1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::{PublicKey, Verification};
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hashes::hex::FromHex;
20 use bitcoin::hash_types::BlockHash;
22 use bitcoin::network::constants::Network;
23 use bitcoin::blockdata::constants::genesis_block;
25 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
26 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
27 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
31 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
32 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
33 use crate::util::logger::{Logger, Level};
34 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35 use crate::util::string::PrintableString;
36 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
39 use crate::io_extras::{copy, sink};
40 use crate::prelude::*;
42 use core::convert::TryFrom;
43 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
44 #[cfg(feature = "std")]
45 use core::sync::atomic::{AtomicUsize, Ordering};
46 use crate::sync::Mutex;
47 use core::ops::{Bound, Deref};
48 use core::str::FromStr;
50 #[cfg(feature = "std")]
51 use std::time::{SystemTime, UNIX_EPOCH};
53 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
55 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
57 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
58 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
60 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
61 /// refuse to relay the message.
62 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
64 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
65 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
66 const MAX_SCIDS_PER_REPLY: usize = 8000;
68 /// Represents the compressed public key of a node
69 #[derive(Clone, Copy)]
70 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
73 /// Create a new NodeId from a public key
74 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
75 NodeId(pubkey.serialize())
78 /// Get the public key slice from this NodeId
79 pub fn as_slice(&self) -> &[u8] {
83 /// Get the public key from this NodeId
84 pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
85 PublicKey::from_slice(&self.0)
89 impl fmt::Debug for NodeId {
90 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
91 write!(f, "NodeId({})", crate::util::logger::DebugBytes(&self.0))
94 impl fmt::Display for NodeId {
95 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
96 crate::util::logger::DebugBytes(&self.0).fmt(f)
100 impl core::hash::Hash for NodeId {
101 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
106 impl Eq for NodeId {}
108 impl PartialEq for NodeId {
109 fn eq(&self, other: &Self) -> bool {
110 self.0[..] == other.0[..]
114 impl cmp::PartialOrd for NodeId {
115 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
116 Some(self.cmp(other))
120 impl Ord for NodeId {
121 fn cmp(&self, other: &Self) -> cmp::Ordering {
122 self.0[..].cmp(&other.0[..])
126 impl Writeable for NodeId {
127 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
128 writer.write_all(&self.0)?;
133 impl Readable for NodeId {
134 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
135 let mut buf = [0; PUBLIC_KEY_SIZE];
136 reader.read_exact(&mut buf)?;
141 impl From<PublicKey> for NodeId {
142 fn from(pubkey: PublicKey) -> Self {
143 Self::from_pubkey(&pubkey)
147 impl TryFrom<NodeId> for PublicKey {
148 type Error = secp256k1::Error;
150 fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
155 impl FromStr for NodeId {
156 type Err = bitcoin::hashes::hex::Error;
158 fn from_str(s: &str) -> Result<Self, Self::Err> {
159 let data: [u8; PUBLIC_KEY_SIZE] = FromHex::from_hex(s)?;
164 /// Represents the network as nodes and channels between them
165 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
166 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
167 last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
168 genesis_hash: BlockHash,
170 // Lock order: channels -> nodes
171 channels: RwLock<IndexedMap<u64, ChannelInfo>>,
172 nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
173 // Lock order: removed_channels -> removed_nodes
175 // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
176 // of `std::time::Instant`s for a few reasons:
177 // * We want it to be possible to do tracking in no-std environments where we can compare
178 // a provided current UNIX timestamp with the time at which we started tracking.
179 // * In the future, if we decide to persist these maps, they will already be serializable.
180 // * Although we lose out on the platform's monotonic clock, the system clock in a std
181 // environment should be practical over the time period we are considering (on the order of a
184 /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
185 /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
186 /// it was removed so that once some time passes, we can potentially resync it from gossip again.
187 removed_channels: Mutex<HashMap<u64, Option<u64>>>,
188 /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
189 /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
190 /// that once some time passes, we can potentially resync it from gossip again.
191 removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
192 /// Announcement messages which are awaiting an on-chain lookup to be processed.
193 pub(super) pending_checks: utxo::PendingChecks,
196 /// A read-only view of [`NetworkGraph`].
197 pub struct ReadOnlyNetworkGraph<'a> {
198 channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
199 nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
202 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
203 /// return packet by a node along the route. See [BOLT #4] for details.
205 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
206 #[derive(Clone, Debug, PartialEq, Eq)]
207 pub enum NetworkUpdate {
208 /// An error indicating a `channel_update` messages should be applied via
209 /// [`NetworkGraph::update_channel`].
210 ChannelUpdateMessage {
211 /// The update to apply via [`NetworkGraph::update_channel`].
214 /// An error indicating that a channel failed to route a payment, which should be applied via
215 /// [`NetworkGraph::channel_failed_permanent`] if permanent.
217 /// The short channel id of the closed channel.
218 short_channel_id: u64,
219 /// Whether the channel should be permanently removed or temporarily disabled until a new
220 /// `channel_update` message is received.
223 /// An error indicating that a node failed to route a payment, which should be applied via
224 /// [`NetworkGraph::node_failed_permanent`] if permanent.
226 /// The node id of the failed node.
228 /// Whether the node should be permanently removed from consideration or can be restored
229 /// when a new `channel_update` message is received.
234 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
235 (0, ChannelUpdateMessage) => {
238 (2, ChannelFailure) => {
239 (0, short_channel_id, required),
240 (2, is_permanent, required),
242 (4, NodeFailure) => {
243 (0, node_id, required),
244 (2, is_permanent, required),
248 /// Receives and validates network updates from peers,
249 /// stores authentic and relevant data as a network graph.
250 /// This network graph is then used for routing payments.
251 /// Provides interface to help with initial routing sync by
252 /// serving historical announcements.
253 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
254 where U::Target: UtxoLookup, L::Target: Logger
257 utxo_lookup: RwLock<Option<U>>,
258 #[cfg(feature = "std")]
259 full_syncs_requested: AtomicUsize,
260 pending_events: Mutex<Vec<MessageSendEvent>>,
264 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
265 where U::Target: UtxoLookup, L::Target: Logger
267 /// Creates a new tracker of the actual state of the network of channels and nodes,
268 /// assuming an existing [`NetworkGraph`].
269 /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
270 /// correct, and the announcement is signed with channel owners' keys.
271 pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
274 #[cfg(feature = "std")]
275 full_syncs_requested: AtomicUsize::new(0),
276 utxo_lookup: RwLock::new(utxo_lookup),
277 pending_events: Mutex::new(vec![]),
282 /// Adds a provider used to check new announcements. Does not affect
283 /// existing announcements unless they are updated.
284 /// Add, update or remove the provider would replace the current one.
285 pub fn add_utxo_lookup(&self, utxo_lookup: Option<U>) {
286 *self.utxo_lookup.write().unwrap() = utxo_lookup;
289 /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
290 /// [`P2PGossipSync::new`].
292 /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
293 pub fn network_graph(&self) -> &G {
297 #[cfg(feature = "std")]
298 /// Returns true when a full routing table sync should be performed with a peer.
299 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
300 //TODO: Determine whether to request a full sync based on the network map.
301 const FULL_SYNCS_TO_REQUEST: usize = 5;
302 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
303 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
310 /// Used to broadcast forward gossip messages which were validated async.
312 /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
314 pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
316 MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
317 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
318 if update_msg.as_ref()
319 .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
324 MessageSendEvent::BroadcastChannelUpdate { msg } => {
325 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
327 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
328 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
329 msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
330 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
337 self.pending_events.lock().unwrap().push(ev);
341 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
342 /// Handles any network updates originating from [`Event`]s.
344 /// [`Event`]: crate::events::Event
345 pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
346 match *network_update {
347 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
348 let short_channel_id = msg.contents.short_channel_id;
349 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
350 let status = if is_enabled { "enabled" } else { "disabled" };
351 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
352 let _ = self.update_channel(msg);
354 NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
356 log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
357 self.channel_failed_permanent(short_channel_id);
360 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
362 log_debug!(self.logger,
363 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
364 self.node_failed_permanent(node_id);
370 /// Gets the genesis hash for this network graph.
371 pub fn get_genesis_hash(&self) -> BlockHash {
376 macro_rules! secp_verify_sig {
377 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
378 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
381 return Err(LightningError {
382 err: format!("Invalid signature on {} message", $msg_type),
383 action: ErrorAction::SendWarningMessage {
384 msg: msgs::WarningMessage {
386 data: format!("Invalid signature on {} message", $msg_type),
388 log_level: Level::Trace,
396 macro_rules! get_pubkey_from_node_id {
397 ( $node_id: expr, $msg_type: expr ) => {
398 PublicKey::from_slice($node_id.as_slice())
399 .map_err(|_| LightningError {
400 err: format!("Invalid public key on {} message", $msg_type),
401 action: ErrorAction::SendWarningMessage {
402 msg: msgs::WarningMessage {
404 data: format!("Invalid public key on {} message", $msg_type),
406 log_level: Level::Trace
412 /// Verifies the signature of a [`NodeAnnouncement`].
414 /// Returns an error if it is invalid.
415 pub fn verify_node_announcement<C: Verification>(msg: &NodeAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
416 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
417 secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
422 /// Verifies all signatures included in a [`ChannelAnnouncement`].
424 /// Returns an error if one of the signatures is invalid.
425 pub fn verify_channel_announcement<C: Verification>(msg: &ChannelAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
426 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
427 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
428 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
429 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
430 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
435 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
436 where U::Target: UtxoLookup, L::Target: Logger
438 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
439 self.network_graph.update_node_from_announcement(msg)?;
440 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
441 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
442 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
445 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
446 self.network_graph.update_channel_from_announcement(msg, &*self.utxo_lookup.read().unwrap())?;
447 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
450 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
451 self.network_graph.update_channel(msg)?;
452 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
455 fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
456 let mut channels = self.network_graph.channels.write().unwrap();
457 for (_, ref chan) in channels.range(starting_point..) {
458 if chan.announcement_message.is_some() {
459 let chan_announcement = chan.announcement_message.clone().unwrap();
460 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
461 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
462 if let Some(one_to_two) = chan.one_to_two.as_ref() {
463 one_to_two_announcement = one_to_two.last_update_message.clone();
465 if let Some(two_to_one) = chan.two_to_one.as_ref() {
466 two_to_one_announcement = two_to_one.last_update_message.clone();
468 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
470 // TODO: We may end up sending un-announced channel_updates if we are sending
471 // initial sync data while receiving announce/updates for this channel.
477 fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
478 let mut nodes = self.network_graph.nodes.write().unwrap();
479 let iter = if let Some(node_id) = starting_point {
480 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
484 for (_, ref node) in iter {
485 if let Some(node_info) = node.announcement_info.as_ref() {
486 if let Some(msg) = node_info.announcement_message.clone() {
494 /// Initiates a stateless sync of routing gossip information with a peer
495 /// using [`gossip_queries`]. The default strategy used by this implementation
496 /// is to sync the full block range with several peers.
498 /// We should expect one or more [`reply_channel_range`] messages in response
499 /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
500 /// to request gossip messages for each channel. The sync is considered complete
501 /// when the final [`reply_scids_end`] message is received, though we are not
502 /// tracking this directly.
504 /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
505 /// [`reply_channel_range`]: msgs::ReplyChannelRange
506 /// [`query_channel_range`]: msgs::QueryChannelRange
507 /// [`query_scid`]: msgs::QueryShortChannelIds
508 /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
509 fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
510 // We will only perform a sync with peers that support gossip_queries.
511 if !init_msg.features.supports_gossip_queries() {
512 // Don't disconnect peers for not supporting gossip queries. We may wish to have
513 // channels with peers even without being able to exchange gossip.
517 // The lightning network's gossip sync system is completely broken in numerous ways.
519 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
520 // to do a full sync from the first few peers we connect to, and then receive gossip
521 // updates from all our peers normally.
523 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
524 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
525 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
528 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
529 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
530 // channel data which you are missing. Except there was no way at all to identify which
531 // `channel_update`s you were missing, so you still had to request everything, just in a
532 // very complicated way with some queries instead of just getting the dump.
534 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
535 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
536 // relying on it useless.
538 // After gossip queries were introduced, support for receiving a full gossip table dump on
539 // connection was removed from several nodes, making it impossible to get a full sync
540 // without using the "gossip queries" messages.
542 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
543 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
544 // message, as the name implies, tells the peer to not forward any gossip messages with a
545 // timestamp older than a given value (not the time the peer received the filter, but the
546 // timestamp in the update message, which is often hours behind when the peer received the
549 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
550 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
551 // tell a peer to send you any updates as it sees them, you have to also ask for the full
552 // routing graph to be synced. If you set a timestamp filter near the current time, peers
553 // will simply not forward any new updates they see to you which were generated some time
554 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
555 // ago), you will always get the full routing graph from all your peers.
557 // Most lightning nodes today opt to simply turn off receiving gossip data which only
558 // propagated some time after it was generated, and, worse, often disable gossiping with
559 // several peers after their first connection. The second behavior can cause gossip to not
560 // propagate fully if there are cuts in the gossiping subgraph.
562 // In an attempt to cut a middle ground between always fetching the full graph from all of
563 // our peers and never receiving gossip from peers at all, we send all of our peers a
564 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
566 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
567 #[allow(unused_mut, unused_assignments)]
568 let mut gossip_start_time = 0;
569 #[cfg(feature = "std")]
571 gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
572 if self.should_request_full_sync(&their_node_id) {
573 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
575 gossip_start_time -= 60 * 60; // an hour ago
579 let mut pending_events = self.pending_events.lock().unwrap();
580 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
581 node_id: their_node_id.clone(),
582 msg: GossipTimestampFilter {
583 chain_hash: self.network_graph.genesis_hash,
584 first_timestamp: gossip_start_time as u32, // 2106 issue!
585 timestamp_range: u32::max_value(),
591 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
592 // We don't make queries, so should never receive replies. If, in the future, the set
593 // reconciliation extensions to gossip queries become broadly supported, we should revert
594 // this code to its state pre-0.0.106.
598 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
599 // We don't make queries, so should never receive replies. If, in the future, the set
600 // reconciliation extensions to gossip queries become broadly supported, we should revert
601 // this code to its state pre-0.0.106.
605 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
606 /// are in the specified block range. Due to message size limits, large range
607 /// queries may result in several reply messages. This implementation enqueues
608 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
609 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
610 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
611 /// memory constrained systems.
612 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
613 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
615 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
617 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
618 // If so, we manually cap the ending block to avoid this overflow.
619 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
621 // Per spec, we must reply to a query. Send an empty message when things are invalid.
622 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
623 let mut pending_events = self.pending_events.lock().unwrap();
624 pending_events.push(MessageSendEvent::SendReplyChannelRange {
625 node_id: their_node_id.clone(),
626 msg: ReplyChannelRange {
627 chain_hash: msg.chain_hash.clone(),
628 first_blocknum: msg.first_blocknum,
629 number_of_blocks: msg.number_of_blocks,
631 short_channel_ids: vec![],
634 return Err(LightningError {
635 err: String::from("query_channel_range could not be processed"),
636 action: ErrorAction::IgnoreError,
640 // Creates channel batches. We are not checking if the channel is routable
641 // (has at least one update). A peer may still want to know the channel
642 // exists even if its not yet routable.
643 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
644 let mut channels = self.network_graph.channels.write().unwrap();
645 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
646 if let Some(chan_announcement) = &chan.announcement_message {
647 // Construct a new batch if last one is full
648 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
649 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
652 let batch = batches.last_mut().unwrap();
653 batch.push(chan_announcement.contents.short_channel_id);
658 let mut pending_events = self.pending_events.lock().unwrap();
659 let batch_count = batches.len();
660 let mut prev_batch_endblock = msg.first_blocknum;
661 for (batch_index, batch) in batches.into_iter().enumerate() {
662 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
663 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
665 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
666 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
667 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
668 // significant diversion from the requirements set by the spec, and, in case of blocks
669 // with no channel opens (e.g. empty blocks), requires that we use the previous value
670 // and *not* derive the first_blocknum from the actual first block of the reply.
671 let first_blocknum = prev_batch_endblock;
673 // Each message carries the number of blocks (from the `first_blocknum`) its contents
674 // fit in. Though there is no requirement that we use exactly the number of blocks its
675 // contents are from, except for the bogus requirements c-lightning enforces, above.
677 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
678 // >= the query's end block. Thus, for the last reply, we calculate the difference
679 // between the query's end block and the start of the reply.
681 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
682 // first_blocknum will be either msg.first_blocknum or a higher block height.
683 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
684 (true, msg.end_blocknum() - first_blocknum)
686 // Prior replies should use the number of blocks that fit into the reply. Overflow
687 // safe since first_blocknum is always <= last SCID's block.
689 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
692 prev_batch_endblock = first_blocknum + number_of_blocks;
694 pending_events.push(MessageSendEvent::SendReplyChannelRange {
695 node_id: their_node_id.clone(),
696 msg: ReplyChannelRange {
697 chain_hash: msg.chain_hash.clone(),
701 short_channel_ids: batch,
709 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
712 err: String::from("Not implemented"),
713 action: ErrorAction::IgnoreError,
717 fn provided_node_features(&self) -> NodeFeatures {
718 let mut features = NodeFeatures::empty();
719 features.set_gossip_queries_optional();
723 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
724 let mut features = InitFeatures::empty();
725 features.set_gossip_queries_optional();
729 fn processing_queue_high(&self) -> bool {
730 self.network_graph.pending_checks.too_many_checks_pending()
734 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
736 U::Target: UtxoLookup,
739 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
740 let mut ret = Vec::new();
741 let mut pending_events = self.pending_events.lock().unwrap();
742 core::mem::swap(&mut ret, &mut pending_events);
747 #[derive(Clone, Debug, PartialEq, Eq)]
748 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
749 pub struct ChannelUpdateInfo {
750 /// When the last update to the channel direction was issued.
751 /// Value is opaque, as set in the announcement.
752 pub last_update: u32,
753 /// Whether the channel can be currently used for payments (in this one direction).
755 /// The difference in CLTV values that you must have when routing through this channel.
756 pub cltv_expiry_delta: u16,
757 /// The minimum value, which must be relayed to the next hop via the channel
758 pub htlc_minimum_msat: u64,
759 /// The maximum value which may be relayed to the next hop via the channel.
760 pub htlc_maximum_msat: u64,
761 /// Fees charged when the channel is used for routing
762 pub fees: RoutingFees,
763 /// Most recent update for the channel received from the network
764 /// Mostly redundant with the data we store in fields explicitly.
765 /// Everything else is useful only for sending out for initial routing sync.
766 /// Not stored if contains excess data to prevent DoS.
767 pub last_update_message: Option<ChannelUpdate>,
770 impl fmt::Display for ChannelUpdateInfo {
771 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
772 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
777 impl Writeable for ChannelUpdateInfo {
778 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
779 write_tlv_fields!(writer, {
780 (0, self.last_update, required),
781 (2, self.enabled, required),
782 (4, self.cltv_expiry_delta, required),
783 (6, self.htlc_minimum_msat, required),
784 // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
785 // compatibility with LDK versions prior to v0.0.110.
786 (8, Some(self.htlc_maximum_msat), required),
787 (10, self.fees, required),
788 (12, self.last_update_message, required),
794 impl Readable for ChannelUpdateInfo {
795 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
796 _init_tlv_field_var!(last_update, required);
797 _init_tlv_field_var!(enabled, required);
798 _init_tlv_field_var!(cltv_expiry_delta, required);
799 _init_tlv_field_var!(htlc_minimum_msat, required);
800 _init_tlv_field_var!(htlc_maximum_msat, option);
801 _init_tlv_field_var!(fees, required);
802 _init_tlv_field_var!(last_update_message, required);
804 read_tlv_fields!(reader, {
805 (0, last_update, required),
806 (2, enabled, required),
807 (4, cltv_expiry_delta, required),
808 (6, htlc_minimum_msat, required),
809 (8, htlc_maximum_msat, required),
810 (10, fees, required),
811 (12, last_update_message, required)
814 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
815 Ok(ChannelUpdateInfo {
816 last_update: _init_tlv_based_struct_field!(last_update, required),
817 enabled: _init_tlv_based_struct_field!(enabled, required),
818 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
819 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
821 fees: _init_tlv_based_struct_field!(fees, required),
822 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
825 Err(DecodeError::InvalidValue)
830 #[derive(Clone, Debug, PartialEq, Eq)]
831 /// Details about a channel (both directions).
832 /// Received within a channel announcement.
833 pub struct ChannelInfo {
834 /// Protocol features of a channel communicated during its announcement
835 pub features: ChannelFeatures,
836 /// Source node of the first direction of a channel
837 pub node_one: NodeId,
838 /// Details about the first direction of a channel
839 pub one_to_two: Option<ChannelUpdateInfo>,
840 /// Source node of the second direction of a channel
841 pub node_two: NodeId,
842 /// Details about the second direction of a channel
843 pub two_to_one: Option<ChannelUpdateInfo>,
844 /// The channel capacity as seen on-chain, if chain lookup is available.
845 pub capacity_sats: Option<u64>,
846 /// An initial announcement of the channel
847 /// Mostly redundant with the data we store in fields explicitly.
848 /// Everything else is useful only for sending out for initial routing sync.
849 /// Not stored if contains excess data to prevent DoS.
850 pub announcement_message: Option<ChannelAnnouncement>,
851 /// The timestamp when we received the announcement, if we are running with feature = "std"
852 /// (which we can probably assume we are - no-std environments probably won't have a full
853 /// network graph in memory!).
854 announcement_received_time: u64,
858 /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
859 /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
860 pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
861 let (direction, source) = {
862 if target == &self.node_one {
863 (self.two_to_one.as_ref(), &self.node_two)
864 } else if target == &self.node_two {
865 (self.one_to_two.as_ref(), &self.node_one)
870 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
873 /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
874 /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
875 pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
876 let (direction, target) = {
877 if source == &self.node_one {
878 (self.one_to_two.as_ref(), &self.node_two)
879 } else if source == &self.node_two {
880 (self.two_to_one.as_ref(), &self.node_one)
885 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
888 /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
889 pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
890 let direction = channel_flags & 1u8;
892 self.one_to_two.as_ref()
894 self.two_to_one.as_ref()
899 impl fmt::Display for ChannelInfo {
900 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
901 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
902 log_bytes!(self.features.encode()), &self.node_one, self.one_to_two, &self.node_two, self.two_to_one)?;
907 impl Writeable for ChannelInfo {
908 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
909 write_tlv_fields!(writer, {
910 (0, self.features, required),
911 (1, self.announcement_received_time, (default_value, 0)),
912 (2, self.node_one, required),
913 (4, self.one_to_two, required),
914 (6, self.node_two, required),
915 (8, self.two_to_one, required),
916 (10, self.capacity_sats, required),
917 (12, self.announcement_message, required),
923 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
924 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
925 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
926 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
927 // channel updates via the gossip network.
928 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
930 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
931 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
932 match crate::util::ser::Readable::read(reader) {
933 Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
934 Err(DecodeError::ShortRead) => Ok(None),
935 Err(DecodeError::InvalidValue) => Ok(None),
936 Err(err) => Err(err),
941 impl Readable for ChannelInfo {
942 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
943 _init_tlv_field_var!(features, required);
944 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
945 _init_tlv_field_var!(node_one, required);
946 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
947 _init_tlv_field_var!(node_two, required);
948 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
949 _init_tlv_field_var!(capacity_sats, required);
950 _init_tlv_field_var!(announcement_message, required);
951 read_tlv_fields!(reader, {
952 (0, features, required),
953 (1, announcement_received_time, (default_value, 0)),
954 (2, node_one, required),
955 (4, one_to_two_wrap, upgradable_option),
956 (6, node_two, required),
957 (8, two_to_one_wrap, upgradable_option),
958 (10, capacity_sats, required),
959 (12, announcement_message, required),
963 features: _init_tlv_based_struct_field!(features, required),
964 node_one: _init_tlv_based_struct_field!(node_one, required),
965 one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
966 node_two: _init_tlv_based_struct_field!(node_two, required),
967 two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
968 capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
969 announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
970 announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
975 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
976 /// source node to a target node.
978 pub struct DirectedChannelInfo<'a> {
979 channel: &'a ChannelInfo,
980 direction: &'a ChannelUpdateInfo,
981 htlc_maximum_msat: u64,
982 effective_capacity: EffectiveCapacity,
985 impl<'a> DirectedChannelInfo<'a> {
987 fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
988 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
989 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
991 let effective_capacity = match capacity_msat {
992 Some(capacity_msat) => {
993 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
994 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
996 None => EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: htlc_maximum_msat },
1000 channel, direction, htlc_maximum_msat, effective_capacity
1004 /// Returns information for the channel.
1006 pub fn channel(&self) -> &'a ChannelInfo { self.channel }
1008 /// Returns the maximum HTLC amount allowed over the channel in the direction.
1010 pub fn htlc_maximum_msat(&self) -> u64 {
1011 self.htlc_maximum_msat
1014 /// Returns the [`EffectiveCapacity`] of the channel in the direction.
1016 /// This is either the total capacity from the funding transaction, if known, or the
1017 /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
1019 pub fn effective_capacity(&self) -> EffectiveCapacity {
1020 self.effective_capacity
1023 /// Returns information for the direction.
1025 pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1028 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1029 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1030 f.debug_struct("DirectedChannelInfo")
1031 .field("channel", &self.channel)
1036 /// The effective capacity of a channel for routing purposes.
1038 /// While this may be smaller than the actual channel capacity, amounts greater than
1039 /// [`Self::as_msat`] should not be routed through the channel.
1040 #[derive(Clone, Copy, Debug, PartialEq)]
1041 pub enum EffectiveCapacity {
1042 /// The available liquidity in the channel known from being a channel counterparty, and thus a
1045 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1047 liquidity_msat: u64,
1049 /// The maximum HTLC amount in one direction as advertised on the gossip network.
1051 /// The maximum HTLC amount denominated in millisatoshi.
1054 /// The total capacity of the channel as determined by the funding transaction.
1056 /// The funding amount denominated in millisatoshi.
1058 /// The maximum HTLC amount denominated in millisatoshi.
1059 htlc_maximum_msat: u64
1061 /// A capacity sufficient to route any payment, typically used for private channels provided by
1064 /// The maximum HTLC amount as provided by an invoice route hint.
1066 /// The maximum HTLC amount denominated in millisatoshi.
1069 /// A capacity that is unknown possibly because either the chain state is unavailable to know
1070 /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1074 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1075 /// use when making routing decisions.
1076 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1078 impl EffectiveCapacity {
1079 /// Returns the effective capacity denominated in millisatoshi.
1080 pub fn as_msat(&self) -> u64 {
1082 EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1083 EffectiveCapacity::AdvertisedMaxHTLC { amount_msat } => *amount_msat,
1084 EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1085 EffectiveCapacity::HintMaxHTLC { amount_msat } => *amount_msat,
1086 EffectiveCapacity::Infinite => u64::max_value(),
1087 EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1092 /// Fees for routing via a given channel or a node
1093 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1094 pub struct RoutingFees {
1095 /// Flat routing fee in millisatoshis.
1097 /// Liquidity-based routing fee in millionths of a routed amount.
1098 /// In other words, 10000 is 1%.
1099 pub proportional_millionths: u32,
1102 impl_writeable_tlv_based!(RoutingFees, {
1103 (0, base_msat, required),
1104 (2, proportional_millionths, required)
1107 #[derive(Clone, Debug, PartialEq, Eq)]
1108 /// Information received in the latest node_announcement from this node.
1109 pub struct NodeAnnouncementInfo {
1110 /// Protocol features the node announced support for
1111 pub features: NodeFeatures,
1112 /// When the last known update to the node state was issued.
1113 /// Value is opaque, as set in the announcement.
1114 pub last_update: u32,
1115 /// Color assigned to the node
1117 /// Moniker assigned to the node.
1118 /// May be invalid or malicious (eg control chars),
1119 /// should not be exposed to the user.
1120 pub alias: NodeAlias,
1121 /// An initial announcement of the node
1122 /// Mostly redundant with the data we store in fields explicitly.
1123 /// Everything else is useful only for sending out for initial routing sync.
1124 /// Not stored if contains excess data to prevent DoS.
1125 pub announcement_message: Option<NodeAnnouncement>
1128 impl NodeAnnouncementInfo {
1129 /// Internet-level addresses via which one can connect to the node
1130 pub fn addresses(&self) -> &[NetAddress] {
1131 self.announcement_message.as_ref()
1132 .map(|msg| msg.contents.addresses.as_slice())
1133 .unwrap_or_default()
1137 impl Writeable for NodeAnnouncementInfo {
1138 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1139 let empty_addresses = Vec::<NetAddress>::new();
1140 write_tlv_fields!(writer, {
1141 (0, self.features, required),
1142 (2, self.last_update, required),
1143 (4, self.rgb, required),
1144 (6, self.alias, required),
1145 (8, self.announcement_message, option),
1146 (10, empty_addresses, required_vec), // Versions prior to 0.0.115 require this field
1152 impl Readable for NodeAnnouncementInfo {
1153 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1154 _init_and_read_len_prefixed_tlv_fields!(reader, {
1155 (0, features, required),
1156 (2, last_update, required),
1158 (6, alias, required),
1159 (8, announcement_message, option),
1160 (10, _addresses, optional_vec), // deprecated, not used anymore
1162 let _: Option<Vec<NetAddress>> = _addresses;
1163 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1164 alias: alias.0.unwrap(), announcement_message })
1168 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1170 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1171 /// attacks. Care must be taken when processing.
1172 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1173 pub struct NodeAlias(pub [u8; 32]);
1175 impl fmt::Display for NodeAlias {
1176 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1177 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1178 let bytes = self.0.split_at(first_null).0;
1179 match core::str::from_utf8(bytes) {
1180 Ok(alias) => PrintableString(alias).fmt(f)?,
1182 use core::fmt::Write;
1183 for c in bytes.iter().map(|b| *b as char) {
1184 // Display printable ASCII characters
1185 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1186 let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1195 impl Writeable for NodeAlias {
1196 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1201 impl Readable for NodeAlias {
1202 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1203 Ok(NodeAlias(Readable::read(r)?))
1207 #[derive(Clone, Debug, PartialEq, Eq)]
1208 /// Details about a node in the network, known from the network announcement.
1209 pub struct NodeInfo {
1210 /// All valid channels a node has announced
1211 pub channels: Vec<u64>,
1212 /// More information about a node from node_announcement.
1213 /// Optional because we store a Node entry after learning about it from
1214 /// a channel announcement, but before receiving a node announcement.
1215 pub announcement_info: Option<NodeAnnouncementInfo>
1218 impl fmt::Display for NodeInfo {
1219 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1220 write!(f, " channels: {:?}, announcement_info: {:?}",
1221 &self.channels[..], self.announcement_info)?;
1226 impl Writeable for NodeInfo {
1227 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1228 write_tlv_fields!(writer, {
1229 // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1230 (2, self.announcement_info, option),
1231 (4, self.channels, required_vec),
1237 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1238 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1239 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1240 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1241 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1243 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1244 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1245 match crate::util::ser::Readable::read(reader) {
1246 Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1248 copy(reader, &mut sink()).unwrap();
1255 impl Readable for NodeInfo {
1256 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1257 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1258 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1259 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1260 // requires additional complexity and lookups during routing, it ends up being a
1261 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1262 _init_and_read_len_prefixed_tlv_fields!(reader, {
1263 (0, _lowest_inbound_channel_fees, option),
1264 (2, announcement_info_wrap, upgradable_option),
1265 (4, channels, required_vec),
1267 let _: Option<RoutingFees> = _lowest_inbound_channel_fees;
1268 let announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = announcement_info_wrap;
1271 announcement_info: announcement_info_wrap.map(|w| w.0),
1277 const SERIALIZATION_VERSION: u8 = 1;
1278 const MIN_SERIALIZATION_VERSION: u8 = 1;
1280 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1281 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1282 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1284 self.genesis_hash.write(writer)?;
1285 let channels = self.channels.read().unwrap();
1286 (channels.len() as u64).write(writer)?;
1287 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1288 (*chan_id).write(writer)?;
1289 chan_info.write(writer)?;
1291 let nodes = self.nodes.read().unwrap();
1292 (nodes.len() as u64).write(writer)?;
1293 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1294 node_id.write(writer)?;
1295 node_info.write(writer)?;
1298 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1299 write_tlv_fields!(writer, {
1300 (1, last_rapid_gossip_sync_timestamp, option),
1306 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1307 fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1308 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1310 let genesis_hash: BlockHash = Readable::read(reader)?;
1311 let channels_count: u64 = Readable::read(reader)?;
1312 let mut channels = IndexedMap::new();
1313 for _ in 0..channels_count {
1314 let chan_id: u64 = Readable::read(reader)?;
1315 let chan_info = Readable::read(reader)?;
1316 channels.insert(chan_id, chan_info);
1318 let nodes_count: u64 = Readable::read(reader)?;
1319 let mut nodes = IndexedMap::new();
1320 for _ in 0..nodes_count {
1321 let node_id = Readable::read(reader)?;
1322 let node_info = Readable::read(reader)?;
1323 nodes.insert(node_id, node_info);
1326 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1327 read_tlv_fields!(reader, {
1328 (1, last_rapid_gossip_sync_timestamp, option),
1332 secp_ctx: Secp256k1::verification_only(),
1335 channels: RwLock::new(channels),
1336 nodes: RwLock::new(nodes),
1337 last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1338 removed_nodes: Mutex::new(HashMap::new()),
1339 removed_channels: Mutex::new(HashMap::new()),
1340 pending_checks: utxo::PendingChecks::new(),
1345 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1346 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1347 writeln!(f, "Network map\n[Channels]")?;
1348 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1349 writeln!(f, " {}: {}", key, val)?;
1351 writeln!(f, "[Nodes]")?;
1352 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1353 writeln!(f, " {}: {}", &node_id, val)?;
1359 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1360 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1361 fn eq(&self, other: &Self) -> bool {
1362 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1363 // (Assumes that we can't move within memory while a lock is held).
1364 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1365 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1366 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1367 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1368 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1369 self.genesis_hash.eq(&other.genesis_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1373 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1374 /// Creates a new, empty, network graph.
1375 pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1377 secp_ctx: Secp256k1::verification_only(),
1378 genesis_hash: genesis_block(network).header.block_hash(),
1380 channels: RwLock::new(IndexedMap::new()),
1381 nodes: RwLock::new(IndexedMap::new()),
1382 last_rapid_gossip_sync_timestamp: Mutex::new(None),
1383 removed_channels: Mutex::new(HashMap::new()),
1384 removed_nodes: Mutex::new(HashMap::new()),
1385 pending_checks: utxo::PendingChecks::new(),
1389 /// Returns a read-only view of the network graph.
1390 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1391 let channels = self.channels.read().unwrap();
1392 let nodes = self.nodes.read().unwrap();
1393 ReadOnlyNetworkGraph {
1399 /// The unix timestamp provided by the most recent rapid gossip sync.
1400 /// It will be set by the rapid sync process after every sync completion.
1401 pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1402 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1405 /// Update the unix timestamp provided by the most recent rapid gossip sync.
1406 /// This should be done automatically by the rapid sync process after every sync completion.
1407 pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1408 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1411 /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1414 pub fn clear_nodes_announcement_info(&self) {
1415 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1416 node.1.announcement_info = None;
1420 /// For an already known node (from channel announcements), update its stored properties from a
1421 /// given node announcement.
1423 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1424 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1425 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1426 pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1427 verify_node_announcement(msg, &self.secp_ctx)?;
1428 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1431 /// For an already known node (from channel announcements), update its stored properties from a
1432 /// given node announcement without verifying the associated signatures. Because we aren't
1433 /// given the associated signatures here we cannot relay the node announcement to any of our
1435 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1436 self.update_node_from_announcement_intern(msg, None)
1439 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1440 let mut nodes = self.nodes.write().unwrap();
1441 match nodes.get_mut(&msg.node_id) {
1443 core::mem::drop(nodes);
1444 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1445 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1448 if let Some(node_info) = node.announcement_info.as_ref() {
1449 // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1450 // updates to ensure you always have the latest one, only vaguely suggesting
1451 // that it be at least the current time.
1452 if node_info.last_update > msg.timestamp {
1453 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1454 } else if node_info.last_update == msg.timestamp {
1455 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1460 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1461 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1462 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1463 node.announcement_info = Some(NodeAnnouncementInfo {
1464 features: msg.features.clone(),
1465 last_update: msg.timestamp,
1468 announcement_message: if should_relay { full_msg.cloned() } else { None },
1476 /// Store or update channel info from a channel announcement.
1478 /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1479 /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1480 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1482 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1483 /// the corresponding UTXO exists on chain and is correctly-formatted.
1484 pub fn update_channel_from_announcement<U: Deref>(
1485 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1486 ) -> Result<(), LightningError>
1488 U::Target: UtxoLookup,
1490 verify_channel_announcement(msg, &self.secp_ctx)?;
1491 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1494 /// Store or update channel info from a channel announcement.
1496 /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1497 /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1498 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1500 /// This will skip verification of if the channel is actually on-chain.
1501 pub fn update_channel_from_announcement_no_lookup(
1502 &self, msg: &ChannelAnnouncement
1503 ) -> Result<(), LightningError> {
1504 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1507 /// Store or update channel info from a channel announcement without verifying the associated
1508 /// signatures. Because we aren't given the associated signatures here we cannot relay the
1509 /// channel announcement to any of our peers.
1511 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1512 /// the corresponding UTXO exists on chain and is correctly-formatted.
1513 pub fn update_channel_from_unsigned_announcement<U: Deref>(
1514 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1515 ) -> Result<(), LightningError>
1517 U::Target: UtxoLookup,
1519 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1522 /// Update channel from partial announcement data received via rapid gossip sync
1524 /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1525 /// rapid gossip sync server)
1527 /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1528 pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1529 if node_id_1 == node_id_2 {
1530 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1533 let node_1 = NodeId::from_pubkey(&node_id_1);
1534 let node_2 = NodeId::from_pubkey(&node_id_2);
1535 let channel_info = ChannelInfo {
1537 node_one: node_1.clone(),
1539 node_two: node_2.clone(),
1541 capacity_sats: None,
1542 announcement_message: None,
1543 announcement_received_time: timestamp,
1546 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1549 fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1550 let mut channels = self.channels.write().unwrap();
1551 let mut nodes = self.nodes.write().unwrap();
1553 let node_id_a = channel_info.node_one.clone();
1554 let node_id_b = channel_info.node_two.clone();
1556 log_gossip!(self.logger, "Adding channel {} between nodes {} and {}", short_channel_id, node_id_a, node_id_b);
1558 match channels.entry(short_channel_id) {
1559 IndexedMapEntry::Occupied(mut entry) => {
1560 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1561 //in the blockchain API, we need to handle it smartly here, though it's unclear
1563 if utxo_value.is_some() {
1564 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1565 // only sometimes returns results. In any case remove the previous entry. Note
1566 // that the spec expects us to "blacklist" the node_ids involved, but we can't
1568 // a) we don't *require* a UTXO provider that always returns results.
1569 // b) we don't track UTXOs of channels we know about and remove them if they
1571 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1572 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1573 *entry.get_mut() = channel_info;
1575 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1578 IndexedMapEntry::Vacant(entry) => {
1579 entry.insert(channel_info);
1583 for current_node_id in [node_id_a, node_id_b].iter() {
1584 match nodes.entry(current_node_id.clone()) {
1585 IndexedMapEntry::Occupied(node_entry) => {
1586 node_entry.into_mut().channels.push(short_channel_id);
1588 IndexedMapEntry::Vacant(node_entry) => {
1589 node_entry.insert(NodeInfo {
1590 channels: vec!(short_channel_id),
1591 announcement_info: None,
1600 fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1601 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1602 ) -> Result<(), LightningError>
1604 U::Target: UtxoLookup,
1606 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1607 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1610 if msg.chain_hash != self.genesis_hash {
1611 return Err(LightningError {
1612 err: "Channel announcement chain hash does not match genesis hash".to_owned(),
1613 action: ErrorAction::IgnoreAndLog(Level::Debug),
1618 let channels = self.channels.read().unwrap();
1620 if let Some(chan) = channels.get(&msg.short_channel_id) {
1621 if chan.capacity_sats.is_some() {
1622 // If we'd previously looked up the channel on-chain and checked the script
1623 // against what appears on-chain, ignore the duplicate announcement.
1625 // Because a reorg could replace one channel with another at the same SCID, if
1626 // the channel appears to be different, we re-validate. This doesn't expose us
1627 // to any more DoS risk than not, as a peer can always flood us with
1628 // randomly-generated SCID values anyway.
1630 // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1631 // as we didn't (necessarily) store the bitcoin keys, and we only really care
1632 // if the peers on the channel changed anyway.
1633 if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1634 return Err(LightningError {
1635 err: "Already have chain-validated channel".to_owned(),
1636 action: ErrorAction::IgnoreDuplicateGossip
1639 } else if utxo_lookup.is_none() {
1640 // Similarly, if we can't check the chain right now anyway, ignore the
1641 // duplicate announcement without bothering to take the channels write lock.
1642 return Err(LightningError {
1643 err: "Already have non-chain-validated channel".to_owned(),
1644 action: ErrorAction::IgnoreDuplicateGossip
1651 let removed_channels = self.removed_channels.lock().unwrap();
1652 let removed_nodes = self.removed_nodes.lock().unwrap();
1653 if removed_channels.contains_key(&msg.short_channel_id) ||
1654 removed_nodes.contains_key(&msg.node_id_1) ||
1655 removed_nodes.contains_key(&msg.node_id_2) {
1656 return Err(LightningError{
1657 err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1658 action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1662 let utxo_value = self.pending_checks.check_channel_announcement(
1663 utxo_lookup, msg, full_msg)?;
1665 #[allow(unused_mut, unused_assignments)]
1666 let mut announcement_received_time = 0;
1667 #[cfg(feature = "std")]
1669 announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1672 let chan_info = ChannelInfo {
1673 features: msg.features.clone(),
1674 node_one: msg.node_id_1,
1676 node_two: msg.node_id_2,
1678 capacity_sats: utxo_value,
1679 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1680 { full_msg.cloned() } else { None },
1681 announcement_received_time,
1684 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1686 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1690 /// Marks a channel in the graph as failed permanently.
1692 /// The channel and any node for which this was their last channel are removed from the graph.
1693 pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1694 #[cfg(feature = "std")]
1695 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1696 #[cfg(not(feature = "std"))]
1697 let current_time_unix = None;
1699 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1702 /// Marks a channel in the graph as failed permanently.
1704 /// The channel and any node for which this was their last channel are removed from the graph.
1705 fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1706 let mut channels = self.channels.write().unwrap();
1707 if let Some(chan) = channels.remove(&short_channel_id) {
1708 let mut nodes = self.nodes.write().unwrap();
1709 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1710 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1714 /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1715 /// from local storage.
1716 pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1717 #[cfg(feature = "std")]
1718 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1719 #[cfg(not(feature = "std"))]
1720 let current_time_unix = None;
1722 let node_id = NodeId::from_pubkey(node_id);
1723 let mut channels = self.channels.write().unwrap();
1724 let mut nodes = self.nodes.write().unwrap();
1725 let mut removed_channels = self.removed_channels.lock().unwrap();
1726 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1728 if let Some(node) = nodes.remove(&node_id) {
1729 for scid in node.channels.iter() {
1730 if let Some(chan_info) = channels.remove(scid) {
1731 let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1732 if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1733 other_node_entry.get_mut().channels.retain(|chan_id| {
1736 if other_node_entry.get().channels.is_empty() {
1737 other_node_entry.remove_entry();
1740 removed_channels.insert(*scid, current_time_unix);
1743 removed_nodes.insert(node_id, current_time_unix);
1747 #[cfg(feature = "std")]
1748 /// Removes information about channels that we haven't heard any updates about in some time.
1749 /// This can be used regularly to prune the network graph of channels that likely no longer
1752 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1753 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1754 /// pruning occur for updates which are at least two weeks old, which we implement here.
1756 /// Note that for users of the `lightning-background-processor` crate this method may be
1757 /// automatically called regularly for you.
1759 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1760 /// in the map for a while so that these can be resynced from gossip in the future.
1762 /// This method is only available with the `std` feature. See
1763 /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1764 pub fn remove_stale_channels_and_tracking(&self) {
1765 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1766 self.remove_stale_channels_and_tracking_with_time(time);
1769 /// Removes information about channels that we haven't heard any updates about in some time.
1770 /// This can be used regularly to prune the network graph of channels that likely no longer
1773 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1774 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1775 /// pruning occur for updates which are at least two weeks old, which we implement here.
1777 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1778 /// in the map for a while so that these can be resynced from gossip in the future.
1780 /// This function takes the current unix time as an argument. For users with the `std` feature
1781 /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1782 pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1783 let mut channels = self.channels.write().unwrap();
1784 // Time out if we haven't received an update in at least 14 days.
1785 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1786 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1787 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1788 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1790 let mut scids_to_remove = Vec::new();
1791 for (scid, info) in channels.unordered_iter_mut() {
1792 if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1793 log_gossip!(self.logger, "Removing directional update one_to_two (0) for channel {} due to its timestamp {} being below {}",
1794 scid, info.one_to_two.as_ref().unwrap().last_update, min_time_unix);
1795 info.one_to_two = None;
1797 if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1798 log_gossip!(self.logger, "Removing directional update two_to_one (1) for channel {} due to its timestamp {} being below {}",
1799 scid, info.two_to_one.as_ref().unwrap().last_update, min_time_unix);
1800 info.two_to_one = None;
1802 if info.one_to_two.is_none() || info.two_to_one.is_none() {
1803 // We check the announcement_received_time here to ensure we don't drop
1804 // announcements that we just received and are just waiting for our peer to send a
1805 // channel_update for.
1806 let announcement_received_timestamp = info.announcement_received_time;
1807 if announcement_received_timestamp < min_time_unix as u64 {
1808 log_gossip!(self.logger, "Removing channel {} because both directional updates are missing and its announcement timestamp {} being below {}",
1809 scid, announcement_received_timestamp, min_time_unix);
1810 scids_to_remove.push(*scid);
1814 if !scids_to_remove.is_empty() {
1815 let mut nodes = self.nodes.write().unwrap();
1816 for scid in scids_to_remove {
1817 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1818 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1819 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1823 let should_keep_tracking = |time: &mut Option<u64>| {
1824 if let Some(time) = time {
1825 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1827 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1828 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1829 // of this function.
1830 #[cfg(feature = "no-std")]
1832 let mut tracked_time = Some(current_time_unix);
1833 core::mem::swap(time, &mut tracked_time);
1836 #[allow(unreachable_code)]
1840 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1841 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1844 /// For an already known (from announcement) channel, update info about one of the directions
1847 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1848 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1849 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1851 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1852 /// materially in the future will be rejected.
1853 pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1854 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1857 /// For an already known (from announcement) channel, update info about one of the directions
1858 /// of the channel without verifying the associated signatures. Because we aren't given the
1859 /// associated signatures here we cannot relay the channel update to any of our peers.
1861 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1862 /// materially in the future will be rejected.
1863 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1864 self.update_channel_intern(msg, None, None)
1867 fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1868 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1870 if msg.chain_hash != self.genesis_hash {
1871 return Err(LightningError {
1872 err: "Channel update chain hash does not match genesis hash".to_owned(),
1873 action: ErrorAction::IgnoreAndLog(Level::Debug),
1877 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1879 // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1880 // disable this check during tests!
1881 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1882 if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1883 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1885 if msg.timestamp as u64 > time + 60 * 60 * 24 {
1886 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1890 log_gossip!(self.logger, "Updating channel {} in direction {} with timestamp {}", msg.short_channel_id, msg.flags & 1, msg.timestamp);
1892 let mut channels = self.channels.write().unwrap();
1893 match channels.get_mut(&msg.short_channel_id) {
1895 core::mem::drop(channels);
1896 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1897 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1900 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1901 return Err(LightningError{err:
1902 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1903 action: ErrorAction::IgnoreError});
1906 if let Some(capacity_sats) = channel.capacity_sats {
1907 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1908 // Don't query UTXO set here to reduce DoS risks.
1909 if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1910 return Err(LightningError{err:
1911 "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1912 action: ErrorAction::IgnoreError});
1915 macro_rules! check_update_latest {
1916 ($target: expr) => {
1917 if let Some(existing_chan_info) = $target.as_ref() {
1918 // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1919 // order updates to ensure you always have the latest one, only
1920 // suggesting that it be at least the current time. For
1921 // channel_updates specifically, the BOLTs discuss the possibility of
1922 // pruning based on the timestamp field being more than two weeks old,
1923 // but only in the non-normative section.
1924 if existing_chan_info.last_update > msg.timestamp {
1925 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1926 } else if existing_chan_info.last_update == msg.timestamp {
1927 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1933 macro_rules! get_new_channel_info {
1935 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1936 { full_msg.cloned() } else { None };
1938 let updated_channel_update_info = ChannelUpdateInfo {
1939 enabled: chan_enabled,
1940 last_update: msg.timestamp,
1941 cltv_expiry_delta: msg.cltv_expiry_delta,
1942 htlc_minimum_msat: msg.htlc_minimum_msat,
1943 htlc_maximum_msat: msg.htlc_maximum_msat,
1945 base_msat: msg.fee_base_msat,
1946 proportional_millionths: msg.fee_proportional_millionths,
1950 Some(updated_channel_update_info)
1954 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1955 if msg.flags & 1 == 1 {
1956 check_update_latest!(channel.two_to_one);
1957 if let Some(sig) = sig {
1958 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1959 err: "Couldn't parse source node pubkey".to_owned(),
1960 action: ErrorAction::IgnoreAndLog(Level::Debug)
1961 })?, "channel_update");
1963 channel.two_to_one = get_new_channel_info!();
1965 check_update_latest!(channel.one_to_two);
1966 if let Some(sig) = sig {
1967 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1968 err: "Couldn't parse destination node pubkey".to_owned(),
1969 action: ErrorAction::IgnoreAndLog(Level::Debug)
1970 })?, "channel_update");
1972 channel.one_to_two = get_new_channel_info!();
1980 fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1981 macro_rules! remove_from_node {
1982 ($node_id: expr) => {
1983 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1984 entry.get_mut().channels.retain(|chan_id| {
1985 short_channel_id != *chan_id
1987 if entry.get().channels.is_empty() {
1988 entry.remove_entry();
1991 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1996 remove_from_node!(chan.node_one);
1997 remove_from_node!(chan.node_two);
2001 impl ReadOnlyNetworkGraph<'_> {
2002 /// Returns all known valid channels' short ids along with announced channel info.
2004 /// This is not exported to bindings users because we don't want to return lifetime'd references
2005 pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
2009 /// Returns information on a channel with the given id.
2010 pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
2011 self.channels.get(&short_channel_id)
2014 #[cfg(c_bindings)] // Non-bindings users should use `channels`
2015 /// Returns the list of channels in the graph
2016 pub fn list_channels(&self) -> Vec<u64> {
2017 self.channels.unordered_keys().map(|c| *c).collect()
2020 /// Returns all known nodes' public keys along with announced node info.
2022 /// This is not exported to bindings users because we don't want to return lifetime'd references
2023 pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
2027 /// Returns information on a node with the given id.
2028 pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
2029 self.nodes.get(node_id)
2032 #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2033 /// Returns the list of nodes in the graph
2034 pub fn list_nodes(&self) -> Vec<NodeId> {
2035 self.nodes.unordered_keys().map(|n| *n).collect()
2038 /// Get network addresses by node id.
2039 /// Returns None if the requested node is completely unknown,
2040 /// or if node announcement for the node was never received.
2041 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
2042 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2043 .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2048 pub(crate) mod tests {
2049 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2050 use crate::ln::channelmanager;
2051 use crate::ln::chan_utils::make_funding_redeemscript;
2052 #[cfg(feature = "std")]
2053 use crate::ln::features::InitFeatures;
2054 use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2055 use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2056 use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2057 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2058 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2059 use crate::util::config::UserConfig;
2060 use crate::util::test_utils;
2061 use crate::util::ser::{ReadableArgs, Readable, Writeable};
2062 use crate::util::scid_utils::scid_from_parts;
2064 use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2065 use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2067 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2068 use bitcoin::hashes::Hash;
2069 use bitcoin::network::constants::Network;
2070 use bitcoin::blockdata::constants::genesis_block;
2071 use bitcoin::blockdata::script::Script;
2072 use bitcoin::blockdata::transaction::TxOut;
2076 use bitcoin::secp256k1::{PublicKey, SecretKey};
2077 use bitcoin::secp256k1::{All, Secp256k1};
2080 use bitcoin::secp256k1;
2081 use crate::prelude::*;
2082 use crate::sync::Arc;
2084 fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2085 let logger = Arc::new(test_utils::TestLogger::new());
2086 NetworkGraph::new(Network::Testnet, logger)
2089 fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2090 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2091 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2093 let secp_ctx = Secp256k1::new();
2094 let logger = Arc::new(test_utils::TestLogger::new());
2095 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2096 (secp_ctx, gossip_sync)
2100 #[cfg(feature = "std")]
2101 fn request_full_sync_finite_times() {
2102 let network_graph = create_network_graph();
2103 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2104 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2106 assert!(gossip_sync.should_request_full_sync(&node_id));
2107 assert!(gossip_sync.should_request_full_sync(&node_id));
2108 assert!(gossip_sync.should_request_full_sync(&node_id));
2109 assert!(gossip_sync.should_request_full_sync(&node_id));
2110 assert!(gossip_sync.should_request_full_sync(&node_id));
2111 assert!(!gossip_sync.should_request_full_sync(&node_id));
2114 pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2115 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2116 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2117 features: channelmanager::provided_node_features(&UserConfig::default()),
2121 alias: NodeAlias([0; 32]),
2122 addresses: Vec::new(),
2123 excess_address_data: Vec::new(),
2124 excess_data: Vec::new(),
2126 f(&mut unsigned_announcement);
2127 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2129 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2130 contents: unsigned_announcement
2134 pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2135 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2136 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2137 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2138 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2140 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2141 features: channelmanager::provided_channel_features(&UserConfig::default()),
2142 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2143 short_channel_id: 0,
2144 node_id_1: NodeId::from_pubkey(&node_id_1),
2145 node_id_2: NodeId::from_pubkey(&node_id_2),
2146 bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2147 bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2148 excess_data: Vec::new(),
2150 f(&mut unsigned_announcement);
2151 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2152 ChannelAnnouncement {
2153 node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2154 node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2155 bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2156 bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2157 contents: unsigned_announcement,
2161 pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2162 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2163 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2164 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2165 &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2168 pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2169 let mut unsigned_channel_update = UnsignedChannelUpdate {
2170 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2171 short_channel_id: 0,
2174 cltv_expiry_delta: 144,
2175 htlc_minimum_msat: 1_000_000,
2176 htlc_maximum_msat: 1_000_000,
2177 fee_base_msat: 10_000,
2178 fee_proportional_millionths: 20,
2179 excess_data: Vec::new()
2181 f(&mut unsigned_channel_update);
2182 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2184 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2185 contents: unsigned_channel_update
2190 fn handling_node_announcements() {
2191 let network_graph = create_network_graph();
2192 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2194 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2195 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2196 let zero_hash = Sha256dHash::hash(&[0; 32]);
2198 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2199 match gossip_sync.handle_node_announcement(&valid_announcement) {
2201 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2205 // Announce a channel to add a corresponding node.
2206 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2207 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2208 Ok(res) => assert!(res),
2213 match gossip_sync.handle_node_announcement(&valid_announcement) {
2214 Ok(res) => assert!(res),
2218 let fake_msghash = hash_to_message!(&zero_hash);
2219 match gossip_sync.handle_node_announcement(
2221 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2222 contents: valid_announcement.contents.clone()
2225 Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2228 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2229 unsigned_announcement.timestamp += 1000;
2230 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2231 }, node_1_privkey, &secp_ctx);
2232 // Return false because contains excess data.
2233 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2234 Ok(res) => assert!(!res),
2238 // Even though previous announcement was not relayed further, we still accepted it,
2239 // so we now won't accept announcements before the previous one.
2240 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2241 unsigned_announcement.timestamp += 1000 - 10;
2242 }, node_1_privkey, &secp_ctx);
2243 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2245 Err(e) => assert_eq!(e.err, "Update older than last processed update")
2250 fn handling_channel_announcements() {
2251 let secp_ctx = Secp256k1::new();
2252 let logger = test_utils::TestLogger::new();
2254 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2255 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2257 let good_script = get_channel_script(&secp_ctx);
2258 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2260 // Test if the UTXO lookups were not supported
2261 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2262 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2263 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2264 Ok(res) => assert!(res),
2269 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2275 // If we receive announcement for the same channel (with UTXO lookups disabled),
2276 // drop new one on the floor, since we can't see any changes.
2277 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2279 Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2282 // Test if an associated transaction were not on-chain (or not confirmed).
2283 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2284 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2285 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2286 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2288 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2289 unsigned_announcement.short_channel_id += 1;
2290 }, node_1_privkey, node_2_privkey, &secp_ctx);
2291 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2293 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2296 // Now test if the transaction is found in the UTXO set and the script is correct.
2297 *chain_source.utxo_ret.lock().unwrap() =
2298 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2299 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2300 unsigned_announcement.short_channel_id += 2;
2301 }, node_1_privkey, node_2_privkey, &secp_ctx);
2302 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2303 Ok(res) => assert!(res),
2308 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2314 // If we receive announcement for the same channel, once we've validated it against the
2315 // chain, we simply ignore all new (duplicate) announcements.
2316 *chain_source.utxo_ret.lock().unwrap() =
2317 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2318 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2320 Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2323 #[cfg(feature = "std")]
2325 use std::time::{SystemTime, UNIX_EPOCH};
2327 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2328 // Mark a node as permanently failed so it's tracked as removed.
2329 gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2331 // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2332 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2333 unsigned_announcement.short_channel_id += 3;
2334 }, node_1_privkey, node_2_privkey, &secp_ctx);
2335 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2337 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2340 gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2342 // The above channel announcement should be handled as per normal now.
2343 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2344 Ok(res) => assert!(res),
2349 // Don't relay valid channels with excess data
2350 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2351 unsigned_announcement.short_channel_id += 4;
2352 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2353 }, node_1_privkey, node_2_privkey, &secp_ctx);
2354 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2355 Ok(res) => assert!(!res),
2359 let mut invalid_sig_announcement = valid_announcement.clone();
2360 invalid_sig_announcement.contents.excess_data = Vec::new();
2361 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2363 Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2366 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2367 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2369 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2372 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2373 // announcement is mainnet).
2374 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2375 unsigned_announcement.chain_hash = genesis_block(Network::Bitcoin).header.block_hash();
2376 }, node_1_privkey, node_2_privkey, &secp_ctx);
2377 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2379 Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2384 fn handling_channel_update() {
2385 let secp_ctx = Secp256k1::new();
2386 let logger = test_utils::TestLogger::new();
2387 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2388 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2389 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2391 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2392 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2394 let amount_sats = 1000_000;
2395 let short_channel_id;
2398 // Announce a channel we will update
2399 let good_script = get_channel_script(&secp_ctx);
2400 *chain_source.utxo_ret.lock().unwrap() =
2401 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2403 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2404 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2405 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2412 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2413 match gossip_sync.handle_channel_update(&valid_channel_update) {
2414 Ok(res) => assert!(res),
2419 match network_graph.read_only().channels().get(&short_channel_id) {
2421 Some(channel_info) => {
2422 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2423 assert!(channel_info.two_to_one.is_none());
2428 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2429 unsigned_channel_update.timestamp += 100;
2430 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2431 }, node_1_privkey, &secp_ctx);
2432 // Return false because contains excess data
2433 match gossip_sync.handle_channel_update(&valid_channel_update) {
2434 Ok(res) => assert!(!res),
2438 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2439 unsigned_channel_update.timestamp += 110;
2440 unsigned_channel_update.short_channel_id += 1;
2441 }, node_1_privkey, &secp_ctx);
2442 match gossip_sync.handle_channel_update(&valid_channel_update) {
2444 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2447 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2448 unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2449 unsigned_channel_update.timestamp += 110;
2450 }, node_1_privkey, &secp_ctx);
2451 match gossip_sync.handle_channel_update(&valid_channel_update) {
2453 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2456 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2457 unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2458 unsigned_channel_update.timestamp += 110;
2459 }, node_1_privkey, &secp_ctx);
2460 match gossip_sync.handle_channel_update(&valid_channel_update) {
2462 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2465 // Even though previous update was not relayed further, we still accepted it,
2466 // so we now won't accept update before the previous one.
2467 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2468 unsigned_channel_update.timestamp += 100;
2469 }, node_1_privkey, &secp_ctx);
2470 match gossip_sync.handle_channel_update(&valid_channel_update) {
2472 Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2475 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2476 unsigned_channel_update.timestamp += 500;
2477 }, node_1_privkey, &secp_ctx);
2478 let zero_hash = Sha256dHash::hash(&[0; 32]);
2479 let fake_msghash = hash_to_message!(&zero_hash);
2480 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2481 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2483 Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2486 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2487 // update is mainet).
2488 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2489 unsigned_channel_update.chain_hash = genesis_block(Network::Bitcoin).header.block_hash();
2490 }, node_1_privkey, &secp_ctx);
2492 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2494 Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2499 fn handling_network_update() {
2500 let logger = test_utils::TestLogger::new();
2501 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2502 let secp_ctx = Secp256k1::new();
2504 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2505 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2506 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2509 // There is no nodes in the table at the beginning.
2510 assert_eq!(network_graph.read_only().nodes().len(), 0);
2513 let short_channel_id;
2515 // Announce a channel we will update
2516 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2517 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2518 let chain_source: Option<&test_utils::TestChainSource> = None;
2519 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2520 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2522 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2523 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2525 network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2526 msg: valid_channel_update,
2529 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2532 // Non-permanent failure doesn't touch the channel at all
2534 match network_graph.read_only().channels().get(&short_channel_id) {
2536 Some(channel_info) => {
2537 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2541 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2543 is_permanent: false,
2546 match network_graph.read_only().channels().get(&short_channel_id) {
2548 Some(channel_info) => {
2549 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2554 // Permanent closing deletes a channel
2555 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2560 assert_eq!(network_graph.read_only().channels().len(), 0);
2561 // Nodes are also deleted because there are no associated channels anymore
2562 assert_eq!(network_graph.read_only().nodes().len(), 0);
2565 // Get a new network graph since we don't want to track removed nodes in this test with "std"
2566 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2568 // Announce a channel to test permanent node failure
2569 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2570 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2571 let chain_source: Option<&test_utils::TestChainSource> = None;
2572 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2573 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2575 // Non-permanent node failure does not delete any nodes or channels
2576 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2578 is_permanent: false,
2581 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2582 assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2584 // Permanent node failure deletes node and its channels
2585 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2590 assert_eq!(network_graph.read_only().nodes().len(), 0);
2591 // Channels are also deleted because the associated node has been deleted
2592 assert_eq!(network_graph.read_only().channels().len(), 0);
2597 fn test_channel_timeouts() {
2598 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2599 let logger = test_utils::TestLogger::new();
2600 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2601 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2602 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2603 let secp_ctx = Secp256k1::new();
2605 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2606 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2608 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2609 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2610 let chain_source: Option<&test_utils::TestChainSource> = None;
2611 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2612 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2614 // Submit two channel updates for each channel direction (update.flags bit).
2615 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2616 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2617 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2619 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2620 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2621 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2623 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2624 assert_eq!(network_graph.read_only().channels().len(), 1);
2625 assert_eq!(network_graph.read_only().nodes().len(), 2);
2627 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2628 #[cfg(not(feature = "std"))] {
2629 // Make sure removed channels are tracked.
2630 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2632 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2633 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2635 #[cfg(feature = "std")]
2637 // In std mode, a further check is performed before fully removing the channel -
2638 // the channel_announcement must have been received at least two weeks ago. We
2639 // fudge that here by indicating the time has jumped two weeks.
2640 assert_eq!(network_graph.read_only().channels().len(), 1);
2641 assert_eq!(network_graph.read_only().nodes().len(), 2);
2643 // Note that the directional channel information will have been removed already..
2644 // We want to check that this will work even if *one* of the channel updates is recent,
2645 // so we should add it with a recent timestamp.
2646 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2647 use std::time::{SystemTime, UNIX_EPOCH};
2648 let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2649 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2650 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2651 }, node_1_privkey, &secp_ctx);
2652 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2653 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2654 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2655 // Make sure removed channels are tracked.
2656 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2657 // Provide a later time so that sufficient time has passed
2658 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2659 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2662 assert_eq!(network_graph.read_only().channels().len(), 0);
2663 assert_eq!(network_graph.read_only().nodes().len(), 0);
2664 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2666 #[cfg(feature = "std")]
2668 use std::time::{SystemTime, UNIX_EPOCH};
2670 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2672 // Clear tracked nodes and channels for clean slate
2673 network_graph.removed_channels.lock().unwrap().clear();
2674 network_graph.removed_nodes.lock().unwrap().clear();
2676 // Add a channel and nodes from channel announcement. So our network graph will
2677 // now only consist of two nodes and one channel between them.
2678 assert!(network_graph.update_channel_from_announcement(
2679 &valid_channel_announcement, &chain_source).is_ok());
2681 // Mark the channel as permanently failed. This will also remove the two nodes
2682 // and all of the entries will be tracked as removed.
2683 network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2685 // Should not remove from tracking if insufficient time has passed
2686 network_graph.remove_stale_channels_and_tracking_with_time(
2687 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2688 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count ≠1 with tracking_time {}", tracking_time);
2690 // Provide a later time so that sufficient time has passed
2691 network_graph.remove_stale_channels_and_tracking_with_time(
2692 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2693 assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2694 assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2697 #[cfg(not(feature = "std"))]
2699 // When we don't have access to the system clock, the time we started tracking removal will only
2700 // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2701 // only if sufficient time has passed after that first call, will the next call remove it from
2703 let removal_time = 1664619654;
2705 // Clear removed nodes and channels for clean slate
2706 network_graph.removed_channels.lock().unwrap().clear();
2707 network_graph.removed_nodes.lock().unwrap().clear();
2709 // Add a channel and nodes from channel announcement. So our network graph will
2710 // now only consist of two nodes and one channel between them.
2711 assert!(network_graph.update_channel_from_announcement(
2712 &valid_channel_announcement, &chain_source).is_ok());
2714 // Mark the channel as permanently failed. This will also remove the two nodes
2715 // and all of the entries will be tracked as removed.
2716 network_graph.channel_failed_permanent(short_channel_id);
2718 // The first time we call the following, the channel will have a removal time assigned.
2719 network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2720 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2722 // Provide a later time so that sufficient time has passed
2723 network_graph.remove_stale_channels_and_tracking_with_time(
2724 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2725 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2726 assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2731 fn getting_next_channel_announcements() {
2732 let network_graph = create_network_graph();
2733 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2734 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2735 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2737 // Channels were not announced yet.
2738 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2739 assert!(channels_with_announcements.is_none());
2741 let short_channel_id;
2743 // Announce a channel we will update
2744 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2745 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2746 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2752 // Contains initial channel announcement now.
2753 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2754 if let Some(channel_announcements) = channels_with_announcements {
2755 let (_, ref update_1, ref update_2) = channel_announcements;
2756 assert_eq!(update_1, &None);
2757 assert_eq!(update_2, &None);
2763 // Valid channel update
2764 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2765 unsigned_channel_update.timestamp = 101;
2766 }, node_1_privkey, &secp_ctx);
2767 match gossip_sync.handle_channel_update(&valid_channel_update) {
2773 // Now contains an initial announcement and an update.
2774 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2775 if let Some(channel_announcements) = channels_with_announcements {
2776 let (_, ref update_1, ref update_2) = channel_announcements;
2777 assert_ne!(update_1, &None);
2778 assert_eq!(update_2, &None);
2784 // Channel update with excess data.
2785 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2786 unsigned_channel_update.timestamp = 102;
2787 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2788 }, node_1_privkey, &secp_ctx);
2789 match gossip_sync.handle_channel_update(&valid_channel_update) {
2795 // Test that announcements with excess data won't be returned
2796 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2797 if let Some(channel_announcements) = channels_with_announcements {
2798 let (_, ref update_1, ref update_2) = channel_announcements;
2799 assert_eq!(update_1, &None);
2800 assert_eq!(update_2, &None);
2805 // Further starting point have no channels after it
2806 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2807 assert!(channels_with_announcements.is_none());
2811 fn getting_next_node_announcements() {
2812 let network_graph = create_network_graph();
2813 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2814 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2815 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2816 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2819 let next_announcements = gossip_sync.get_next_node_announcement(None);
2820 assert!(next_announcements.is_none());
2823 // Announce a channel to add 2 nodes
2824 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2825 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2831 // Nodes were never announced
2832 let next_announcements = gossip_sync.get_next_node_announcement(None);
2833 assert!(next_announcements.is_none());
2836 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2837 match gossip_sync.handle_node_announcement(&valid_announcement) {
2842 let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2843 match gossip_sync.handle_node_announcement(&valid_announcement) {
2849 let next_announcements = gossip_sync.get_next_node_announcement(None);
2850 assert!(next_announcements.is_some());
2852 // Skip the first node.
2853 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2854 assert!(next_announcements.is_some());
2857 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2858 let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2859 unsigned_announcement.timestamp += 10;
2860 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2861 }, node_2_privkey, &secp_ctx);
2862 match gossip_sync.handle_node_announcement(&valid_announcement) {
2863 Ok(res) => assert!(!res),
2868 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2869 assert!(next_announcements.is_none());
2873 fn network_graph_serialization() {
2874 let network_graph = create_network_graph();
2875 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2877 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2878 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2880 // Announce a channel to add a corresponding node.
2881 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2882 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2883 Ok(res) => assert!(res),
2887 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2888 match gossip_sync.handle_node_announcement(&valid_announcement) {
2893 let mut w = test_utils::TestVecWriter(Vec::new());
2894 assert!(!network_graph.read_only().nodes().is_empty());
2895 assert!(!network_graph.read_only().channels().is_empty());
2896 network_graph.write(&mut w).unwrap();
2898 let logger = Arc::new(test_utils::TestLogger::new());
2899 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2903 fn network_graph_tlv_serialization() {
2904 let network_graph = create_network_graph();
2905 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2907 let mut w = test_utils::TestVecWriter(Vec::new());
2908 network_graph.write(&mut w).unwrap();
2910 let logger = Arc::new(test_utils::TestLogger::new());
2911 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2912 assert!(reassembled_network_graph == network_graph);
2913 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2917 #[cfg(feature = "std")]
2918 fn calling_sync_routing_table() {
2919 use std::time::{SystemTime, UNIX_EPOCH};
2920 use crate::ln::msgs::Init;
2922 let network_graph = create_network_graph();
2923 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2924 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2925 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2927 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2929 // It should ignore if gossip_queries feature is not enabled
2931 let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
2932 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2933 let events = gossip_sync.get_and_clear_pending_msg_events();
2934 assert_eq!(events.len(), 0);
2937 // It should send a gossip_timestamp_filter with the correct information
2939 let mut features = InitFeatures::empty();
2940 features.set_gossip_queries_optional();
2941 let init_msg = Init { features, networks: None, remote_network_address: None };
2942 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2943 let events = gossip_sync.get_and_clear_pending_msg_events();
2944 assert_eq!(events.len(), 1);
2946 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2947 assert_eq!(node_id, &node_id_1);
2948 assert_eq!(msg.chain_hash, chain_hash);
2949 let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2950 assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2951 assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2952 assert_eq!(msg.timestamp_range, u32::max_value());
2954 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2960 fn handling_query_channel_range() {
2961 let network_graph = create_network_graph();
2962 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2964 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2965 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2966 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2967 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2969 let mut scids: Vec<u64> = vec![
2970 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2971 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2974 // used for testing multipart reply across blocks
2975 for block in 100000..=108001 {
2976 scids.push(scid_from_parts(block, 0, 0).unwrap());
2979 // used for testing resumption on same block
2980 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2983 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2984 unsigned_announcement.short_channel_id = scid;
2985 }, node_1_privkey, node_2_privkey, &secp_ctx);
2986 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2992 // Error when number_of_blocks=0
2993 do_handling_query_channel_range(
2997 chain_hash: chain_hash.clone(),
2999 number_of_blocks: 0,
3002 vec![ReplyChannelRange {
3003 chain_hash: chain_hash.clone(),
3005 number_of_blocks: 0,
3006 sync_complete: true,
3007 short_channel_ids: vec![]
3011 // Error when wrong chain
3012 do_handling_query_channel_range(
3016 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
3018 number_of_blocks: 0xffff_ffff,
3021 vec![ReplyChannelRange {
3022 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
3024 number_of_blocks: 0xffff_ffff,
3025 sync_complete: true,
3026 short_channel_ids: vec![],
3030 // Error when first_blocknum > 0xffffff
3031 do_handling_query_channel_range(
3035 chain_hash: chain_hash.clone(),
3036 first_blocknum: 0x01000000,
3037 number_of_blocks: 0xffff_ffff,
3040 vec![ReplyChannelRange {
3041 chain_hash: chain_hash.clone(),
3042 first_blocknum: 0x01000000,
3043 number_of_blocks: 0xffff_ffff,
3044 sync_complete: true,
3045 short_channel_ids: vec![]
3049 // Empty reply when max valid SCID block num
3050 do_handling_query_channel_range(
3054 chain_hash: chain_hash.clone(),
3055 first_blocknum: 0xffffff,
3056 number_of_blocks: 1,
3061 chain_hash: chain_hash.clone(),
3062 first_blocknum: 0xffffff,
3063 number_of_blocks: 1,
3064 sync_complete: true,
3065 short_channel_ids: vec![]
3070 // No results in valid query range
3071 do_handling_query_channel_range(
3075 chain_hash: chain_hash.clone(),
3076 first_blocknum: 1000,
3077 number_of_blocks: 1000,
3082 chain_hash: chain_hash.clone(),
3083 first_blocknum: 1000,
3084 number_of_blocks: 1000,
3085 sync_complete: true,
3086 short_channel_ids: vec![],
3091 // Overflow first_blocknum + number_of_blocks
3092 do_handling_query_channel_range(
3096 chain_hash: chain_hash.clone(),
3097 first_blocknum: 0xfe0000,
3098 number_of_blocks: 0xffffffff,
3103 chain_hash: chain_hash.clone(),
3104 first_blocknum: 0xfe0000,
3105 number_of_blocks: 0xffffffff - 0xfe0000,
3106 sync_complete: true,
3107 short_channel_ids: vec![
3108 0xfffffe_ffffff_ffff, // max
3114 // Single block exactly full
3115 do_handling_query_channel_range(
3119 chain_hash: chain_hash.clone(),
3120 first_blocknum: 100000,
3121 number_of_blocks: 8000,
3126 chain_hash: chain_hash.clone(),
3127 first_blocknum: 100000,
3128 number_of_blocks: 8000,
3129 sync_complete: true,
3130 short_channel_ids: (100000..=107999)
3131 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3137 // Multiple split on new block
3138 do_handling_query_channel_range(
3142 chain_hash: chain_hash.clone(),
3143 first_blocknum: 100000,
3144 number_of_blocks: 8001,
3149 chain_hash: chain_hash.clone(),
3150 first_blocknum: 100000,
3151 number_of_blocks: 7999,
3152 sync_complete: false,
3153 short_channel_ids: (100000..=107999)
3154 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3158 chain_hash: chain_hash.clone(),
3159 first_blocknum: 107999,
3160 number_of_blocks: 2,
3161 sync_complete: true,
3162 short_channel_ids: vec![
3163 scid_from_parts(108000, 0, 0).unwrap(),
3169 // Multiple split on same block
3170 do_handling_query_channel_range(
3174 chain_hash: chain_hash.clone(),
3175 first_blocknum: 100002,
3176 number_of_blocks: 8000,
3181 chain_hash: chain_hash.clone(),
3182 first_blocknum: 100002,
3183 number_of_blocks: 7999,
3184 sync_complete: false,
3185 short_channel_ids: (100002..=108001)
3186 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3190 chain_hash: chain_hash.clone(),
3191 first_blocknum: 108001,
3192 number_of_blocks: 1,
3193 sync_complete: true,
3194 short_channel_ids: vec![
3195 scid_from_parts(108001, 1, 0).unwrap(),
3202 fn do_handling_query_channel_range(
3203 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3204 test_node_id: &PublicKey,
3205 msg: QueryChannelRange,
3207 expected_replies: Vec<ReplyChannelRange>
3209 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3210 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3211 let query_end_blocknum = msg.end_blocknum();
3212 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3215 assert!(result.is_ok());
3217 assert!(result.is_err());
3220 let events = gossip_sync.get_and_clear_pending_msg_events();
3221 assert_eq!(events.len(), expected_replies.len());
3223 for i in 0..events.len() {
3224 let expected_reply = &expected_replies[i];
3226 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3227 assert_eq!(node_id, test_node_id);
3228 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3229 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3230 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3231 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3232 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3234 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3235 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3236 assert!(msg.first_blocknum >= max_firstblocknum);
3237 max_firstblocknum = msg.first_blocknum;
3238 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3240 // Check that the last block count is >= the query's end_blocknum
3241 if i == events.len() - 1 {
3242 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3245 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3251 fn handling_query_short_channel_ids() {
3252 let network_graph = create_network_graph();
3253 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3254 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3255 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3257 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3259 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3261 short_channel_ids: vec![0x0003e8_000000_0000],
3263 assert!(result.is_err());
3267 fn displays_node_alias() {
3268 let format_str_alias = |alias: &str| {
3269 let mut bytes = [0u8; 32];
3270 bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3271 format!("{}", NodeAlias(bytes))
3274 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3275 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3276 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3278 let format_bytes_alias = |alias: &[u8]| {
3279 let mut bytes = [0u8; 32];
3280 bytes[..alias.len()].copy_from_slice(alias);
3281 format!("{}", NodeAlias(bytes))
3284 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3285 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3286 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3290 fn channel_info_is_readable() {
3291 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3292 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3293 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3294 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3295 let config = crate::ln::functional_test_utils::test_default_channel_config();
3297 // 1. Test encoding/decoding of ChannelUpdateInfo
3298 let chan_update_info = ChannelUpdateInfo {
3301 cltv_expiry_delta: 42,
3302 htlc_minimum_msat: 1234,
3303 htlc_maximum_msat: 5678,
3304 fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3305 last_update_message: None,
3308 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3309 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3311 // First make sure we can read ChannelUpdateInfos we just wrote
3312 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3313 assert_eq!(chan_update_info, read_chan_update_info);
3315 // Check the serialization hasn't changed.
3316 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3317 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3319 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3320 // or the ChannelUpdate enclosed with `last_update_message`.
3321 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3322 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3323 assert!(read_chan_update_info_res.is_err());
3325 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3326 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3327 assert!(read_chan_update_info_res.is_err());
3329 // 2. Test encoding/decoding of ChannelInfo
3330 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3331 let chan_info_none_updates = ChannelInfo {
3332 features: channelmanager::provided_channel_features(&config),
3333 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3335 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3337 capacity_sats: None,
3338 announcement_message: None,
3339 announcement_received_time: 87654,
3342 let mut encoded_chan_info: Vec<u8> = Vec::new();
3343 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3345 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3346 assert_eq!(chan_info_none_updates, read_chan_info);
3348 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3349 let chan_info_some_updates = ChannelInfo {
3350 features: channelmanager::provided_channel_features(&config),
3351 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3352 one_to_two: Some(chan_update_info.clone()),
3353 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3354 two_to_one: Some(chan_update_info.clone()),
3355 capacity_sats: None,
3356 announcement_message: None,
3357 announcement_received_time: 87654,
3360 let mut encoded_chan_info: Vec<u8> = Vec::new();
3361 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3363 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3364 assert_eq!(chan_info_some_updates, read_chan_info);
3366 // Check the serialization hasn't changed.
3367 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3368 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3370 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3371 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3372 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3373 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3374 assert_eq!(read_chan_info.announcement_received_time, 87654);
3375 assert_eq!(read_chan_info.one_to_two, None);
3376 assert_eq!(read_chan_info.two_to_one, None);
3378 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3379 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3380 assert_eq!(read_chan_info.announcement_received_time, 87654);
3381 assert_eq!(read_chan_info.one_to_two, None);
3382 assert_eq!(read_chan_info.two_to_one, None);
3386 fn node_info_is_readable() {
3387 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3388 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3389 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3390 let valid_node_ann_info = NodeAnnouncementInfo {
3391 features: channelmanager::provided_node_features(&UserConfig::default()),
3394 alias: NodeAlias([0u8; 32]),
3395 announcement_message: Some(announcement_message)
3398 let mut encoded_valid_node_ann_info = Vec::new();
3399 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3400 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3401 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3402 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3404 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3405 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3406 assert!(read_invalid_node_ann_info_res.is_err());
3408 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3409 let valid_node_info = NodeInfo {
3410 channels: Vec::new(),
3411 announcement_info: Some(valid_node_ann_info),
3414 let mut encoded_valid_node_info = Vec::new();
3415 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3416 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3417 assert_eq!(read_valid_node_info, valid_node_info);
3419 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3420 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3421 assert_eq!(read_invalid_node_info.announcement_info, None);
3425 fn test_node_info_keeps_compatibility() {
3426 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3427 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3428 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3429 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3430 assert!(ann_info_with_addresses.addresses().is_empty());
3434 fn test_node_id_display() {
3435 let node_id = NodeId([42; 33]);
3436 assert_eq!(format!("{}", &node_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
3444 use criterion::{black_box, Criterion};
3446 pub fn read_network_graph(bench: &mut Criterion) {
3447 let logger = crate::util::test_utils::TestLogger::new();
3448 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3449 let mut v = Vec::new();
3450 d.read_to_end(&mut v).unwrap();
3451 bench.bench_function("read_network_graph", |b| b.iter(||
3452 NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3456 pub fn write_network_graph(bench: &mut Criterion) {
3457 let logger = crate::util::test_utils::TestLogger::new();
3458 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3459 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3460 bench.bench_function("write_network_graph", |b| b.iter(||
3461 black_box(&net_graph).encode()