknum;
595                 for (batch_index, batch) in batches.into_iter().enumerate() {
596                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
597                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
598                         //
599                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
600                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
601                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
602                         // significant diversion from the requirements set by the spec, and, in case of blocks
603                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
604                         // and *not* derive the first_blocknum from the actual first block of the reply.
605                         let first_blocknum = prev_batch_endblock;
606
607                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
608                         // fit in. Though there is no requirement that we use exactly the number of blocks its
609                         // contents are from, except for the bogus requirements c-lightning enforces, above.
610                         //
611                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
612                         // >= the query's end block. Thus, for the last reply, we calculate the difference
613                         // between the query's end block and the start of the reply.
614                         //
615                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
616                         // first_blocknum will be either msg.first_blocknum or a higher block height.
617                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
618                                 (true, msg.end_blocknum() - first_blocknum)
619                         }
620                         // Prior replies should use the number of blocks that fit into the reply. Overflow
621                         // safe since first_blocknum is always <= last SCID's block.
622                         else {
623                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
624                         };
625
626                         prev_batch_endblock = first_blocknum + number_of_blocks;
627
628                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
629                                 node_id: their_node_id.clone(),
630                                 msg: ReplyChannelRange {
631                                         chain_hash: msg.chain_hash.clone(),
632                                         first_blocknum,
633                                         number_of_blocks,
634                                         sync_complete,
635                                         short_channel_ids: batch,
636                                 }
637                         });
638                 }
639
640                 Ok(())
641         }
642
643         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
644                 // TODO
645                 Err(LightningError {
646                         err: String::from("Not implemented"),
647                         action: ErrorAction::IgnoreError,
648                 })
649         }
650
651         fn provided_node_features(&self) -> NodeFeatures {
652                 let mut features = NodeFeatures::empty();
653                 features.set_gossip_queries_optional();
654                 features
655         }
656
657         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
658                 let mut features = InitFeatures::empty();
659                 features.set_gossip_queries_optional();
660                 features
661         }
662
663         fn processing_queue_high(&self) -> bool {
664                 self.network_graph.pending_checks.too_many_checks_pending()
665         }
666 }
667
668 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
669 where
670         U::Target: UtxoLookup,
671         L::Target: Logger,
672 {
673         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
674                 let mut ret = Vec::new();
675                 let mut pending_events = self.pending_events.lock().unwrap();
676                 core::mem::swap(&mut ret, &mut pending_events);
677                 ret
678         }
679 }
680
681 #[derive(Clone, Debug, PartialEq, Eq)]
682 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
683 pub struct ChannelUpdateInfo {
684         /// When the last update to the channel direction was issued.
685         /// Value is opaque, as set in the announcement.
686         pub last_update: u32,
687         /// Whether the channel can be currently used for payments (in this one direction).
688         pub enabled: bool,
689         /// The difference in CLTV values that you must have when routing through this channel.
690         pub cltv_expiry_delta: u16,
691         /// The minimum value, which must be relayed to the next hop via the channel
692         pub htlc_minimum_msat: u64,
693         /// The maximum value which may be relayed to the next hop via the channel.
694         pub htlc_maximum_msat: u64,
695         /// Fees charged when the channel is used for routing
696         pub fees: RoutingFees,
697         /// Most recent update for the channel received from the network
698         /// Mostly redundant with the data we store in fields explicitly.
699         /// Everything else is useful only for sending out for initial routing sync.
700         /// Not stored if contains excess data to prevent DoS.
701         pub last_update_message: Option<ChannelUpdate>,
702 }
703
704 impl fmt::Display for ChannelUpdateInfo {
705         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
706                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
707                 Ok(())
708         }
709 }
710
711 impl Writeable for ChannelUpdateInfo {
712         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
713                 write_tlv_fields!(writer, {
714                         (0, self.last_update, required),
715                         (2, self.enabled, required),
716                         (4, self.cltv_expiry_delta, required),
717                         (6, self.htlc_minimum_msat, required),
718                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
719                         // compatibility with LDK versions prior to v0.0.110.
720                         (8, Some(self.htlc_maximum_msat), required),
721                         (10, self.fees, required),
722                         (12, self.last_update_message, required),
723                 });
724                 Ok(())
725         }
726 }
727
728 impl Readable for ChannelUpdateInfo {
729         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
730                 _init_tlv_field_var!(last_update, required);
731                 _init_tlv_field_var!(enabled, required);
732                 _init_tlv_field_var!(cltv_expiry_delta, required);
733                 _init_tlv_field_var!(htlc_minimum_msat, required);
734                 _init_tlv_field_var!(htlc_maximum_msat, option);
735                 _init_tlv_field_var!(fees, required);
736                 _init_tlv_field_var!(last_update_message, required);
737
738                 read_tlv_fields!(reader, {
739                         (0, last_update, required),
740                         (2, enabled, required),
741                         (4, cltv_expiry_delta, required),
742                         (6, htlc_minimum_msat, required),
743                         (8, htlc_maximum_msat, required),
744                         (10, fees, required),
745                         (12, last_update_message, required)
746                 });
747
748                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
749                         Ok(ChannelUpdateInfo {
750                                 last_update: _init_tlv_based_struct_field!(last_update, required),
751                                 enabled: _init_tlv_based_struct_field!(enabled, required),
752                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
753                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
754                                 htlc_maximum_msat,
755                                 fees: _init_tlv_based_struct_field!(fees, required),
756                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
757                         })
758                 } else {
759                         Err(DecodeError::InvalidValue)
760                 }
761         }
762 }
763
764 #[derive(Clone, Debug, PartialEq, Eq)]
765 /// Details about a channel (both directions).
766 /// Received within a channel announcement.
767 pub struct ChannelInfo {
768         /// Protocol features of a channel communicated during its announcement
769         pub features: ChannelFeatures,
770         /// Source node of the first direction of a channel
771         pub node_one: NodeId,
772         /// Details about the first direction of a channel
773         pub one_to_two: Option<ChannelUpdateInfo>,
774         /// Source node of the second direction of a channel
775         pub node_two: NodeId,
776         /// Details about the second direction of a channel
777         pub two_to_one: Option<ChannelUpdateInfo>,
778         /// The channel capacity as seen on-chain, if chain lookup is available.
779         pub capacity_sats: Option<u64>,
780         /// An initial announcement of the channel
781         /// Mostly redundant with the data we store in fields explicitly.
782         /// Everything else is useful only for sending out for initial routing sync.
783         /// Not stored if contains excess data to prevent DoS.
784         pub announcement_message: Option<ChannelAnnouncement>,
785         /// The timestamp when we received the announcement, if we are running with feature = "std"
786         /// (which we can probably assume we are - no-std environments probably won't have a full
787         /// network graph in memory!).
788         announcement_received_time: u64,
789 }
790
791 impl ChannelInfo {
792         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
793         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
794         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
795                 let (direction, source) = {
796                         if target == &self.node_one {
797                                 (self.two_to_one.as_ref(), &self.node_two)
798                         } else if target == &self.node_two {
799                                 (self.one_to_two.as_ref(), &self.node_one)
800                         } else {
801                                 return None;
802                         }
803                 };
804                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
805         }
806
807         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
808         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
809         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
810                 let (direction, target) = {
811                         if source == &self.node_one {
812                                 (self.one_to_two.as_ref(), &self.node_two)
813                         } else if source == &self.node_two {
814                                 (self.two_to_one.as_ref(), &self.node_one)
815                         } else {
816                                 return None;
817                         }
818                 };
819                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
820         }
821
822         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
823         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
824                 let direction = channel_flags & 1u8;
825                 if direction == 0 {
826                         self.one_to_two.as_ref()
827                 } else {
828                         self.two_to_one.as_ref()
829                 }
830         }
831 }
832
833 impl fmt::Display for ChannelInfo {
834         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
835                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
836                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
837                 Ok(())
838         }
839 }
840
841 impl Writeable for ChannelInfo {
842         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
843                 write_tlv_fields!(writer, {
844                         (0, self.features, required),
845                         (1, self.announcement_received_time, (default_value, 0)),
846                         (2, self.node_one, required),
847                         (4, self.one_to_two, required),
848                         (6, self.node_two, required),
849                         (8, self.two_to_one, required),
850                         (10, self.capacity_sats, required),
851                         (12, self.announcement_message, required),
852                 });
853                 Ok(())
854         }
855 }
856
857 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
858 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
859 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
860 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
861 // channel updates via the gossip network.
862 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
863
864 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
865         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
866                 match crate::util::ser::Readable::read(reader) {
867                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
868                         Err(DecodeError::ShortRead) => Ok(None),
869                         Err(DecodeError::InvalidValue) => Ok(None),
870                         Err(err) => Err(err),
871                 }
872         }
873 }
874
875 impl Readable for ChannelInfo {
876         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
877                 _init_tlv_field_var!(features, required);
878                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
879                 _init_tlv_field_var!(node_one, required);
880                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
881                 _init_tlv_field_var!(node_two, required);
882                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
883                 _init_tlv_field_var!(capacity_sats, required);
884                 _init_tlv_field_var!(announcement_message, required);
885                 read_tlv_fields!(reader, {
886                         (0, features, required),
887                         (1, announcement_received_time, (default_value, 0)),
888                         (2, node_one, required),
889                         (4, one_to_two_wrap, upgradable_option),
890                         (6, node_two, required),
891                         (8, two_to_one_wrap, upgradable_option),
892                         (10, capacity_sats, required),
893                         (12, announcement_message, required),
894                 });
895
896                 Ok(ChannelInfo {
897                         features: _init_tlv_based_struct_field!(features, required),
898                         node_one: _init_tlv_based_struct_field!(node_one, required),
899                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
900                         node_two: _init_tlv_based_struct_field!(node_two, required),
901                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
902                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
903                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
904                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
905                 })
906         }
907 }
908
909 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
910 /// source node to a target node.
911 #[derive(Clone)]
912 pub struct DirectedChannelInfo<'a> {
913         channel: &'a ChannelInfo,
914         direction: &'a ChannelUpdateInfo,
915         htlc_maximum_msat: u64,
916         effective_capacity: EffectiveCapacity,
917 }
918
919 impl<'a> DirectedChannelInfo<'a> {
920         #[inline]
921         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
922                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
923                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
924
925                 let effective_capacity = match capacity_msat {
926                         Some(capacity_msat) => {
927                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
928                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
929                         },
930                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
931                 };
932
933                 Self {
934                         channel, direction, htlc_maximum_msat, effective_capacity
935                 }
936         }
937
938         /// Returns information for the channel.
939         #[inline]
940         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
941
942         /// Returns the maximum HTLC amount allowed over the channel in the direction.
943         #[inline]
944         pub fn htlc_maximum_msat(&self) -> u64 {
945                 self.htlc_maximum_msat
946         }
947
948         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
949         ///
950         /// This is either the total capacity from the funding transaction, if known, or the
951         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
952         /// otherwise.
953         pub fn effective_capacity(&self) -> EffectiveCapacity {
954                 self.effective_capacity
955         }
956
957         /// Returns information for the direction.
958         #[inline]
959         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
960 }
961
962 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
963         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
964                 f.debug_struct("DirectedChannelInfo")
965                         .field("channel", &self.channel)
966                         .finish()
967         }
968 }
969
970 /// The effective capacity of a channel for routing purposes.
971 ///
972 /// While this may be smaller than the actual channel capacity, amounts greater than
973 /// [`Self::as_msat`] should not be routed through the channel.
974 #[derive(Clone, Copy, Debug, PartialEq)]
975 pub enum EffectiveCapacity {
976         /// The available liquidity in the channel known from being a channel counterparty, and thus a
977         /// direct hop.
978         ExactLiquidity {
979                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
980                 /// millisatoshi.
981                 liquidity_msat: u64,
982         },
983         /// The maximum HTLC amount in one direction as advertised on the gossip network.
984         MaximumHTLC {
985                 /// The maximum HTLC amount denominated in millisatoshi.
986                 amount_msat: u64,
987         },
988         /// The total capacity of the channel as determined by the funding transaction.
989         Total {
990                 /// The funding amount denominated in millisatoshi.
991                 capacity_msat: u64,
992                 /// The maximum HTLC amount denominated in millisatoshi.
993                 htlc_maximum_msat: u64
994         },
995         /// A capacity sufficient to route any payment, typically used for private channels provided by
996         /// an invoice.
997         Infinite,
998         /// A capacity that is unknown possibly because either the chain state is unavailable to know
999         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1000         Unknown,
1001 }
1002
1003 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1004 /// use when making routing decisions.
1005 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1006
1007 impl EffectiveCapacity {
1008         /// Returns the effective capacity denominated in millisatoshi.
1009         pub fn as_msat(&self) -> u64 {
1010                 match self {
1011                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1012                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1013                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1014                         EffectiveCapacity::Infinite => u64::max_value(),
1015                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1016                 }
1017         }
1018 }
1019
1020 /// Fees for routing via a given channel or a node
1021 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1022 pub struct RoutingFees {
1023         /// Flat routing fee in millisatoshis.
1024         pub base_msat: u32,
1025         /// Liquidity-based routing fee in millionths of a routed amount.
1026         /// In other words, 10000 is 1%.
1027         pub proportional_millionths: u32,
1028 }
1029
1030 impl_writeable_tlv_based!(RoutingFees, {
1031         (0, base_msat, required),
1032         (2, proportional_millionths, required)
1033 });
1034
1035 #[derive(Clone, Debug, PartialEq, Eq)]
1036 /// Information received in the latest node_announcement from this node.
1037 pub struct NodeAnnouncementInfo {
1038         /// Protocol features the node announced support for
1039         pub features: NodeFeatures,
1040         /// When the last known update to the node state was issued.
1041         /// Value is opaque, as set in the announcement.
1042         pub last_update: u32,
1043         /// Color assigned to the node
1044         pub rgb: [u8; 3],
1045         /// Moniker assigned to the node.
1046         /// May be invalid or malicious (eg control chars),
1047         /// should not be exposed to the user.
1048         pub alias: NodeAlias,
1049         /// An initial announcement of the node
1050         /// Mostly redundant with the data we store in fields explicitly.
1051         /// Everything else is useful only for sending out for initial routing sync.
1052         /// Not stored if contains excess data to prevent DoS.
1053         pub announcement_message: Option<NodeAnnouncement>
1054 }
1055
1056 impl NodeAnnouncementInfo {
1057         /// Internet-level addresses via which one can connect to the node
1058         pub fn addresses(&self) -> &[NetAddress] {
1059                 self.announcement_message.as_ref()
1060                         .map(|msg| msg.contents.addresses.as_slice())
1061                         .unwrap_or_default()
1062         }
1063 }
1064
1065 impl Writeable for NodeAnnouncementInfo {
1066         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1067                 let empty_addresses = Vec::<NetAddress>::new();
1068                 write_tlv_fields!(writer, {
1069                         (0, self.features, required),
1070                         (2, self.last_update, required),
1071                         (4, self.rgb, required),
1072                         (6, self.alias, required),
1073                         (8, self.announcement_message, option),
1074                         (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1075                 });
1076                 Ok(())
1077         }
1078 }
1079
1080 impl Readable for NodeAnnouncementInfo {
1081     fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1082                 _init_and_read_tlv_fields!(reader, {
1083                         (0, features, required),
1084                         (2, last_update, required),
1085                         (4, rgb, required),
1086                         (6, alias, required),
1087                         (8, announcement_message, option),
1088                         (10, _addresses, vec_type), // deprecated, not used anymore
1089                 });
1090                 let _: Option<Vec<NetAddress>> = _addresses;
1091                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1092                         alias: alias.0.unwrap(), announcement_message })
1093     }
1094 }
1095
1096 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1097 ///
1098 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1099 /// attacks. Care must be taken when processing.
1100 #[derive(Clone, Debug, PartialEq, Eq)]
1101 pub struct NodeAlias(pub [u8; 32]);
1102
1103 impl fmt::Display for NodeAlias {
1104         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1105                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1106                 let bytes = self.0.split_at(first_null).0;
1107                 match core::str::from_utf8(bytes) {
1108                         Ok(alias) => PrintableString(alias).fmt(f)?,
1109                         Err(_) => {
1110                                 use core::fmt::Write;
1111                                 for c in bytes.iter().map(|b| *b as char) {
1112                                         // Display printable ASCII characters
1113                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1114                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1115                                         f.write_char(c)?;
1116                                 }
1117                         },
1118                 };
1119                 Ok(())
1120         }
1121 }
1122
1123 impl Writeable for NodeAlias {
1124         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1125                 self.0.write(w)
1126         }
1127 }
1128
1129 impl Readable for NodeAlias {
1130         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1131                 Ok(NodeAlias(Readable::read(r)?))
1132         }
1133 }
1134
1135 #[derive(Clone, Debug, PartialEq, Eq)]
1136 /// Details about a node in the network, known from the network announcement.
1137 pub struct NodeInfo {
1138         /// All valid channels a node has announced
1139         pub channels: Vec<u64>,
1140         /// More information about a node from node_announcement.
1141         /// Optional because we store a Node entry after learning about it from
1142         /// a channel announcement, but before receiving a node announcement.
1143         pub announcement_info: Option<NodeAnnouncementInfo>
1144 }
1145
1146 impl fmt::Display for NodeInfo {
1147         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1148                 write!(f, " channels: {:?}, announcement_info: {:?}",
1149                         &self.channels[..], self.announcement_info)?;
1150                 Ok(())
1151         }
1152 }
1153
1154 impl Writeable for NodeInfo {
1155         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1156                 write_tlv_fields!(writer, {
1157                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1158                         (2, self.announcement_info, option),
1159                         (4, self.channels, vec_type),
1160                 });
1161                 Ok(())
1162         }
1163 }
1164
1165 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1166 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1167 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1168 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1169 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1170
1171 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1172         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1173                 match crate::util::ser::Readable::read(reader) {
1174                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1175                         Err(_) => {
1176                                 copy(reader, &mut sink()).unwrap();
1177                                 return Ok(None)
1178                         },
1179                 };
1180         }
1181 }
1182
1183 impl Readable for NodeInfo {
1184         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1185                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1186                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1187                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1188                 // requires additional complexity and lookups during routing, it ends up being a
1189                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1190                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1191                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1192                 _init_tlv_field_var!(channels, vec_type);
1193
1194                 read_tlv_fields!(reader, {
1195                         (0, _lowest_inbound_channel_fees, option),
1196                         (2, announcement_info_wrap, upgradable_option),
1197                         (4, channels, vec_type),
1198                 });
1199
1200                 Ok(NodeInfo {
1201                         announcement_info: announcement_info_wrap.map(|w| w.0),
1202                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1203                 })
1204         }
1205 }
1206
1207 const SERIALIZATION_VERSION: u8 = 1;
1208 const MIN_SERIALIZATION_VERSION: u8 = 1;
1209
1210 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1211         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1212                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1213
1214                 self.genesis_hash.write(writer)?;
1215                 let channels = self.channels.read().unwrap();
1216                 (channels.len() as u64).write(writer)?;
1217                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1218                         (*chan_id).write(writer)?;
1219                         chan_info.write(writer)?;
1220                 }
1221                 let nodes = self.nodes.read().unwrap();
1222                 (nodes.len() as u64).write(writer)?;
1223                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1224                         node_id.write(writer)?;
1225                         node_info.write(writer)?;
1226                 }
1227
1228                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1229                 write_tlv_fields!(writer, {
1230                         (1, last_rapid_gossip_sync_timestamp, option),
1231                 });
1232                 Ok(())
1233         }
1234 }
1235
1236 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1237         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1238                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1239
1240                 let genesis_hash: BlockHash = Readable::read(reader)?;
1241                 let channels_count: u64 = Readable::read(reader)?;
1242                 let mut channels = IndexedMap::new();
1243                 for _ in 0..channels_count {
1244                         let chan_id: u64 = Readable::read(reader)?;
1245                         let chan_info = Readable::read(reader)?;
1246                         channels.insert(chan_id, chan_info);
1247                 }
1248                 let nodes_count: u64 = Readable::read(reader)?;
1249                 let mut nodes = IndexedMap::new();
1250                 for _ in 0..nodes_count {
1251                         let node_id = Readable::read(reader)?;
1252                         let node_info = Readable::read(reader)?;
1253                         nodes.insert(node_id, node_info);
1254                 }
1255
1256                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1257                 read_tlv_fields!(reader, {
1258                         (1, last_rapid_gossip_sync_timestamp, option),
1259                 });
1260
1261                 Ok(NetworkGraph {
1262                         secp_ctx: Secp256k1::verification_only(),
1263                         genesis_hash,
1264                         logger,
1265                         channels: RwLock::new(channels),
1266                         nodes: RwLock::new(nodes),
1267                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1268                         removed_nodes: Mutex::new(HashMap::new()),
1269                         removed_channels: Mutex::new(HashMap::new()),
1270                         pending_checks: utxo::PendingChecks::new(),
1271                 })
1272         }
1273 }
1274
1275 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1276         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1277                 writeln!(f, "Network map\n[Channels]")?;
1278                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1279                         writeln!(f, " {}: {}", key, val)?;
1280                 }
1281                 writeln!(f, "[Nodes]")?;
1282                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1283                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1284                 }
1285                 Ok(())
1286         }
1287 }
1288
1289 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1290 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1291         fn eq(&self, other: &Self) -> bool {
1292                 self.genesis_hash == other.genesis_hash &&
1293                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1294                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1295         }
1296 }
1297
1298 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1299         /// Creates a new, empty, network graph.
1300         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1301                 Self {
1302                         secp_ctx: Secp256k1::verification_only(),
1303                         genesis_hash: genesis_block(network).header.block_hash(),
1304                         logger,
1305                         channels: RwLock::new(IndexedMap::new()),
1306                         nodes: RwLock::new(IndexedMap::new()),
1307                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1308                         removed_channels: Mutex::new(HashMap::new()),
1309                         removed_nodes: Mutex::new(HashMap::new()),
1310                         pending_checks: utxo::PendingChecks::new(),
1311                 }
1312         }
1313
1314         /// Returns a read-only view of the network graph.
1315         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1316                 let channels = self.channels.read().unwrap();
1317                 let nodes = self.nodes.read().unwrap();
1318                 ReadOnlyNetworkGraph {
1319                         channels,
1320                         nodes,
1321                 }
1322         }
1323
1324         /// The unix timestamp provided by the most recent rapid gossip sync.
1325         /// It will be set by the rapid sync process after every sync completion.
1326         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1327                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1328         }
1329
1330         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1331         /// This should be done automatically by the rapid sync process after every sync completion.
1332         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1333                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1334         }
1335
1336         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1337         /// purposes.
1338         #[cfg(test)]
1339         pub fn clear_nodes_announcement_info(&self) {
1340                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1341                         node.1.announcement_info = None;
1342                 }
1343         }
1344
1345         /// For an already known node (from channel announcements), update its stored properties from a
1346         /// given node announcement.
1347         ///
1348         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1349         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1350         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1351         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1352                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1353                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1354                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1355         }
1356
1357         /// For an already known node (from channel announcements), update its stored properties from a
1358         /// given node announcement without verifying the associated signatures. Because we aren't
1359         /// given the associated signatures here we cannot relay the node announcement to any of our
1360         /// peers.
1361         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1362                 self.update_node_from_announcement_intern(msg, None)
1363         }
1364
1365         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1366                 let mut nodes = self.nodes.write().unwrap();
1367                 match nodes.get_mut(&msg.node_id) {
1368                         None => {
1369                                 core::mem::drop(nodes);
1370                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1371                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1372                         },
1373                         Some(node) => {
1374                                 if let Some(node_info) = node.announcement_info.as_ref() {
1375                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1376                                         // updates to ensure you always have the latest one, only vaguely suggesting
1377                                         // that it be at least the current time.
1378                                         if node_info.last_update  > msg.timestamp {
1379                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1380                                         } else if node_info.last_update  == msg.timestamp {
1381                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1382                                         }
1383                                 }
1384
1385                                 let should_relay =
1386                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1387                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1388                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1389                                 node.announcement_info = Some(NodeAnnouncementInfo {
1390                                         features: msg.features.clone(),
1391                                         last_update: msg.timestamp,
1392                                         rgb: msg.rgb,
1393                                         alias: NodeAlias(msg.alias),
1394                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1395                                 });
1396
1397                                 Ok(())
1398                         }
1399                 }
1400         }
1401
1402         /// Store or update channel info from a channel announcement.
1403         ///
1404         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1405         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1406         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1407         ///
1408         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1409         /// the corresponding UTXO exists on chain and is correctly-formatted.
1410         pub fn update_channel_from_announcement<U: Deref>(
1411                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1412         ) -> Result<(), LightningError>
1413         where
1414                 U::Target: UtxoLookup,
1415         {
1416                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1417                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1418                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1419                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1420                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1421                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1422         }
1423
1424         /// Store or update channel info from a channel announcement without verifying the associated
1425         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1426         /// channel announcement to any of our peers.
1427         ///
1428         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1429         /// the corresponding UTXO exists on chain and is correctly-formatted.
1430         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1431                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1432         ) -> Result<(), LightningError>
1433         where
1434                 U::Target: UtxoLookup,
1435         {
1436                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1437         }
1438
1439         /// Update channel from partial announcement data received via rapid gossip sync
1440         ///
1441         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1442         /// rapid gossip sync server)
1443         ///
1444         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1445         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1446                 if node_id_1 == node_id_2 {
1447                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1448                 };
1449
1450                 let node_1 = NodeId::from_pubkey(&node_id_1);
1451                 let node_2 = NodeId::from_pubkey(&node_id_2);
1452                 let channel_info = ChannelInfo {
1453                         features,
1454                         node_one: node_1.clone(),
1455                         one_to_two: None,
1456                         node_two: node_2.clone(),
1457                         two_to_one: None,
1458                         capacity_sats: None,
1459                         announcement_message: None,
1460                         announcement_received_time: timestamp,
1461                 };
1462
1463                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1464         }
1465
1466         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1467                 let mut channels = self.channels.write().unwrap();
1468                 let mut nodes = self.nodes.write().unwrap();
1469
1470                 let node_id_a = channel_info.node_one.clone();
1471                 let node_id_b = channel_info.node_two.clone();
1472
1473                 match channels.entry(short_channel_id) {
1474                         IndexedMapEntry::Occupied(mut entry) => {
1475                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1476                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1477                                 //exactly how...
1478                                 if utxo_value.is_some() {
1479                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1480                                         // only sometimes returns results. In any case remove the previous entry. Note
1481                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1482                                         // do that because
1483                                         // a) we don't *require* a UTXO provider that always returns results.
1484                                         // b) we don't track UTXOs of channels we know about and remove them if they
1485                                         //    get reorg'd out.
1486                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1487                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1488                                         *entry.get_mut() = channel_info;
1489                                 } else {
1490                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1491                                 }
1492                         },
1493                         IndexedMapEntry::Vacant(entry) => {
1494                                 entry.insert(channel_info);
1495                         }
1496                 };
1497
1498                 for current_node_id in [node_id_a, node_id_b].iter() {
1499                         match nodes.entry(current_node_id.clone()) {
1500                                 IndexedMapEntry::Occupied(node_entry) => {
1501                                         node_entry.into_mut().channels.push(short_channel_id);
1502                                 },
1503                                 IndexedMapEntry::Vacant(node_entry) => {
1504                                         node_entry.insert(NodeInfo {
1505                                                 channels: vec!(short_channel_id),
1506                                                 announcement_info: None,
1507                                         });
1508                                 }
1509                         };
1510                 };
1511
1512                 Ok(())
1513         }
1514
1515         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1516                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1517         ) -> Result<(), LightningError>
1518         where
1519                 U::Target: UtxoLookup,
1520         {
1521                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1522                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1523                 }
1524
1525                 {
1526                         let channels = self.channels.read().unwrap();
1527
1528                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1529                                 if chan.capacity_sats.is_some() {
1530                                         // If we'd previously looked up the channel on-chain and checked the script
1531                                         // against what appears on-chain, ignore the duplicate announcement.
1532                                         //
1533                                         // Because a reorg could replace one channel with another at the same SCID, if
1534                                         // the channel appears to be different, we re-validate. This doesn't expose us
1535                                         // to any more DoS risk than not, as a peer can always flood us with
1536                                         // randomly-generated SCID values anyway.
1537                                         //
1538                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1539                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1540                                         // if the peers on the channel changed anyway.
1541                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1542                                                 return Err(LightningError {
1543                                                         err: "Already have chain-validated channel".to_owned(),
1544                                                         action: ErrorAction::IgnoreDuplicateGossip
1545                                                 });
1546                                         }
1547                                 } else if utxo_lookup.is_none() {
1548                                         // Similarly, if we can't check the chain right now anyway, ignore the
1549                                         // duplicate announcement without bothering to take the channels write lock.
1550                                         return Err(LightningError {
1551                                                 err: "Already have non-chain-validated channel".to_owned(),
1552                                                 action: ErrorAction::IgnoreDuplicateGossip
1553                                         });
1554                                 }
1555                         }
1556                 }
1557
1558                 {
1559                         let removed_channels = self.removed_channels.lock().unwrap();
1560                         let removed_nodes = self.removed_nodes.lock().unwrap();
1561                         if removed_channels.contains_key(&msg.short_channel_id) ||
1562                                 removed_nodes.contains_key(&msg.node_id_1) ||
1563                                 removed_nodes.contains_key(&msg.node_id_2) {
1564                                 return Err(LightningError{
1565                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1566                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1567                         }
1568                 }
1569
1570                 let utxo_value = self.pending_checks.check_channel_announcement(
1571                         utxo_lookup, msg, full_msg)?;
1572
1573                 #[allow(unused_mut, unused_assignments)]
1574                 let mut announcement_received_time = 0;
1575                 #[cfg(feature = "std")]
1576                 {
1577                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1578                 }
1579
1580                 let chan_info = ChannelInfo {
1581                         features: msg.features.clone(),
1582                         node_one: msg.node_id_1,
1583                         one_to_two: None,
1584                         node_two: msg.node_id_2,
1585                         two_to_one: None,
1586                         capacity_sats: utxo_value,
1587                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1588                                 { full_msg.cloned() } else { None },
1589                         announcement_received_time,
1590                 };
1591
1592                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1593
1594                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1595                 Ok(())
1596         }
1597
1598         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1599         /// If permanent, removes a channel from the local storage.
1600         /// May cause the removal of nodes too, if this was their last channel.
1601         /// If not permanent, makes channels unavailable for routing.
1602         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1603                 #[cfg(feature = "std")]
1604                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1605                 #[cfg(not(feature = "std"))]
1606                 let current_time_unix = None;
1607
1608                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1609         }
1610
1611         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1612         /// If permanent, removes a channel from the local storage.
1613         /// May cause the removal of nodes too, if this was their last channel.
1614         /// If not permanent, makes channels unavailable for routing.
1615         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1616                 let mut channels = self.channels.write().unwrap();
1617                 if is_permanent {
1618                         if let Some(chan) = channels.remove(&short_channel_id) {
1619                                 let mut nodes = self.nodes.write().unwrap();
1620                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1621                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1622                         }
1623                 } else {
1624                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1625                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1626                                         one_to_two.enabled = false;
1627                                 }
1628                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1629                                         two_to_one.enabled = false;
1630                                 }
1631                         }
1632                 }
1633         }
1634
1635         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1636         /// from local storage.
1637         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1638                 #[cfg(feature = "std")]
1639                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1640                 #[cfg(not(feature = "std"))]
1641                 let current_time_unix = None;
1642
1643                 let node_id = NodeId::from_pubkey(node_id);
1644                 let mut channels = self.channels.write().unwrap();
1645                 let mut nodes = self.nodes.write().unwrap();
1646                 let mut removed_channels = self.removed_channels.lock().unwrap();
1647                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1648
1649                 if let Some(node) = nodes.remove(&node_id) {
1650                         for scid in node.channels.iter() {
1651                                 if let Some(chan_info) = channels.remove(scid) {
1652                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1653                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1654                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1655                                                         *scid != *chan_id
1656                                                 });
1657                                                 if other_node_entry.get().channels.is_empty() {
1658                                                         other_node_entry.remove_entry();
1659                                                 }
1660                                         }
1661                                         removed_channels.insert(*scid, current_time_unix);
1662                                 }
1663                         }
1664                         removed_nodes.insert(node_id, current_time_unix);
1665                 }
1666         }
1667
1668         #[cfg(feature = "std")]
1669         /// Removes information about channels that we haven't heard any updates about in some time.
1670         /// This can be used regularly to prune the network graph of channels that likely no longer
1671         /// exist.
1672         ///
1673         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1674         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1675         /// pruning occur for updates which are at least two weeks old, which we implement here.
1676         ///
1677         /// Note that for users of the `lightning-background-processor` crate this method may be
1678         /// automatically called regularly for you.
1679         ///
1680         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1681         /// in the map for a while so that these can be resynced from gossip in the future.
1682         ///
1683         /// This method is only available with the `std` feature. See
1684         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1685         pub fn remove_stale_channels_and_tracking(&self) {
1686                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1687                 self.remove_stale_channels_and_tracking_with_time(time);
1688         }
1689
1690         /// Removes information about channels that we haven't heard any updates about in some time.
1691         /// This can be used regularly to prune the network graph of channels that likely no longer
1692         /// exist.
1693         ///
1694         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1695         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1696         /// pruning occur for updates which are at least two weeks old, which we implement here.
1697         ///
1698         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1699         /// in the map for a while so that these can be resynced from gossip in the future.
1700         ///
1701         /// This function takes the current unix time as an argument. For users with the `std` feature
1702         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1703         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1704                 let mut channels = self.channels.write().unwrap();
1705                 // Time out if we haven't received an update in at least 14 days.
1706                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1707                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1708                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1709                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1710                 // time.
1711                 let mut scids_to_remove = Vec::new();
1712                 for (scid, info) in channels.unordered_iter_mut() {
1713                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1714                                 info.one_to_two = None;
1715                         }
1716                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1717                                 info.two_to_one = None;
1718                         }
1719                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1720                                 // We check the announcement_received_time here to ensure we don't drop
1721                                 // announcements that we just received and are just waiting for our peer to send a
1722                                 // channel_update for.
1723                                 if info.announcement_received_time < min_time_unix as u64 {
1724                                         scids_to_remove.push(*scid);
1725                                 }
1726                         }
1727                 }
1728                 if !scids_to_remove.is_empty() {
1729                         let mut nodes = self.nodes.write().unwrap();
1730                         for scid in scids_to_remove {
1731                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1732                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1733                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1734                         }
1735                 }
1736
1737                 let should_keep_tracking = |time: &mut Option<u64>| {
1738                         if let Some(time) = time {
1739                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1740                         } else {
1741                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1742                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1743                                 // of this function.
1744                                 #[cfg(feature = "no-std")]
1745                                 {
1746                                         let mut tracked_time = Some(current_time_unix);
1747                                         core::mem::swap(time, &mut tracked_time);
1748                                         return true;
1749                                 }
1750                                 #[allow(unreachable_code)]
1751                                 false
1752                         }};
1753
1754                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1755                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1756         }
1757
1758         /// For an already known (from announcement) channel, update info about one of the directions
1759         /// of the channel.
1760         ///
1761         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1762         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1763         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1764         ///
1765         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1766         /// materially in the future will be rejected.
1767         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1768                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1769         }
1770
1771         /// For an already known (from announcement) channel, update info about one of the directions
1772         /// of the channel without verifying the associated signatures. Because we aren't given the
1773         /// associated signatures here we cannot relay the channel update to any of our peers.
1774         ///
1775         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1776         /// materially in the future will be rejected.
1777         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1778                 self.update_channel_intern(msg, None, None)
1779         }
1780
1781         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1782                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1783
1784                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1785                 {
1786                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1787                         // disable this check during tests!
1788                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1789                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1790                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1791                         }
1792                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1793                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1794                         }
1795                 }
1796
1797                 let mut channels = self.channels.write().unwrap();
1798                 match channels.get_mut(&msg.short_channel_id) {
1799                         None => {
1800                                 core::mem::drop(channels);
1801                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1802                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1803                         },
1804                         Some(channel) => {
1805                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1806                                         return Err(LightningError{err:
1807                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1808                                                 action: ErrorAction::IgnoreError});
1809                                 }
1810
1811                                 if let Some(capacity_sats) = channel.capacity_sats {
1812                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1813                                         // Don't query UTXO set here to reduce DoS risks.
1814                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1815                                                 return Err(LightningError{err:
1816                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1817                                                         action: ErrorAction::IgnoreError});
1818                                         }
1819                                 }
1820                                 macro_rules! check_update_latest {
1821                                         ($target: expr) => {
1822                                                 if let Some(existing_chan_info) = $target.as_ref() {
1823                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1824                                                         // order updates to ensure you always have the latest one, only
1825                                                         // suggesting  that it be at least the current time. For
1826                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1827                                                         // pruning based on the timestamp field being more than two weeks old,
1828                                                         // but only in the non-normative section.
1829                                                         if existing_chan_info.last_update > msg.timestamp {
1830                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1831                                                         } else if existing_chan_info.last_update == msg.timestamp {
1832                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1833                                                         }
1834                                                 }
1835                                         }
1836                                 }
1837
1838                                 macro_rules! get_new_channel_info {
1839                                         () => { {
1840                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1841                                                         { full_msg.cloned() } else { None };
1842
1843                                                 let updated_channel_update_info = ChannelUpdateInfo {
1844                                                         enabled: chan_enabled,
1845                                                         last_update: msg.timestamp,
1846                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1847                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1848                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1849                                                         fees: RoutingFees {
1850                                                                 base_msat: msg.fee_base_msat,
1851                                                                 proportional_millionths: msg.fee_proportional_millionths,
1852                                                         },
1853                                                         last_update_message
1854                                                 };
1855                                                 Some(updated_channel_update_info)
1856                                         } }
1857                                 }
1858
1859                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1860                                 if msg.flags & 1 == 1 {
1861                                         check_update_latest!(channel.two_to_one);
1862                                         if let Some(sig) = sig {
1863                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1864                                                         err: "Couldn't parse source node pubkey".to_owned(),
1865                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1866                                                 })?, "channel_update");
1867                                         }
1868                                         channel.two_to_one = get_new_channel_info!();
1869                                 } else {
1870                                         check_update_latest!(channel.one_to_two);
1871                                         if let Some(sig) = sig {
1872                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1873                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1874                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1875                                                 })?, "channel_update");
1876                                         }
1877                                         channel.one_to_two = get_new_channel_info!();
1878                                 }
1879                         }
1880                 }
1881
1882                 Ok(())
1883         }
1884
1885         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1886                 macro_rules! remove_from_node {
1887                         ($node_id: expr) => {
1888                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1889                                         entry.get_mut().channels.retain(|chan_id| {
1890                                                 short_channel_id != *chan_id
1891                                         });
1892                                         if entry.get().channels.is_empty() {
1893                                                 entry.remove_entry();
1894                                         }
1895                                 } else {
1896                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1897                                 }
1898                         }
1899                 }
1900
1901                 remove_from_node!(chan.node_one);
1902                 remove_from_node!(chan.node_two);
1903         }
1904 }
1905
1906 impl ReadOnlyNetworkGraph<'_> {
1907         /// Returns all known valid channels' short ids along with announced channel info.
1908         ///
1909         /// (C-not exported) because we don't want to return lifetime'd references
1910         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1911                 &*self.channels
1912         }
1913
1914         /// Returns information on a channel with the given id.
1915         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1916                 self.channels.get(&short_channel_id)
1917         }
1918
1919         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1920         /// Returns the list of channels in the graph
1921         pub fn list_channels(&self) -> Vec<u64> {
1922                 self.channels.unordered_keys().map(|c| *c).collect()
1923         }
1924
1925         /// Returns all known nodes' public keys along with announced node info.
1926         ///
1927         /// (C-not exported) because we don't want to return lifetime'd references
1928         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1929                 &*self.nodes
1930         }
1931
1932         /// Returns information on a node with the given id.
1933         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1934                 self.nodes.get(node_id)
1935         }
1936
1937         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1938         /// Returns the list of nodes in the graph
1939         pub fn list_nodes(&self) -> Vec<NodeId> {
1940                 self.nodes.unordered_keys().map(|n| *n).collect()
1941         }
1942
1943         /// Get network addresses by node id.
1944         /// Returns None if the requested node is completely unknown,
1945         /// or if node announcement for the node was never received.
1946         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1947                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1948                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1949         }
1950 }
1951
1952 #[cfg(test)]
1953 pub(crate) mod tests {
1954         use crate::ln::channelmanager;
1955         use crate::ln::chan_utils::make_funding_redeemscript;
1956         #[cfg(feature = "std")]
1957         use crate::ln::features::InitFeatures;
1958         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1959         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1960         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1961                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1962                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1963         use crate::util::config::UserConfig;
1964         use crate::util::test_utils;
1965         use crate::util::ser::{ReadableArgs, Readable, Writeable};
1966         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1967         use crate::util::scid_utils::scid_from_parts;
1968
1969         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1970         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1971
1972         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1973         use bitcoin::hashes::Hash;
1974         use bitcoin::network::constants::Network;
1975         use bitcoin::blockdata::constants::genesis_block;
1976         use bitcoin::blockdata::script::Script;
1977         use bitcoin::blockdata::transaction::TxOut;
1978
1979         use hex;
1980
1981         use bitcoin::secp256k1::{PublicKey, SecretKey};
1982         use bitcoin::secp256k1::{All, Secp256k1};
1983
1984         use crate::io;
1985         use bitcoin::secp256k1;
1986         use crate::prelude::*;
1987         use crate::sync::Arc;
1988
1989         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1990                 let logger = Arc::new(test_utils::TestLogger::new());
1991                 NetworkGraph::new(Network::Testnet, logger)
1992         }
1993
1994         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1995                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1996                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1997         ) {
1998                 let secp_ctx = Secp256k1::new();
1999                 let logger = Arc::new(test_utils::TestLogger::new());
2000                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2001                 (secp_ctx, gossip_sync)
2002         }
2003
2004         #[test]
2005         #[cfg(feature = "std")]
2006         fn request_full_sync_finite_times() {
2007                 let network_graph = create_network_graph();
2008                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2009                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2010
2011                 assert!(gossip_sync.should_request_full_sync(&node_id));
2012                 assert!(gossip_sync.should_request_full_sync(&node_id));
2013                 assert!(gossip_sync.should_request_full_sync(&node_id));
2014                 assert!(gossip_sync.should_request_full_sync(&node_id));
2015                 assert!(gossip_sync.should_request_full_sync(&node_id));
2016                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2017         }
2018
2019         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2020                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2021                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2022                         features: channelmanager::provided_node_features(&UserConfig::default()),
2023                         timestamp: 100,
2024                         node_id,
2025                         rgb: [0; 3],
2026                         alias: [0; 32],
2027                         addresses: Vec::new(),
2028                         excess_address_data: Vec::new(),
2029                         excess_data: Vec::new(),
2030                 };
2031                 f(&mut unsigned_announcement);
2032                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2033                 NodeAnnouncement {
2034                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2035                         contents: unsigned_announcement
2036                 }
2037         }
2038
2039         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2040                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2041                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2042                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2043                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2044
2045                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2046                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2047                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2048                         short_channel_id: 0,
2049                         node_id_1: NodeId::from_pubkey(&node_id_1),
2050                         node_id_2: NodeId::from_pubkey(&node_id_2),
2051                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2052                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2053                         excess_data: Vec::new(),
2054                 };
2055                 f(&mut unsigned_announcement);
2056                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2057                 ChannelAnnouncement {
2058                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2059                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2060                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2061                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2062                         contents: unsigned_announcement,
2063                 }
2064         }
2065
2066         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2067                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2068                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2069                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2070                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2071         }
2072
2073         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2074                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2075                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2076                         short_channel_id: 0,
2077                         timestamp: 100,
2078                         flags: 0,
2079                         cltv_expiry_delta: 144,
2080                         htlc_minimum_msat: 1_000_000,
2081                         htlc_maximum_msat: 1_000_000,
2082                         fee_base_msat: 10_000,
2083                         fee_proportional_millionths: 20,
2084                         excess_data: Vec::new()
2085                 };
2086                 f(&mut unsigned_channel_update);
2087                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2088                 ChannelUpdate {
2089                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2090                         contents: unsigned_channel_update
2091                 }
2092         }
2093
2094         #[test]
2095         fn handling_node_announcements() {
2096                 let network_graph = create_network_graph();
2097                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2098
2099                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2100                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2101                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2102
2103                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2104                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2105                         Ok(_) => panic!(),
2106                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2107                 };
2108
2109                 {
2110                         // Announce a channel to add a corresponding node.
2111                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2112                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2113                                 Ok(res) => assert!(res),
2114                                 _ => panic!()
2115                         };
2116                 }
2117
2118                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2119                         Ok(res) => assert!(res),
2120                         Err(_) => panic!()
2121                 };
2122
2123                 let fake_msghash = hash_to_message!(&zero_hash);
2124                 match gossip_sync.handle_node_announcement(
2125                         &NodeAnnouncement {
2126                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2127                                 contents: valid_announcement.contents.clone()
2128                 }) {
2129                         Ok(_) => panic!(),
2130                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2131                 };
2132
2133                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2134                         unsigned_announcement.timestamp += 1000;
2135                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2136                 }, node_1_privkey, &secp_ctx);
2137                 // Return false because contains excess data.
2138                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2139                         Ok(res) => assert!(!res),
2140                         Err(_) => panic!()
2141                 };
2142
2143                 // Even though previous announcement was not relayed further, we still accepted it,
2144                 // so we now won't accept announcements before the previous one.
2145                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2146                         unsigned_announcement.timestamp += 1000 - 10;
2147                 }, node_1_privkey, &secp_ctx);
2148                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2149                         Ok(_) => panic!(),
2150                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2151                 };
2152         }
2153
2154         #[test]
2155         fn handling_channel_announcements() {
2156                 let secp_ctx = Secp256k1::new();
2157                 let logger = test_utils::TestLogger::new();
2158
2159                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2160                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2161
2162                 let good_script = get_channel_script(&secp_ctx);
2163                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2164
2165                 // Test if the UTXO lookups were not supported
2166                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2167                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2168                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2169                         Ok(res) => assert!(res),
2170                         _ => panic!()
2171                 };
2172
2173                 {
2174                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2175                                 None => panic!(),
2176                                 Some(_) => ()
2177                         };
2178                 }
2179
2180                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2181                 // drop new one on the floor, since we can't see any changes.
2182                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2183                         Ok(_) => panic!(),
2184                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2185                 };
2186
2187                 // Test if an associated transaction were not on-chain (or not confirmed).
2188                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2189                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2190                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2191                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2192
2193                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2194                         unsigned_announcement.short_channel_id += 1;
2195                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2196                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2197                         Ok(_) => panic!(),
2198                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2199                 };
2200
2201                 // Now test if the transaction is found in the UTXO set and the script is correct.
2202                 *chain_source.utxo_ret.lock().unwrap() =
2203                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2204                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2205                         unsigned_announcement.short_channel_id += 2;
2206                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2207                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2208                         Ok(res) => assert!(res),
2209                         _ => panic!()
2210                 };
2211
2212                 {
2213                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2214                                 None => panic!(),
2215                                 Some(_) => ()
2216                         };
2217                 }
2218
2219                 // If we receive announcement for the same channel, once we've validated it against the
2220                 // chain, we simply ignore all new (duplicate) announcements.
2221                 *chain_source.utxo_ret.lock().unwrap() =
2222                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2223                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2224                         Ok(_) => panic!(),
2225                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2226                 };
2227
2228                 #[cfg(feature = "std")]
2229                 {
2230                         use std::time::{SystemTime, UNIX_EPOCH};
2231
2232                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2233                         // Mark a node as permanently failed so it's tracked as removed.
2234                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2235
2236                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2237                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2238                                 unsigned_announcement.short_channel_id += 3;
2239                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2240                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2241                                 Ok(_) => panic!(),
2242                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2243                         }
2244
2245                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2246
2247                         // The above channel announcement should be handled as per normal now.
2248                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2249                                 Ok(res) => assert!(res),
2250                                 _ => panic!()
2251                         }
2252                 }
2253
2254                 // Don't relay valid channels with excess data
2255                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2256                         unsigned_announcement.short_channel_id += 4;
2257                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2258                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2259                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2260                         Ok(res) => assert!(!res),
2261                         _ => panic!()
2262                 };
2263
2264                 let mut invalid_sig_announcement = valid_announcement.clone();
2265                 invalid_sig_announcement.contents.excess_data = Vec::new();
2266                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2267                         Ok(_) => panic!(),
2268                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2269                 };
2270
2271                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2272                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2273                         Ok(_) => panic!(),
2274                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2275                 };
2276         }
2277
2278         #[test]
2279         fn handling_channel_update() {
2280                 let secp_ctx = Secp256k1::new();
2281                 let logger = test_utils::TestLogger::new();
2282                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2283                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2284                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2285
2286                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2287                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2288
2289                 let amount_sats = 1000_000;
2290                 let short_channel_id;
2291
2292                 {
2293                         // Announce a channel we will update
2294                         let good_script = get_channel_script(&secp_ctx);
2295                         *chain_source.utxo_ret.lock().unwrap() =
2296                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2297
2298                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2299                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2300                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2301                                 Ok(_) => (),
2302                                 Err(_) => panic!()
2303                         };
2304
2305                 }
2306
2307                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2308                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2309                         Ok(res) => assert!(res),
2310                         _ => panic!(),
2311                 };
2312
2313                 {
2314                         match network_graph.read_only().channels().get(&short_channel_id) {
2315                                 None => panic!(),
2316                                 Some(channel_info) => {
2317                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2318                                         assert!(channel_info.two_to_one.is_none());
2319                                 }
2320                         };
2321                 }
2322
2323                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2324                         unsigned_channel_update.timestamp += 100;
2325                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2326                 }, node_1_privkey, &secp_ctx);
2327                 // Return false because contains excess data
2328                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2329                         Ok(res) => assert!(!res),
2330                         _ => panic!()
2331                 };
2332
2333                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2334                         unsigned_channel_update.timestamp += 110;
2335                         unsigned_channel_update.short_channel_id += 1;
2336                 }, node_1_privkey, &secp_ctx);
2337                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2338                         Ok(_) => panic!(),
2339                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2340                 };
2341
2342                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2343                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2344                         unsigned_channel_update.timestamp += 110;
2345                 }, node_1_privkey, &secp_ctx);
2346                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2347                         Ok(_) => panic!(),
2348                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2349                 };
2350
2351                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2352                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2353                         unsigned_channel_update.timestamp += 110;
2354                 }, node_1_privkey, &secp_ctx);
2355                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2356                         Ok(_) => panic!(),
2357                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2358                 };
2359
2360                 // Even though previous update was not relayed further, we still accepted it,
2361                 // so we now won't accept update before the previous one.
2362                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2363                         unsigned_channel_update.timestamp += 100;
2364                 }, node_1_privkey, &secp_ctx);
2365                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2366                         Ok(_) => panic!(),
2367                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2368                 };
2369
2370                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2371                         unsigned_channel_update.timestamp += 500;
2372                 }, node_1_privkey, &secp_ctx);
2373                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2374                 let fake_msghash = hash_to_message!(&zero_hash);
2375                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2376                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2377                         Ok(_) => panic!(),
2378                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2379                 };
2380         }
2381
2382         #[test]
2383         fn handling_network_update() {
2384                 let logger = test_utils::TestLogger::new();
2385                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2386                 let secp_ctx = Secp256k1::new();
2387
2388                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2389                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2390                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2391
2392                 {
2393                         // There is no nodes in the table at the beginning.
2394                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2395                 }
2396
2397                 let short_channel_id;
2398                 {
2399                         // Announce a channel we will update
2400                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2401                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2402                         let chain_source: Option<&test_utils::TestChainSource> = None;
2403                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2404                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2405
2406                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2407                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2408
2409                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2410                                 msg: valid_channel_update,
2411                         });
2412
2413                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2414                 }
2415
2416                 // Non-permanent closing just disables a channel
2417                 {
2418                         match network_graph.read_only().channels().get(&short_channel_id) {
2419                                 None => panic!(),
2420                                 Some(channel_info) => {
2421                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2422                                 }
2423                         };
2424
2425                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2426                                 short_channel_id,
2427                                 is_permanent: false,
2428                         });
2429
2430                         match network_graph.read_only().channels().get(&short_channel_id) {
2431                                 None => panic!(),
2432                                 Some(channel_info) => {
2433                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2434                                 }
2435                         };
2436                 }
2437
2438                 // Permanent closing deletes a channel
2439                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2440                         short_channel_id,
2441                         is_permanent: true,
2442                 });
2443
2444                 assert_eq!(network_graph.read_only().channels().len(), 0);
2445                 // Nodes are also deleted because there are no associated channels anymore
2446                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2447
2448                 {
2449                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2450                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2451
2452                         // Announce a channel to test permanent node failure
2453                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2454                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2455                         let chain_source: Option<&test_utils::TestChainSource> = None;
2456                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2457                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2458
2459                         // Non-permanent node failure does not delete any nodes or channels
2460                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2461                                 node_id: node_2_id,
2462                                 is_permanent: false,
2463                         });
2464
2465                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2466                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2467
2468                         // Permanent node failure deletes node and its channels
2469                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2470                                 node_id: node_2_id,
2471                                 is_permanent: true,
2472                         });
2473
2474                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2475                         // Channels are also deleted because the associated node has been deleted
2476                         assert_eq!(network_graph.read_only().channels().len(), 0);
2477                 }
2478         }
2479
2480         #[test]
2481         fn test_channel_timeouts() {
2482                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2483                 let logger = test_utils::TestLogger::new();
2484                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2485                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2486                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2487                 let secp_ctx = Secp256k1::new();
2488
2489                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2490                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2491
2492                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2493                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2494                 let chain_source: Option<&test_utils::TestChainSource> = None;
2495                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2496                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2497
2498                 // Submit two channel updates for each channel direction (update.flags bit).
2499                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2500                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2501                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2502
2503                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2504                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2505                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2506
2507                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2508                 assert_eq!(network_graph.read_only().channels().len(), 1);
2509                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2510
2511                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2512                 #[cfg(not(feature = "std"))] {
2513                         // Make sure removed channels are tracked.
2514                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2515                 }
2516                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2517                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2518
2519                 #[cfg(feature = "std")]
2520                 {
2521                         // In std mode, a further check is performed before fully removing the channel -
2522                         // the channel_announcement must have been received at least two weeks ago. We
2523                         // fudge that here by indicating the time has jumped two weeks.
2524                         assert_eq!(network_graph.read_only().channels().len(), 1);
2525                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2526
2527                         // Note that the directional channel information will have been removed already..
2528                         // We want to check that this will work even if *one* of the channel updates is recent,
2529                         // so we should add it with a recent timestamp.
2530                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2531                         use std::time::{SystemTime, UNIX_EPOCH};
2532                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2533                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2534                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2535                         }, node_1_privkey, &secp_ctx);
2536                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2537                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2538                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2539                         // Make sure removed channels are tracked.
2540                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2541                         // Provide a later time so that sufficient time has passed
2542                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2543                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2544                 }
2545
2546                 assert_eq!(network_graph.read_only().channels().len(), 0);
2547                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2548                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2549
2550                 #[cfg(feature = "std")]
2551                 {
2552                         use std::time::{SystemTime, UNIX_EPOCH};
2553
2554                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2555
2556                         // Clear tracked nodes and channels for clean slate
2557                         network_graph.removed_channels.lock().unwrap().clear();
2558                         network_graph.removed_nodes.lock().unwrap().clear();
2559
2560                         // Add a channel and nodes from channel announcement. So our network graph will
2561                         // now only consist of two nodes and one channel between them.
2562                         assert!(network_graph.update_channel_from_announcement(
2563                                 &valid_channel_announcement, &chain_source).is_ok());
2564
2565                         // Mark the channel as permanently failed. This will also remove the two nodes
2566                         // and all of the entries will be tracked as removed.
2567                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2568
2569                         // Should not remove from tracking if insufficient time has passed
2570                         network_graph.remove_stale_channels_and_tracking_with_time(
2571                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2572                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2573
2574                         // Provide a later time so that sufficient time has passed
2575                         network_graph.remove_stale_channels_and_tracking_with_time(
2576                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2577                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2578                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2579                 }
2580
2581                 #[cfg(not(feature = "std"))]
2582                 {
2583                         // When we don't have access to the system clock, the time we started tracking removal will only
2584                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2585                         // only if sufficient time has passed after that first call, will the next call remove it from
2586                         // tracking.
2587                         let removal_time = 1664619654;
2588
2589                         // Clear removed nodes and channels for clean slate
2590                         network_graph.removed_channels.lock().unwrap().clear();
2591                         network_graph.removed_nodes.lock().unwrap().clear();
2592
2593                         // Add a channel and nodes from channel announcement. So our network graph will
2594                         // now only consist of two nodes and one channel between them.
2595                         assert!(network_graph.update_channel_from_announcement(
2596                                 &valid_channel_announcement, &chain_source).is_ok());
2597
2598                         // Mark the channel as permanently failed. This will also remove the two nodes
2599                         // and all of the entries will be tracked as removed.
2600                         network_graph.channel_failed(short_channel_id, true);
2601
2602                         // The first time we call the following, the channel will have a removal time assigned.
2603                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2604                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2605
2606                         // Provide a later time so that sufficient time has passed
2607                         network_graph.remove_stale_channels_and_tracking_with_time(
2608                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2609                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2610                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2611                 }
2612         }
2613
2614         #[test]
2615         fn getting_next_channel_announcements() {
2616                 let network_graph = create_network_graph();
2617                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2618                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2619                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2620
2621                 // Channels were not announced yet.
2622                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2623                 assert!(channels_with_announcements.is_none());
2624
2625                 let short_channel_id;
2626                 {
2627                         // Announce a channel we will update
2628                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2629                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2630                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2631                                 Ok(_) => (),
2632                                 Err(_) => panic!()
2633                         };
2634                 }
2635
2636                 // Contains initial channel announcement now.
2637                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2638                 if let Some(channel_announcements) = channels_with_announcements {
2639                         let (_, ref update_1, ref update_2) = channel_announcements;
2640                         assert_eq!(update_1, &None);
2641                         assert_eq!(update_2, &None);
2642                 } else {
2643                         panic!();
2644                 }
2645
2646                 {
2647                         // Valid channel update
2648                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2649                                 unsigned_channel_update.timestamp = 101;
2650                         }, node_1_privkey, &secp_ctx);
2651                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2652                                 Ok(_) => (),
2653                                 Err(_) => panic!()
2654                         };
2655                 }
2656
2657                 // Now contains an initial announcement and an update.
2658                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2659                 if let Some(channel_announcements) = channels_with_announcements {
2660                         let (_, ref update_1, ref update_2) = channel_announcements;
2661                         assert_ne!(update_1, &None);
2662                         assert_eq!(update_2, &None);
2663                 } else {
2664                         panic!();
2665                 }
2666
2667                 {
2668                         // Channel update with excess data.
2669                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2670                                 unsigned_channel_update.timestamp = 102;
2671                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2672                         }, node_1_privkey, &secp_ctx);
2673                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2674                                 Ok(_) => (),
2675                                 Err(_) => panic!()
2676                         };
2677                 }
2678
2679                 // Test that announcements with excess data won't be returned
2680                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2681                 if let Some(channel_announcements) = channels_with_announcements {
2682                         let (_, ref update_1, ref update_2) = channel_announcements;
2683                         assert_eq!(update_1, &None);
2684                         assert_eq!(update_2, &None);
2685                 } else {
2686                         panic!();
2687                 }
2688
2689                 // Further starting point have no channels after it
2690                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2691                 assert!(channels_with_announcements.is_none());
2692         }
2693
2694         #[test]
2695         fn getting_next_node_announcements() {
2696                 let network_graph = create_network_graph();
2697                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2698                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2699                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2700                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2701
2702                 // No nodes yet.
2703                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2704                 assert!(next_announcements.is_none());
2705
2706                 {
2707                         // Announce a channel to add 2 nodes
2708                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2709                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2710                                 Ok(_) => (),
2711                                 Err(_) => panic!()
2712                         };
2713                 }
2714
2715                 // Nodes were never announced
2716                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2717                 assert!(next_announcements.is_none());
2718
2719                 {
2720                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2721                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2722                                 Ok(_) => (),
2723                                 Err(_) => panic!()
2724                         };
2725
2726                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2727                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2728                                 Ok(_) => (),
2729                                 Err(_) => panic!()
2730                         };
2731                 }
2732
2733                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2734                 assert!(next_announcements.is_some());
2735
2736                 // Skip the first node.
2737                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2738                 assert!(next_announcements.is_some());
2739
2740                 {
2741                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2742                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2743                                 unsigned_announcement.timestamp += 10;
2744                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2745                         }, node_2_privkey, &secp_ctx);
2746                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2747                                 Ok(res) => assert!(!res),
2748                                 Err(_) => panic!()
2749                         };
2750                 }
2751
2752                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2753                 assert!(next_announcements.is_none());
2754         }
2755
2756         #[test]
2757         fn network_graph_serialization() {
2758                 let network_graph = create_network_graph();
2759                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2760
2761                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2762                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2763
2764                 // Announce a channel to add a corresponding node.
2765                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2766                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2767                         Ok(res) => assert!(res),
2768                         _ => panic!()
2769                 };
2770
2771                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2772                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2773                         Ok(_) => (),
2774                         Err(_) => panic!()
2775                 };
2776
2777                 let mut w = test_utils::TestVecWriter(Vec::new());
2778                 assert!(!network_graph.read_only().nodes().is_empty());
2779                 assert!(!network_graph.read_only().channels().is_empty());
2780                 network_graph.write(&mut w).unwrap();
2781
2782                 let logger = Arc::new(test_utils::TestLogger::new());
2783                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2784         }
2785
2786         #[test]
2787         fn network_graph_tlv_serialization() {
2788                 let network_graph = create_network_graph();
2789                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2790
2791                 let mut w = test_utils::TestVecWriter(Vec::new());
2792                 network_graph.write(&mut w).unwrap();
2793
2794                 let logger = Arc::new(test_utils::TestLogger::new());
2795                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2796                 assert!(reassembled_network_graph == network_graph);
2797                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2798         }
2799
2800         #[test]
2801         #[cfg(feature = "std")]
2802         fn calling_sync_routing_table() {
2803                 use std::time::{SystemTime, UNIX_EPOCH};
2804                 use crate::ln::msgs::Init;
2805
2806                 let network_graph = create_network_graph();
2807                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2808                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2809                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2810
2811                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2812
2813                 // It should ignore if gossip_queries feature is not enabled
2814                 {
2815                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2816                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2817                         let events = gossip_sync.get_and_clear_pending_msg_events();
2818                         assert_eq!(events.len(), 0);
2819                 }
2820
2821                 // It should send a gossip_timestamp_filter with the correct information
2822                 {
2823                         let mut features = InitFeatures::empty();
2824                         features.set_gossip_queries_optional();
2825                         let init_msg = Init { features, remote_network_address: None };
2826                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2827                         let events = gossip_sync.get_and_clear_pending_msg_events();
2828                         assert_eq!(events.len(), 1);
2829                         match &events[0] {
2830                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2831                                         assert_eq!(node_id, &node_id_1);
2832                                         assert_eq!(msg.chain_hash, chain_hash);
2833                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2834                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2835                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2836                                         assert_eq!(msg.timestamp_range, u32::max_value());
2837                                 },
2838                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2839                         };
2840                 }
2841         }
2842
2843         #[test]
2844         fn handling_query_channel_range() {
2845                 let network_graph = create_network_graph();
2846                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2847
2848                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2849                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2850                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2851                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2852
2853                 let mut scids: Vec<u64> = vec![
2854                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2855                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2856                 ];
2857
2858                 // used for testing multipart reply across blocks
2859                 for block in 100000..=108001 {
2860                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2861                 }
2862
2863                 // used for testing resumption on same block
2864                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2865
2866                 for scid in scids {
2867                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2868                                 unsigned_announcement.short_channel_id = scid;
2869                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2870                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2871                                 Ok(_) => (),
2872                                 _ => panic!()
2873                         };
2874                 }
2875
2876                 // Error when number_of_blocks=0
2877                 do_handling_query_channel_range(
2878                         &gossip_sync,
2879                         &node_id_2,
2880                         QueryChannelRange {
2881                                 chain_hash: chain_hash.clone(),
2882                                 first_blocknum: 0,
2883                                 number_of_blocks: 0,
2884                         },
2885                         false,
2886                         vec![ReplyChannelRange {
2887                                 chain_hash: chain_hash.clone(),
2888                                 first_blocknum: 0,
2889                                 number_of_blocks: 0,
2890                                 sync_complete: true,
2891                                 short_channel_ids: vec![]
2892                         }]
2893                 );
2894
2895                 // Error when wrong chain
2896                 do_handling_query_channel_range(
2897                         &gossip_sync,
2898                         &node_id_2,
2899                         QueryChannelRange {
2900                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2901                                 first_blocknum: 0,
2902                                 number_of_blocks: 0xffff_ffff,
2903                         },
2904                         false,
2905                         vec![ReplyChannelRange {
2906                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2907                                 first_blocknum: 0,
2908                                 number_of_blocks: 0xffff_ffff,
2909                                 sync_complete: true,
2910                                 short_channel_ids: vec![],
2911                         }]
2912                 );
2913
2914                 // Error when first_blocknum > 0xffffff
2915                 do_handling_query_channel_range(
2916                         &gossip_sync,
2917                         &node_id_2,
2918                         QueryChannelRange {
2919                                 chain_hash: chain_hash.clone(),
2920                                 first_blocknum: 0x01000000,
2921                                 number_of_blocks: 0xffff_ffff,
2922                         },
2923                         false,
2924                         vec![ReplyChannelRange {
2925                                 chain_hash: chain_hash.clone(),
2926                                 first_blocknum: 0x01000000,
2927                                 number_of_blocks: 0xffff_ffff,
2928                                 sync_complete: true,
2929                                 short_channel_ids: vec![]
2930                         }]
2931                 );
2932
2933                 // Empty reply when max valid SCID block num
2934                 do_handling_query_channel_range(
2935                         &gossip_sync,
2936                         &node_id_2,
2937                         QueryChannelRange {
2938                                 chain_hash: chain_hash.clone(),
2939                                 first_blocknum: 0xffffff,
2940                                 number_of_blocks: 1,
2941                         },
2942                         true,
2943                         vec![
2944                                 ReplyChannelRange {
2945                                         chain_hash: chain_hash.clone(),
2946                                         first_blocknum: 0xffffff,
2947                                         number_of_blocks: 1,
2948                                         sync_complete: true,
2949                                         short_channel_ids: vec![]
2950                                 },
2951                         ]
2952                 );
2953
2954                 // No results in valid query range
2955                 do_handling_query_channel_range(
2956                         &gossip_sync,
2957                         &node_id_2,
2958                         QueryChannelRange {
2959                                 chain_hash: chain_hash.clone(),
2960                                 first_blocknum: 1000,
2961                                 number_of_blocks: 1000,
2962                         },
2963                         true,
2964                         vec![
2965                                 ReplyChannelRange {
2966                                         chain_hash: chain_hash.clone(),
2967                                         first_blocknum: 1000,
2968                                         number_of_blocks: 1000,
2969                                         sync_complete: true,
2970                                         short_channel_ids: vec![],
2971                                 }
2972                         ]
2973                 );
2974
2975                 // Overflow first_blocknum + number_of_blocks
2976                 do_handling_query_channel_range(
2977                         &gossip_sync,
2978                         &node_id_2,
2979                         QueryChannelRange {
2980                                 chain_hash: chain_hash.clone(),
2981                                 first_blocknum: 0xfe0000,
2982                                 number_of_blocks: 0xffffffff,
2983                         },
2984                         true,
2985                         vec![
2986                                 ReplyChannelRange {
2987                                         chain_hash: chain_hash.clone(),
2988                                         first_blocknum: 0xfe0000,
2989                                         number_of_blocks: 0xffffffff - 0xfe0000,
2990                                         sync_complete: true,
2991                                         short_channel_ids: vec![
2992                                                 0xfffffe_ffffff_ffff, // max
2993                                         ]
2994                                 }
2995                         ]
2996                 );
2997
2998                 // Single block exactly full
2999                 do_handling_query_channel_range(
3000                         &gossip_sync,
3001                         &node_id_2,
3002                         QueryChannelRange {
3003                                 chain_hash: chain_hash.clone(),
3004                                 first_blocknum: 100000,
3005                                 number_of_blocks: 8000,
3006                         },
3007                         true,
3008                         vec![
3009                                 ReplyChannelRange {
3010                                         chain_hash: chain_hash.clone(),
3011                                         first_blocknum: 100000,
3012                                         number_of_blocks: 8000,
3013                                         sync_complete: true,
3014                                         short_channel_ids: (100000..=107999)
3015                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3016                                                 .collect(),
3017                                 },
3018                         ]
3019                 );
3020
3021                 // Multiple split on new block
3022                 do_handling_query_channel_range(
3023                         &gossip_sync,
3024                         &node_id_2,
3025                         QueryChannelRange {
3026                                 chain_hash: chain_hash.clone(),
3027                                 first_blocknum: 100000,
3028                                 number_of_blocks: 8001,
3029                         },
3030                         true,
3031                         vec![
3032                                 ReplyChannelRange {
3033                                         chain_hash: chain_hash.clone(),
3034                                         first_blocknum: 100000,
3035                                         number_of_blocks: 7999,
3036                                         sync_complete: false,
3037                                         short_channel_ids: (100000..=107999)
3038                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3039                                                 .collect(),
3040                                 },
3041                                 ReplyChannelRange {
3042                                         chain_hash: chain_hash.clone(),
3043                                         first_blocknum: 107999,
3044                                         number_of_blocks: 2,
3045                                         sync_complete: true,
3046                                         short_channel_ids: vec![
3047                                                 scid_from_parts(108000, 0, 0).unwrap(),
3048                                         ],
3049                                 }
3050                         ]
3051                 );
3052
3053                 // Multiple split on same block
3054                 do_handling_query_channel_range(
3055                         &gossip_sync,
3056                         &node_id_2,
3057                         QueryChannelRange {
3058                                 chain_hash: chain_hash.clone(),
3059                                 first_blocknum: 100002,
3060                                 number_of_blocks: 8000,
3061                         },
3062                         true,
3063                         vec![
3064                                 ReplyChannelRange {
3065                                         chain_hash: chain_hash.clone(),
3066                                         first_blocknum: 100002,
3067                                         number_of_blocks: 7999,
3068                                         sync_complete: false,
3069                                         short_channel_ids: (100002..=108001)
3070                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3071                                                 .collect(),
3072                                 },
3073                                 ReplyChannelRange {
3074                                         chain_hash: chain_hash.clone(),
3075                                         first_blocknum: 108001,
3076                                         number_of_blocks: 1,
3077                                         sync_complete: true,
3078                                         short_channel_ids: vec![
3079                                                 scid_from_parts(108001, 1, 0).unwrap(),
3080                                         ],
3081                                 }
3082                         ]
3083                 );
3084         }
3085
3086         fn do_handling_query_channel_range(
3087                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3088                 test_node_id: &PublicKey,
3089                 msg: QueryChannelRange,
3090                 expected_ok: bool,
3091                 expected_replies: Vec<ReplyChannelRange>
3092         ) {
3093                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3094                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3095                 let query_end_blocknum = msg.end_blocknum();
3096                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3097
3098                 if expected_ok {
3099                         assert!(result.is_ok());
3100                 } else {
3101                         assert!(result.is_err());
3102                 }
3103
3104                 let events = gossip_sync.get_and_clear_pending_msg_events();
3105                 assert_eq!(events.len(), expected_replies.len());
3106
3107                 for i in 0..events.len() {
3108                         let expected_reply = &expected_replies[i];
3109                         match &events[i] {
3110                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3111                                         assert_eq!(node_id, test_node_id);
3112                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3113                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3114                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3115                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3116                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3117
3118                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3119                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3120                                         assert!(msg.first_blocknum >= max_firstblocknum);
3121                                         max_firstblocknum = msg.first_blocknum;
3122                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3123
3124                                         // Check that the last block count is >= the query's end_blocknum
3125                                         if i == events.len() - 1 {
3126                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3127                                         }
3128                                 },
3129                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3130                         }
3131                 }
3132         }
3133
3134         #[test]
3135         fn handling_query_short_channel_ids() {
3136                 let network_graph = create_network_graph();
3137                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3138                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3139                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3140
3141                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3142
3143                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3144                         chain_hash,
3145                         short_channel_ids: vec![0x0003e8_000000_0000],
3146                 });
3147                 assert!(result.is_err());
3148         }
3149
3150         #[test]
3151         fn displays_node_alias() {
3152                 let format_str_alias = |alias: &str| {
3153                         let mut bytes = [0u8; 32];
3154                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3155                         format!("{}", NodeAlias(bytes))
3156                 };
3157
3158                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3159                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3160                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3161
3162                 let format_bytes_alias = |alias: &[u8]| {
3163                         let mut bytes = [0u8; 32];
3164                         bytes[..alias.len()].copy_from_slice(alias);
3165                         format!("{}", NodeAlias(bytes))
3166                 };
3167
3168                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3169                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3170                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3171         }
3172
3173         #[test]
3174         fn channel_info_is_readable() {
3175                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3176                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3177                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3178                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3179                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3180
3181                 // 1. Test encoding/decoding of ChannelUpdateInfo
3182                 let chan_update_info = ChannelUpdateInfo {
3183                         last_update: 23,
3184                         enabled: true,
3185                         cltv_expiry_delta: 42,
3186                         htlc_minimum_msat: 1234,
3187                         htlc_maximum_msat: 5678,
3188                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3189                         last_update_message: None,
3190                 };
3191
3192                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3193                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3194
3195                 // First make sure we can read ChannelUpdateInfos we just wrote
3196                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3197                 assert_eq!(chan_update_info, read_chan_update_info);
3198
3199                 // Check the serialization hasn't changed.
3200                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3201                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3202
3203                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3204                 // or the ChannelUpdate enclosed with `last_update_message`.
3205                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3206                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3207                 assert!(read_chan_update_info_res.is_err());
3208
3209                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3210                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3211                 assert!(read_chan_update_info_res.is_err());
3212
3213                 // 2. Test encoding/decoding of ChannelInfo
3214                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3215                 let chan_info_none_updates = ChannelInfo {
3216                         features: channelmanager::provided_channel_features(&config),
3217                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3218                         one_to_two: None,
3219                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3220                         two_to_one: None,
3221                         capacity_sats: None,
3222                         announcement_message: None,
3223                         announcement_received_time: 87654,
3224                 };
3225
3226                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3227                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3228
3229                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3230                 assert_eq!(chan_info_none_updates, read_chan_info);
3231
3232                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3233                 let chan_info_some_updates = ChannelInfo {
3234                         features: channelmanager::provided_channel_features(&config),
3235                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3236                         one_to_two: Some(chan_update_info.clone()),
3237                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3238                         two_to_one: Some(chan_update_info.clone()),
3239                         capacity_sats: None,
3240                         announcement_message: None,
3241                         announcement_received_time: 87654,
3242                 };
3243
3244                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3245                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3246
3247                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3248                 assert_eq!(chan_info_some_updates, read_chan_info);
3249
3250                 // Check the serialization hasn't changed.
3251                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3252                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3253
3254                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3255                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3256                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3257                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3258                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3259                 assert_eq!(read_chan_info.one_to_two, None);
3260                 assert_eq!(read_chan_info.two_to_one, None);
3261
3262                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3263                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3264                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3265                 assert_eq!(read_chan_info.one_to_two, None);
3266                 assert_eq!(read_chan_info.two_to_one, None);
3267         }
3268
3269         #[test]
3270         fn node_info_is_readable() {
3271                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3272                 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3273                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3274                 let valid_node_ann_info = NodeAnnouncementInfo {
3275                         features: channelmanager::provided_node_features(&UserConfig::default()),
3276                         last_update: 0,
3277                         rgb: [0u8; 3],
3278                         alias: NodeAlias([0u8; 32]),
3279                         announcement_message: Some(announcement_message)
3280                 };
3281
3282                 let mut encoded_valid_node_ann_info = Vec::new();
3283                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3284                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3285                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3286                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3287
3288                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3289                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3290                 assert!(read_invalid_node_ann_info_res.is_err());
3291
3292                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3293                 let valid_node_info = NodeInfo {
3294                         channels: Vec::new(),
3295                         announcement_info: Some(valid_node_ann_info),
3296                 };
3297
3298                 let mut encoded_valid_node_info = Vec::new();
3299                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3300                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3301                 assert_eq!(read_valid_node_info, valid_node_info);
3302
3303                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3304                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3305                 assert_eq!(read_invalid_node_info.announcement_info, None);
3306         }
3307
3308         #[test]
3309         fn test_node_info_keeps_compatibility() {
3310                 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3311                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3312                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3313                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3314                 assert!(ann_info_with_addresses.addresses().is_empty());
3315         }
3316 }
3317
3318 #[cfg(all(test, feature = "_bench_unstable"))]
3319 mod benches {
3320         use super::*;
3321
3322         use test::Bencher;
3323         use std::io::Read;
3324
3325         #[bench]
3326         fn read_network_graph(bench: &mut Bencher) {
3327                 let logger = crate::util::test_utils::TestLogger::new();
3328                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3329                 let mut v = Vec::new();
3330                 d.read_to_end(&mut v).unwrap();
3331                 bench.iter(|| {
3332                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3333                 });
3334         }
3335
3336         #[bench]
3337         fn write_network_graph(bench: &mut Bencher) {
3338                 let logger = crate::util::test_utils::TestLogger::new();
3339                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3340                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3341                 bench.iter(|| {
3342                         let _ = net_graph.encode();
3343                 });
3344         }
3345 }