]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/routing/gossip.rs
bfc3018643bf2711d06bdbcb4a711ed03dde147b
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
22 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
23 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
24 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
25 use crate::ln::msgs;
26 use crate::routing::utxo::{self, UtxoLookup};
27 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
28 use crate::util::logger::{Logger, Level};
29 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
31 use crate::util::string::PrintableString;
32 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
33
34 use crate::io;
35 use crate::io_extras::{copy, sink};
36 use crate::prelude::*;
37 use core::{cmp, fmt};
38 use crate::sync::{RwLock, RwLockReadGuard};
39 #[cfg(feature = "std")]
40 use core::sync::atomic::{AtomicUsize, Ordering};
41 use crate::sync::Mutex;
42 use core::ops::{Bound, Deref};
43
44 #[cfg(feature = "std")]
45 use std::time::{SystemTime, UNIX_EPOCH};
46
47 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
48 /// suggestion.
49 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
50
51 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
52 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83 impl fmt::Display for NodeId {
84         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85                 write!(f, "{}", log_bytes!(self.0))
86         }
87 }
88
89 impl core::hash::Hash for NodeId {
90         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
91                 self.0.hash(hasher);
92         }
93 }
94
95 impl Eq for NodeId {}
96
97 impl PartialEq for NodeId {
98         fn eq(&self, other: &Self) -> bool {
99                 self.0[..] == other.0[..]
100         }
101 }
102
103 impl cmp::PartialOrd for NodeId {
104         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
105                 Some(self.cmp(other))
106         }
107 }
108
109 impl Ord for NodeId {
110         fn cmp(&self, other: &Self) -> cmp::Ordering {
111                 self.0[..].cmp(&other.0[..])
112         }
113 }
114
115 impl Writeable for NodeId {
116         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
117                 writer.write_all(&self.0)?;
118                 Ok(())
119         }
120 }
121
122 impl Readable for NodeId {
123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
124                 let mut buf = [0; PUBLIC_KEY_SIZE];
125                 reader.read_exact(&mut buf)?;
126                 Ok(Self(buf))
127         }
128 }
129
130 /// Represents the network as nodes and channels between them
131 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
132         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
133         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
134         genesis_hash: BlockHash,
135         logger: L,
136         // Lock order: channels -> nodes
137         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
138         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
139         // Lock order: removed_channels -> removed_nodes
140         //
141         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
142         // of `std::time::Instant`s for a few reasons:
143         //   * We want it to be possible to do tracking in no-std environments where we can compare
144         //     a provided current UNIX timestamp with the time at which we started tracking.
145         //   * In the future, if we decide to persist these maps, they will already be serializable.
146         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
147         //     environment should be practical over the time period we are considering (on the order of a
148         //     week).
149         //
150         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
151         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
152         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
153         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
154         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
155         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
156         /// that once some time passes, we can potentially resync it from gossip again.
157         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
158 }
159
160 /// A read-only view of [`NetworkGraph`].
161 pub struct ReadOnlyNetworkGraph<'a> {
162         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
163         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
164 }
165
166 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
167 /// return packet by a node along the route. See [BOLT #4] for details.
168 ///
169 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
170 #[derive(Clone, Debug, PartialEq, Eq)]
171 pub enum NetworkUpdate {
172         /// An error indicating a `channel_update` messages should be applied via
173         /// [`NetworkGraph::update_channel`].
174         ChannelUpdateMessage {
175                 /// The update to apply via [`NetworkGraph::update_channel`].
176                 msg: ChannelUpdate,
177         },
178         /// An error indicating that a channel failed to route a payment, which should be applied via
179         /// [`NetworkGraph::channel_failed`].
180         ChannelFailure {
181                 /// The short channel id of the closed channel.
182                 short_channel_id: u64,
183                 /// Whether the channel should be permanently removed or temporarily disabled until a new
184                 /// `channel_update` message is received.
185                 is_permanent: bool,
186         },
187         /// An error indicating that a node failed to route a payment, which should be applied via
188         /// [`NetworkGraph::node_failed_permanent`] if permanent.
189         NodeFailure {
190                 /// The node id of the failed node.
191                 node_id: PublicKey,
192                 /// Whether the node should be permanently removed from consideration or can be restored
193                 /// when a new `channel_update` message is received.
194                 is_permanent: bool,
195         }
196 }
197
198 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
199         (0, ChannelUpdateMessage) => {
200                 (0, msg, required),
201         },
202         (2, ChannelFailure) => {
203                 (0, short_channel_id, required),
204                 (2, is_permanent, required),
205         },
206         (4, NodeFailure) => {
207                 (0, node_id, required),
208                 (2, is_permanent, required),
209         },
210 );
211
212 /// Receives and validates network updates from peers,
213 /// stores authentic and relevant data as a network graph.
214 /// This network graph is then used for routing payments.
215 /// Provides interface to help with initial routing sync by
216 /// serving historical announcements.
217 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
218 where U::Target: UtxoLookup, L::Target: Logger
219 {
220         network_graph: G,
221         utxo_lookup: Option<U>,
222         #[cfg(feature = "std")]
223         full_syncs_requested: AtomicUsize,
224         pending_events: Mutex<Vec<MessageSendEvent>>,
225         logger: L,
226 }
227
228 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
229 where U::Target: UtxoLookup, L::Target: Logger
230 {
231         /// Creates a new tracker of the actual state of the network of channels and nodes,
232         /// assuming an existing Network Graph.
233         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
234         /// correct, and the announcement is signed with channel owners' keys.
235         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
236                 P2PGossipSync {
237                         network_graph,
238                         #[cfg(feature = "std")]
239                         full_syncs_requested: AtomicUsize::new(0),
240                         utxo_lookup,
241                         pending_events: Mutex::new(vec![]),
242                         logger,
243                 }
244         }
245
246         /// Adds a provider used to check new announcements. Does not affect
247         /// existing announcements unless they are updated.
248         /// Add, update or remove the provider would replace the current one.
249         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
250                 self.utxo_lookup = utxo_lookup;
251         }
252
253         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
254         /// [`P2PGossipSync::new`].
255         ///
256         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
257         pub fn network_graph(&self) -> &G {
258                 &self.network_graph
259         }
260
261         #[cfg(feature = "std")]
262         /// Returns true when a full routing table sync should be performed with a peer.
263         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
264                 //TODO: Determine whether to request a full sync based on the network map.
265                 const FULL_SYNCS_TO_REQUEST: usize = 5;
266                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
267                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
268                         true
269                 } else {
270                         false
271                 }
272         }
273 }
274
275 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
276         /// Handles any network updates originating from [`Event`]s.
277         ///
278         /// [`Event`]: crate::util::events::Event
279         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
280                 match *network_update {
281                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
282                                 let short_channel_id = msg.contents.short_channel_id;
283                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
284                                 let status = if is_enabled { "enabled" } else { "disabled" };
285                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
286                                 let _ = self.update_channel(msg);
287                         },
288                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
289                                 let action = if is_permanent { "Removing" } else { "Disabling" };
290                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
291                                 self.channel_failed(short_channel_id, is_permanent);
292                         },
293                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
294                                 if is_permanent {
295                                         log_debug!(self.logger,
296                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
297                                         self.node_failed_permanent(node_id);
298                                 };
299                         },
300                 }
301         }
302 }
303
304 macro_rules! secp_verify_sig {
305         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
306                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
307                         Ok(_) => {},
308                         Err(_) => {
309                                 return Err(LightningError {
310                                         err: format!("Invalid signature on {} message", $msg_type),
311                                         action: ErrorAction::SendWarningMessage {
312                                                 msg: msgs::WarningMessage {
313                                                         channel_id: [0; 32],
314                                                         data: format!("Invalid signature on {} message", $msg_type),
315                                                 },
316                                                 log_level: Level::Trace,
317                                         },
318                                 });
319                         },
320                 }
321         };
322 }
323
324 macro_rules! get_pubkey_from_node_id {
325         ( $node_id: expr, $msg_type: expr ) => {
326                 PublicKey::from_slice($node_id.as_slice())
327                         .map_err(|_| LightningError {
328                                 err: format!("Invalid public key on {} message", $msg_type),
329                                 action: ErrorAction::SendWarningMessage {
330                                         msg: msgs::WarningMessage {
331                                                 channel_id: [0; 32],
332                                                 data: format!("Invalid public key on {} message", $msg_type),
333                                         },
334                                         log_level: Level::Trace
335                                 }
336                         })?
337         }
338 }
339
340 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
341 where U::Target: UtxoLookup, L::Target: Logger
342 {
343         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
344                 self.network_graph.update_node_from_announcement(msg)?;
345                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
346                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
347                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
348         }
349
350         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
351                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
352                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
353                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
354         }
355
356         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
357                 self.network_graph.update_channel(msg)?;
358                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
359         }
360
361         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
362                 let channels = self.network_graph.channels.read().unwrap();
363                 for (_, ref chan) in channels.range(starting_point..) {
364                         if chan.announcement_message.is_some() {
365                                 let chan_announcement = chan.announcement_message.clone().unwrap();
366                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
367                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
368                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
369                                         one_to_two_announcement = one_to_two.last_update_message.clone();
370                                 }
371                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
372                                         two_to_one_announcement = two_to_one.last_update_message.clone();
373                                 }
374                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
375                         } else {
376                                 // TODO: We may end up sending un-announced channel_updates if we are sending
377                                 // initial sync data while receiving announce/updates for this channel.
378                         }
379                 }
380                 None
381         }
382
383         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
384                 let nodes = self.network_graph.nodes.read().unwrap();
385                 let iter = if let Some(node_id) = starting_point {
386                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
387                         } else {
388                                 nodes.range(..)
389                         };
390                 for (_, ref node) in iter {
391                         if let Some(node_info) = node.announcement_info.as_ref() {
392                                 if let Some(msg) = node_info.announcement_message.clone() {
393                                         return Some(msg);
394                                 }
395                         }
396                 }
397                 None
398         }
399
400         /// Initiates a stateless sync of routing gossip information with a peer
401         /// using gossip_queries. The default strategy used by this implementation
402         /// is to sync the full block range with several peers.
403         ///
404         /// We should expect one or more reply_channel_range messages in response
405         /// to our query_channel_range. Each reply will enqueue a query_scid message
406         /// to request gossip messages for each channel. The sync is considered complete
407         /// when the final reply_scids_end message is received, though we are not
408         /// tracking this directly.
409         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
410                 // We will only perform a sync with peers that support gossip_queries.
411                 if !init_msg.features.supports_gossip_queries() {
412                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
413                         // channels with peers even without being able to exchange gossip.
414                         return Ok(());
415                 }
416
417                 // The lightning network's gossip sync system is completely broken in numerous ways.
418                 //
419                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
420                 // to do a full sync from the first few peers we connect to, and then receive gossip
421                 // updates from all our peers normally.
422                 //
423                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
424                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
425                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
426                 // seen.
427                 //
428                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
429                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
430                 // channel data which you are missing. Except there was no way at all to identify which
431                 // `channel_update`s you were missing, so you still had to request everything, just in a
432                 // very complicated way with some queries instead of just getting the dump.
433                 //
434                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
435                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
436                 // relying on it useless.
437                 //
438                 // After gossip queries were introduced, support for receiving a full gossip table dump on
439                 // connection was removed from several nodes, making it impossible to get a full sync
440                 // without using the "gossip queries" messages.
441                 //
442                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
443                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
444                 // message, as the name implies, tells the peer to not forward any gossip messages with a
445                 // timestamp older than a given value (not the time the peer received the filter, but the
446                 // timestamp in the update message, which is often hours behind when the peer received the
447                 // message).
448                 //
449                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
450                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
451                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
452                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
453                 // will simply not forward any new updates they see to you which were generated some time
454                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
455                 // ago), you will always get the full routing graph from all your peers.
456                 //
457                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
458                 // propagated some time after it was generated, and, worse, often disable gossiping with
459                 // several peers after their first connection. The second behavior can cause gossip to not
460                 // propagate fully if there are cuts in the gossiping subgraph.
461                 //
462                 // In an attempt to cut a middle ground between always fetching the full graph from all of
463                 // our peers and never receiving gossip from peers at all, we send all of our peers a
464                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
465                 //
466                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
467                 #[allow(unused_mut, unused_assignments)]
468                 let mut gossip_start_time = 0;
469                 #[cfg(feature = "std")]
470                 {
471                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
472                         if self.should_request_full_sync(&their_node_id) {
473                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
474                         } else {
475                                 gossip_start_time -= 60 * 60; // an hour ago
476                         }
477                 }
478
479                 let mut pending_events = self.pending_events.lock().unwrap();
480                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
481                         node_id: their_node_id.clone(),
482                         msg: GossipTimestampFilter {
483                                 chain_hash: self.network_graph.genesis_hash,
484                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
485                                 timestamp_range: u32::max_value(),
486                         },
487                 });
488                 Ok(())
489         }
490
491         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
492                 // We don't make queries, so should never receive replies. If, in the future, the set
493                 // reconciliation extensions to gossip queries become broadly supported, we should revert
494                 // this code to its state pre-0.0.106.
495                 Ok(())
496         }
497
498         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
499                 // We don't make queries, so should never receive replies. If, in the future, the set
500                 // reconciliation extensions to gossip queries become broadly supported, we should revert
501                 // this code to its state pre-0.0.106.
502                 Ok(())
503         }
504
505         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
506         /// are in the specified block range. Due to message size limits, large range
507         /// queries may result in several reply messages. This implementation enqueues
508         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
509         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
510         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
511         /// memory constrained systems.
512         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
513                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
514
515                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
516
517                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
518                 // If so, we manually cap the ending block to avoid this overflow.
519                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
520
521                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
522                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
523                         let mut pending_events = self.pending_events.lock().unwrap();
524                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
525                                 node_id: their_node_id.clone(),
526                                 msg: ReplyChannelRange {
527                                         chain_hash: msg.chain_hash.clone(),
528                                         first_blocknum: msg.first_blocknum,
529                                         number_of_blocks: msg.number_of_blocks,
530                                         sync_complete: true,
531                                         short_channel_ids: vec![],
532                                 }
533                         });
534                         return Err(LightningError {
535                                 err: String::from("query_channel_range could not be processed"),
536                                 action: ErrorAction::IgnoreError,
537                         });
538                 }
539
540                 // Creates channel batches. We are not checking if the channel is routable
541                 // (has at least one update). A peer may still want to know the channel
542                 // exists even if its not yet routable.
543                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
544                 let channels = self.network_graph.channels.read().unwrap();
545                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
546                         if let Some(chan_announcement) = &chan.announcement_message {
547                                 // Construct a new batch if last one is full
548                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
549                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
550                                 }
551
552                                 let batch = batches.last_mut().unwrap();
553                                 batch.push(chan_announcement.contents.short_channel_id);
554                         }
555                 }
556                 drop(channels);
557
558                 let mut pending_events = self.pending_events.lock().unwrap();
559                 let batch_count = batches.len();
560                 let mut prev_batch_endblock = msg.first_blocknum;
561                 for (batch_index, batch) in batches.into_iter().enumerate() {
562                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
563                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
564                         //
565                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
566                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
567                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
568                         // significant diversion from the requirements set by the spec, and, in case of blocks
569                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
570                         // and *not* derive the first_blocknum from the actual first block of the reply.
571                         let first_blocknum = prev_batch_endblock;
572
573                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
574                         // fit in. Though there is no requirement that we use exactly the number of blocks its
575                         // contents are from, except for the bogus requirements c-lightning enforces, above.
576                         //
577                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
578                         // >= the query's end block. Thus, for the last reply, we calculate the difference
579                         // between the query's end block and the start of the reply.
580                         //
581                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
582                         // first_blocknum will be either msg.first_blocknum or a higher block height.
583                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
584                                 (true, msg.end_blocknum() - first_blocknum)
585                         }
586                         // Prior replies should use the number of blocks that fit into the reply. Overflow
587                         // safe since first_blocknum is always <= last SCID's block.
588                         else {
589                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
590                         };
591
592                         prev_batch_endblock = first_blocknum + number_of_blocks;
593
594                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
595                                 node_id: their_node_id.clone(),
596                                 msg: ReplyChannelRange {
597                                         chain_hash: msg.chain_hash.clone(),
598                                         first_blocknum,
599                                         number_of_blocks,
600                                         sync_complete,
601                                         short_channel_ids: batch,
602                                 }
603                         });
604                 }
605
606                 Ok(())
607         }
608
609         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
610                 // TODO
611                 Err(LightningError {
612                         err: String::from("Not implemented"),
613                         action: ErrorAction::IgnoreError,
614                 })
615         }
616
617         fn provided_node_features(&self) -> NodeFeatures {
618                 let mut features = NodeFeatures::empty();
619                 features.set_gossip_queries_optional();
620                 features
621         }
622
623         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
624                 let mut features = InitFeatures::empty();
625                 features.set_gossip_queries_optional();
626                 features
627         }
628 }
629
630 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
631 where
632         U::Target: UtxoLookup,
633         L::Target: Logger,
634 {
635         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
636                 let mut ret = Vec::new();
637                 let mut pending_events = self.pending_events.lock().unwrap();
638                 core::mem::swap(&mut ret, &mut pending_events);
639                 ret
640         }
641 }
642
643 #[derive(Clone, Debug, PartialEq, Eq)]
644 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
645 pub struct ChannelUpdateInfo {
646         /// When the last update to the channel direction was issued.
647         /// Value is opaque, as set in the announcement.
648         pub last_update: u32,
649         /// Whether the channel can be currently used for payments (in this one direction).
650         pub enabled: bool,
651         /// The difference in CLTV values that you must have when routing through this channel.
652         pub cltv_expiry_delta: u16,
653         /// The minimum value, which must be relayed to the next hop via the channel
654         pub htlc_minimum_msat: u64,
655         /// The maximum value which may be relayed to the next hop via the channel.
656         pub htlc_maximum_msat: u64,
657         /// Fees charged when the channel is used for routing
658         pub fees: RoutingFees,
659         /// Most recent update for the channel received from the network
660         /// Mostly redundant with the data we store in fields explicitly.
661         /// Everything else is useful only for sending out for initial routing sync.
662         /// Not stored if contains excess data to prevent DoS.
663         pub last_update_message: Option<ChannelUpdate>,
664 }
665
666 impl fmt::Display for ChannelUpdateInfo {
667         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
668                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
669                 Ok(())
670         }
671 }
672
673 impl Writeable for ChannelUpdateInfo {
674         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
675                 write_tlv_fields!(writer, {
676                         (0, self.last_update, required),
677                         (2, self.enabled, required),
678                         (4, self.cltv_expiry_delta, required),
679                         (6, self.htlc_minimum_msat, required),
680                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
681                         // compatibility with LDK versions prior to v0.0.110.
682                         (8, Some(self.htlc_maximum_msat), required),
683                         (10, self.fees, required),
684                         (12, self.last_update_message, required),
685                 });
686                 Ok(())
687         }
688 }
689
690 impl Readable for ChannelUpdateInfo {
691         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
692                 _init_tlv_field_var!(last_update, required);
693                 _init_tlv_field_var!(enabled, required);
694                 _init_tlv_field_var!(cltv_expiry_delta, required);
695                 _init_tlv_field_var!(htlc_minimum_msat, required);
696                 _init_tlv_field_var!(htlc_maximum_msat, option);
697                 _init_tlv_field_var!(fees, required);
698                 _init_tlv_field_var!(last_update_message, required);
699
700                 read_tlv_fields!(reader, {
701                         (0, last_update, required),
702                         (2, enabled, required),
703                         (4, cltv_expiry_delta, required),
704                         (6, htlc_minimum_msat, required),
705                         (8, htlc_maximum_msat, required),
706                         (10, fees, required),
707                         (12, last_update_message, required)
708                 });
709
710                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
711                         Ok(ChannelUpdateInfo {
712                                 last_update: _init_tlv_based_struct_field!(last_update, required),
713                                 enabled: _init_tlv_based_struct_field!(enabled, required),
714                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
715                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
716                                 htlc_maximum_msat,
717                                 fees: _init_tlv_based_struct_field!(fees, required),
718                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
719                         })
720                 } else {
721                         Err(DecodeError::InvalidValue)
722                 }
723         }
724 }
725
726 #[derive(Clone, Debug, PartialEq, Eq)]
727 /// Details about a channel (both directions).
728 /// Received within a channel announcement.
729 pub struct ChannelInfo {
730         /// Protocol features of a channel communicated during its announcement
731         pub features: ChannelFeatures,
732         /// Source node of the first direction of a channel
733         pub node_one: NodeId,
734         /// Details about the first direction of a channel
735         pub one_to_two: Option<ChannelUpdateInfo>,
736         /// Source node of the second direction of a channel
737         pub node_two: NodeId,
738         /// Details about the second direction of a channel
739         pub two_to_one: Option<ChannelUpdateInfo>,
740         /// The channel capacity as seen on-chain, if chain lookup is available.
741         pub capacity_sats: Option<u64>,
742         /// An initial announcement of the channel
743         /// Mostly redundant with the data we store in fields explicitly.
744         /// Everything else is useful only for sending out for initial routing sync.
745         /// Not stored if contains excess data to prevent DoS.
746         pub announcement_message: Option<ChannelAnnouncement>,
747         /// The timestamp when we received the announcement, if we are running with feature = "std"
748         /// (which we can probably assume we are - no-std environments probably won't have a full
749         /// network graph in memory!).
750         announcement_received_time: u64,
751 }
752
753 impl ChannelInfo {
754         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
755         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
756         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
757                 let (direction, source) = {
758                         if target == &self.node_one {
759                                 (self.two_to_one.as_ref(), &self.node_two)
760                         } else if target == &self.node_two {
761                                 (self.one_to_two.as_ref(), &self.node_one)
762                         } else {
763                                 return None;
764                         }
765                 };
766                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
767         }
768
769         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
770         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
771         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
772                 let (direction, target) = {
773                         if source == &self.node_one {
774                                 (self.one_to_two.as_ref(), &self.node_two)
775                         } else if source == &self.node_two {
776                                 (self.two_to_one.as_ref(), &self.node_one)
777                         } else {
778                                 return None;
779                         }
780                 };
781                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
782         }
783
784         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
785         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
786                 let direction = channel_flags & 1u8;
787                 if direction == 0 {
788                         self.one_to_two.as_ref()
789                 } else {
790                         self.two_to_one.as_ref()
791                 }
792         }
793 }
794
795 impl fmt::Display for ChannelInfo {
796         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
797                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
798                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
799                 Ok(())
800         }
801 }
802
803 impl Writeable for ChannelInfo {
804         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
805                 write_tlv_fields!(writer, {
806                         (0, self.features, required),
807                         (1, self.announcement_received_time, (default_value, 0)),
808                         (2, self.node_one, required),
809                         (4, self.one_to_two, required),
810                         (6, self.node_two, required),
811                         (8, self.two_to_one, required),
812                         (10, self.capacity_sats, required),
813                         (12, self.announcement_message, required),
814                 });
815                 Ok(())
816         }
817 }
818
819 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
820 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
821 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
822 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
823 // channel updates via the gossip network.
824 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
825
826 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
827         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
828                 match crate::util::ser::Readable::read(reader) {
829                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
830                         Err(DecodeError::ShortRead) => Ok(None),
831                         Err(DecodeError::InvalidValue) => Ok(None),
832                         Err(err) => Err(err),
833                 }
834         }
835 }
836
837 impl Readable for ChannelInfo {
838         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
839                 _init_tlv_field_var!(features, required);
840                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
841                 _init_tlv_field_var!(node_one, required);
842                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
843                 _init_tlv_field_var!(node_two, required);
844                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
845                 _init_tlv_field_var!(capacity_sats, required);
846                 _init_tlv_field_var!(announcement_message, required);
847                 read_tlv_fields!(reader, {
848                         (0, features, required),
849                         (1, announcement_received_time, (default_value, 0)),
850                         (2, node_one, required),
851                         (4, one_to_two_wrap, ignorable),
852                         (6, node_two, required),
853                         (8, two_to_one_wrap, ignorable),
854                         (10, capacity_sats, required),
855                         (12, announcement_message, required),
856                 });
857
858                 Ok(ChannelInfo {
859                         features: _init_tlv_based_struct_field!(features, required),
860                         node_one: _init_tlv_based_struct_field!(node_one, required),
861                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
862                         node_two: _init_tlv_based_struct_field!(node_two, required),
863                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
864                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
865                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
866                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
867                 })
868         }
869 }
870
871 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
872 /// source node to a target node.
873 #[derive(Clone)]
874 pub struct DirectedChannelInfo<'a> {
875         channel: &'a ChannelInfo,
876         direction: &'a ChannelUpdateInfo,
877         htlc_maximum_msat: u64,
878         effective_capacity: EffectiveCapacity,
879 }
880
881 impl<'a> DirectedChannelInfo<'a> {
882         #[inline]
883         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
884                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
885                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
886
887                 let effective_capacity = match capacity_msat {
888                         Some(capacity_msat) => {
889                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
890                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
891                         },
892                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
893                 };
894
895                 Self {
896                         channel, direction, htlc_maximum_msat, effective_capacity
897                 }
898         }
899
900         /// Returns information for the channel.
901         #[inline]
902         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
903
904         /// Returns the maximum HTLC amount allowed over the channel in the direction.
905         #[inline]
906         pub fn htlc_maximum_msat(&self) -> u64 {
907                 self.htlc_maximum_msat
908         }
909
910         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
911         ///
912         /// This is either the total capacity from the funding transaction, if known, or the
913         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
914         /// otherwise.
915         pub fn effective_capacity(&self) -> EffectiveCapacity {
916                 self.effective_capacity
917         }
918
919         /// Returns information for the direction.
920         #[inline]
921         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
922 }
923
924 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
925         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
926                 f.debug_struct("DirectedChannelInfo")
927                         .field("channel", &self.channel)
928                         .finish()
929         }
930 }
931
932 /// The effective capacity of a channel for routing purposes.
933 ///
934 /// While this may be smaller than the actual channel capacity, amounts greater than
935 /// [`Self::as_msat`] should not be routed through the channel.
936 #[derive(Clone, Copy, Debug)]
937 pub enum EffectiveCapacity {
938         /// The available liquidity in the channel known from being a channel counterparty, and thus a
939         /// direct hop.
940         ExactLiquidity {
941                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
942                 /// millisatoshi.
943                 liquidity_msat: u64,
944         },
945         /// The maximum HTLC amount in one direction as advertised on the gossip network.
946         MaximumHTLC {
947                 /// The maximum HTLC amount denominated in millisatoshi.
948                 amount_msat: u64,
949         },
950         /// The total capacity of the channel as determined by the funding transaction.
951         Total {
952                 /// The funding amount denominated in millisatoshi.
953                 capacity_msat: u64,
954                 /// The maximum HTLC amount denominated in millisatoshi.
955                 htlc_maximum_msat: u64
956         },
957         /// A capacity sufficient to route any payment, typically used for private channels provided by
958         /// an invoice.
959         Infinite,
960         /// A capacity that is unknown possibly because either the chain state is unavailable to know
961         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
962         Unknown,
963 }
964
965 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
966 /// use when making routing decisions.
967 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
968
969 impl EffectiveCapacity {
970         /// Returns the effective capacity denominated in millisatoshi.
971         pub fn as_msat(&self) -> u64 {
972                 match self {
973                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
974                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
975                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
976                         EffectiveCapacity::Infinite => u64::max_value(),
977                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
978                 }
979         }
980 }
981
982 /// Fees for routing via a given channel or a node
983 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
984 pub struct RoutingFees {
985         /// Flat routing fee in satoshis
986         pub base_msat: u32,
987         /// Liquidity-based routing fee in millionths of a routed amount.
988         /// In other words, 10000 is 1%.
989         pub proportional_millionths: u32,
990 }
991
992 impl_writeable_tlv_based!(RoutingFees, {
993         (0, base_msat, required),
994         (2, proportional_millionths, required)
995 });
996
997 #[derive(Clone, Debug, PartialEq, Eq)]
998 /// Information received in the latest node_announcement from this node.
999 pub struct NodeAnnouncementInfo {
1000         /// Protocol features the node announced support for
1001         pub features: NodeFeatures,
1002         /// When the last known update to the node state was issued.
1003         /// Value is opaque, as set in the announcement.
1004         pub last_update: u32,
1005         /// Color assigned to the node
1006         pub rgb: [u8; 3],
1007         /// Moniker assigned to the node.
1008         /// May be invalid or malicious (eg control chars),
1009         /// should not be exposed to the user.
1010         pub alias: NodeAlias,
1011         /// Internet-level addresses via which one can connect to the node
1012         pub addresses: Vec<NetAddress>,
1013         /// An initial announcement of the node
1014         /// Mostly redundant with the data we store in fields explicitly.
1015         /// Everything else is useful only for sending out for initial routing sync.
1016         /// Not stored if contains excess data to prevent DoS.
1017         pub announcement_message: Option<NodeAnnouncement>
1018 }
1019
1020 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1021         (0, features, required),
1022         (2, last_update, required),
1023         (4, rgb, required),
1024         (6, alias, required),
1025         (8, announcement_message, option),
1026         (10, addresses, vec_type),
1027 });
1028
1029 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1030 ///
1031 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1032 /// attacks. Care must be taken when processing.
1033 #[derive(Clone, Debug, PartialEq, Eq)]
1034 pub struct NodeAlias(pub [u8; 32]);
1035
1036 impl fmt::Display for NodeAlias {
1037         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1038                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1039                 let bytes = self.0.split_at(first_null).0;
1040                 match core::str::from_utf8(bytes) {
1041                         Ok(alias) => PrintableString(alias).fmt(f)?,
1042                         Err(_) => {
1043                                 use core::fmt::Write;
1044                                 for c in bytes.iter().map(|b| *b as char) {
1045                                         // Display printable ASCII characters
1046                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1047                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1048                                         f.write_char(c)?;
1049                                 }
1050                         },
1051                 };
1052                 Ok(())
1053         }
1054 }
1055
1056 impl Writeable for NodeAlias {
1057         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1058                 self.0.write(w)
1059         }
1060 }
1061
1062 impl Readable for NodeAlias {
1063         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1064                 Ok(NodeAlias(Readable::read(r)?))
1065         }
1066 }
1067
1068 #[derive(Clone, Debug, PartialEq, Eq)]
1069 /// Details about a node in the network, known from the network announcement.
1070 pub struct NodeInfo {
1071         /// All valid channels a node has announced
1072         pub channels: Vec<u64>,
1073         /// More information about a node from node_announcement.
1074         /// Optional because we store a Node entry after learning about it from
1075         /// a channel announcement, but before receiving a node announcement.
1076         pub announcement_info: Option<NodeAnnouncementInfo>
1077 }
1078
1079 impl fmt::Display for NodeInfo {
1080         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1081                 write!(f, " channels: {:?}, announcement_info: {:?}",
1082                         &self.channels[..], self.announcement_info)?;
1083                 Ok(())
1084         }
1085 }
1086
1087 impl Writeable for NodeInfo {
1088         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1089                 write_tlv_fields!(writer, {
1090                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1091                         (2, self.announcement_info, option),
1092                         (4, self.channels, vec_type),
1093                 });
1094                 Ok(())
1095         }
1096 }
1097
1098 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1099 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1100 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1101 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1102 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1103
1104 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1105         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1106                 match crate::util::ser::Readable::read(reader) {
1107                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1108                         Err(_) => {
1109                                 copy(reader, &mut sink()).unwrap();
1110                                 return Ok(None)
1111                         },
1112                 };
1113         }
1114 }
1115
1116 impl Readable for NodeInfo {
1117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1118                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1119                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1120                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1121                 // requires additional complexity and lookups during routing, it ends up being a
1122                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1123                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1124                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1125                 _init_tlv_field_var!(channels, vec_type);
1126
1127                 read_tlv_fields!(reader, {
1128                         (0, _lowest_inbound_channel_fees, option),
1129                         (2, announcement_info_wrap, ignorable),
1130                         (4, channels, vec_type),
1131                 });
1132
1133                 Ok(NodeInfo {
1134                         announcement_info: announcement_info_wrap.map(|w| w.0),
1135                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1136                 })
1137         }
1138 }
1139
1140 const SERIALIZATION_VERSION: u8 = 1;
1141 const MIN_SERIALIZATION_VERSION: u8 = 1;
1142
1143 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1144         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1145                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1146
1147                 self.genesis_hash.write(writer)?;
1148                 let channels = self.channels.read().unwrap();
1149                 (channels.len() as u64).write(writer)?;
1150                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1151                         (*chan_id).write(writer)?;
1152                         chan_info.write(writer)?;
1153                 }
1154                 let nodes = self.nodes.read().unwrap();
1155                 (nodes.len() as u64).write(writer)?;
1156                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1157                         node_id.write(writer)?;
1158                         node_info.write(writer)?;
1159                 }
1160
1161                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1162                 write_tlv_fields!(writer, {
1163                         (1, last_rapid_gossip_sync_timestamp, option),
1164                 });
1165                 Ok(())
1166         }
1167 }
1168
1169 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1170         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1171                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1172
1173                 let genesis_hash: BlockHash = Readable::read(reader)?;
1174                 let channels_count: u64 = Readable::read(reader)?;
1175                 let mut channels = IndexedMap::new();
1176                 for _ in 0..channels_count {
1177                         let chan_id: u64 = Readable::read(reader)?;
1178                         let chan_info = Readable::read(reader)?;
1179                         channels.insert(chan_id, chan_info);
1180                 }
1181                 let nodes_count: u64 = Readable::read(reader)?;
1182                 let mut nodes = IndexedMap::new();
1183                 for _ in 0..nodes_count {
1184                         let node_id = Readable::read(reader)?;
1185                         let node_info = Readable::read(reader)?;
1186                         nodes.insert(node_id, node_info);
1187                 }
1188
1189                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1190                 read_tlv_fields!(reader, {
1191                         (1, last_rapid_gossip_sync_timestamp, option),
1192                 });
1193
1194                 Ok(NetworkGraph {
1195                         secp_ctx: Secp256k1::verification_only(),
1196                         genesis_hash,
1197                         logger,
1198                         channels: RwLock::new(channels),
1199                         nodes: RwLock::new(nodes),
1200                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1201                         removed_nodes: Mutex::new(HashMap::new()),
1202                         removed_channels: Mutex::new(HashMap::new()),
1203                 })
1204         }
1205 }
1206
1207 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1208         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1209                 writeln!(f, "Network map\n[Channels]")?;
1210                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1211                         writeln!(f, " {}: {}", key, val)?;
1212                 }
1213                 writeln!(f, "[Nodes]")?;
1214                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1215                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1216                 }
1217                 Ok(())
1218         }
1219 }
1220
1221 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1222 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1223         fn eq(&self, other: &Self) -> bool {
1224                 self.genesis_hash == other.genesis_hash &&
1225                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1226                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1227         }
1228 }
1229
1230 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1231         /// Creates a new, empty, network graph.
1232         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1233                 Self {
1234                         secp_ctx: Secp256k1::verification_only(),
1235                         genesis_hash,
1236                         logger,
1237                         channels: RwLock::new(IndexedMap::new()),
1238                         nodes: RwLock::new(IndexedMap::new()),
1239                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1240                         removed_channels: Mutex::new(HashMap::new()),
1241                         removed_nodes: Mutex::new(HashMap::new()),
1242                 }
1243         }
1244
1245         /// Returns a read-only view of the network graph.
1246         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1247                 let channels = self.channels.read().unwrap();
1248                 let nodes = self.nodes.read().unwrap();
1249                 ReadOnlyNetworkGraph {
1250                         channels,
1251                         nodes,
1252                 }
1253         }
1254
1255         /// The unix timestamp provided by the most recent rapid gossip sync.
1256         /// It will be set by the rapid sync process after every sync completion.
1257         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1258                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1259         }
1260
1261         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1262         /// This should be done automatically by the rapid sync process after every sync completion.
1263         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1264                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1265         }
1266
1267         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1268         /// purposes.
1269         #[cfg(test)]
1270         pub fn clear_nodes_announcement_info(&self) {
1271                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1272                         node.1.announcement_info = None;
1273                 }
1274         }
1275
1276         /// For an already known node (from channel announcements), update its stored properties from a
1277         /// given node announcement.
1278         ///
1279         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1280         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1281         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1282         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1283                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1284                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1285                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1286         }
1287
1288         /// For an already known node (from channel announcements), update its stored properties from a
1289         /// given node announcement without verifying the associated signatures. Because we aren't
1290         /// given the associated signatures here we cannot relay the node announcement to any of our
1291         /// peers.
1292         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1293                 self.update_node_from_announcement_intern(msg, None)
1294         }
1295
1296         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1297                 match self.nodes.write().unwrap().get_mut(&msg.node_id) {
1298                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1299                         Some(node) => {
1300                                 if let Some(node_info) = node.announcement_info.as_ref() {
1301                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1302                                         // updates to ensure you always have the latest one, only vaguely suggesting
1303                                         // that it be at least the current time.
1304                                         if node_info.last_update  > msg.timestamp {
1305                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1306                                         } else if node_info.last_update  == msg.timestamp {
1307                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1308                                         }
1309                                 }
1310
1311                                 let should_relay =
1312                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1313                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1314                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1315                                 node.announcement_info = Some(NodeAnnouncementInfo {
1316                                         features: msg.features.clone(),
1317                                         last_update: msg.timestamp,
1318                                         rgb: msg.rgb,
1319                                         alias: NodeAlias(msg.alias),
1320                                         addresses: msg.addresses.clone(),
1321                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1322                                 });
1323
1324                                 Ok(())
1325                         }
1326                 }
1327         }
1328
1329         /// Store or update channel info from a channel announcement.
1330         ///
1331         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1332         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1333         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1334         ///
1335         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1336         /// the corresponding UTXO exists on chain and is correctly-formatted.
1337         pub fn update_channel_from_announcement<U: Deref>(
1338                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1339         ) -> Result<(), LightningError>
1340         where
1341                 U::Target: UtxoLookup,
1342         {
1343                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1344                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1345                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1346                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1347                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1348                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1349         }
1350
1351         /// Store or update channel info from a channel announcement without verifying the associated
1352         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1353         /// channel announcement to any of our peers.
1354         ///
1355         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1356         /// the corresponding UTXO exists on chain and is correctly-formatted.
1357         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1358                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1359         ) -> Result<(), LightningError>
1360         where
1361                 U::Target: UtxoLookup,
1362         {
1363                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1364         }
1365
1366         /// Update channel from partial announcement data received via rapid gossip sync
1367         ///
1368         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1369         /// rapid gossip sync server)
1370         ///
1371         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1372         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1373                 if node_id_1 == node_id_2 {
1374                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1375                 };
1376
1377                 let node_1 = NodeId::from_pubkey(&node_id_1);
1378                 let node_2 = NodeId::from_pubkey(&node_id_2);
1379                 let channel_info = ChannelInfo {
1380                         features,
1381                         node_one: node_1.clone(),
1382                         one_to_two: None,
1383                         node_two: node_2.clone(),
1384                         two_to_one: None,
1385                         capacity_sats: None,
1386                         announcement_message: None,
1387                         announcement_received_time: timestamp,
1388                 };
1389
1390                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1391         }
1392
1393         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1394                 let mut channels = self.channels.write().unwrap();
1395                 let mut nodes = self.nodes.write().unwrap();
1396
1397                 let node_id_a = channel_info.node_one.clone();
1398                 let node_id_b = channel_info.node_two.clone();
1399
1400                 match channels.entry(short_channel_id) {
1401                         IndexedMapEntry::Occupied(mut entry) => {
1402                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1403                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1404                                 //exactly how...
1405                                 if utxo_value.is_some() {
1406                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1407                                         // only sometimes returns results. In any case remove the previous entry. Note
1408                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1409                                         // do that because
1410                                         // a) we don't *require* a UTXO provider that always returns results.
1411                                         // b) we don't track UTXOs of channels we know about and remove them if they
1412                                         //    get reorg'd out.
1413                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1414                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1415                                         *entry.get_mut() = channel_info;
1416                                 } else {
1417                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1418                                 }
1419                         },
1420                         IndexedMapEntry::Vacant(entry) => {
1421                                 entry.insert(channel_info);
1422                         }
1423                 };
1424
1425                 for current_node_id in [node_id_a, node_id_b].iter() {
1426                         match nodes.entry(current_node_id.clone()) {
1427                                 IndexedMapEntry::Occupied(node_entry) => {
1428                                         node_entry.into_mut().channels.push(short_channel_id);
1429                                 },
1430                                 IndexedMapEntry::Vacant(node_entry) => {
1431                                         node_entry.insert(NodeInfo {
1432                                                 channels: vec!(short_channel_id),
1433                                                 announcement_info: None,
1434                                         });
1435                                 }
1436                         };
1437                 };
1438
1439                 Ok(())
1440         }
1441
1442         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1443                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1444         ) -> Result<(), LightningError>
1445         where
1446                 U::Target: UtxoLookup,
1447         {
1448                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1449                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1450                 }
1451
1452                 {
1453                         let channels = self.channels.read().unwrap();
1454
1455                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1456                                 if chan.capacity_sats.is_some() {
1457                                         // If we'd previously looked up the channel on-chain and checked the script
1458                                         // against what appears on-chain, ignore the duplicate announcement.
1459                                         //
1460                                         // Because a reorg could replace one channel with another at the same SCID, if
1461                                         // the channel appears to be different, we re-validate. This doesn't expose us
1462                                         // to any more DoS risk than not, as a peer can always flood us with
1463                                         // randomly-generated SCID values anyway.
1464                                         //
1465                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1466                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1467                                         // if the peers on the channel changed anyway.
1468                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1469                                                 return Err(LightningError {
1470                                                         err: "Already have chain-validated channel".to_owned(),
1471                                                         action: ErrorAction::IgnoreDuplicateGossip
1472                                                 });
1473                                         }
1474                                 } else if utxo_lookup.is_none() {
1475                                         // Similarly, if we can't check the chain right now anyway, ignore the
1476                                         // duplicate announcement without bothering to take the channels write lock.
1477                                         return Err(LightningError {
1478                                                 err: "Already have non-chain-validated channel".to_owned(),
1479                                                 action: ErrorAction::IgnoreDuplicateGossip
1480                                         });
1481                                 }
1482                         }
1483                 }
1484
1485                 {
1486                         let removed_channels = self.removed_channels.lock().unwrap();
1487                         let removed_nodes = self.removed_nodes.lock().unwrap();
1488                         if removed_channels.contains_key(&msg.short_channel_id) ||
1489                                 removed_nodes.contains_key(&msg.node_id_1) ||
1490                                 removed_nodes.contains_key(&msg.node_id_2) {
1491                                 return Err(LightningError{
1492                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1493                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1494                         }
1495                 }
1496
1497                 let utxo_value = utxo::check_channel_announcement(utxo_lookup, msg)?;
1498
1499                 #[allow(unused_mut, unused_assignments)]
1500                 let mut announcement_received_time = 0;
1501                 #[cfg(feature = "std")]
1502                 {
1503                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1504                 }
1505
1506                 let chan_info = ChannelInfo {
1507                         features: msg.features.clone(),
1508                         node_one: msg.node_id_1,
1509                         one_to_two: None,
1510                         node_two: msg.node_id_2,
1511                         two_to_one: None,
1512                         capacity_sats: utxo_value,
1513                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1514                                 { full_msg.cloned() } else { None },
1515                         announcement_received_time,
1516                 };
1517
1518                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1519         }
1520
1521         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1522         /// If permanent, removes a channel from the local storage.
1523         /// May cause the removal of nodes too, if this was their last channel.
1524         /// If not permanent, makes channels unavailable for routing.
1525         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1526                 #[cfg(feature = "std")]
1527                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1528                 #[cfg(not(feature = "std"))]
1529                 let current_time_unix = None;
1530
1531                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1532         }
1533
1534         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1535         /// If permanent, removes a channel from the local storage.
1536         /// May cause the removal of nodes too, if this was their last channel.
1537         /// If not permanent, makes channels unavailable for routing.
1538         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1539                 let mut channels = self.channels.write().unwrap();
1540                 if is_permanent {
1541                         if let Some(chan) = channels.remove(&short_channel_id) {
1542                                 let mut nodes = self.nodes.write().unwrap();
1543                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1544                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1545                         }
1546                 } else {
1547                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1548                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1549                                         one_to_two.enabled = false;
1550                                 }
1551                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1552                                         two_to_one.enabled = false;
1553                                 }
1554                         }
1555                 }
1556         }
1557
1558         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1559         /// from local storage.
1560         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1561                 #[cfg(feature = "std")]
1562                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1563                 #[cfg(not(feature = "std"))]
1564                 let current_time_unix = None;
1565
1566                 let node_id = NodeId::from_pubkey(node_id);
1567                 let mut channels = self.channels.write().unwrap();
1568                 let mut nodes = self.nodes.write().unwrap();
1569                 let mut removed_channels = self.removed_channels.lock().unwrap();
1570                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1571
1572                 if let Some(node) = nodes.remove(&node_id) {
1573                         for scid in node.channels.iter() {
1574                                 if let Some(chan_info) = channels.remove(scid) {
1575                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1576                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1577                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1578                                                         *scid != *chan_id
1579                                                 });
1580                                                 if other_node_entry.get().channels.is_empty() {
1581                                                         other_node_entry.remove_entry();
1582                                                 }
1583                                         }
1584                                         removed_channels.insert(*scid, current_time_unix);
1585                                 }
1586                         }
1587                         removed_nodes.insert(node_id, current_time_unix);
1588                 }
1589         }
1590
1591         #[cfg(feature = "std")]
1592         /// Removes information about channels that we haven't heard any updates about in some time.
1593         /// This can be used regularly to prune the network graph of channels that likely no longer
1594         /// exist.
1595         ///
1596         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1597         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1598         /// pruning occur for updates which are at least two weeks old, which we implement here.
1599         ///
1600         /// Note that for users of the `lightning-background-processor` crate this method may be
1601         /// automatically called regularly for you.
1602         ///
1603         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1604         /// in the map for a while so that these can be resynced from gossip in the future.
1605         ///
1606         /// This method is only available with the `std` feature. See
1607         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1608         pub fn remove_stale_channels_and_tracking(&self) {
1609                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1610                 self.remove_stale_channels_and_tracking_with_time(time);
1611         }
1612
1613         /// Removes information about channels that we haven't heard any updates about in some time.
1614         /// This can be used regularly to prune the network graph of channels that likely no longer
1615         /// exist.
1616         ///
1617         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1618         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1619         /// pruning occur for updates which are at least two weeks old, which we implement here.
1620         ///
1621         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1622         /// in the map for a while so that these can be resynced from gossip in the future.
1623         ///
1624         /// This function takes the current unix time as an argument. For users with the `std` feature
1625         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1626         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1627                 let mut channels = self.channels.write().unwrap();
1628                 // Time out if we haven't received an update in at least 14 days.
1629                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1630                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1631                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1632                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1633                 // time.
1634                 let mut scids_to_remove = Vec::new();
1635                 for (scid, info) in channels.unordered_iter_mut() {
1636                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1637                                 info.one_to_two = None;
1638                         }
1639                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1640                                 info.two_to_one = None;
1641                         }
1642                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1643                                 // We check the announcement_received_time here to ensure we don't drop
1644                                 // announcements that we just received and are just waiting for our peer to send a
1645                                 // channel_update for.
1646                                 if info.announcement_received_time < min_time_unix as u64 {
1647                                         scids_to_remove.push(*scid);
1648                                 }
1649                         }
1650                 }
1651                 if !scids_to_remove.is_empty() {
1652                         let mut nodes = self.nodes.write().unwrap();
1653                         for scid in scids_to_remove {
1654                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1655                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1656                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1657                         }
1658                 }
1659
1660                 let should_keep_tracking = |time: &mut Option<u64>| {
1661                         if let Some(time) = time {
1662                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1663                         } else {
1664                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1665                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1666                                 // of this function.
1667                                 #[cfg(feature = "no-std")]
1668                                 {
1669                                         let mut tracked_time = Some(current_time_unix);
1670                                         core::mem::swap(time, &mut tracked_time);
1671                                         return true;
1672                                 }
1673                                 #[allow(unreachable_code)]
1674                                 false
1675                         }};
1676
1677                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1678                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1679         }
1680
1681         /// For an already known (from announcement) channel, update info about one of the directions
1682         /// of the channel.
1683         ///
1684         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1685         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1686         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1687         ///
1688         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1689         /// materially in the future will be rejected.
1690         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1691                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1692         }
1693
1694         /// For an already known (from announcement) channel, update info about one of the directions
1695         /// of the channel without verifying the associated signatures. Because we aren't given the
1696         /// associated signatures here we cannot relay the channel update to any of our peers.
1697         ///
1698         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1699         /// materially in the future will be rejected.
1700         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1701                 self.update_channel_intern(msg, None, None)
1702         }
1703
1704         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1705                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1706
1707                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1708                 {
1709                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1710                         // disable this check during tests!
1711                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1712                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1713                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1714                         }
1715                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1716                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1717                         }
1718                 }
1719
1720                 let mut channels = self.channels.write().unwrap();
1721                 match channels.get_mut(&msg.short_channel_id) {
1722                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1723                         Some(channel) => {
1724                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1725                                         return Err(LightningError{err:
1726                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1727                                                 action: ErrorAction::IgnoreError});
1728                                 }
1729
1730                                 if let Some(capacity_sats) = channel.capacity_sats {
1731                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1732                                         // Don't query UTXO set here to reduce DoS risks.
1733                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1734                                                 return Err(LightningError{err:
1735                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1736                                                         action: ErrorAction::IgnoreError});
1737                                         }
1738                                 }
1739                                 macro_rules! check_update_latest {
1740                                         ($target: expr) => {
1741                                                 if let Some(existing_chan_info) = $target.as_ref() {
1742                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1743                                                         // order updates to ensure you always have the latest one, only
1744                                                         // suggesting  that it be at least the current time. For
1745                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1746                                                         // pruning based on the timestamp field being more than two weeks old,
1747                                                         // but only in the non-normative section.
1748                                                         if existing_chan_info.last_update > msg.timestamp {
1749                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1750                                                         } else if existing_chan_info.last_update == msg.timestamp {
1751                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1752                                                         }
1753                                                 }
1754                                         }
1755                                 }
1756
1757                                 macro_rules! get_new_channel_info {
1758                                         () => { {
1759                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1760                                                         { full_msg.cloned() } else { None };
1761
1762                                                 let updated_channel_update_info = ChannelUpdateInfo {
1763                                                         enabled: chan_enabled,
1764                                                         last_update: msg.timestamp,
1765                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1766                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1767                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1768                                                         fees: RoutingFees {
1769                                                                 base_msat: msg.fee_base_msat,
1770                                                                 proportional_millionths: msg.fee_proportional_millionths,
1771                                                         },
1772                                                         last_update_message
1773                                                 };
1774                                                 Some(updated_channel_update_info)
1775                                         } }
1776                                 }
1777
1778                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1779                                 if msg.flags & 1 == 1 {
1780                                         check_update_latest!(channel.two_to_one);
1781                                         if let Some(sig) = sig {
1782                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1783                                                         err: "Couldn't parse source node pubkey".to_owned(),
1784                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1785                                                 })?, "channel_update");
1786                                         }
1787                                         channel.two_to_one = get_new_channel_info!();
1788                                 } else {
1789                                         check_update_latest!(channel.one_to_two);
1790                                         if let Some(sig) = sig {
1791                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1792                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1793                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1794                                                 })?, "channel_update");
1795                                         }
1796                                         channel.one_to_two = get_new_channel_info!();
1797                                 }
1798                         }
1799                 }
1800
1801                 Ok(())
1802         }
1803
1804         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1805                 macro_rules! remove_from_node {
1806                         ($node_id: expr) => {
1807                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1808                                         entry.get_mut().channels.retain(|chan_id| {
1809                                                 short_channel_id != *chan_id
1810                                         });
1811                                         if entry.get().channels.is_empty() {
1812                                                 entry.remove_entry();
1813                                         }
1814                                 } else {
1815                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1816                                 }
1817                         }
1818                 }
1819
1820                 remove_from_node!(chan.node_one);
1821                 remove_from_node!(chan.node_two);
1822         }
1823 }
1824
1825 impl ReadOnlyNetworkGraph<'_> {
1826         /// Returns all known valid channels' short ids along with announced channel info.
1827         ///
1828         /// (C-not exported) because we don't want to return lifetime'd references
1829         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1830                 &*self.channels
1831         }
1832
1833         /// Returns information on a channel with the given id.
1834         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1835                 self.channels.get(&short_channel_id)
1836         }
1837
1838         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1839         /// Returns the list of channels in the graph
1840         pub fn list_channels(&self) -> Vec<u64> {
1841                 self.channels.unordered_keys().map(|c| *c).collect()
1842         }
1843
1844         /// Returns all known nodes' public keys along with announced node info.
1845         ///
1846         /// (C-not exported) because we don't want to return lifetime'd references
1847         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1848                 &*self.nodes
1849         }
1850
1851         /// Returns information on a node with the given id.
1852         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1853                 self.nodes.get(node_id)
1854         }
1855
1856         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1857         /// Returns the list of nodes in the graph
1858         pub fn list_nodes(&self) -> Vec<NodeId> {
1859                 self.nodes.unordered_keys().map(|n| *n).collect()
1860         }
1861
1862         /// Get network addresses by node id.
1863         /// Returns None if the requested node is completely unknown,
1864         /// or if node announcement for the node was never received.
1865         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1866                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1867                         if let Some(node_info) = node.announcement_info.as_ref() {
1868                                 return Some(node_info.addresses.clone())
1869                         }
1870                 }
1871                 None
1872         }
1873 }
1874
1875 #[cfg(test)]
1876 mod tests {
1877         use crate::ln::channelmanager;
1878         use crate::ln::chan_utils::make_funding_redeemscript;
1879         #[cfg(feature = "std")]
1880         use crate::ln::features::InitFeatures;
1881         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1882         use crate::routing::utxo::UtxoLookupError;
1883         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1884                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1885                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1886         use crate::util::config::UserConfig;
1887         use crate::util::test_utils;
1888         use crate::util::ser::{ReadableArgs, Writeable};
1889         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1890         use crate::util::scid_utils::scid_from_parts;
1891
1892         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1893         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1894
1895         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1896         use bitcoin::hashes::Hash;
1897         use bitcoin::network::constants::Network;
1898         use bitcoin::blockdata::constants::genesis_block;
1899         use bitcoin::blockdata::script::Script;
1900         use bitcoin::blockdata::transaction::TxOut;
1901
1902         use hex;
1903
1904         use bitcoin::secp256k1::{PublicKey, SecretKey};
1905         use bitcoin::secp256k1::{All, Secp256k1};
1906
1907         use crate::io;
1908         use bitcoin::secp256k1;
1909         use crate::prelude::*;
1910         use crate::sync::Arc;
1911
1912         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1913                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1914                 let logger = Arc::new(test_utils::TestLogger::new());
1915                 NetworkGraph::new(genesis_hash, logger)
1916         }
1917
1918         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1919                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1920                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1921         ) {
1922                 let secp_ctx = Secp256k1::new();
1923                 let logger = Arc::new(test_utils::TestLogger::new());
1924                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1925                 (secp_ctx, gossip_sync)
1926         }
1927
1928         #[test]
1929         #[cfg(feature = "std")]
1930         fn request_full_sync_finite_times() {
1931                 let network_graph = create_network_graph();
1932                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1933                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1934
1935                 assert!(gossip_sync.should_request_full_sync(&node_id));
1936                 assert!(gossip_sync.should_request_full_sync(&node_id));
1937                 assert!(gossip_sync.should_request_full_sync(&node_id));
1938                 assert!(gossip_sync.should_request_full_sync(&node_id));
1939                 assert!(gossip_sync.should_request_full_sync(&node_id));
1940                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1941         }
1942
1943         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1944                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1945                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1946                         features: channelmanager::provided_node_features(&UserConfig::default()),
1947                         timestamp: 100,
1948                         node_id,
1949                         rgb: [0; 3],
1950                         alias: [0; 32],
1951                         addresses: Vec::new(),
1952                         excess_address_data: Vec::new(),
1953                         excess_data: Vec::new(),
1954                 };
1955                 f(&mut unsigned_announcement);
1956                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1957                 NodeAnnouncement {
1958                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1959                         contents: unsigned_announcement
1960                 }
1961         }
1962
1963         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1964                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1965                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1966                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1967                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1968
1969                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1970                         features: channelmanager::provided_channel_features(&UserConfig::default()),
1971                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1972                         short_channel_id: 0,
1973                         node_id_1: NodeId::from_pubkey(&node_id_1),
1974                         node_id_2: NodeId::from_pubkey(&node_id_2),
1975                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
1976                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
1977                         excess_data: Vec::new(),
1978                 };
1979                 f(&mut unsigned_announcement);
1980                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1981                 ChannelAnnouncement {
1982                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1983                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1984                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1985                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1986                         contents: unsigned_announcement,
1987                 }
1988         }
1989
1990         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1991                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1992                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1993                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1994                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
1995         }
1996
1997         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1998                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1999                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2000                         short_channel_id: 0,
2001                         timestamp: 100,
2002                         flags: 0,
2003                         cltv_expiry_delta: 144,
2004                         htlc_minimum_msat: 1_000_000,
2005                         htlc_maximum_msat: 1_000_000,
2006                         fee_base_msat: 10_000,
2007                         fee_proportional_millionths: 20,
2008                         excess_data: Vec::new()
2009                 };
2010                 f(&mut unsigned_channel_update);
2011                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2012                 ChannelUpdate {
2013                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2014                         contents: unsigned_channel_update
2015                 }
2016         }
2017
2018         #[test]
2019         fn handling_node_announcements() {
2020                 let network_graph = create_network_graph();
2021                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2022
2023                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2024                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2025                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2026
2027                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2028                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2029                         Ok(_) => panic!(),
2030                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2031                 };
2032
2033                 {
2034                         // Announce a channel to add a corresponding node.
2035                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2036                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2037                                 Ok(res) => assert!(res),
2038                                 _ => panic!()
2039                         };
2040                 }
2041
2042                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2043                         Ok(res) => assert!(res),
2044                         Err(_) => panic!()
2045                 };
2046
2047                 let fake_msghash = hash_to_message!(&zero_hash);
2048                 match gossip_sync.handle_node_announcement(
2049                         &NodeAnnouncement {
2050                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2051                                 contents: valid_announcement.contents.clone()
2052                 }) {
2053                         Ok(_) => panic!(),
2054                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2055                 };
2056
2057                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2058                         unsigned_announcement.timestamp += 1000;
2059                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2060                 }, node_1_privkey, &secp_ctx);
2061                 // Return false because contains excess data.
2062                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2063                         Ok(res) => assert!(!res),
2064                         Err(_) => panic!()
2065                 };
2066
2067                 // Even though previous announcement was not relayed further, we still accepted it,
2068                 // so we now won't accept announcements before the previous one.
2069                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2070                         unsigned_announcement.timestamp += 1000 - 10;
2071                 }, node_1_privkey, &secp_ctx);
2072                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2073                         Ok(_) => panic!(),
2074                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2075                 };
2076         }
2077
2078         #[test]
2079         fn handling_channel_announcements() {
2080                 let secp_ctx = Secp256k1::new();
2081                 let logger = test_utils::TestLogger::new();
2082
2083                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2084                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2085
2086                 let good_script = get_channel_script(&secp_ctx);
2087                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2088
2089                 // Test if the UTXO lookups were not supported
2090                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2091                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2092                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2093                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2094                         Ok(res) => assert!(res),
2095                         _ => panic!()
2096                 };
2097
2098                 {
2099                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2100                                 None => panic!(),
2101                                 Some(_) => ()
2102                         };
2103                 }
2104
2105                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2106                 // drop new one on the floor, since we can't see any changes.
2107                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2108                         Ok(_) => panic!(),
2109                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2110                 };
2111
2112                 // Test if an associated transaction were not on-chain (or not confirmed).
2113                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2114                 *chain_source.utxo_ret.lock().unwrap() = Err(UtxoLookupError::UnknownTx);
2115                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2116                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2117
2118                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2119                         unsigned_announcement.short_channel_id += 1;
2120                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2121                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2122                         Ok(_) => panic!(),
2123                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2124                 };
2125
2126                 // Now test if the transaction is found in the UTXO set and the script is correct.
2127                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2128                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2129                         unsigned_announcement.short_channel_id += 2;
2130                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2131                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2132                         Ok(res) => assert!(res),
2133                         _ => panic!()
2134                 };
2135
2136                 {
2137                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2138                                 None => panic!(),
2139                                 Some(_) => ()
2140                         };
2141                 }
2142
2143                 // If we receive announcement for the same channel, once we've validated it against the
2144                 // chain, we simply ignore all new (duplicate) announcements.
2145                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2146                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2147                         Ok(_) => panic!(),
2148                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2149                 };
2150
2151                 #[cfg(feature = "std")]
2152                 {
2153                         use std::time::{SystemTime, UNIX_EPOCH};
2154
2155                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2156                         // Mark a node as permanently failed so it's tracked as removed.
2157                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2158
2159                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2160                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2161                                 unsigned_announcement.short_channel_id += 3;
2162                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2163                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2164                                 Ok(_) => panic!(),
2165                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2166                         }
2167
2168                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2169
2170                         // The above channel announcement should be handled as per normal now.
2171                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2172                                 Ok(res) => assert!(res),
2173                                 _ => panic!()
2174                         }
2175                 }
2176
2177                 // Don't relay valid channels with excess data
2178                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2179                         unsigned_announcement.short_channel_id += 4;
2180                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2181                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2182                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2183                         Ok(res) => assert!(!res),
2184                         _ => panic!()
2185                 };
2186
2187                 let mut invalid_sig_announcement = valid_announcement.clone();
2188                 invalid_sig_announcement.contents.excess_data = Vec::new();
2189                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2190                         Ok(_) => panic!(),
2191                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2192                 };
2193
2194                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2195                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2196                         Ok(_) => panic!(),
2197                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2198                 };
2199         }
2200
2201         #[test]
2202         fn handling_channel_update() {
2203                 let secp_ctx = Secp256k1::new();
2204                 let logger = test_utils::TestLogger::new();
2205                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2206                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2207                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2208                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2209
2210                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2211                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2212
2213                 let amount_sats = 1000_000;
2214                 let short_channel_id;
2215
2216                 {
2217                         // Announce a channel we will update
2218                         let good_script = get_channel_script(&secp_ctx);
2219                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2220
2221                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2222                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2223                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2224                                 Ok(_) => (),
2225                                 Err(_) => panic!()
2226                         };
2227
2228                 }
2229
2230                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2231                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2232                         Ok(res) => assert!(res),
2233                         _ => panic!(),
2234                 };
2235
2236                 {
2237                         match network_graph.read_only().channels().get(&short_channel_id) {
2238                                 None => panic!(),
2239                                 Some(channel_info) => {
2240                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2241                                         assert!(channel_info.two_to_one.is_none());
2242                                 }
2243                         };
2244                 }
2245
2246                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2247                         unsigned_channel_update.timestamp += 100;
2248                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2249                 }, node_1_privkey, &secp_ctx);
2250                 // Return false because contains excess data
2251                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2252                         Ok(res) => assert!(!res),
2253                         _ => panic!()
2254                 };
2255
2256                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2257                         unsigned_channel_update.timestamp += 110;
2258                         unsigned_channel_update.short_channel_id += 1;
2259                 }, node_1_privkey, &secp_ctx);
2260                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2261                         Ok(_) => panic!(),
2262                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2263                 };
2264
2265                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2266                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2267                         unsigned_channel_update.timestamp += 110;
2268                 }, node_1_privkey, &secp_ctx);
2269                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2270                         Ok(_) => panic!(),
2271                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2272                 };
2273
2274                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2275                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2276                         unsigned_channel_update.timestamp += 110;
2277                 }, node_1_privkey, &secp_ctx);
2278                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2279                         Ok(_) => panic!(),
2280                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2281                 };
2282
2283                 // Even though previous update was not relayed further, we still accepted it,
2284                 // so we now won't accept update before the previous one.
2285                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2286                         unsigned_channel_update.timestamp += 100;
2287                 }, node_1_privkey, &secp_ctx);
2288                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2289                         Ok(_) => panic!(),
2290                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2291                 };
2292
2293                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2294                         unsigned_channel_update.timestamp += 500;
2295                 }, node_1_privkey, &secp_ctx);
2296                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2297                 let fake_msghash = hash_to_message!(&zero_hash);
2298                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2299                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2300                         Ok(_) => panic!(),
2301                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2302                 };
2303         }
2304
2305         #[test]
2306         fn handling_network_update() {
2307                 let logger = test_utils::TestLogger::new();
2308                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2309                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2310                 let secp_ctx = Secp256k1::new();
2311
2312                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2313                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2314                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2315
2316                 {
2317                         // There is no nodes in the table at the beginning.
2318                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2319                 }
2320
2321                 let short_channel_id;
2322                 {
2323                         // Announce a channel we will update
2324                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2325                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2326                         let chain_source: Option<&test_utils::TestChainSource> = None;
2327                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2328                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2329
2330                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2331                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2332
2333                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2334                                 msg: valid_channel_update,
2335                         });
2336
2337                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2338                 }
2339
2340                 // Non-permanent closing just disables a channel
2341                 {
2342                         match network_graph.read_only().channels().get(&short_channel_id) {
2343                                 None => panic!(),
2344                                 Some(channel_info) => {
2345                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2346                                 }
2347                         };
2348
2349                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2350                                 short_channel_id,
2351                                 is_permanent: false,
2352                         });
2353
2354                         match network_graph.read_only().channels().get(&short_channel_id) {
2355                                 None => panic!(),
2356                                 Some(channel_info) => {
2357                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2358                                 }
2359                         };
2360                 }
2361
2362                 // Permanent closing deletes a channel
2363                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2364                         short_channel_id,
2365                         is_permanent: true,
2366                 });
2367
2368                 assert_eq!(network_graph.read_only().channels().len(), 0);
2369                 // Nodes are also deleted because there are no associated channels anymore
2370                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2371
2372                 {
2373                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2374                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2375
2376                         // Announce a channel to test permanent node failure
2377                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2378                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2379                         let chain_source: Option<&test_utils::TestChainSource> = None;
2380                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2381                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2382
2383                         // Non-permanent node failure does not delete any nodes or channels
2384                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2385                                 node_id: node_2_id,
2386                                 is_permanent: false,
2387                         });
2388
2389                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2390                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2391
2392                         // Permanent node failure deletes node and its channels
2393                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2394                                 node_id: node_2_id,
2395                                 is_permanent: true,
2396                         });
2397
2398                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2399                         // Channels are also deleted because the associated node has been deleted
2400                         assert_eq!(network_graph.read_only().channels().len(), 0);
2401                 }
2402         }
2403
2404         #[test]
2405         fn test_channel_timeouts() {
2406                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2407                 let logger = test_utils::TestLogger::new();
2408                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2409                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2410                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2411                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2412                 let secp_ctx = Secp256k1::new();
2413
2414                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2415                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2416
2417                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2418                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2419                 let chain_source: Option<&test_utils::TestChainSource> = None;
2420                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2421                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2422
2423                 // Submit two channel updates for each channel direction (update.flags bit).
2424                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2425                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2426                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2427
2428                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2429                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2430                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2431
2432                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2433                 assert_eq!(network_graph.read_only().channels().len(), 1);
2434                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2435
2436                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2437                 #[cfg(not(feature = "std"))] {
2438                         // Make sure removed channels are tracked.
2439                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2440                 }
2441                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2442                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2443
2444                 #[cfg(feature = "std")]
2445                 {
2446                         // In std mode, a further check is performed before fully removing the channel -
2447                         // the channel_announcement must have been received at least two weeks ago. We
2448                         // fudge that here by indicating the time has jumped two weeks.
2449                         assert_eq!(network_graph.read_only().channels().len(), 1);
2450                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2451
2452                         // Note that the directional channel information will have been removed already..
2453                         // We want to check that this will work even if *one* of the channel updates is recent,
2454                         // so we should add it with a recent timestamp.
2455                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2456                         use std::time::{SystemTime, UNIX_EPOCH};
2457                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2458                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2459                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2460                         }, node_1_privkey, &secp_ctx);
2461                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2462                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2463                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2464                         // Make sure removed channels are tracked.
2465                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2466                         // Provide a later time so that sufficient time has passed
2467                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2468                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2469                 }
2470
2471                 assert_eq!(network_graph.read_only().channels().len(), 0);
2472                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2473                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2474
2475                 #[cfg(feature = "std")]
2476                 {
2477                         use std::time::{SystemTime, UNIX_EPOCH};
2478
2479                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2480
2481                         // Clear tracked nodes and channels for clean slate
2482                         network_graph.removed_channels.lock().unwrap().clear();
2483                         network_graph.removed_nodes.lock().unwrap().clear();
2484
2485                         // Add a channel and nodes from channel announcement. So our network graph will
2486                         // now only consist of two nodes and one channel between them.
2487                         assert!(network_graph.update_channel_from_announcement(
2488                                 &valid_channel_announcement, &chain_source).is_ok());
2489
2490                         // Mark the channel as permanently failed. This will also remove the two nodes
2491                         // and all of the entries will be tracked as removed.
2492                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2493
2494                         // Should not remove from tracking if insufficient time has passed
2495                         network_graph.remove_stale_channels_and_tracking_with_time(
2496                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2497                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2498
2499                         // Provide a later time so that sufficient time has passed
2500                         network_graph.remove_stale_channels_and_tracking_with_time(
2501                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2502                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2503                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2504                 }
2505
2506                 #[cfg(not(feature = "std"))]
2507                 {
2508                         // When we don't have access to the system clock, the time we started tracking removal will only
2509                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2510                         // only if sufficient time has passed after that first call, will the next call remove it from
2511                         // tracking.
2512                         let removal_time = 1664619654;
2513
2514                         // Clear removed nodes and channels for clean slate
2515                         network_graph.removed_channels.lock().unwrap().clear();
2516                         network_graph.removed_nodes.lock().unwrap().clear();
2517
2518                         // Add a channel and nodes from channel announcement. So our network graph will
2519                         // now only consist of two nodes and one channel between them.
2520                         assert!(network_graph.update_channel_from_announcement(
2521                                 &valid_channel_announcement, &chain_source).is_ok());
2522
2523                         // Mark the channel as permanently failed. This will also remove the two nodes
2524                         // and all of the entries will be tracked as removed.
2525                         network_graph.channel_failed(short_channel_id, true);
2526
2527                         // The first time we call the following, the channel will have a removal time assigned.
2528                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2529                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2530
2531                         // Provide a later time so that sufficient time has passed
2532                         network_graph.remove_stale_channels_and_tracking_with_time(
2533                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2534                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2535                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2536                 }
2537         }
2538
2539         #[test]
2540         fn getting_next_channel_announcements() {
2541                 let network_graph = create_network_graph();
2542                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2543                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2544                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2545
2546                 // Channels were not announced yet.
2547                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2548                 assert!(channels_with_announcements.is_none());
2549
2550                 let short_channel_id;
2551                 {
2552                         // Announce a channel we will update
2553                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2554                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2555                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2556                                 Ok(_) => (),
2557                                 Err(_) => panic!()
2558                         };
2559                 }
2560
2561                 // Contains initial channel announcement now.
2562                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2563                 if let Some(channel_announcements) = channels_with_announcements {
2564                         let (_, ref update_1, ref update_2) = channel_announcements;
2565                         assert_eq!(update_1, &None);
2566                         assert_eq!(update_2, &None);
2567                 } else {
2568                         panic!();
2569                 }
2570
2571                 {
2572                         // Valid channel update
2573                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2574                                 unsigned_channel_update.timestamp = 101;
2575                         }, node_1_privkey, &secp_ctx);
2576                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2577                                 Ok(_) => (),
2578                                 Err(_) => panic!()
2579                         };
2580                 }
2581
2582                 // Now contains an initial announcement and an update.
2583                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2584                 if let Some(channel_announcements) = channels_with_announcements {
2585                         let (_, ref update_1, ref update_2) = channel_announcements;
2586                         assert_ne!(update_1, &None);
2587                         assert_eq!(update_2, &None);
2588                 } else {
2589                         panic!();
2590                 }
2591
2592                 {
2593                         // Channel update with excess data.
2594                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2595                                 unsigned_channel_update.timestamp = 102;
2596                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2597                         }, node_1_privkey, &secp_ctx);
2598                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2599                                 Ok(_) => (),
2600                                 Err(_) => panic!()
2601                         };
2602                 }
2603
2604                 // Test that announcements with excess data won't be returned
2605                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2606                 if let Some(channel_announcements) = channels_with_announcements {
2607                         let (_, ref update_1, ref update_2) = channel_announcements;
2608                         assert_eq!(update_1, &None);
2609                         assert_eq!(update_2, &None);
2610                 } else {
2611                         panic!();
2612                 }
2613
2614                 // Further starting point have no channels after it
2615                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2616                 assert!(channels_with_announcements.is_none());
2617         }
2618
2619         #[test]
2620         fn getting_next_node_announcements() {
2621                 let network_graph = create_network_graph();
2622                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2623                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2624                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2625                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2626
2627                 // No nodes yet.
2628                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2629                 assert!(next_announcements.is_none());
2630
2631                 {
2632                         // Announce a channel to add 2 nodes
2633                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2634                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2635                                 Ok(_) => (),
2636                                 Err(_) => panic!()
2637                         };
2638                 }
2639
2640                 // Nodes were never announced
2641                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2642                 assert!(next_announcements.is_none());
2643
2644                 {
2645                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2646                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2647                                 Ok(_) => (),
2648                                 Err(_) => panic!()
2649                         };
2650
2651                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2652                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2653                                 Ok(_) => (),
2654                                 Err(_) => panic!()
2655                         };
2656                 }
2657
2658                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2659                 assert!(next_announcements.is_some());
2660
2661                 // Skip the first node.
2662                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2663                 assert!(next_announcements.is_some());
2664
2665                 {
2666                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2667                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2668                                 unsigned_announcement.timestamp += 10;
2669                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2670                         }, node_2_privkey, &secp_ctx);
2671                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2672                                 Ok(res) => assert!(!res),
2673                                 Err(_) => panic!()
2674                         };
2675                 }
2676
2677                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2678                 assert!(next_announcements.is_none());
2679         }
2680
2681         #[test]
2682         fn network_graph_serialization() {
2683                 let network_graph = create_network_graph();
2684                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2685
2686                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2687                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2688
2689                 // Announce a channel to add a corresponding node.
2690                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2691                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2692                         Ok(res) => assert!(res),
2693                         _ => panic!()
2694                 };
2695
2696                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2697                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2698                         Ok(_) => (),
2699                         Err(_) => panic!()
2700                 };
2701
2702                 let mut w = test_utils::TestVecWriter(Vec::new());
2703                 assert!(!network_graph.read_only().nodes().is_empty());
2704                 assert!(!network_graph.read_only().channels().is_empty());
2705                 network_graph.write(&mut w).unwrap();
2706
2707                 let logger = Arc::new(test_utils::TestLogger::new());
2708                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2709         }
2710
2711         #[test]
2712         fn network_graph_tlv_serialization() {
2713                 let network_graph = create_network_graph();
2714                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2715
2716                 let mut w = test_utils::TestVecWriter(Vec::new());
2717                 network_graph.write(&mut w).unwrap();
2718
2719                 let logger = Arc::new(test_utils::TestLogger::new());
2720                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2721                 assert!(reassembled_network_graph == network_graph);
2722                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2723         }
2724
2725         #[test]
2726         #[cfg(feature = "std")]
2727         fn calling_sync_routing_table() {
2728                 use std::time::{SystemTime, UNIX_EPOCH};
2729                 use crate::ln::msgs::Init;
2730
2731                 let network_graph = create_network_graph();
2732                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2733                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2734                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2735
2736                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2737
2738                 // It should ignore if gossip_queries feature is not enabled
2739                 {
2740                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2741                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2742                         let events = gossip_sync.get_and_clear_pending_msg_events();
2743                         assert_eq!(events.len(), 0);
2744                 }
2745
2746                 // It should send a gossip_timestamp_filter with the correct information
2747                 {
2748                         let mut features = InitFeatures::empty();
2749                         features.set_gossip_queries_optional();
2750                         let init_msg = Init { features, remote_network_address: None };
2751                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2752                         let events = gossip_sync.get_and_clear_pending_msg_events();
2753                         assert_eq!(events.len(), 1);
2754                         match &events[0] {
2755                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2756                                         assert_eq!(node_id, &node_id_1);
2757                                         assert_eq!(msg.chain_hash, chain_hash);
2758                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2759                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2760                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2761                                         assert_eq!(msg.timestamp_range, u32::max_value());
2762                                 },
2763                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2764                         };
2765                 }
2766         }
2767
2768         #[test]
2769         fn handling_query_channel_range() {
2770                 let network_graph = create_network_graph();
2771                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2772
2773                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2774                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2775                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2776                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2777
2778                 let mut scids: Vec<u64> = vec![
2779                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2780                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2781                 ];
2782
2783                 // used for testing multipart reply across blocks
2784                 for block in 100000..=108001 {
2785                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2786                 }
2787
2788                 // used for testing resumption on same block
2789                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2790
2791                 for scid in scids {
2792                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2793                                 unsigned_announcement.short_channel_id = scid;
2794                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2795                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2796                                 Ok(_) => (),
2797                                 _ => panic!()
2798                         };
2799                 }
2800
2801                 // Error when number_of_blocks=0
2802                 do_handling_query_channel_range(
2803                         &gossip_sync,
2804                         &node_id_2,
2805                         QueryChannelRange {
2806                                 chain_hash: chain_hash.clone(),
2807                                 first_blocknum: 0,
2808                                 number_of_blocks: 0,
2809                         },
2810                         false,
2811                         vec![ReplyChannelRange {
2812                                 chain_hash: chain_hash.clone(),
2813                                 first_blocknum: 0,
2814                                 number_of_blocks: 0,
2815                                 sync_complete: true,
2816                                 short_channel_ids: vec![]
2817                         }]
2818                 );
2819
2820                 // Error when wrong chain
2821                 do_handling_query_channel_range(
2822                         &gossip_sync,
2823                         &node_id_2,
2824                         QueryChannelRange {
2825                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2826                                 first_blocknum: 0,
2827                                 number_of_blocks: 0xffff_ffff,
2828                         },
2829                         false,
2830                         vec![ReplyChannelRange {
2831                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2832                                 first_blocknum: 0,
2833                                 number_of_blocks: 0xffff_ffff,
2834                                 sync_complete: true,
2835                                 short_channel_ids: vec![],
2836                         }]
2837                 );
2838
2839                 // Error when first_blocknum > 0xffffff
2840                 do_handling_query_channel_range(
2841                         &gossip_sync,
2842                         &node_id_2,
2843                         QueryChannelRange {
2844                                 chain_hash: chain_hash.clone(),
2845                                 first_blocknum: 0x01000000,
2846                                 number_of_blocks: 0xffff_ffff,
2847                         },
2848                         false,
2849                         vec![ReplyChannelRange {
2850                                 chain_hash: chain_hash.clone(),
2851                                 first_blocknum: 0x01000000,
2852                                 number_of_blocks: 0xffff_ffff,
2853                                 sync_complete: true,
2854                                 short_channel_ids: vec![]
2855                         }]
2856                 );
2857
2858                 // Empty reply when max valid SCID block num
2859                 do_handling_query_channel_range(
2860                         &gossip_sync,
2861                         &node_id_2,
2862                         QueryChannelRange {
2863                                 chain_hash: chain_hash.clone(),
2864                                 first_blocknum: 0xffffff,
2865                                 number_of_blocks: 1,
2866                         },
2867                         true,
2868                         vec![
2869                                 ReplyChannelRange {
2870                                         chain_hash: chain_hash.clone(),
2871                                         first_blocknum: 0xffffff,
2872                                         number_of_blocks: 1,
2873                                         sync_complete: true,
2874                                         short_channel_ids: vec![]
2875                                 },
2876                         ]
2877                 );
2878
2879                 // No results in valid query range
2880                 do_handling_query_channel_range(
2881                         &gossip_sync,
2882                         &node_id_2,
2883                         QueryChannelRange {
2884                                 chain_hash: chain_hash.clone(),
2885                                 first_blocknum: 1000,
2886                                 number_of_blocks: 1000,
2887                         },
2888                         true,
2889                         vec![
2890                                 ReplyChannelRange {
2891                                         chain_hash: chain_hash.clone(),
2892                                         first_blocknum: 1000,
2893                                         number_of_blocks: 1000,
2894                                         sync_complete: true,
2895                                         short_channel_ids: vec![],
2896                                 }
2897                         ]
2898                 );
2899
2900                 // Overflow first_blocknum + number_of_blocks
2901                 do_handling_query_channel_range(
2902                         &gossip_sync,
2903                         &node_id_2,
2904                         QueryChannelRange {
2905                                 chain_hash: chain_hash.clone(),
2906                                 first_blocknum: 0xfe0000,
2907                                 number_of_blocks: 0xffffffff,
2908                         },
2909                         true,
2910                         vec![
2911                                 ReplyChannelRange {
2912                                         chain_hash: chain_hash.clone(),
2913                                         first_blocknum: 0xfe0000,
2914                                         number_of_blocks: 0xffffffff - 0xfe0000,
2915                                         sync_complete: true,
2916                                         short_channel_ids: vec![
2917                                                 0xfffffe_ffffff_ffff, // max
2918                                         ]
2919                                 }
2920                         ]
2921                 );
2922
2923                 // Single block exactly full
2924                 do_handling_query_channel_range(
2925                         &gossip_sync,
2926                         &node_id_2,
2927                         QueryChannelRange {
2928                                 chain_hash: chain_hash.clone(),
2929                                 first_blocknum: 100000,
2930                                 number_of_blocks: 8000,
2931                         },
2932                         true,
2933                         vec![
2934                                 ReplyChannelRange {
2935                                         chain_hash: chain_hash.clone(),
2936                                         first_blocknum: 100000,
2937                                         number_of_blocks: 8000,
2938                                         sync_complete: true,
2939                                         short_channel_ids: (100000..=107999)
2940                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2941                                                 .collect(),
2942                                 },
2943                         ]
2944                 );
2945
2946                 // Multiple split on new block
2947                 do_handling_query_channel_range(
2948                         &gossip_sync,
2949                         &node_id_2,
2950                         QueryChannelRange {
2951                                 chain_hash: chain_hash.clone(),
2952                                 first_blocknum: 100000,
2953                                 number_of_blocks: 8001,
2954                         },
2955                         true,
2956                         vec![
2957                                 ReplyChannelRange {
2958                                         chain_hash: chain_hash.clone(),
2959                                         first_blocknum: 100000,
2960                                         number_of_blocks: 7999,
2961                                         sync_complete: false,
2962                                         short_channel_ids: (100000..=107999)
2963                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2964                                                 .collect(),
2965                                 },
2966                                 ReplyChannelRange {
2967                                         chain_hash: chain_hash.clone(),
2968                                         first_blocknum: 107999,
2969                                         number_of_blocks: 2,
2970                                         sync_complete: true,
2971                                         short_channel_ids: vec![
2972                                                 scid_from_parts(108000, 0, 0).unwrap(),
2973                                         ],
2974                                 }
2975                         ]
2976                 );
2977
2978                 // Multiple split on same block
2979                 do_handling_query_channel_range(
2980                         &gossip_sync,
2981                         &node_id_2,
2982                         QueryChannelRange {
2983                                 chain_hash: chain_hash.clone(),
2984                                 first_blocknum: 100002,
2985                                 number_of_blocks: 8000,
2986                         },
2987                         true,
2988                         vec![
2989                                 ReplyChannelRange {
2990                                         chain_hash: chain_hash.clone(),
2991                                         first_blocknum: 100002,
2992                                         number_of_blocks: 7999,
2993                                         sync_complete: false,
2994                                         short_channel_ids: (100002..=108001)
2995                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2996                                                 .collect(),
2997                                 },
2998                                 ReplyChannelRange {
2999                                         chain_hash: chain_hash.clone(),
3000                                         first_blocknum: 108001,
3001                                         number_of_blocks: 1,
3002                                         sync_complete: true,
3003                                         short_channel_ids: vec![
3004                                                 scid_from_parts(108001, 1, 0).unwrap(),
3005                                         ],
3006                                 }
3007                         ]
3008                 );
3009         }
3010
3011         fn do_handling_query_channel_range(
3012                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3013                 test_node_id: &PublicKey,
3014                 msg: QueryChannelRange,
3015                 expected_ok: bool,
3016                 expected_replies: Vec<ReplyChannelRange>
3017         ) {
3018                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3019                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3020                 let query_end_blocknum = msg.end_blocknum();
3021                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3022
3023                 if expected_ok {
3024                         assert!(result.is_ok());
3025                 } else {
3026                         assert!(result.is_err());
3027                 }
3028
3029                 let events = gossip_sync.get_and_clear_pending_msg_events();
3030                 assert_eq!(events.len(), expected_replies.len());
3031
3032                 for i in 0..events.len() {
3033                         let expected_reply = &expected_replies[i];
3034                         match &events[i] {
3035                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3036                                         assert_eq!(node_id, test_node_id);
3037                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3038                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3039                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3040                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3041                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3042
3043                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3044                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3045                                         assert!(msg.first_blocknum >= max_firstblocknum);
3046                                         max_firstblocknum = msg.first_blocknum;
3047                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3048
3049                                         // Check that the last block count is >= the query's end_blocknum
3050                                         if i == events.len() - 1 {
3051                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3052                                         }
3053                                 },
3054                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3055                         }
3056                 }
3057         }
3058
3059         #[test]
3060         fn handling_query_short_channel_ids() {
3061                 let network_graph = create_network_graph();
3062                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3063                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3064                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3065
3066                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3067
3068                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3069                         chain_hash,
3070                         short_channel_ids: vec![0x0003e8_000000_0000],
3071                 });
3072                 assert!(result.is_err());
3073         }
3074
3075         #[test]
3076         fn displays_node_alias() {
3077                 let format_str_alias = |alias: &str| {
3078                         let mut bytes = [0u8; 32];
3079                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3080                         format!("{}", NodeAlias(bytes))
3081                 };
3082
3083                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3084                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3085                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3086
3087                 let format_bytes_alias = |alias: &[u8]| {
3088                         let mut bytes = [0u8; 32];
3089                         bytes[..alias.len()].copy_from_slice(alias);
3090                         format!("{}", NodeAlias(bytes))
3091                 };
3092
3093                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3094                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3095                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3096         }
3097
3098         #[test]
3099         fn channel_info_is_readable() {
3100                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3101                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3102                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3103                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3104                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3105
3106                 // 1. Test encoding/decoding of ChannelUpdateInfo
3107                 let chan_update_info = ChannelUpdateInfo {
3108                         last_update: 23,
3109                         enabled: true,
3110                         cltv_expiry_delta: 42,
3111                         htlc_minimum_msat: 1234,
3112                         htlc_maximum_msat: 5678,
3113                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3114                         last_update_message: None,
3115                 };
3116
3117                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3118                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3119
3120                 // First make sure we can read ChannelUpdateInfos we just wrote
3121                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3122                 assert_eq!(chan_update_info, read_chan_update_info);
3123
3124                 // Check the serialization hasn't changed.
3125                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3126                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3127
3128                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3129                 // or the ChannelUpdate enclosed with `last_update_message`.
3130                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3131                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3132                 assert!(read_chan_update_info_res.is_err());
3133
3134                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3135                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3136                 assert!(read_chan_update_info_res.is_err());
3137
3138                 // 2. Test encoding/decoding of ChannelInfo
3139                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3140                 let chan_info_none_updates = ChannelInfo {
3141                         features: channelmanager::provided_channel_features(&config),
3142                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3143                         one_to_two: None,
3144                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3145                         two_to_one: None,
3146                         capacity_sats: None,
3147                         announcement_message: None,
3148                         announcement_received_time: 87654,
3149                 };
3150
3151                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3152                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3153
3154                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3155                 assert_eq!(chan_info_none_updates, read_chan_info);
3156
3157                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3158                 let chan_info_some_updates = ChannelInfo {
3159                         features: channelmanager::provided_channel_features(&config),
3160                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3161                         one_to_two: Some(chan_update_info.clone()),
3162                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3163                         two_to_one: Some(chan_update_info.clone()),
3164                         capacity_sats: None,
3165                         announcement_message: None,
3166                         announcement_received_time: 87654,
3167                 };
3168
3169                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3170                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3171
3172                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3173                 assert_eq!(chan_info_some_updates, read_chan_info);
3174
3175                 // Check the serialization hasn't changed.
3176                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3177                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3178
3179                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3180                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3181                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3182                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3183                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3184                 assert_eq!(read_chan_info.one_to_two, None);
3185                 assert_eq!(read_chan_info.two_to_one, None);
3186
3187                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3188                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3189                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3190                 assert_eq!(read_chan_info.one_to_two, None);
3191                 assert_eq!(read_chan_info.two_to_one, None);
3192         }
3193
3194         #[test]
3195         fn node_info_is_readable() {
3196                 use std::convert::TryFrom;
3197
3198                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3199                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3200                 let valid_node_ann_info = NodeAnnouncementInfo {
3201                         features: channelmanager::provided_node_features(&UserConfig::default()),
3202                         last_update: 0,
3203                         rgb: [0u8; 3],
3204                         alias: NodeAlias([0u8; 32]),
3205                         addresses: vec![valid_netaddr],
3206                         announcement_message: None,
3207                 };
3208
3209                 let mut encoded_valid_node_ann_info = Vec::new();
3210                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3211                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3212                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3213
3214                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3215                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3216                 assert!(read_invalid_node_ann_info_res.is_err());
3217
3218                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3219                 let valid_node_info = NodeInfo {
3220                         channels: Vec::new(),
3221                         announcement_info: Some(valid_node_ann_info),
3222                 };
3223
3224                 let mut encoded_valid_node_info = Vec::new();
3225                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3226                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3227                 assert_eq!(read_valid_node_info, valid_node_info);
3228
3229                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3230                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3231                 assert_eq!(read_invalid_node_info.announcement_info, None);
3232         }
3233 }
3234
3235 #[cfg(all(test, feature = "_bench_unstable"))]
3236 mod benches {
3237         use super::*;
3238
3239         use test::Bencher;
3240         use std::io::Read;
3241
3242         #[bench]
3243         fn read_network_graph(bench: &mut Bencher) {
3244                 let logger = crate::util::test_utils::TestLogger::new();
3245                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3246                 let mut v = Vec::new();
3247                 d.read_to_end(&mut v).unwrap();
3248                 bench.iter(|| {
3249                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3250                 });
3251         }
3252
3253         #[bench]
3254         fn write_network_graph(bench: &mut Bencher) {
3255                 let logger = crate::util::test_utils::TestLogger::new();
3256                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3257                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3258                 bench.iter(|| {
3259                         let _ = net_graph.encode();
3260                 });
3261         }
3262 }