c820b4741bc5c2a35d902d339e07d0ff0e195cd6
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::blockdata::constants::ChainHash;
13
14 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
15 use bitcoin::secp256k1::{PublicKey, Verification};
16 use bitcoin::secp256k1::Secp256k1;
17 use bitcoin::secp256k1;
18
19 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
20 use bitcoin::hashes::Hash;
21 use bitcoin::network::constants::Network;
22
23 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
24 use crate::ln::ChannelId;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, SocketAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use core::convert::TryFrom;
42 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46 use core::str::FromStr;
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy, PartialEq, Eq)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80
81         /// Get the public key as an array from this NodeId
82         pub fn as_array(&self) -> &[u8; PUBLIC_KEY_SIZE] {
83                 &self.0
84         }
85
86         /// Get the public key from this NodeId
87         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
88                 PublicKey::from_slice(&self.0)
89         }
90 }
91
92 impl fmt::Debug for NodeId {
93         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
94                 write!(f, "NodeId({})", crate::util::logger::DebugBytes(&self.0))
95         }
96 }
97 impl fmt::Display for NodeId {
98         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
99                 crate::util::logger::DebugBytes(&self.0).fmt(f)
100         }
101 }
102
103 impl core::hash::Hash for NodeId {
104         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
105                 self.0.hash(hasher);
106         }
107 }
108
109 impl cmp::PartialOrd for NodeId {
110         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
111                 Some(self.cmp(other))
112         }
113 }
114
115 impl Ord for NodeId {
116         fn cmp(&self, other: &Self) -> cmp::Ordering {
117                 self.0[..].cmp(&other.0[..])
118         }
119 }
120
121 impl Writeable for NodeId {
122         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
123                 writer.write_all(&self.0)?;
124                 Ok(())
125         }
126 }
127
128 impl Readable for NodeId {
129         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
130                 let mut buf = [0; PUBLIC_KEY_SIZE];
131                 reader.read_exact(&mut buf)?;
132                 Ok(Self(buf))
133         }
134 }
135
136 impl From<PublicKey> for NodeId {
137         fn from(pubkey: PublicKey) -> Self {
138                 Self::from_pubkey(&pubkey)
139         }
140 }
141
142 impl TryFrom<NodeId> for PublicKey {
143         type Error = secp256k1::Error;
144
145         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
146                 node_id.as_pubkey()
147         }
148 }
149
150 impl FromStr for NodeId {
151         type Err = hex::parse::HexToArrayError;
152
153         fn from_str(s: &str) -> Result<Self, Self::Err> {
154                 let data: [u8; PUBLIC_KEY_SIZE] = hex::FromHex::from_hex(s)?;
155                 Ok(NodeId(data))
156         }
157 }
158
159 /// Represents the network as nodes and channels between them
160 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
161         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
162         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
163         chain_hash: ChainHash,
164         logger: L,
165         // Lock order: channels -> nodes
166         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
167         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
168         removed_node_counters: Mutex<Vec<u32>>,
169         next_node_counter: AtomicUsize,
170         // Lock order: removed_channels -> removed_nodes
171         //
172         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
173         // of `std::time::Instant`s for a few reasons:
174         //   * We want it to be possible to do tracking in no-std environments where we can compare
175         //     a provided current UNIX timestamp with the time at which we started tracking.
176         //   * In the future, if we decide to persist these maps, they will already be serializable.
177         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
178         //     environment should be practical over the time period we are considering (on the order of a
179         //     week).
180         //
181         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
182         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
183         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
184         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
185         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
186         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
187         /// that once some time passes, we can potentially resync it from gossip again.
188         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
189         /// Announcement messages which are awaiting an on-chain lookup to be processed.
190         pub(super) pending_checks: utxo::PendingChecks,
191 }
192
193 /// A read-only view of [`NetworkGraph`].
194 pub struct ReadOnlyNetworkGraph<'a> {
195         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
196         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
197         max_node_counter: u32,
198 }
199
200 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
201 /// return packet by a node along the route. See [BOLT #4] for details.
202 ///
203 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
204 #[derive(Clone, Debug, PartialEq, Eq)]
205 pub enum NetworkUpdate {
206         /// An error indicating a `channel_update` messages should be applied via
207         /// [`NetworkGraph::update_channel`].
208         ChannelUpdateMessage {
209                 /// The update to apply via [`NetworkGraph::update_channel`].
210                 msg: ChannelUpdate,
211         },
212         /// An error indicating that a channel failed to route a payment, which should be applied via
213         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
214         ChannelFailure {
215                 /// The short channel id of the closed channel.
216                 short_channel_id: u64,
217                 /// Whether the channel should be permanently removed or temporarily disabled until a new
218                 /// `channel_update` message is received.
219                 is_permanent: bool,
220         },
221         /// An error indicating that a node failed to route a payment, which should be applied via
222         /// [`NetworkGraph::node_failed_permanent`] if permanent.
223         NodeFailure {
224                 /// The node id of the failed node.
225                 node_id: PublicKey,
226                 /// Whether the node should be permanently removed from consideration or can be restored
227                 /// when a new `channel_update` message is received.
228                 is_permanent: bool,
229         }
230 }
231
232 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
233         (0, ChannelUpdateMessage) => {
234                 (0, msg, required),
235         },
236         (2, ChannelFailure) => {
237                 (0, short_channel_id, required),
238                 (2, is_permanent, required),
239         },
240         (4, NodeFailure) => {
241                 (0, node_id, required),
242                 (2, is_permanent, required),
243         },
244 );
245
246 /// Receives and validates network updates from peers,
247 /// stores authentic and relevant data as a network graph.
248 /// This network graph is then used for routing payments.
249 /// Provides interface to help with initial routing sync by
250 /// serving historical announcements.
251 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
252 where U::Target: UtxoLookup, L::Target: Logger
253 {
254         network_graph: G,
255         utxo_lookup: RwLock<Option<U>>,
256         #[cfg(feature = "std")]
257         full_syncs_requested: AtomicUsize,
258         pending_events: Mutex<Vec<MessageSendEvent>>,
259         logger: L,
260 }
261
262 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
263 where U::Target: UtxoLookup, L::Target: Logger
264 {
265         /// Creates a new tracker of the actual state of the network of channels and nodes,
266         /// assuming an existing [`NetworkGraph`].
267         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
268         /// correct, and the announcement is signed with channel owners' keys.
269         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
270                 P2PGossipSync {
271                         network_graph,
272                         #[cfg(feature = "std")]
273                         full_syncs_requested: AtomicUsize::new(0),
274                         utxo_lookup: RwLock::new(utxo_lookup),
275                         pending_events: Mutex::new(vec![]),
276                         logger,
277                 }
278         }
279
280         /// Adds a provider used to check new announcements. Does not affect
281         /// existing announcements unless they are updated.
282         /// Add, update or remove the provider would replace the current one.
283         pub fn add_utxo_lookup(&self, utxo_lookup: Option<U>) {
284                 *self.utxo_lookup.write().unwrap() = utxo_lookup;
285         }
286
287         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
288         /// [`P2PGossipSync::new`].
289         ///
290         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
291         pub fn network_graph(&self) -> &G {
292                 &self.network_graph
293         }
294
295         #[cfg(feature = "std")]
296         /// Returns true when a full routing table sync should be performed with a peer.
297         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
298                 //TODO: Determine whether to request a full sync based on the network map.
299                 const FULL_SYNCS_TO_REQUEST: usize = 5;
300                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
301                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
302                         true
303                 } else {
304                         false
305                 }
306         }
307
308         /// Used to broadcast forward gossip messages which were validated async.
309         ///
310         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
311         /// data.
312         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
313                 match &mut ev {
314                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
315                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
316                                 if update_msg.as_ref()
317                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
318                                 {
319                                         *update_msg = None;
320                                 }
321                         },
322                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
323                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
324                         },
325                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
326                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
327                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
328                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
329                                 {
330                                         return;
331                                 }
332                         },
333                         _ => return,
334                 }
335                 self.pending_events.lock().unwrap().push(ev);
336         }
337 }
338
339 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
340         /// Handles any network updates originating from [`Event`]s.
341         //
342         /// Note that this will skip applying any [`NetworkUpdate::ChannelUpdateMessage`] to avoid
343         /// leaking possibly identifying information of the sender to the public network.
344         ///
345         /// [`Event`]: crate::events::Event
346         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
347                 match *network_update {
348                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
349                                 let short_channel_id = msg.contents.short_channel_id;
350                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
351                                 let status = if is_enabled { "enabled" } else { "disabled" };
352                                 log_debug!(self.logger, "Skipping application of a channel update from a payment failure. Channel {} is {}.", short_channel_id, status);
353                         },
354                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
355                                 if is_permanent {
356                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
357                                         self.channel_failed_permanent(short_channel_id);
358                                 }
359                         },
360                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
361                                 if is_permanent {
362                                         log_debug!(self.logger,
363                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
364                                         self.node_failed_permanent(node_id);
365                                 };
366                         },
367                 }
368         }
369
370         /// Gets the chain hash for this network graph.
371         pub fn get_chain_hash(&self) -> ChainHash {
372                 self.chain_hash
373         }
374 }
375
376 macro_rules! secp_verify_sig {
377         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
378                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
379                         Ok(_) => {},
380                         Err(_) => {
381                                 return Err(LightningError {
382                                         err: format!("Invalid signature on {} message", $msg_type),
383                                         action: ErrorAction::SendWarningMessage {
384                                                 msg: msgs::WarningMessage {
385                                                         channel_id: ChannelId::new_zero(),
386                                                         data: format!("Invalid signature on {} message", $msg_type),
387                                                 },
388                                                 log_level: Level::Trace,
389                                         },
390                                 });
391                         },
392                 }
393         };
394 }
395
396 macro_rules! get_pubkey_from_node_id {
397         ( $node_id: expr, $msg_type: expr ) => {
398                 PublicKey::from_slice($node_id.as_slice())
399                         .map_err(|_| LightningError {
400                                 err: format!("Invalid public key on {} message", $msg_type),
401                                 action: ErrorAction::SendWarningMessage {
402                                         msg: msgs::WarningMessage {
403                                                 channel_id: ChannelId::new_zero(),
404                                                 data: format!("Invalid public key on {} message", $msg_type),
405                                         },
406                                         log_level: Level::Trace
407                                 }
408                         })?
409         }
410 }
411
412 fn message_sha256d_hash<M: Writeable>(msg: &M) -> Sha256dHash {
413         let mut engine = Sha256dHash::engine();
414         msg.write(&mut engine).expect("In-memory structs should not fail to serialize");
415         Sha256dHash::from_engine(engine)
416 }
417
418 /// Verifies the signature of a [`NodeAnnouncement`].
419 ///
420 /// Returns an error if it is invalid.
421 pub fn verify_node_announcement<C: Verification>(msg: &NodeAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
422         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
423         secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
424
425         Ok(())
426 }
427
428 /// Verifies all signatures included in a [`ChannelAnnouncement`].
429 ///
430 /// Returns an error if one of the signatures is invalid.
431 pub fn verify_channel_announcement<C: Verification>(msg: &ChannelAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
432         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
433         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
434         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
435         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
436         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
437
438         Ok(())
439 }
440
441 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
442 where U::Target: UtxoLookup, L::Target: Logger
443 {
444         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
445                 self.network_graph.update_node_from_announcement(msg)?;
446                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
447                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
448                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
449         }
450
451         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
452                 self.network_graph.update_channel_from_announcement(msg, &*self.utxo_lookup.read().unwrap())?;
453                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
454         }
455
456         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
457                 self.network_graph.update_channel(msg)?;
458                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
459         }
460
461         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
462                 let mut channels = self.network_graph.channels.write().unwrap();
463                 for (_, ref chan) in channels.range(starting_point..) {
464                         if chan.announcement_message.is_some() {
465                                 let chan_announcement = chan.announcement_message.clone().unwrap();
466                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
467                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
468                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
469                                         one_to_two_announcement = one_to_two.last_update_message.clone();
470                                 }
471                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
472                                         two_to_one_announcement = two_to_one.last_update_message.clone();
473                                 }
474                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
475                         } else {
476                                 // TODO: We may end up sending un-announced channel_updates if we are sending
477                                 // initial sync data while receiving announce/updates for this channel.
478                         }
479                 }
480                 None
481         }
482
483         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
484                 let mut nodes = self.network_graph.nodes.write().unwrap();
485                 let iter = if let Some(node_id) = starting_point {
486                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
487                         } else {
488                                 nodes.range(..)
489                         };
490                 for (_, ref node) in iter {
491                         if let Some(node_info) = node.announcement_info.as_ref() {
492                                 if let Some(msg) = node_info.announcement_message.clone() {
493                                         return Some(msg);
494                                 }
495                         }
496                 }
497                 None
498         }
499
500         /// Initiates a stateless sync of routing gossip information with a peer
501         /// using [`gossip_queries`]. The default strategy used by this implementation
502         /// is to sync the full block range with several peers.
503         ///
504         /// We should expect one or more [`reply_channel_range`] messages in response
505         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
506         /// to request gossip messages for each channel. The sync is considered complete
507         /// when the final [`reply_scids_end`] message is received, though we are not
508         /// tracking this directly.
509         ///
510         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
511         /// [`reply_channel_range`]: msgs::ReplyChannelRange
512         /// [`query_channel_range`]: msgs::QueryChannelRange
513         /// [`query_scid`]: msgs::QueryShortChannelIds
514         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
515         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
516                 // We will only perform a sync with peers that support gossip_queries.
517                 if !init_msg.features.supports_gossip_queries() {
518                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
519                         // channels with peers even without being able to exchange gossip.
520                         return Ok(());
521                 }
522
523                 // The lightning network's gossip sync system is completely broken in numerous ways.
524                 //
525                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
526                 // to do a full sync from the first few peers we connect to, and then receive gossip
527                 // updates from all our peers normally.
528                 //
529                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
530                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
531                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
532                 // seen.
533                 //
534                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
535                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
536                 // channel data which you are missing. Except there was no way at all to identify which
537                 // `channel_update`s you were missing, so you still had to request everything, just in a
538                 // very complicated way with some queries instead of just getting the dump.
539                 //
540                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
541                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
542                 // relying on it useless.
543                 //
544                 // After gossip queries were introduced, support for receiving a full gossip table dump on
545                 // connection was removed from several nodes, making it impossible to get a full sync
546                 // without using the "gossip queries" messages.
547                 //
548                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
549                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
550                 // message, as the name implies, tells the peer to not forward any gossip messages with a
551                 // timestamp older than a given value (not the time the peer received the filter, but the
552                 // timestamp in the update message, which is often hours behind when the peer received the
553                 // message).
554                 //
555                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
556                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
557                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
558                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
559                 // will simply not forward any new updates they see to you which were generated some time
560                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
561                 // ago), you will always get the full routing graph from all your peers.
562                 //
563                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
564                 // propagated some time after it was generated, and, worse, often disable gossiping with
565                 // several peers after their first connection. The second behavior can cause gossip to not
566                 // propagate fully if there are cuts in the gossiping subgraph.
567                 //
568                 // In an attempt to cut a middle ground between always fetching the full graph from all of
569                 // our peers and never receiving gossip from peers at all, we send all of our peers a
570                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
571                 //
572                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
573                 #[allow(unused_mut, unused_assignments)]
574                 let mut gossip_start_time = 0;
575                 #[cfg(feature = "std")]
576                 {
577                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
578                         if self.should_request_full_sync(&their_node_id) {
579                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
580                         } else {
581                                 gossip_start_time -= 60 * 60; // an hour ago
582                         }
583                 }
584
585                 let mut pending_events = self.pending_events.lock().unwrap();
586                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
587                         node_id: their_node_id.clone(),
588                         msg: GossipTimestampFilter {
589                                 chain_hash: self.network_graph.chain_hash,
590                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
591                                 timestamp_range: u32::max_value(),
592                         },
593                 });
594                 Ok(())
595         }
596
597         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
598                 // We don't make queries, so should never receive replies. If, in the future, the set
599                 // reconciliation extensions to gossip queries become broadly supported, we should revert
600                 // this code to its state pre-0.0.106.
601                 Ok(())
602         }
603
604         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
605                 // We don't make queries, so should never receive replies. If, in the future, the set
606                 // reconciliation extensions to gossip queries become broadly supported, we should revert
607                 // this code to its state pre-0.0.106.
608                 Ok(())
609         }
610
611         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
612         /// are in the specified block range. Due to message size limits, large range
613         /// queries may result in several reply messages. This implementation enqueues
614         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
615         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
616         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
617         /// memory constrained systems.
618         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
619                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
620
621                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
622
623                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
624                 // If so, we manually cap the ending block to avoid this overflow.
625                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
626
627                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
628                 if msg.chain_hash != self.network_graph.chain_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
629                         let mut pending_events = self.pending_events.lock().unwrap();
630                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
631                                 node_id: their_node_id.clone(),
632                                 msg: ReplyChannelRange {
633                                         chain_hash: msg.chain_hash.clone(),
634                                         first_blocknum: msg.first_blocknum,
635                                         number_of_blocks: msg.number_of_blocks,
636                                         sync_complete: true,
637                                         short_channel_ids: vec![],
638                                 }
639                         });
640                         return Err(LightningError {
641                                 err: String::from("query_channel_range could not be processed"),
642                                 action: ErrorAction::IgnoreError,
643                         });
644                 }
645
646                 // Creates channel batches. We are not checking if the channel is routable
647                 // (has at least one update). A peer may still want to know the channel
648                 // exists even if its not yet routable.
649                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
650                 let mut channels = self.network_graph.channels.write().unwrap();
651                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
652                         if let Some(chan_announcement) = &chan.announcement_message {
653                                 // Construct a new batch if last one is full
654                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
655                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
656                                 }
657
658                                 let batch = batches.last_mut().unwrap();
659                                 batch.push(chan_announcement.contents.short_channel_id);
660                         }
661                 }
662                 drop(channels);
663
664                 let mut pending_events = self.pending_events.lock().unwrap();
665                 let batch_count = batches.len();
666                 let mut prev_batch_endblock = msg.first_blocknum;
667                 for (batch_index, batch) in batches.into_iter().enumerate() {
668                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
669                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
670                         //
671                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
672                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
673                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
674                         // significant diversion from the requirements set by the spec, and, in case of blocks
675                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
676                         // and *not* derive the first_blocknum from the actual first block of the reply.
677                         let first_blocknum = prev_batch_endblock;
678
679                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
680                         // fit in. Though there is no requirement that we use exactly the number of blocks its
681                         // contents are from, except for the bogus requirements c-lightning enforces, above.
682                         //
683                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
684                         // >= the query's end block. Thus, for the last reply, we calculate the difference
685                         // between the query's end block and the start of the reply.
686                         //
687                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
688                         // first_blocknum will be either msg.first_blocknum or a higher block height.
689                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
690                                 (true, msg.end_blocknum() - first_blocknum)
691                         }
692                         // Prior replies should use the number of blocks that fit into the reply. Overflow
693                         // safe since first_blocknum is always <= last SCID's block.
694                         else {
695                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
696                         };
697
698                         prev_batch_endblock = first_blocknum + number_of_blocks;
699
700                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
701                                 node_id: their_node_id.clone(),
702                                 msg: ReplyChannelRange {
703                                         chain_hash: msg.chain_hash.clone(),
704                                         first_blocknum,
705                                         number_of_blocks,
706                                         sync_complete,
707                                         short_channel_ids: batch,
708                                 }
709                         });
710                 }
711
712                 Ok(())
713         }
714
715         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
716                 // TODO
717                 Err(LightningError {
718                         err: String::from("Not implemented"),
719                         action: ErrorAction::IgnoreError,
720                 })
721         }
722
723         fn provided_node_features(&self) -> NodeFeatures {
724                 let mut features = NodeFeatures::empty();
725                 features.set_gossip_queries_optional();
726                 features
727         }
728
729         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
730                 let mut features = InitFeatures::empty();
731                 features.set_gossip_queries_optional();
732                 features
733         }
734
735         fn processing_queue_high(&self) -> bool {
736                 self.network_graph.pending_checks.too_many_checks_pending()
737         }
738 }
739
740 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
741 where
742         U::Target: UtxoLookup,
743         L::Target: Logger,
744 {
745         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
746                 let mut ret = Vec::new();
747                 let mut pending_events = self.pending_events.lock().unwrap();
748                 core::mem::swap(&mut ret, &mut pending_events);
749                 ret
750         }
751 }
752
753 #[derive(Clone, Debug, PartialEq, Eq)]
754 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
755 pub struct ChannelUpdateInfo {
756         /// When the last update to the channel direction was issued.
757         /// Value is opaque, as set in the announcement.
758         pub last_update: u32,
759         /// Whether the channel can be currently used for payments (in this one direction).
760         pub enabled: bool,
761         /// The difference in CLTV values that you must have when routing through this channel.
762         pub cltv_expiry_delta: u16,
763         /// The minimum value, which must be relayed to the next hop via the channel
764         pub htlc_minimum_msat: u64,
765         /// The maximum value which may be relayed to the next hop via the channel.
766         pub htlc_maximum_msat: u64,
767         /// Fees charged when the channel is used for routing
768         pub fees: RoutingFees,
769         /// Most recent update for the channel received from the network
770         /// Mostly redundant with the data we store in fields explicitly.
771         /// Everything else is useful only for sending out for initial routing sync.
772         /// Not stored if contains excess data to prevent DoS.
773         pub last_update_message: Option<ChannelUpdate>,
774 }
775
776 impl fmt::Display for ChannelUpdateInfo {
777         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
778                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
779                 Ok(())
780         }
781 }
782
783 impl Writeable for ChannelUpdateInfo {
784         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
785                 write_tlv_fields!(writer, {
786                         (0, self.last_update, required),
787                         (2, self.enabled, required),
788                         (4, self.cltv_expiry_delta, required),
789                         (6, self.htlc_minimum_msat, required),
790                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
791                         // compatibility with LDK versions prior to v0.0.110.
792                         (8, Some(self.htlc_maximum_msat), required),
793                         (10, self.fees, required),
794                         (12, self.last_update_message, required),
795                 });
796                 Ok(())
797         }
798 }
799
800 impl Readable for ChannelUpdateInfo {
801         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
802                 _init_tlv_field_var!(last_update, required);
803                 _init_tlv_field_var!(enabled, required);
804                 _init_tlv_field_var!(cltv_expiry_delta, required);
805                 _init_tlv_field_var!(htlc_minimum_msat, required);
806                 _init_tlv_field_var!(htlc_maximum_msat, option);
807                 _init_tlv_field_var!(fees, required);
808                 _init_tlv_field_var!(last_update_message, required);
809
810                 read_tlv_fields!(reader, {
811                         (0, last_update, required),
812                         (2, enabled, required),
813                         (4, cltv_expiry_delta, required),
814                         (6, htlc_minimum_msat, required),
815                         (8, htlc_maximum_msat, required),
816                         (10, fees, required),
817                         (12, last_update_message, required)
818                 });
819
820                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
821                         Ok(ChannelUpdateInfo {
822                                 last_update: _init_tlv_based_struct_field!(last_update, required),
823                                 enabled: _init_tlv_based_struct_field!(enabled, required),
824                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
825                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
826                                 htlc_maximum_msat,
827                                 fees: _init_tlv_based_struct_field!(fees, required),
828                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
829                         })
830                 } else {
831                         Err(DecodeError::InvalidValue)
832                 }
833         }
834 }
835
836 #[derive(Clone, Debug, Eq)]
837 /// Details about a channel (both directions).
838 /// Received within a channel announcement.
839 pub struct ChannelInfo {
840         /// Protocol features of a channel communicated during its announcement
841         pub features: ChannelFeatures,
842         /// Source node of the first direction of a channel
843         pub node_one: NodeId,
844         /// Details about the first direction of a channel
845         pub one_to_two: Option<ChannelUpdateInfo>,
846         /// Source node of the second direction of a channel
847         pub node_two: NodeId,
848         /// Details about the second direction of a channel
849         pub two_to_one: Option<ChannelUpdateInfo>,
850         /// The channel capacity as seen on-chain, if chain lookup is available.
851         pub capacity_sats: Option<u64>,
852         /// An initial announcement of the channel
853         /// Mostly redundant with the data we store in fields explicitly.
854         /// Everything else is useful only for sending out for initial routing sync.
855         /// Not stored if contains excess data to prevent DoS.
856         pub announcement_message: Option<ChannelAnnouncement>,
857         /// The timestamp when we received the announcement, if we are running with feature = "std"
858         /// (which we can probably assume we are - no-std environments probably won't have a full
859         /// network graph in memory!).
860         announcement_received_time: u64,
861
862         /// The [`NodeInfo::node_counter`] of the node pointed to by [`Self::node_one`].
863         pub(crate) node_one_counter: u32,
864         /// The [`NodeInfo::node_counter`] of the node pointed to by [`Self::node_two`].
865         pub(crate) node_two_counter: u32,
866 }
867
868 impl PartialEq for ChannelInfo {
869         fn eq(&self, o: &ChannelInfo) -> bool {
870                 self.features == o.features &&
871                         self.node_one == o.node_one &&
872                         self.one_to_two == o.one_to_two &&
873                         self.node_two == o.node_two &&
874                         self.two_to_one == o.two_to_one &&
875                         self.capacity_sats == o.capacity_sats &&
876                         self.announcement_message == o.announcement_message &&
877                         self.announcement_received_time == o.announcement_received_time
878         }
879 }
880
881 impl ChannelInfo {
882         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
883         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
884         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
885                 let (direction, source, outbound) = {
886                         if target == &self.node_one {
887                                 (self.two_to_one.as_ref(), &self.node_two, false)
888                         } else if target == &self.node_two {
889                                 (self.one_to_two.as_ref(), &self.node_one, true)
890                         } else {
891                                 return None;
892                         }
893                 };
894                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), source))
895         }
896
897         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
898         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
899         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
900                 let (direction, target, outbound) = {
901                         if source == &self.node_one {
902                                 (self.one_to_two.as_ref(), &self.node_two, true)
903                         } else if source == &self.node_two {
904                                 (self.two_to_one.as_ref(), &self.node_one, false)
905                         } else {
906                                 return None;
907                         }
908                 };
909                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), target))
910         }
911
912         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
913         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
914                 let direction = channel_flags & 1u8;
915                 if direction == 0 {
916                         self.one_to_two.as_ref()
917                 } else {
918                         self.two_to_one.as_ref()
919                 }
920         }
921 }
922
923 impl fmt::Display for ChannelInfo {
924         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
925                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
926                    log_bytes!(self.features.encode()), &self.node_one, self.one_to_two, &self.node_two, self.two_to_one)?;
927                 Ok(())
928         }
929 }
930
931 impl Writeable for ChannelInfo {
932         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
933                 write_tlv_fields!(writer, {
934                         (0, self.features, required),
935                         (1, self.announcement_received_time, (default_value, 0)),
936                         (2, self.node_one, required),
937                         (4, self.one_to_two, required),
938                         (6, self.node_two, required),
939                         (8, self.two_to_one, required),
940                         (10, self.capacity_sats, required),
941                         (12, self.announcement_message, required),
942                 });
943                 Ok(())
944         }
945 }
946
947 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
948 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
949 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
950 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
951 // channel updates via the gossip network.
952 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
953
954 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
955         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
956                 match crate::util::ser::Readable::read(reader) {
957                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
958                         Err(DecodeError::ShortRead) => Ok(None),
959                         Err(DecodeError::InvalidValue) => Ok(None),
960                         Err(err) => Err(err),
961                 }
962         }
963 }
964
965 impl Readable for ChannelInfo {
966         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
967                 _init_tlv_field_var!(features, required);
968                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
969                 _init_tlv_field_var!(node_one, required);
970                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
971                 _init_tlv_field_var!(node_two, required);
972                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
973                 _init_tlv_field_var!(capacity_sats, required);
974                 _init_tlv_field_var!(announcement_message, required);
975                 read_tlv_fields!(reader, {
976                         (0, features, required),
977                         (1, announcement_received_time, (default_value, 0)),
978                         (2, node_one, required),
979                         (4, one_to_two_wrap, upgradable_option),
980                         (6, node_two, required),
981                         (8, two_to_one_wrap, upgradable_option),
982                         (10, capacity_sats, required),
983                         (12, announcement_message, required),
984                 });
985
986                 Ok(ChannelInfo {
987                         features: _init_tlv_based_struct_field!(features, required),
988                         node_one: _init_tlv_based_struct_field!(node_one, required),
989                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
990                         node_two: _init_tlv_based_struct_field!(node_two, required),
991                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
992                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
993                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
994                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
995                         node_one_counter: u32::max_value(),
996                         node_two_counter: u32::max_value(),
997                 })
998         }
999 }
1000
1001 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
1002 /// source node to a target node.
1003 #[derive(Clone)]
1004 pub struct DirectedChannelInfo<'a> {
1005         channel: &'a ChannelInfo,
1006         direction: &'a ChannelUpdateInfo,
1007         /// The direction this channel is in - if set, it indicates that we're traversing the channel
1008         /// from [`ChannelInfo::node_one`] to [`ChannelInfo::node_two`].
1009         from_node_one: bool,
1010 }
1011
1012 impl<'a> DirectedChannelInfo<'a> {
1013         #[inline]
1014         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo, from_node_one: bool) -> Self {
1015                 Self { channel, direction, from_node_one }
1016         }
1017
1018         /// Returns information for the channel.
1019         #[inline]
1020         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
1021
1022         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
1023         ///
1024         /// This is either the total capacity from the funding transaction, if known, or the
1025         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
1026         /// otherwise.
1027         #[inline]
1028         pub fn effective_capacity(&self) -> EffectiveCapacity {
1029                 let mut htlc_maximum_msat = self.direction().htlc_maximum_msat;
1030                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
1031
1032                 match capacity_msat {
1033                         Some(capacity_msat) => {
1034                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
1035                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat }
1036                         },
1037                         None => EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: htlc_maximum_msat },
1038                 }
1039         }
1040
1041         /// Returns information for the direction.
1042         #[inline]
1043         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1044
1045         /// Returns the `node_id` of the source hop.
1046         ///
1047         /// Refers to the `node_id` forwarding the payment to the next hop.
1048         #[inline]
1049         pub(super) fn source(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_one } else { &self.channel.node_two } }
1050
1051         /// Returns the `node_id` of the target hop.
1052         ///
1053         /// Refers to the `node_id` receiving the payment from the previous hop.
1054         #[inline]
1055         pub(super) fn target(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_two } else { &self.channel.node_one } }
1056
1057         /// Returns the source node's counter
1058         #[inline]
1059         pub(super) fn source_counter(&self) -> u32 { if self.from_node_one { self.channel.node_one_counter } else { self.channel.node_two_counter } }
1060
1061         /// Returns the target node's counter
1062         #[inline]
1063         pub(super) fn target_counter(&self) -> u32 { if self.from_node_one { self.channel.node_two_counter } else { self.channel.node_one_counter } }
1064 }
1065
1066 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1067         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1068                 f.debug_struct("DirectedChannelInfo")
1069                         .field("channel", &self.channel)
1070                         .finish()
1071         }
1072 }
1073
1074 /// The effective capacity of a channel for routing purposes.
1075 ///
1076 /// While this may be smaller than the actual channel capacity, amounts greater than
1077 /// [`Self::as_msat`] should not be routed through the channel.
1078 #[derive(Clone, Copy, Debug, PartialEq)]
1079 pub enum EffectiveCapacity {
1080         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1081         /// direct hop.
1082         ExactLiquidity {
1083                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1084                 /// millisatoshi.
1085                 liquidity_msat: u64,
1086         },
1087         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1088         AdvertisedMaxHTLC {
1089                 /// The maximum HTLC amount denominated in millisatoshi.
1090                 amount_msat: u64,
1091         },
1092         /// The total capacity of the channel as determined by the funding transaction.
1093         Total {
1094                 /// The funding amount denominated in millisatoshi.
1095                 capacity_msat: u64,
1096                 /// The maximum HTLC amount denominated in millisatoshi.
1097                 htlc_maximum_msat: u64
1098         },
1099         /// A capacity sufficient to route any payment, typically used for private channels provided by
1100         /// an invoice.
1101         Infinite,
1102         /// The maximum HTLC amount as provided by an invoice route hint.
1103         HintMaxHTLC {
1104                 /// The maximum HTLC amount denominated in millisatoshi.
1105                 amount_msat: u64,
1106         },
1107         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1108         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1109         Unknown,
1110 }
1111
1112 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1113 /// use when making routing decisions.
1114 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1115
1116 impl EffectiveCapacity {
1117         /// Returns the effective capacity denominated in millisatoshi.
1118         pub fn as_msat(&self) -> u64 {
1119                 match self {
1120                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1121                         EffectiveCapacity::AdvertisedMaxHTLC { amount_msat } => *amount_msat,
1122                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1123                         EffectiveCapacity::HintMaxHTLC { amount_msat } => *amount_msat,
1124                         EffectiveCapacity::Infinite => u64::max_value(),
1125                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1126                 }
1127         }
1128 }
1129
1130 /// Fees for routing via a given channel or a node
1131 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1132 pub struct RoutingFees {
1133         /// Flat routing fee in millisatoshis.
1134         pub base_msat: u32,
1135         /// Liquidity-based routing fee in millionths of a routed amount.
1136         /// In other words, 10000 is 1%.
1137         pub proportional_millionths: u32,
1138 }
1139
1140 impl_writeable_tlv_based!(RoutingFees, {
1141         (0, base_msat, required),
1142         (2, proportional_millionths, required)
1143 });
1144
1145 #[derive(Clone, Debug, PartialEq, Eq)]
1146 /// Information received in the latest node_announcement from this node.
1147 pub struct NodeAnnouncementInfo {
1148         /// Protocol features the node announced support for
1149         pub features: NodeFeatures,
1150         /// When the last known update to the node state was issued.
1151         /// Value is opaque, as set in the announcement.
1152         pub last_update: u32,
1153         /// Color assigned to the node
1154         pub rgb: [u8; 3],
1155         /// Moniker assigned to the node.
1156         /// May be invalid or malicious (eg control chars),
1157         /// should not be exposed to the user.
1158         pub alias: NodeAlias,
1159         /// An initial announcement of the node
1160         /// Mostly redundant with the data we store in fields explicitly.
1161         /// Everything else is useful only for sending out for initial routing sync.
1162         /// Not stored if contains excess data to prevent DoS.
1163         pub announcement_message: Option<NodeAnnouncement>
1164 }
1165
1166 impl NodeAnnouncementInfo {
1167         /// Internet-level addresses via which one can connect to the node
1168         pub fn addresses(&self) -> &[SocketAddress] {
1169                 self.announcement_message.as_ref()
1170                         .map(|msg| msg.contents.addresses.as_slice())
1171                         .unwrap_or_default()
1172         }
1173 }
1174
1175 impl Writeable for NodeAnnouncementInfo {
1176         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1177                 let empty_addresses = Vec::<SocketAddress>::new();
1178                 write_tlv_fields!(writer, {
1179                         (0, self.features, required),
1180                         (2, self.last_update, required),
1181                         (4, self.rgb, required),
1182                         (6, self.alias, required),
1183                         (8, self.announcement_message, option),
1184                         (10, empty_addresses, required_vec), // Versions prior to 0.0.115 require this field
1185                 });
1186                 Ok(())
1187         }
1188 }
1189
1190 impl Readable for NodeAnnouncementInfo {
1191         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1192                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1193                         (0, features, required),
1194                         (2, last_update, required),
1195                         (4, rgb, required),
1196                         (6, alias, required),
1197                         (8, announcement_message, option),
1198                         (10, _addresses, optional_vec), // deprecated, not used anymore
1199                 });
1200                 let _: Option<Vec<SocketAddress>> = _addresses;
1201                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1202                         alias: alias.0.unwrap(), announcement_message })
1203         }
1204 }
1205
1206 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1207 ///
1208 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1209 /// attacks. Care must be taken when processing.
1210 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
1211 pub struct NodeAlias(pub [u8; 32]);
1212
1213 impl fmt::Display for NodeAlias {
1214         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1215                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1216                 let bytes = self.0.split_at(first_null).0;
1217                 match core::str::from_utf8(bytes) {
1218                         Ok(alias) => PrintableString(alias).fmt(f)?,
1219                         Err(_) => {
1220                                 use core::fmt::Write;
1221                                 for c in bytes.iter().map(|b| *b as char) {
1222                                         // Display printable ASCII characters
1223                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1224                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1225                                         f.write_char(c)?;
1226                                 }
1227                         },
1228                 };
1229                 Ok(())
1230         }
1231 }
1232
1233 impl Writeable for NodeAlias {
1234         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1235                 self.0.write(w)
1236         }
1237 }
1238
1239 impl Readable for NodeAlias {
1240         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1241                 Ok(NodeAlias(Readable::read(r)?))
1242         }
1243 }
1244
1245 #[derive(Clone, Debug, Eq)]
1246 /// Details about a node in the network, known from the network announcement.
1247 pub struct NodeInfo {
1248         /// All valid channels a node has announced
1249         pub channels: Vec<u64>,
1250         /// More information about a node from node_announcement.
1251         /// Optional because we store a Node entry after learning about it from
1252         /// a channel announcement, but before receiving a node announcement.
1253         pub announcement_info: Option<NodeAnnouncementInfo>,
1254         /// In memory, each node is assigned a unique ID. They are eagerly reused, ensuring they remain
1255         /// relatively dense.
1256         ///
1257         /// These IDs allow the router to avoid a `HashMap` lookup by simply using this value as an
1258         /// index in a `Vec`, skipping a big step in some of the hottest code when routing.
1259         pub(crate) node_counter: u32,
1260 }
1261
1262 impl PartialEq for NodeInfo {
1263         fn eq(&self, o: &NodeInfo) -> bool {
1264                 self.channels == o.channels && self.announcement_info == o.announcement_info
1265         }
1266 }
1267
1268 impl fmt::Display for NodeInfo {
1269         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1270                 write!(f, " channels: {:?}, announcement_info: {:?}",
1271                         &self.channels[..], self.announcement_info)?;
1272                 Ok(())
1273         }
1274 }
1275
1276 impl Writeable for NodeInfo {
1277         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1278                 write_tlv_fields!(writer, {
1279                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1280                         (2, self.announcement_info, option),
1281                         (4, self.channels, required_vec),
1282                 });
1283                 Ok(())
1284         }
1285 }
1286
1287 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1288 // necessary to maintain compatibility with previous serializations of `SocketAddress` that have an
1289 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1290 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1291 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1292
1293 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1294         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1295                 match crate::util::ser::Readable::read(reader) {
1296                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1297                         Err(_) => {
1298                                 copy(reader, &mut sink()).unwrap();
1299                                 return Ok(None)
1300                         },
1301                 };
1302         }
1303 }
1304
1305 impl Readable for NodeInfo {
1306         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1307                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1308                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1309                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1310                 // requires additional complexity and lookups during routing, it ends up being a
1311                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1312                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1313                         (0, _lowest_inbound_channel_fees, option),
1314                         (2, announcement_info_wrap, upgradable_option),
1315                         (4, channels, required_vec),
1316                 });
1317                 let _: Option<RoutingFees> = _lowest_inbound_channel_fees;
1318                 let announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = announcement_info_wrap;
1319
1320                 Ok(NodeInfo {
1321                         announcement_info: announcement_info_wrap.map(|w| w.0),
1322                         channels,
1323                         node_counter: u32::max_value(),
1324                 })
1325         }
1326 }
1327
1328 const SERIALIZATION_VERSION: u8 = 1;
1329 const MIN_SERIALIZATION_VERSION: u8 = 1;
1330
1331 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1332         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1333                 self.test_node_counter_consistency();
1334
1335                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1336
1337                 self.chain_hash.write(writer)?;
1338                 let channels = self.channels.read().unwrap();
1339                 (channels.len() as u64).write(writer)?;
1340                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1341                         (*chan_id).write(writer)?;
1342                         chan_info.write(writer)?;
1343                 }
1344                 let nodes = self.nodes.read().unwrap();
1345                 (nodes.len() as u64).write(writer)?;
1346                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1347                         node_id.write(writer)?;
1348                         node_info.write(writer)?;
1349                 }
1350
1351                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1352                 write_tlv_fields!(writer, {
1353                         (1, last_rapid_gossip_sync_timestamp, option),
1354                 });
1355                 Ok(())
1356         }
1357 }
1358
1359 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1360         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1361                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1362
1363                 let chain_hash: ChainHash = Readable::read(reader)?;
1364                 let channels_count: u64 = Readable::read(reader)?;
1365                 // In Nov, 2023 there were about 15,000 nodes; we cap allocations to 1.5x that.
1366                 let mut channels = IndexedMap::with_capacity(cmp::min(channels_count as usize, 22500));
1367                 for _ in 0..channels_count {
1368                         let chan_id: u64 = Readable::read(reader)?;
1369                         let chan_info: ChannelInfo = Readable::read(reader)?;
1370                         channels.insert(chan_id, chan_info);
1371                 }
1372                 let nodes_count: u64 = Readable::read(reader)?;
1373                 if nodes_count > u32::max_value() as u64 / 2 { return Err(DecodeError::InvalidValue); }
1374                 // In Nov, 2023 there were about 69K channels; we cap allocations to 1.5x that.
1375                 let mut nodes = IndexedMap::with_capacity(cmp::min(nodes_count as usize, 103500));
1376                 for i in 0..nodes_count {
1377                         let node_id = Readable::read(reader)?;
1378                         let mut node_info: NodeInfo = Readable::read(reader)?;
1379                         node_info.node_counter = i as u32;
1380                         nodes.insert(node_id, node_info);
1381                 }
1382
1383                 for (_, chan) in channels.unordered_iter_mut() {
1384                         chan.node_one_counter =
1385                                 nodes.get(&chan.node_one).ok_or(DecodeError::InvalidValue)?.node_counter;
1386                         chan.node_two_counter =
1387                                 nodes.get(&chan.node_two).ok_or(DecodeError::InvalidValue)?.node_counter;
1388                 }
1389
1390                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1391                 read_tlv_fields!(reader, {
1392                         (1, last_rapid_gossip_sync_timestamp, option),
1393                 });
1394
1395                 Ok(NetworkGraph {
1396                         secp_ctx: Secp256k1::verification_only(),
1397                         chain_hash,
1398                         logger,
1399                         channels: RwLock::new(channels),
1400                         nodes: RwLock::new(nodes),
1401                         removed_node_counters: Mutex::new(Vec::new()),
1402                         next_node_counter: AtomicUsize::new(nodes_count as usize),
1403                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1404                         removed_nodes: Mutex::new(HashMap::new()),
1405                         removed_channels: Mutex::new(HashMap::new()),
1406                         pending_checks: utxo::PendingChecks::new(),
1407                 })
1408         }
1409 }
1410
1411 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1412         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1413                 writeln!(f, "Network map\n[Channels]")?;
1414                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1415                         writeln!(f, " {}: {}", key, val)?;
1416                 }
1417                 writeln!(f, "[Nodes]")?;
1418                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1419                         writeln!(f, " {}: {}", &node_id, val)?;
1420                 }
1421                 Ok(())
1422         }
1423 }
1424
1425 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1426 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1427         fn eq(&self, other: &Self) -> bool {
1428                 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1429                 // (Assumes that we can't move within memory while a lock is held).
1430                 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1431                 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1432                 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1433                 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1434                 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1435                 self.chain_hash.eq(&other.chain_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1436         }
1437 }
1438
1439 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1440         /// Creates a new, empty, network graph.
1441         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1442                 Self {
1443                         secp_ctx: Secp256k1::verification_only(),
1444                         chain_hash: ChainHash::using_genesis_block(network),
1445                         logger,
1446                         channels: RwLock::new(IndexedMap::new()),
1447                         nodes: RwLock::new(IndexedMap::new()),
1448                         next_node_counter: AtomicUsize::new(0),
1449                         removed_node_counters: Mutex::new(Vec::new()),
1450                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1451                         removed_channels: Mutex::new(HashMap::new()),
1452                         removed_nodes: Mutex::new(HashMap::new()),
1453                         pending_checks: utxo::PendingChecks::new(),
1454                 }
1455         }
1456
1457         fn test_node_counter_consistency(&self) {
1458                 #[cfg(debug_assertions)] {
1459                         let channels = self.channels.read().unwrap();
1460                         let nodes = self.nodes.read().unwrap();
1461                         let removed_node_counters = self.removed_node_counters.lock().unwrap();
1462                         let next_counter = self.next_node_counter.load(Ordering::Acquire);
1463                         assert!(next_counter < (u32::max_value() as usize) / 2);
1464                         let mut used_node_counters = vec![0u8; next_counter / 8 + 1];
1465
1466                         for counter in removed_node_counters.iter() {
1467                                 let pos = (*counter as usize) / 8;
1468                                 let bit = 1 << (counter % 8);
1469                                 assert_eq!(used_node_counters[pos] & bit, 0);
1470                                 used_node_counters[pos] |= bit;
1471                         }
1472                         for (_, node) in nodes.unordered_iter() {
1473                                 assert!((node.node_counter as usize) < next_counter);
1474                                 let pos = (node.node_counter as usize) / 8;
1475                                 let bit = 1 << (node.node_counter % 8);
1476                                 assert_eq!(used_node_counters[pos] & bit, 0);
1477                                 used_node_counters[pos] |= bit;
1478                         }
1479
1480                         for (_, chan) in channels.unordered_iter() {
1481                                 assert_eq!(chan.node_one_counter, nodes.get(&chan.node_one).unwrap().node_counter);
1482                                 assert_eq!(chan.node_two_counter, nodes.get(&chan.node_two).unwrap().node_counter);
1483                         }
1484                 }
1485         }
1486
1487         /// Returns a read-only view of the network graph.
1488         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1489                 self.test_node_counter_consistency();
1490                 let channels = self.channels.read().unwrap();
1491                 let nodes = self.nodes.read().unwrap();
1492                 ReadOnlyNetworkGraph {
1493                         channels,
1494                         nodes,
1495                         max_node_counter: (self.next_node_counter.load(Ordering::Acquire) as u32).saturating_sub(1),
1496                 }
1497         }
1498
1499         /// The unix timestamp provided by the most recent rapid gossip sync.
1500         /// It will be set by the rapid sync process after every sync completion.
1501         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1502                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1503         }
1504
1505         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1506         /// This should be done automatically by the rapid sync process after every sync completion.
1507         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1508                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1509         }
1510
1511         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1512         /// purposes.
1513         #[cfg(test)]
1514         pub fn clear_nodes_announcement_info(&self) {
1515                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1516                         node.1.announcement_info = None;
1517                 }
1518         }
1519
1520         /// For an already known node (from channel announcements), update its stored properties from a
1521         /// given node announcement.
1522         ///
1523         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1524         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1525         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1526         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1527                 verify_node_announcement(msg, &self.secp_ctx)?;
1528                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1529         }
1530
1531         /// For an already known node (from channel announcements), update its stored properties from a
1532         /// given node announcement without verifying the associated signatures. Because we aren't
1533         /// given the associated signatures here we cannot relay the node announcement to any of our
1534         /// peers.
1535         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1536                 self.update_node_from_announcement_intern(msg, None)
1537         }
1538
1539         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1540                 let mut nodes = self.nodes.write().unwrap();
1541                 match nodes.get_mut(&msg.node_id) {
1542                         None => {
1543                                 core::mem::drop(nodes);
1544                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1545                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1546                         },
1547                         Some(node) => {
1548                                 if let Some(node_info) = node.announcement_info.as_ref() {
1549                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1550                                         // updates to ensure you always have the latest one, only vaguely suggesting
1551                                         // that it be at least the current time.
1552                                         if node_info.last_update  > msg.timestamp {
1553                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1554                                         } else if node_info.last_update  == msg.timestamp {
1555                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1556                                         }
1557                                 }
1558
1559                                 let should_relay =
1560                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1561                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1562                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1563                                 node.announcement_info = Some(NodeAnnouncementInfo {
1564                                         features: msg.features.clone(),
1565                                         last_update: msg.timestamp,
1566                                         rgb: msg.rgb,
1567                                         alias: msg.alias,
1568                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1569                                 });
1570
1571                                 Ok(())
1572                         }
1573                 }
1574         }
1575
1576         /// Store or update channel info from a channel announcement.
1577         ///
1578         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1579         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1580         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1581         ///
1582         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1583         /// the corresponding UTXO exists on chain and is correctly-formatted.
1584         pub fn update_channel_from_announcement<U: Deref>(
1585                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1586         ) -> Result<(), LightningError>
1587         where
1588                 U::Target: UtxoLookup,
1589         {
1590                 verify_channel_announcement(msg, &self.secp_ctx)?;
1591                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1592         }
1593
1594         /// Store or update channel info from a channel announcement.
1595         ///
1596         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1597         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1598         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1599         ///
1600         /// This will skip verification of if the channel is actually on-chain.
1601         pub fn update_channel_from_announcement_no_lookup(
1602                 &self, msg: &ChannelAnnouncement
1603         ) -> Result<(), LightningError> {
1604                 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1605         }
1606
1607         /// Store or update channel info from a channel announcement without verifying the associated
1608         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1609         /// channel announcement to any of our peers.
1610         ///
1611         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1612         /// the corresponding UTXO exists on chain and is correctly-formatted.
1613         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1614                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1615         ) -> Result<(), LightningError>
1616         where
1617                 U::Target: UtxoLookup,
1618         {
1619                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1620         }
1621
1622         /// Update channel from partial announcement data received via rapid gossip sync
1623         ///
1624         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1625         /// rapid gossip sync server)
1626         ///
1627         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1628         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1629                 if node_id_1 == node_id_2 {
1630                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1631                 };
1632
1633                 let node_1 = NodeId::from_pubkey(&node_id_1);
1634                 let node_2 = NodeId::from_pubkey(&node_id_2);
1635                 let channel_info = ChannelInfo {
1636                         features,
1637                         node_one: node_1.clone(),
1638                         one_to_two: None,
1639                         node_two: node_2.clone(),
1640                         two_to_one: None,
1641                         capacity_sats: None,
1642                         announcement_message: None,
1643                         announcement_received_time: timestamp,
1644                         node_one_counter: u32::max_value(),
1645                         node_two_counter: u32::max_value(),
1646                 };
1647
1648                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1649         }
1650
1651         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1652                 let mut channels = self.channels.write().unwrap();
1653                 let mut nodes = self.nodes.write().unwrap();
1654
1655                 let node_id_a = channel_info.node_one.clone();
1656                 let node_id_b = channel_info.node_two.clone();
1657
1658                 log_gossip!(self.logger, "Adding channel {} between nodes {} and {}", short_channel_id, node_id_a, node_id_b);
1659
1660                 let channel_entry = channels.entry(short_channel_id);
1661                 let channel_info = match channel_entry {
1662                         IndexedMapEntry::Occupied(mut entry) => {
1663                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1664                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1665                                 //exactly how...
1666                                 if utxo_value.is_some() {
1667                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1668                                         // only sometimes returns results. In any case remove the previous entry. Note
1669                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1670                                         // do that because
1671                                         // a) we don't *require* a UTXO provider that always returns results.
1672                                         // b) we don't track UTXOs of channels we know about and remove them if they
1673                                         //    get reorg'd out.
1674                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1675                                         self.remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1676                                         *entry.get_mut() = channel_info;
1677                                         entry.into_mut()
1678                                 } else {
1679                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1680                                 }
1681                         },
1682                         IndexedMapEntry::Vacant(entry) => {
1683                                 entry.insert(channel_info)
1684                         }
1685                 };
1686
1687                 let mut node_counter_id = [
1688                         (&mut channel_info.node_one_counter, node_id_a),
1689                         (&mut channel_info.node_two_counter, node_id_b)
1690                 ];
1691                 for (node_counter, current_node_id) in node_counter_id.iter_mut() {
1692                         match nodes.entry(current_node_id.clone()) {
1693                                 IndexedMapEntry::Occupied(node_entry) => {
1694                                         let node = node_entry.into_mut();
1695                                         node.channels.push(short_channel_id);
1696                                         **node_counter = node.node_counter;
1697                                 },
1698                                 IndexedMapEntry::Vacant(node_entry) => {
1699                                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1700                                         **node_counter = removed_node_counters.pop()
1701                                                 .unwrap_or(self.next_node_counter.fetch_add(1, Ordering::Relaxed) as u32);
1702                                         node_entry.insert(NodeInfo {
1703                                                 channels: vec!(short_channel_id),
1704                                                 announcement_info: None,
1705                                                 node_counter: **node_counter,
1706                                         });
1707                                 }
1708                         };
1709                 };
1710
1711                 Ok(())
1712         }
1713
1714         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1715                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1716         ) -> Result<(), LightningError>
1717         where
1718                 U::Target: UtxoLookup,
1719         {
1720                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1721                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1722                 }
1723
1724                 if msg.chain_hash != self.chain_hash {
1725                         return Err(LightningError {
1726                                 err: "Channel announcement chain hash does not match genesis hash".to_owned(),
1727                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1728                         });
1729                 }
1730
1731                 {
1732                         let channels = self.channels.read().unwrap();
1733
1734                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1735                                 if chan.capacity_sats.is_some() {
1736                                         // If we'd previously looked up the channel on-chain and checked the script
1737                                         // against what appears on-chain, ignore the duplicate announcement.
1738                                         //
1739                                         // Because a reorg could replace one channel with another at the same SCID, if
1740                                         // the channel appears to be different, we re-validate. This doesn't expose us
1741                                         // to any more DoS risk than not, as a peer can always flood us with
1742                                         // randomly-generated SCID values anyway.
1743                                         //
1744                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1745                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1746                                         // if the peers on the channel changed anyway.
1747                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1748                                                 return Err(LightningError {
1749                                                         err: "Already have chain-validated channel".to_owned(),
1750                                                         action: ErrorAction::IgnoreDuplicateGossip
1751                                                 });
1752                                         }
1753                                 } else if utxo_lookup.is_none() {
1754                                         // Similarly, if we can't check the chain right now anyway, ignore the
1755                                         // duplicate announcement without bothering to take the channels write lock.
1756                                         return Err(LightningError {
1757                                                 err: "Already have non-chain-validated channel".to_owned(),
1758                                                 action: ErrorAction::IgnoreDuplicateGossip
1759                                         });
1760                                 }
1761                         }
1762                 }
1763
1764                 {
1765                         let removed_channels = self.removed_channels.lock().unwrap();
1766                         let removed_nodes = self.removed_nodes.lock().unwrap();
1767                         if removed_channels.contains_key(&msg.short_channel_id) ||
1768                                 removed_nodes.contains_key(&msg.node_id_1) ||
1769                                 removed_nodes.contains_key(&msg.node_id_2) {
1770                                 return Err(LightningError{
1771                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1772                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1773                         }
1774                 }
1775
1776                 let utxo_value = self.pending_checks.check_channel_announcement(
1777                         utxo_lookup, msg, full_msg)?;
1778
1779                 #[allow(unused_mut, unused_assignments)]
1780                 let mut announcement_received_time = 0;
1781                 #[cfg(feature = "std")]
1782                 {
1783                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1784                 }
1785
1786                 let chan_info = ChannelInfo {
1787                         features: msg.features.clone(),
1788                         node_one: msg.node_id_1,
1789                         one_to_two: None,
1790                         node_two: msg.node_id_2,
1791                         two_to_one: None,
1792                         capacity_sats: utxo_value,
1793                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1794                                 { full_msg.cloned() } else { None },
1795                         announcement_received_time,
1796                         node_one_counter: u32::max_value(),
1797                         node_two_counter: u32::max_value(),
1798                 };
1799
1800                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1801
1802                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1803                 Ok(())
1804         }
1805
1806         /// Marks a channel in the graph as failed permanently.
1807         ///
1808         /// The channel and any node for which this was their last channel are removed from the graph.
1809         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1810                 #[cfg(feature = "std")]
1811                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1812                 #[cfg(not(feature = "std"))]
1813                 let current_time_unix = None;
1814
1815                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1816         }
1817
1818         /// Marks a channel in the graph as failed permanently.
1819         ///
1820         /// The channel and any node for which this was their last channel are removed from the graph.
1821         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1822                 let mut channels = self.channels.write().unwrap();
1823                 if let Some(chan) = channels.remove(&short_channel_id) {
1824                         let mut nodes = self.nodes.write().unwrap();
1825                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1826                         self.remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1827                 }
1828         }
1829
1830         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1831         /// from local storage.
1832         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1833                 #[cfg(feature = "std")]
1834                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1835                 #[cfg(not(feature = "std"))]
1836                 let current_time_unix = None;
1837
1838                 let node_id = NodeId::from_pubkey(node_id);
1839                 let mut channels = self.channels.write().unwrap();
1840                 let mut nodes = self.nodes.write().unwrap();
1841                 let mut removed_channels = self.removed_channels.lock().unwrap();
1842                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1843
1844                 if let Some(node) = nodes.remove(&node_id) {
1845                         let mut removed_node_counters = self.removed_node_counters.lock().unwrap();
1846                         for scid in node.channels.iter() {
1847                                 if let Some(chan_info) = channels.remove(scid) {
1848                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1849                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1850                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1851                                                         *scid != *chan_id
1852                                                 });
1853                                                 if other_node_entry.get().channels.is_empty() {
1854                                                         removed_node_counters.push(other_node_entry.get().node_counter);
1855                                                         other_node_entry.remove_entry();
1856                                                 }
1857                                         }
1858                                         removed_channels.insert(*scid, current_time_unix);
1859                                 }
1860                         }
1861                         removed_node_counters.push(node.node_counter);
1862                         removed_nodes.insert(node_id, current_time_unix);
1863                 }
1864         }
1865
1866         #[cfg(feature = "std")]
1867         /// Removes information about channels that we haven't heard any updates about in some time.
1868         /// This can be used regularly to prune the network graph of channels that likely no longer
1869         /// exist.
1870         ///
1871         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1872         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1873         /// pruning occur for updates which are at least two weeks old, which we implement here.
1874         ///
1875         /// Note that for users of the `lightning-background-processor` crate this method may be
1876         /// automatically called regularly for you.
1877         ///
1878         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1879         /// in the map for a while so that these can be resynced from gossip in the future.
1880         ///
1881         /// This method is only available with the `std` feature. See
1882         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1883         pub fn remove_stale_channels_and_tracking(&self) {
1884                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1885                 self.remove_stale_channels_and_tracking_with_time(time);
1886         }
1887
1888         /// Removes information about channels that we haven't heard any updates about in some time.
1889         /// This can be used regularly to prune the network graph of channels that likely no longer
1890         /// exist.
1891         ///
1892         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1893         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1894         /// pruning occur for updates which are at least two weeks old, which we implement here.
1895         ///
1896         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1897         /// in the map for a while so that these can be resynced from gossip in the future.
1898         ///
1899         /// This function takes the current unix time as an argument. For users with the `std` feature
1900         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1901         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1902                 let mut channels = self.channels.write().unwrap();
1903                 // Time out if we haven't received an update in at least 14 days.
1904                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1905                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1906                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1907                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1908                 // time.
1909                 let mut scids_to_remove = Vec::new();
1910                 for (scid, info) in channels.unordered_iter_mut() {
1911                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1912                                 log_gossip!(self.logger, "Removing directional update one_to_two (0) for channel {} due to its timestamp {} being below {}",
1913                                         scid, info.one_to_two.as_ref().unwrap().last_update, min_time_unix);
1914                                 info.one_to_two = None;
1915                         }
1916                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1917                                 log_gossip!(self.logger, "Removing directional update two_to_one (1) for channel {} due to its timestamp {} being below {}",
1918                                         scid, info.two_to_one.as_ref().unwrap().last_update, min_time_unix);
1919                                 info.two_to_one = None;
1920                         }
1921                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1922                                 // We check the announcement_received_time here to ensure we don't drop
1923                                 // announcements that we just received and are just waiting for our peer to send a
1924                                 // channel_update for.
1925                                 let announcement_received_timestamp = info.announcement_received_time;
1926                                 if announcement_received_timestamp < min_time_unix as u64 {
1927                                         log_gossip!(self.logger, "Removing channel {} because both directional updates are missing and its announcement timestamp {} being below {}",
1928                                                 scid, announcement_received_timestamp, min_time_unix);
1929                                         scids_to_remove.push(*scid);
1930                                 }
1931                         }
1932                 }
1933                 if !scids_to_remove.is_empty() {
1934                         let mut nodes = self.nodes.write().unwrap();
1935                         for scid in scids_to_remove {
1936                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1937                                 self.remove_channel_in_nodes(&mut nodes, &info, scid);
1938                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1939                         }
1940                 }
1941
1942                 let should_keep_tracking = |time: &mut Option<u64>| {
1943                         if let Some(time) = time {
1944                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1945                         } else {
1946                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1947                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1948                                 // of this function.
1949                                 #[cfg(feature = "no-std")]
1950                                 {
1951                                         let mut tracked_time = Some(current_time_unix);
1952                                         core::mem::swap(time, &mut tracked_time);
1953                                         return true;
1954                                 }
1955                                 #[allow(unreachable_code)]
1956                                 false
1957                         }};
1958
1959                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1960                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1961         }
1962
1963         /// For an already known (from announcement) channel, update info about one of the directions
1964         /// of the channel.
1965         ///
1966         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1967         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1968         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1969         ///
1970         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1971         /// materially in the future will be rejected.
1972         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1973                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), false)
1974         }
1975
1976         /// For an already known (from announcement) channel, update info about one of the directions
1977         /// of the channel without verifying the associated signatures. Because we aren't given the
1978         /// associated signatures here we cannot relay the channel update to any of our peers.
1979         ///
1980         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1981         /// materially in the future will be rejected.
1982         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1983                 self.update_channel_internal(msg, None, None, false)
1984         }
1985
1986         /// For an already known (from announcement) channel, verify the given [`ChannelUpdate`].
1987         ///
1988         /// This checks whether the update currently is applicable by [`Self::update_channel`].
1989         ///
1990         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1991         /// materially in the future will be rejected.
1992         pub fn verify_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1993                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), true)
1994         }
1995
1996         fn update_channel_internal(&self, msg: &msgs::UnsignedChannelUpdate,
1997                 full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>,
1998                 only_verify: bool) -> Result<(), LightningError>
1999         {
2000                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
2001
2002                 if msg.chain_hash != self.chain_hash {
2003                         return Err(LightningError {
2004                                 err: "Channel update chain hash does not match genesis hash".to_owned(),
2005                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
2006                         });
2007                 }
2008
2009                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
2010                 {
2011                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
2012                         // disable this check during tests!
2013                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2014                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
2015                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2016                         }
2017                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
2018                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
2019                         }
2020                 }
2021
2022                 log_gossip!(self.logger, "Updating channel {} in direction {} with timestamp {}", msg.short_channel_id, msg.flags & 1, msg.timestamp);
2023
2024                 let mut channels = self.channels.write().unwrap();
2025                 match channels.get_mut(&msg.short_channel_id) {
2026                         None => {
2027                                 core::mem::drop(channels);
2028                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
2029                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
2030                         },
2031                         Some(channel) => {
2032                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
2033                                         return Err(LightningError{err:
2034                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
2035                                                 action: ErrorAction::IgnoreError});
2036                                 }
2037
2038                                 if let Some(capacity_sats) = channel.capacity_sats {
2039                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
2040                                         // Don't query UTXO set here to reduce DoS risks.
2041                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
2042                                                 return Err(LightningError{err:
2043                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
2044                                                         action: ErrorAction::IgnoreError});
2045                                         }
2046                                 }
2047                                 macro_rules! check_update_latest {
2048                                         ($target: expr) => {
2049                                                 if let Some(existing_chan_info) = $target.as_ref() {
2050                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
2051                                                         // order updates to ensure you always have the latest one, only
2052                                                         // suggesting  that it be at least the current time. For
2053                                                         // channel_updates specifically, the BOLTs discuss the possibility of
2054                                                         // pruning based on the timestamp field being more than two weeks old,
2055                                                         // but only in the non-normative section.
2056                                                         if existing_chan_info.last_update > msg.timestamp {
2057                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2058                                                         } else if existing_chan_info.last_update == msg.timestamp {
2059                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
2060                                                         }
2061                                                 }
2062                                         }
2063                                 }
2064
2065                                 macro_rules! get_new_channel_info {
2066                                         () => { {
2067                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
2068                                                         { full_msg.cloned() } else { None };
2069
2070                                                 let updated_channel_update_info = ChannelUpdateInfo {
2071                                                         enabled: chan_enabled,
2072                                                         last_update: msg.timestamp,
2073                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
2074                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
2075                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
2076                                                         fees: RoutingFees {
2077                                                                 base_msat: msg.fee_base_msat,
2078                                                                 proportional_millionths: msg.fee_proportional_millionths,
2079                                                         },
2080                                                         last_update_message
2081                                                 };
2082                                                 Some(updated_channel_update_info)
2083                                         } }
2084                                 }
2085
2086                                 let msg_hash = hash_to_message!(&message_sha256d_hash(&msg)[..]);
2087                                 if msg.flags & 1 == 1 {
2088                                         check_update_latest!(channel.two_to_one);
2089                                         if let Some(sig) = sig {
2090                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
2091                                                         err: "Couldn't parse source node pubkey".to_owned(),
2092                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2093                                                 })?, "channel_update");
2094                                         }
2095                                         if !only_verify {
2096                                                 channel.two_to_one = get_new_channel_info!();
2097                                         }
2098                                 } else {
2099                                         check_update_latest!(channel.one_to_two);
2100                                         if let Some(sig) = sig {
2101                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
2102                                                         err: "Couldn't parse destination node pubkey".to_owned(),
2103                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2104                                                 })?, "channel_update");
2105                                         }
2106                                         if !only_verify {
2107                                                 channel.one_to_two = get_new_channel_info!();
2108                                         }
2109                                 }
2110                         }
2111                 }
2112
2113                 Ok(())
2114         }
2115
2116         fn remove_channel_in_nodes(&self, nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
2117                 macro_rules! remove_from_node {
2118                         ($node_id: expr) => {
2119                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
2120                                         entry.get_mut().channels.retain(|chan_id| {
2121                                                 short_channel_id != *chan_id
2122                                         });
2123                                         if entry.get().channels.is_empty() {
2124                                                 self.removed_node_counters.lock().unwrap().push(entry.get().node_counter);
2125                                                 entry.remove_entry();
2126                                         }
2127                                 } else {
2128                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
2129                                 }
2130                         }
2131                 }
2132
2133                 remove_from_node!(chan.node_one);
2134                 remove_from_node!(chan.node_two);
2135         }
2136 }
2137
2138 impl ReadOnlyNetworkGraph<'_> {
2139         /// Returns all known valid channels' short ids along with announced channel info.
2140         ///
2141         /// This is not exported to bindings users because we don't want to return lifetime'd references
2142         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
2143                 &*self.channels
2144         }
2145
2146         /// Returns information on a channel with the given id.
2147         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
2148                 self.channels.get(&short_channel_id)
2149         }
2150
2151         #[cfg(c_bindings)] // Non-bindings users should use `channels`
2152         /// Returns the list of channels in the graph
2153         pub fn list_channels(&self) -> Vec<u64> {
2154                 self.channels.unordered_keys().map(|c| *c).collect()
2155         }
2156
2157         /// Returns all known nodes' public keys along with announced node info.
2158         ///
2159         /// This is not exported to bindings users because we don't want to return lifetime'd references
2160         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
2161                 &*self.nodes
2162         }
2163
2164         /// Returns information on a node with the given id.
2165         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
2166                 self.nodes.get(node_id)
2167         }
2168
2169         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2170         /// Returns the list of nodes in the graph
2171         pub fn list_nodes(&self) -> Vec<NodeId> {
2172                 self.nodes.unordered_keys().map(|n| *n).collect()
2173         }
2174
2175         /// Get network addresses by node id.
2176         /// Returns None if the requested node is completely unknown,
2177         /// or if node announcement for the node was never received.
2178         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<SocketAddress>> {
2179                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2180                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2181         }
2182
2183         /// Gets the maximum possible node_counter for a node in this graph
2184         pub(crate) fn max_node_counter(&self) -> u32 {
2185                 self.max_node_counter
2186         }
2187 }
2188
2189 #[cfg(test)]
2190 pub(crate) mod tests {
2191         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2192         use crate::ln::channelmanager;
2193         use crate::ln::chan_utils::make_funding_redeemscript;
2194         #[cfg(feature = "std")]
2195         use crate::ln::features::InitFeatures;
2196         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2197         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2198         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2199                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2200                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2201         use crate::util::config::UserConfig;
2202         use crate::util::test_utils;
2203         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2204         use crate::util::scid_utils::scid_from_parts;
2205
2206         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2207         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2208
2209         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2210         use bitcoin::hashes::Hash;
2211         use bitcoin::hashes::hex::FromHex;
2212         use bitcoin::network::constants::Network;
2213         use bitcoin::blockdata::constants::ChainHash;
2214         use bitcoin::blockdata::script::ScriptBuf;
2215         use bitcoin::blockdata::transaction::TxOut;
2216         use bitcoin::secp256k1::{PublicKey, SecretKey};
2217         use bitcoin::secp256k1::{All, Secp256k1};
2218
2219         use crate::io;
2220         use bitcoin::secp256k1;
2221         use crate::prelude::*;
2222         use crate::sync::Arc;
2223
2224         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2225                 let logger = Arc::new(test_utils::TestLogger::new());
2226                 NetworkGraph::new(Network::Testnet, logger)
2227         }
2228
2229         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2230                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2231                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2232         ) {
2233                 let secp_ctx = Secp256k1::new();
2234                 let logger = Arc::new(test_utils::TestLogger::new());
2235                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2236                 (secp_ctx, gossip_sync)
2237         }
2238
2239         #[test]
2240         #[cfg(feature = "std")]
2241         fn request_full_sync_finite_times() {
2242                 let network_graph = create_network_graph();
2243                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2244                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&<Vec<u8>>::from_hex("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2245
2246                 assert!(gossip_sync.should_request_full_sync(&node_id));
2247                 assert!(gossip_sync.should_request_full_sync(&node_id));
2248                 assert!(gossip_sync.should_request_full_sync(&node_id));
2249                 assert!(gossip_sync.should_request_full_sync(&node_id));
2250                 assert!(gossip_sync.should_request_full_sync(&node_id));
2251                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2252         }
2253
2254         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2255                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2256                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2257                         features: channelmanager::provided_node_features(&UserConfig::default()),
2258                         timestamp: 100,
2259                         node_id,
2260                         rgb: [0; 3],
2261                         alias: NodeAlias([0; 32]),
2262                         addresses: Vec::new(),
2263                         excess_address_data: Vec::new(),
2264                         excess_data: Vec::new(),
2265                 };
2266                 f(&mut unsigned_announcement);
2267                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2268                 NodeAnnouncement {
2269                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2270                         contents: unsigned_announcement
2271                 }
2272         }
2273
2274         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2275                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2276                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2277                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2278                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2279
2280                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2281                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2282                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2283                         short_channel_id: 0,
2284                         node_id_1: NodeId::from_pubkey(&node_id_1),
2285                         node_id_2: NodeId::from_pubkey(&node_id_2),
2286                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2287                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2288                         excess_data: Vec::new(),
2289                 };
2290                 f(&mut unsigned_announcement);
2291                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2292                 ChannelAnnouncement {
2293                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2294                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2295                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2296                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2297                         contents: unsigned_announcement,
2298                 }
2299         }
2300
2301         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> ScriptBuf {
2302                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2303                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2304                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2305                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2306         }
2307
2308         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2309                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2310                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2311                         short_channel_id: 0,
2312                         timestamp: 100,
2313                         flags: 0,
2314                         cltv_expiry_delta: 144,
2315                         htlc_minimum_msat: 1_000_000,
2316                         htlc_maximum_msat: 1_000_000,
2317                         fee_base_msat: 10_000,
2318                         fee_proportional_millionths: 20,
2319                         excess_data: Vec::new()
2320                 };
2321                 f(&mut unsigned_channel_update);
2322                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2323                 ChannelUpdate {
2324                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2325                         contents: unsigned_channel_update
2326                 }
2327         }
2328
2329         #[test]
2330         fn handling_node_announcements() {
2331                 let network_graph = create_network_graph();
2332                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2333
2334                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2335                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2336                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2337
2338                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2339                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2340                         Ok(_) => panic!(),
2341                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2342                 };
2343
2344                 {
2345                         // Announce a channel to add a corresponding node.
2346                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2347                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2348                                 Ok(res) => assert!(res),
2349                                 _ => panic!()
2350                         };
2351                 }
2352
2353                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2354                         Ok(res) => assert!(res),
2355                         Err(_) => panic!()
2356                 };
2357
2358                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2359                 match gossip_sync.handle_node_announcement(
2360                         &NodeAnnouncement {
2361                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2362                                 contents: valid_announcement.contents.clone()
2363                 }) {
2364                         Ok(_) => panic!(),
2365                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2366                 };
2367
2368                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2369                         unsigned_announcement.timestamp += 1000;
2370                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2371                 }, node_1_privkey, &secp_ctx);
2372                 // Return false because contains excess data.
2373                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2374                         Ok(res) => assert!(!res),
2375                         Err(_) => panic!()
2376                 };
2377
2378                 // Even though previous announcement was not relayed further, we still accepted it,
2379                 // so we now won't accept announcements before the previous one.
2380                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2381                         unsigned_announcement.timestamp += 1000 - 10;
2382                 }, node_1_privkey, &secp_ctx);
2383                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2384                         Ok(_) => panic!(),
2385                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2386                 };
2387         }
2388
2389         #[test]
2390         fn handling_channel_announcements() {
2391                 let secp_ctx = Secp256k1::new();
2392                 let logger = test_utils::TestLogger::new();
2393
2394                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2395                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2396
2397                 let good_script = get_channel_script(&secp_ctx);
2398                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2399
2400                 // Test if the UTXO lookups were not supported
2401                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2402                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2403                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2404                         Ok(res) => assert!(res),
2405                         _ => panic!()
2406                 };
2407
2408                 {
2409                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2410                                 None => panic!(),
2411                                 Some(_) => ()
2412                         };
2413                 }
2414
2415                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2416                 // drop new one on the floor, since we can't see any changes.
2417                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2418                         Ok(_) => panic!(),
2419                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2420                 };
2421
2422                 // Test if an associated transaction were not on-chain (or not confirmed).
2423                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2424                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2425                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2426                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2427
2428                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2429                         unsigned_announcement.short_channel_id += 1;
2430                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2431                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2432                         Ok(_) => panic!(),
2433                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2434                 };
2435
2436                 // Now test if the transaction is found in the UTXO set and the script is correct.
2437                 *chain_source.utxo_ret.lock().unwrap() =
2438                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2439                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2440                         unsigned_announcement.short_channel_id += 2;
2441                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2442                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2443                         Ok(res) => assert!(res),
2444                         _ => panic!()
2445                 };
2446
2447                 {
2448                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2449                                 None => panic!(),
2450                                 Some(_) => ()
2451                         };
2452                 }
2453
2454                 // If we receive announcement for the same channel, once we've validated it against the
2455                 // chain, we simply ignore all new (duplicate) announcements.
2456                 *chain_source.utxo_ret.lock().unwrap() =
2457                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2458                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2459                         Ok(_) => panic!(),
2460                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2461                 };
2462
2463                 #[cfg(feature = "std")]
2464                 {
2465                         use std::time::{SystemTime, UNIX_EPOCH};
2466
2467                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2468                         // Mark a node as permanently failed so it's tracked as removed.
2469                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2470
2471                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2472                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2473                                 unsigned_announcement.short_channel_id += 3;
2474                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2475                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2476                                 Ok(_) => panic!(),
2477                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2478                         }
2479
2480                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2481
2482                         // The above channel announcement should be handled as per normal now.
2483                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2484                                 Ok(res) => assert!(res),
2485                                 _ => panic!()
2486                         }
2487                 }
2488
2489                 // Don't relay valid channels with excess data
2490                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2491                         unsigned_announcement.short_channel_id += 4;
2492                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2493                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2494                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2495                         Ok(res) => assert!(!res),
2496                         _ => panic!()
2497                 };
2498
2499                 let mut invalid_sig_announcement = valid_announcement.clone();
2500                 invalid_sig_announcement.contents.excess_data = Vec::new();
2501                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2502                         Ok(_) => panic!(),
2503                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2504                 };
2505
2506                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2507                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2508                         Ok(_) => panic!(),
2509                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2510                 };
2511
2512                 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2513                 // announcement is mainnet).
2514                 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2515                         unsigned_announcement.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2516                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2517                 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2518                         Ok(_) => panic!(),
2519                         Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2520                 };
2521         }
2522
2523         #[test]
2524         fn handling_channel_update() {
2525                 let secp_ctx = Secp256k1::new();
2526                 let logger = test_utils::TestLogger::new();
2527                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2528                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2529                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2530
2531                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2532                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2533
2534                 let amount_sats = 1000_000;
2535                 let short_channel_id;
2536
2537                 {
2538                         // Announce a channel we will update
2539                         let good_script = get_channel_script(&secp_ctx);
2540                         *chain_source.utxo_ret.lock().unwrap() =
2541                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2542
2543                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2544                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2545                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2546                                 Ok(_) => (),
2547                                 Err(_) => panic!()
2548                         };
2549
2550                 }
2551
2552                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2553                 network_graph.verify_channel_update(&valid_channel_update).unwrap();
2554                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2555                         Ok(res) => assert!(res),
2556                         _ => panic!(),
2557                 };
2558
2559                 {
2560                         match network_graph.read_only().channels().get(&short_channel_id) {
2561                                 None => panic!(),
2562                                 Some(channel_info) => {
2563                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2564                                         assert!(channel_info.two_to_one.is_none());
2565                                 }
2566                         };
2567                 }
2568
2569                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2570                         unsigned_channel_update.timestamp += 100;
2571                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2572                 }, node_1_privkey, &secp_ctx);
2573                 // Return false because contains excess data
2574                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2575                         Ok(res) => assert!(!res),
2576                         _ => panic!()
2577                 };
2578
2579                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2580                         unsigned_channel_update.timestamp += 110;
2581                         unsigned_channel_update.short_channel_id += 1;
2582                 }, node_1_privkey, &secp_ctx);
2583                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2584                         Ok(_) => panic!(),
2585                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2586                 };
2587
2588                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2589                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2590                         unsigned_channel_update.timestamp += 110;
2591                 }, node_1_privkey, &secp_ctx);
2592                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2593                         Ok(_) => panic!(),
2594                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2595                 };
2596
2597                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2598                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2599                         unsigned_channel_update.timestamp += 110;
2600                 }, node_1_privkey, &secp_ctx);
2601                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2602                         Ok(_) => panic!(),
2603                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2604                 };
2605
2606                 // Even though previous update was not relayed further, we still accepted it,
2607                 // so we now won't accept update before the previous one.
2608                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2609                         unsigned_channel_update.timestamp += 100;
2610                 }, node_1_privkey, &secp_ctx);
2611                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2612                         Ok(_) => panic!(),
2613                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2614                 };
2615
2616                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2617                         unsigned_channel_update.timestamp += 500;
2618                 }, node_1_privkey, &secp_ctx);
2619                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2620                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2621                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2622                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2623                         Ok(_) => panic!(),
2624                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2625                 };
2626
2627                 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2628                 // update is mainet).
2629                 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2630                         unsigned_channel_update.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2631                 }, node_1_privkey, &secp_ctx);
2632
2633                 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2634                         Ok(_) => panic!(),
2635                         Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2636                 };
2637         }
2638
2639         #[test]
2640         fn handling_network_update() {
2641                 let logger = test_utils::TestLogger::new();
2642                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2643                 let secp_ctx = Secp256k1::new();
2644
2645                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2646                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2647                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2648
2649                 {
2650                         // There is no nodes in the table at the beginning.
2651                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2652                 }
2653
2654                 let short_channel_id;
2655                 {
2656                         // Check we won't apply an update via `handle_network_update` for privacy reasons, but
2657                         // can continue fine if we manually apply it.
2658                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2659                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2660                         let chain_source: Option<&test_utils::TestChainSource> = None;
2661                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2662                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2663
2664                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2665                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2666
2667                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2668                                 msg: valid_channel_update.clone(),
2669                         });
2670
2671                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2672                         network_graph.update_channel(&valid_channel_update).unwrap();
2673                 }
2674
2675                 // Non-permanent failure doesn't touch the channel at all
2676                 {
2677                         match network_graph.read_only().channels().get(&short_channel_id) {
2678                                 None => panic!(),
2679                                 Some(channel_info) => {
2680                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2681                                 }
2682                         };
2683
2684                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2685                                 short_channel_id,
2686                                 is_permanent: false,
2687                         });
2688
2689                         match network_graph.read_only().channels().get(&short_channel_id) {
2690                                 None => panic!(),
2691                                 Some(channel_info) => {
2692                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2693                                 }
2694                         };
2695                 }
2696
2697                 // Permanent closing deletes a channel
2698                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2699                         short_channel_id,
2700                         is_permanent: true,
2701                 });
2702
2703                 assert_eq!(network_graph.read_only().channels().len(), 0);
2704                 // Nodes are also deleted because there are no associated channels anymore
2705                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2706
2707                 {
2708                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2709                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2710
2711                         // Announce a channel to test permanent node failure
2712                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2713                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2714                         let chain_source: Option<&test_utils::TestChainSource> = None;
2715                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2716                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2717
2718                         // Non-permanent node failure does not delete any nodes or channels
2719                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2720                                 node_id: node_2_id,
2721                                 is_permanent: false,
2722                         });
2723
2724                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2725                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2726
2727                         // Permanent node failure deletes node and its channels
2728                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2729                                 node_id: node_2_id,
2730                                 is_permanent: true,
2731                         });
2732
2733                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2734                         // Channels are also deleted because the associated node has been deleted
2735                         assert_eq!(network_graph.read_only().channels().len(), 0);
2736                 }
2737         }
2738
2739         #[test]
2740         fn test_channel_timeouts() {
2741                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2742                 let logger = test_utils::TestLogger::new();
2743                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2744                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2745                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2746                 let secp_ctx = Secp256k1::new();
2747
2748                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2749                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2750
2751                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2752                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2753                 let chain_source: Option<&test_utils::TestChainSource> = None;
2754                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2755                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2756
2757                 // Submit two channel updates for each channel direction (update.flags bit).
2758                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2759                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2760                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2761
2762                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2763                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2764                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2765
2766                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2767                 assert_eq!(network_graph.read_only().channels().len(), 1);
2768                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2769
2770                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2771                 #[cfg(not(feature = "std"))] {
2772                         // Make sure removed channels are tracked.
2773                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2774                 }
2775                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2776                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2777
2778                 #[cfg(feature = "std")]
2779                 {
2780                         // In std mode, a further check is performed before fully removing the channel -
2781                         // the channel_announcement must have been received at least two weeks ago. We
2782                         // fudge that here by indicating the time has jumped two weeks.
2783                         assert_eq!(network_graph.read_only().channels().len(), 1);
2784                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2785
2786                         // Note that the directional channel information will have been removed already..
2787                         // We want to check that this will work even if *one* of the channel updates is recent,
2788                         // so we should add it with a recent timestamp.
2789                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2790                         use std::time::{SystemTime, UNIX_EPOCH};
2791                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2792                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2793                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2794                         }, node_1_privkey, &secp_ctx);
2795                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2796                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2797                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2798                         // Make sure removed channels are tracked.
2799                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2800                         // Provide a later time so that sufficient time has passed
2801                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2802                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2803                 }
2804
2805                 assert_eq!(network_graph.read_only().channels().len(), 0);
2806                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2807                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2808
2809                 #[cfg(feature = "std")]
2810                 {
2811                         use std::time::{SystemTime, UNIX_EPOCH};
2812
2813                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2814
2815                         // Clear tracked nodes and channels for clean slate
2816                         network_graph.removed_channels.lock().unwrap().clear();
2817                         network_graph.removed_nodes.lock().unwrap().clear();
2818
2819                         // Add a channel and nodes from channel announcement. So our network graph will
2820                         // now only consist of two nodes and one channel between them.
2821                         assert!(network_graph.update_channel_from_announcement(
2822                                 &valid_channel_announcement, &chain_source).is_ok());
2823
2824                         // Mark the channel as permanently failed. This will also remove the two nodes
2825                         // and all of the entries will be tracked as removed.
2826                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2827
2828                         // Should not remove from tracking if insufficient time has passed
2829                         network_graph.remove_stale_channels_and_tracking_with_time(
2830                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2831                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2832
2833                         // Provide a later time so that sufficient time has passed
2834                         network_graph.remove_stale_channels_and_tracking_with_time(
2835                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2836                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2837                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2838                 }
2839
2840                 #[cfg(not(feature = "std"))]
2841                 {
2842                         // When we don't have access to the system clock, the time we started tracking removal will only
2843                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2844                         // only if sufficient time has passed after that first call, will the next call remove it from
2845                         // tracking.
2846                         let removal_time = 1664619654;
2847
2848                         // Clear removed nodes and channels for clean slate
2849                         network_graph.removed_channels.lock().unwrap().clear();
2850                         network_graph.removed_nodes.lock().unwrap().clear();
2851
2852                         // Add a channel and nodes from channel announcement. So our network graph will
2853                         // now only consist of two nodes and one channel between them.
2854                         assert!(network_graph.update_channel_from_announcement(
2855                                 &valid_channel_announcement, &chain_source).is_ok());
2856
2857                         // Mark the channel as permanently failed. This will also remove the two nodes
2858                         // and all of the entries will be tracked as removed.
2859                         network_graph.channel_failed_permanent(short_channel_id);
2860
2861                         // The first time we call the following, the channel will have a removal time assigned.
2862                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2863                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2864
2865                         // Provide a later time so that sufficient time has passed
2866                         network_graph.remove_stale_channels_and_tracking_with_time(
2867                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2868                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2869                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2870                 }
2871         }
2872
2873         #[test]
2874         fn getting_next_channel_announcements() {
2875                 let network_graph = create_network_graph();
2876                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2877                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2878                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2879
2880                 // Channels were not announced yet.
2881                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2882                 assert!(channels_with_announcements.is_none());
2883
2884                 let short_channel_id;
2885                 {
2886                         // Announce a channel we will update
2887                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2888                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2889                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2890                                 Ok(_) => (),
2891                                 Err(_) => panic!()
2892                         };
2893                 }
2894
2895                 // Contains initial channel announcement now.
2896                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2897                 if let Some(channel_announcements) = channels_with_announcements {
2898                         let (_, ref update_1, ref update_2) = channel_announcements;
2899                         assert_eq!(update_1, &None);
2900                         assert_eq!(update_2, &None);
2901                 } else {
2902                         panic!();
2903                 }
2904
2905                 {
2906                         // Valid channel update
2907                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2908                                 unsigned_channel_update.timestamp = 101;
2909                         }, node_1_privkey, &secp_ctx);
2910                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2911                                 Ok(_) => (),
2912                                 Err(_) => panic!()
2913                         };
2914                 }
2915
2916                 // Now contains an initial announcement and an update.
2917                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2918                 if let Some(channel_announcements) = channels_with_announcements {
2919                         let (_, ref update_1, ref update_2) = channel_announcements;
2920                         assert_ne!(update_1, &None);
2921                         assert_eq!(update_2, &None);
2922                 } else {
2923                         panic!();
2924                 }
2925
2926                 {
2927                         // Channel update with excess data.
2928                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2929                                 unsigned_channel_update.timestamp = 102;
2930                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2931                         }, node_1_privkey, &secp_ctx);
2932                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2933                                 Ok(_) => (),
2934                                 Err(_) => panic!()
2935                         };
2936                 }
2937
2938                 // Test that announcements with excess data won't be returned
2939                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2940                 if let Some(channel_announcements) = channels_with_announcements {
2941                         let (_, ref update_1, ref update_2) = channel_announcements;
2942                         assert_eq!(update_1, &None);
2943                         assert_eq!(update_2, &None);
2944                 } else {
2945                         panic!();
2946                 }
2947
2948                 // Further starting point have no channels after it
2949                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2950                 assert!(channels_with_announcements.is_none());
2951         }
2952
2953         #[test]
2954         fn getting_next_node_announcements() {
2955                 let network_graph = create_network_graph();
2956                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2957                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2958                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2959                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2960
2961                 // No nodes yet.
2962                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2963                 assert!(next_announcements.is_none());
2964
2965                 {
2966                         // Announce a channel to add 2 nodes
2967                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2968                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2969                                 Ok(_) => (),
2970                                 Err(_) => panic!()
2971                         };
2972                 }
2973
2974                 // Nodes were never announced
2975                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2976                 assert!(next_announcements.is_none());
2977
2978                 {
2979                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2980                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2981                                 Ok(_) => (),
2982                                 Err(_) => panic!()
2983                         };
2984
2985                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2986                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2987                                 Ok(_) => (),
2988                                 Err(_) => panic!()
2989                         };
2990                 }
2991
2992                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2993                 assert!(next_announcements.is_some());
2994
2995                 // Skip the first node.
2996                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2997                 assert!(next_announcements.is_some());
2998
2999                 {
3000                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
3001                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
3002                                 unsigned_announcement.timestamp += 10;
3003                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
3004                         }, node_2_privkey, &secp_ctx);
3005                         match gossip_sync.handle_node_announcement(&valid_announcement) {
3006                                 Ok(res) => assert!(!res),
3007                                 Err(_) => panic!()
3008                         };
3009                 }
3010
3011                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
3012                 assert!(next_announcements.is_none());
3013         }
3014
3015         #[test]
3016         fn network_graph_serialization() {
3017                 let network_graph = create_network_graph();
3018                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3019
3020                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3021                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3022
3023                 // Announce a channel to add a corresponding node.
3024                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
3025                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
3026                         Ok(res) => assert!(res),
3027                         _ => panic!()
3028                 };
3029
3030                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
3031                 match gossip_sync.handle_node_announcement(&valid_announcement) {
3032                         Ok(_) => (),
3033                         Err(_) => panic!()
3034                 };
3035
3036                 let mut w = test_utils::TestVecWriter(Vec::new());
3037                 assert!(!network_graph.read_only().nodes().is_empty());
3038                 assert!(!network_graph.read_only().channels().is_empty());
3039                 network_graph.write(&mut w).unwrap();
3040
3041                 let logger = Arc::new(test_utils::TestLogger::new());
3042                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
3043         }
3044
3045         #[test]
3046         fn network_graph_tlv_serialization() {
3047                 let network_graph = create_network_graph();
3048                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
3049
3050                 let mut w = test_utils::TestVecWriter(Vec::new());
3051                 network_graph.write(&mut w).unwrap();
3052
3053                 let logger = Arc::new(test_utils::TestLogger::new());
3054                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
3055                 assert!(reassembled_network_graph == network_graph);
3056                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
3057         }
3058
3059         #[test]
3060         #[cfg(feature = "std")]
3061         fn calling_sync_routing_table() {
3062                 use std::time::{SystemTime, UNIX_EPOCH};
3063                 use crate::ln::msgs::Init;
3064
3065                 let network_graph = create_network_graph();
3066                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3067                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
3068                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
3069
3070                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3071
3072                 // It should ignore if gossip_queries feature is not enabled
3073                 {
3074                         let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
3075                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3076                         let events = gossip_sync.get_and_clear_pending_msg_events();
3077                         assert_eq!(events.len(), 0);
3078                 }
3079
3080                 // It should send a gossip_timestamp_filter with the correct information
3081                 {
3082                         let mut features = InitFeatures::empty();
3083                         features.set_gossip_queries_optional();
3084                         let init_msg = Init { features, networks: None, remote_network_address: None };
3085                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
3086                         let events = gossip_sync.get_and_clear_pending_msg_events();
3087                         assert_eq!(events.len(), 1);
3088                         match &events[0] {
3089                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
3090                                         assert_eq!(node_id, &node_id_1);
3091                                         assert_eq!(msg.chain_hash, chain_hash);
3092                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
3093                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
3094                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
3095                                         assert_eq!(msg.timestamp_range, u32::max_value());
3096                                 },
3097                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
3098                         };
3099                 }
3100         }
3101
3102         #[test]
3103         fn handling_query_channel_range() {
3104                 let network_graph = create_network_graph();
3105                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3106
3107                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3108                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3109                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3110                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
3111
3112                 let mut scids: Vec<u64> = vec![
3113                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
3114                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
3115                 ];
3116
3117                 // used for testing multipart reply across blocks
3118                 for block in 100000..=108001 {
3119                         scids.push(scid_from_parts(block, 0, 0).unwrap());
3120                 }
3121
3122                 // used for testing resumption on same block
3123                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
3124
3125                 for scid in scids {
3126                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
3127                                 unsigned_announcement.short_channel_id = scid;
3128                         }, node_1_privkey, node_2_privkey, &secp_ctx);
3129                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
3130                                 Ok(_) => (),
3131                                 _ => panic!()
3132                         };
3133                 }
3134
3135                 // Error when number_of_blocks=0
3136                 do_handling_query_channel_range(
3137                         &gossip_sync,
3138                         &node_id_2,
3139                         QueryChannelRange {
3140                                 chain_hash: chain_hash.clone(),
3141                                 first_blocknum: 0,
3142                                 number_of_blocks: 0,
3143                         },
3144                         false,
3145                         vec![ReplyChannelRange {
3146                                 chain_hash: chain_hash.clone(),
3147                                 first_blocknum: 0,
3148                                 number_of_blocks: 0,
3149                                 sync_complete: true,
3150                                 short_channel_ids: vec![]
3151                         }]
3152                 );
3153
3154                 // Error when wrong chain
3155                 do_handling_query_channel_range(
3156                         &gossip_sync,
3157                         &node_id_2,
3158                         QueryChannelRange {
3159                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3160                                 first_blocknum: 0,
3161                                 number_of_blocks: 0xffff_ffff,
3162                         },
3163                         false,
3164                         vec![ReplyChannelRange {
3165                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3166                                 first_blocknum: 0,
3167                                 number_of_blocks: 0xffff_ffff,
3168                                 sync_complete: true,
3169                                 short_channel_ids: vec![],
3170                         }]
3171                 );
3172
3173                 // Error when first_blocknum > 0xffffff
3174                 do_handling_query_channel_range(
3175                         &gossip_sync,
3176                         &node_id_2,
3177                         QueryChannelRange {
3178                                 chain_hash: chain_hash.clone(),
3179                                 first_blocknum: 0x01000000,
3180                                 number_of_blocks: 0xffff_ffff,
3181                         },
3182                         false,
3183                         vec![ReplyChannelRange {
3184                                 chain_hash: chain_hash.clone(),
3185                                 first_blocknum: 0x01000000,
3186                                 number_of_blocks: 0xffff_ffff,
3187                                 sync_complete: true,
3188                                 short_channel_ids: vec![]
3189                         }]
3190                 );
3191
3192                 // Empty reply when max valid SCID block num
3193                 do_handling_query_channel_range(
3194                         &gossip_sync,
3195                         &node_id_2,
3196                         QueryChannelRange {
3197                                 chain_hash: chain_hash.clone(),
3198                                 first_blocknum: 0xffffff,
3199                                 number_of_blocks: 1,
3200                         },
3201                         true,
3202                         vec![
3203                                 ReplyChannelRange {
3204                                         chain_hash: chain_hash.clone(),
3205                                         first_blocknum: 0xffffff,
3206                                         number_of_blocks: 1,
3207                                         sync_complete: true,
3208                                         short_channel_ids: vec![]
3209                                 },
3210                         ]
3211                 );
3212
3213                 // No results in valid query range
3214                 do_handling_query_channel_range(
3215                         &gossip_sync,
3216                         &node_id_2,
3217                         QueryChannelRange {
3218                                 chain_hash: chain_hash.clone(),
3219                                 first_blocknum: 1000,
3220                                 number_of_blocks: 1000,
3221                         },
3222                         true,
3223                         vec![
3224                                 ReplyChannelRange {
3225                                         chain_hash: chain_hash.clone(),
3226                                         first_blocknum: 1000,
3227                                         number_of_blocks: 1000,
3228                                         sync_complete: true,
3229                                         short_channel_ids: vec![],
3230                                 }
3231                         ]
3232                 );
3233
3234                 // Overflow first_blocknum + number_of_blocks
3235                 do_handling_query_channel_range(
3236                         &gossip_sync,
3237                         &node_id_2,
3238                         QueryChannelRange {
3239                                 chain_hash: chain_hash.clone(),
3240                                 first_blocknum: 0xfe0000,
3241                                 number_of_blocks: 0xffffffff,
3242                         },
3243                         true,
3244                         vec![
3245                                 ReplyChannelRange {
3246                                         chain_hash: chain_hash.clone(),
3247                                         first_blocknum: 0xfe0000,
3248                                         number_of_blocks: 0xffffffff - 0xfe0000,
3249                                         sync_complete: true,
3250                                         short_channel_ids: vec![
3251                                                 0xfffffe_ffffff_ffff, // max
3252                                         ]
3253                                 }
3254                         ]
3255                 );
3256
3257                 // Single block exactly full
3258                 do_handling_query_channel_range(
3259                         &gossip_sync,
3260                         &node_id_2,
3261                         QueryChannelRange {
3262                                 chain_hash: chain_hash.clone(),
3263                                 first_blocknum: 100000,
3264                                 number_of_blocks: 8000,
3265                         },
3266                         true,
3267                         vec![
3268                                 ReplyChannelRange {
3269                                         chain_hash: chain_hash.clone(),
3270                                         first_blocknum: 100000,
3271                                         number_of_blocks: 8000,
3272                                         sync_complete: true,
3273                                         short_channel_ids: (100000..=107999)
3274                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3275                                                 .collect(),
3276                                 },
3277                         ]
3278                 );
3279
3280                 // Multiple split on new block
3281                 do_handling_query_channel_range(
3282                         &gossip_sync,
3283                         &node_id_2,
3284                         QueryChannelRange {
3285                                 chain_hash: chain_hash.clone(),
3286                                 first_blocknum: 100000,
3287                                 number_of_blocks: 8001,
3288                         },
3289                         true,
3290                         vec![
3291                                 ReplyChannelRange {
3292                                         chain_hash: chain_hash.clone(),
3293                                         first_blocknum: 100000,
3294                                         number_of_blocks: 7999,
3295                                         sync_complete: false,
3296                                         short_channel_ids: (100000..=107999)
3297                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3298                                                 .collect(),
3299                                 },
3300                                 ReplyChannelRange {
3301                                         chain_hash: chain_hash.clone(),
3302                                         first_blocknum: 107999,
3303                                         number_of_blocks: 2,
3304                                         sync_complete: true,
3305                                         short_channel_ids: vec![
3306                                                 scid_from_parts(108000, 0, 0).unwrap(),
3307                                         ],
3308                                 }
3309                         ]
3310                 );
3311
3312                 // Multiple split on same block
3313                 do_handling_query_channel_range(
3314                         &gossip_sync,
3315                         &node_id_2,
3316                         QueryChannelRange {
3317                                 chain_hash: chain_hash.clone(),
3318                                 first_blocknum: 100002,
3319                                 number_of_blocks: 8000,
3320                         },
3321                         true,
3322                         vec![
3323                                 ReplyChannelRange {
3324                                         chain_hash: chain_hash.clone(),
3325                                         first_blocknum: 100002,
3326                                         number_of_blocks: 7999,
3327                                         sync_complete: false,
3328                                         short_channel_ids: (100002..=108001)
3329                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3330                                                 .collect(),
3331                                 },
3332                                 ReplyChannelRange {
3333                                         chain_hash: chain_hash.clone(),
3334                                         first_blocknum: 108001,
3335                                         number_of_blocks: 1,
3336                                         sync_complete: true,
3337                                         short_channel_ids: vec![
3338                                                 scid_from_parts(108001, 1, 0).unwrap(),
3339                                         ],
3340                                 }
3341                         ]
3342                 );
3343         }
3344
3345         fn do_handling_query_channel_range(
3346                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3347                 test_node_id: &PublicKey,
3348                 msg: QueryChannelRange,
3349                 expected_ok: bool,
3350                 expected_replies: Vec<ReplyChannelRange>
3351         ) {
3352                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3353                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3354                 let query_end_blocknum = msg.end_blocknum();
3355                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3356
3357                 if expected_ok {
3358                         assert!(result.is_ok());
3359                 } else {
3360                         assert!(result.is_err());
3361                 }
3362
3363                 let events = gossip_sync.get_and_clear_pending_msg_events();
3364                 assert_eq!(events.len(), expected_replies.len());
3365
3366                 for i in 0..events.len() {
3367                         let expected_reply = &expected_replies[i];
3368                         match &events[i] {
3369                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3370                                         assert_eq!(node_id, test_node_id);
3371                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3372                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3373                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3374                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3375                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3376
3377                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3378                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3379                                         assert!(msg.first_blocknum >= max_firstblocknum);
3380                                         max_firstblocknum = msg.first_blocknum;
3381                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3382
3383                                         // Check that the last block count is >= the query's end_blocknum
3384                                         if i == events.len() - 1 {
3385                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3386                                         }
3387                                 },
3388                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3389                         }
3390                 }
3391         }
3392
3393         #[test]
3394         fn handling_query_short_channel_ids() {
3395                 let network_graph = create_network_graph();
3396                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3397                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3398                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3399
3400                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3401
3402                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3403                         chain_hash,
3404                         short_channel_ids: vec![0x0003e8_000000_0000],
3405                 });
3406                 assert!(result.is_err());
3407         }
3408
3409         #[test]
3410         fn displays_node_alias() {
3411                 let format_str_alias = |alias: &str| {
3412                         let mut bytes = [0u8; 32];
3413                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3414                         format!("{}", NodeAlias(bytes))
3415                 };
3416
3417                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3418                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3419                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3420
3421                 let format_bytes_alias = |alias: &[u8]| {
3422                         let mut bytes = [0u8; 32];
3423                         bytes[..alias.len()].copy_from_slice(alias);
3424                         format!("{}", NodeAlias(bytes))
3425                 };
3426
3427                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3428                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3429                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3430         }
3431
3432         #[test]
3433         fn channel_info_is_readable() {
3434                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3435                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3436                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3437                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3438                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3439
3440                 // 1. Test encoding/decoding of ChannelUpdateInfo
3441                 let chan_update_info = ChannelUpdateInfo {
3442                         last_update: 23,
3443                         enabled: true,
3444                         cltv_expiry_delta: 42,
3445                         htlc_minimum_msat: 1234,
3446                         htlc_maximum_msat: 5678,
3447                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3448                         last_update_message: None,
3449                 };
3450
3451                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3452                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3453
3454                 // First make sure we can read ChannelUpdateInfos we just wrote
3455                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3456                 assert_eq!(chan_update_info, read_chan_update_info);
3457
3458                 // Check the serialization hasn't changed.
3459                 let legacy_chan_update_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3460                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3461
3462                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3463                 // or the ChannelUpdate enclosed with `last_update_message`.
3464                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = <Vec<u8>>::from_hex("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3465                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3466                 assert!(read_chan_update_info_res.is_err());
3467
3468                 let legacy_chan_update_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3469                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3470                 assert!(read_chan_update_info_res.is_err());
3471
3472                 // 2. Test encoding/decoding of ChannelInfo
3473                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3474                 let chan_info_none_updates = ChannelInfo {
3475                         features: channelmanager::provided_channel_features(&config),
3476                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3477                         one_to_two: None,
3478                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3479                         two_to_one: None,
3480                         capacity_sats: None,
3481                         announcement_message: None,
3482                         announcement_received_time: 87654,
3483                         node_one_counter: 0,
3484                         node_two_counter: 1,
3485                 };
3486
3487                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3488                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3489
3490                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3491                 assert_eq!(chan_info_none_updates, read_chan_info);
3492
3493                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3494                 let chan_info_some_updates = ChannelInfo {
3495                         features: channelmanager::provided_channel_features(&config),
3496                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3497                         one_to_two: Some(chan_update_info.clone()),
3498                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3499                         two_to_one: Some(chan_update_info.clone()),
3500                         capacity_sats: None,
3501                         announcement_message: None,
3502                         announcement_received_time: 87654,
3503                         node_one_counter: 0,
3504                         node_two_counter: 1,
3505                 };
3506
3507                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3508                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3509
3510                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3511                 assert_eq!(chan_info_some_updates, read_chan_info);
3512
3513                 // Check the serialization hasn't changed.
3514                 let legacy_chan_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3515                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3516
3517                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3518                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3519                 let legacy_chan_info_with_some_and_fail_update = <Vec<u8>>::from_hex("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3520                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3521                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3522                 assert_eq!(read_chan_info.one_to_two, None);
3523                 assert_eq!(read_chan_info.two_to_one, None);
3524
3525                 let legacy_chan_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3526                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3527                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3528                 assert_eq!(read_chan_info.one_to_two, None);
3529                 assert_eq!(read_chan_info.two_to_one, None);
3530         }
3531
3532         #[test]
3533         fn node_info_is_readable() {
3534                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3535                 let announcement_message = <Vec<u8>>::from_hex("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3536                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3537                 let valid_node_ann_info = NodeAnnouncementInfo {
3538                         features: channelmanager::provided_node_features(&UserConfig::default()),
3539                         last_update: 0,
3540                         rgb: [0u8; 3],
3541                         alias: NodeAlias([0u8; 32]),
3542                         announcement_message: Some(announcement_message)
3543                 };
3544
3545                 let mut encoded_valid_node_ann_info = Vec::new();
3546                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3547                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3548                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3549                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3550
3551                 let encoded_invalid_node_ann_info = <Vec<u8>>::from_hex("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3552                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3553                 assert!(read_invalid_node_ann_info_res.is_err());
3554
3555                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3556                 let valid_node_info = NodeInfo {
3557                         channels: Vec::new(),
3558                         announcement_info: Some(valid_node_ann_info),
3559                         node_counter: 0,
3560                 };
3561
3562                 let mut encoded_valid_node_info = Vec::new();
3563                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3564                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3565                 assert_eq!(read_valid_node_info, valid_node_info);
3566
3567                 let encoded_invalid_node_info_hex = <Vec<u8>>::from_hex("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3568                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3569                 assert_eq!(read_invalid_node_info.announcement_info, None);
3570         }
3571
3572         #[test]
3573         fn test_node_info_keeps_compatibility() {
3574                 let old_ann_info_with_addresses = <Vec<u8>>::from_hex("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3575                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3576                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3577                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3578                 assert!(ann_info_with_addresses.addresses().is_empty());
3579         }
3580
3581         #[test]
3582         fn test_node_id_display() {
3583                 let node_id = NodeId([42; 33]);
3584                 assert_eq!(format!("{}", &node_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
3585         }
3586 }
3587
3588 #[cfg(ldk_bench)]
3589 pub mod benches {
3590         use super::*;
3591         use std::io::Read;
3592         use criterion::{black_box, Criterion};
3593
3594         pub fn read_network_graph(bench: &mut Criterion) {
3595                 let logger = crate::util::test_utils::TestLogger::new();
3596                 let (mut d, _) = crate::routing::router::bench_utils::get_graph_scorer_file().unwrap();
3597                 let mut v = Vec::new();
3598                 d.read_to_end(&mut v).unwrap();
3599                 bench.bench_function("read_network_graph", |b| b.iter(||
3600                         NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3601                 ));
3602         }
3603
3604         pub fn write_network_graph(bench: &mut Criterion) {
3605                 let logger = crate::util::test_utils::TestLogger::new();
3606                 let (mut d, _) = crate::routing::router::bench_utils::get_graph_scorer_file().unwrap();
3607                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3608                 bench.bench_function("write_network_graph", |b| b.iter(||
3609                         black_box(&net_graph).encode()
3610                 ));
3611         }
3612 }