OR NodeFeatures from both Channel and Routing message handlers
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
126         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
127         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
128         genesis_hash: BlockHash,
129         logger: L,
130         // Lock order: channels -> nodes
131         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
132         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
133 }
134
135 /// A read-only view of [`NetworkGraph`].
136 pub struct ReadOnlyNetworkGraph<'a> {
137         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
138         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
139 }
140
141 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
142 /// return packet by a node along the route. See [BOLT #4] for details.
143 ///
144 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
145 #[derive(Clone, Debug, PartialEq)]
146 pub enum NetworkUpdate {
147         /// An error indicating a `channel_update` messages should be applied via
148         /// [`NetworkGraph::update_channel`].
149         ChannelUpdateMessage {
150                 /// The update to apply via [`NetworkGraph::update_channel`].
151                 msg: ChannelUpdate,
152         },
153         /// An error indicating that a channel failed to route a payment, which should be applied via
154         /// [`NetworkGraph::channel_failed`].
155         ChannelFailure {
156                 /// The short channel id of the closed channel.
157                 short_channel_id: u64,
158                 /// Whether the channel should be permanently removed or temporarily disabled until a new
159                 /// `channel_update` message is received.
160                 is_permanent: bool,
161         },
162         /// An error indicating that a node failed to route a payment, which should be applied via
163         /// [`NetworkGraph::node_failed`].
164         NodeFailure {
165                 /// The node id of the failed node.
166                 node_id: PublicKey,
167                 /// Whether the node should be permanently removed from consideration or can be restored
168                 /// when a new `channel_update` message is received.
169                 is_permanent: bool,
170         }
171 }
172
173 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
174         (0, ChannelUpdateMessage) => {
175                 (0, msg, required),
176         },
177         (2, ChannelFailure) => {
178                 (0, short_channel_id, required),
179                 (2, is_permanent, required),
180         },
181         (4, NodeFailure) => {
182                 (0, node_id, required),
183                 (2, is_permanent, required),
184         },
185 );
186
187 /// Receives and validates network updates from peers,
188 /// stores authentic and relevant data as a network graph.
189 /// This network graph is then used for routing payments.
190 /// Provides interface to help with initial routing sync by
191 /// serving historical announcements.
192 ///
193 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
194 /// [`NetworkGraph`].
195 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
196 where C::Target: chain::Access, L::Target: Logger
197 {
198         network_graph: G,
199         chain_access: Option<C>,
200         full_syncs_requested: AtomicUsize,
201         pending_events: Mutex<Vec<MessageSendEvent>>,
202         logger: L,
203 }
204
205 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
206 where C::Target: chain::Access, L::Target: Logger
207 {
208         /// Creates a new tracker of the actual state of the network of channels and nodes,
209         /// assuming an existing Network Graph.
210         /// Chain monitor is used to make sure announced channels exist on-chain,
211         /// channel data is correct, and that the announcement is signed with
212         /// channel owners' keys.
213         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
214                 P2PGossipSync {
215                         network_graph,
216                         full_syncs_requested: AtomicUsize::new(0),
217                         chain_access,
218                         pending_events: Mutex::new(vec![]),
219                         logger,
220                 }
221         }
222
223         /// Adds a provider used to check new announcements. Does not affect
224         /// existing announcements unless they are updated.
225         /// Add, update or remove the provider would replace the current one.
226         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
227                 self.chain_access = chain_access;
228         }
229
230         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
231         /// [`P2PGossipSync::new`].
232         ///
233         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
234         pub fn network_graph(&self) -> &G {
235                 &self.network_graph
236         }
237
238         /// Returns true when a full routing table sync should be performed with a peer.
239         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
240                 //TODO: Determine whether to request a full sync based on the network map.
241                 const FULL_SYNCS_TO_REQUEST: usize = 5;
242                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
243                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
244                         true
245                 } else {
246                         false
247                 }
248         }
249 }
250
251 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
252         fn handle_event(&self, event: &Event) {
253                 if let Event::PaymentPathFailed { network_update, .. } = event {
254                         if let Some(network_update) = network_update {
255                                 match *network_update {
256                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
257                                                 let short_channel_id = msg.contents.short_channel_id;
258                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
259                                                 let status = if is_enabled { "enabled" } else { "disabled" };
260                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
261                                                 let _ = self.update_channel(msg);
262                                         },
263                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
264                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
265                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
266                                                 self.channel_failed(short_channel_id, is_permanent);
267                                         },
268                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
269                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
270                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
271                                                 self.node_failed(node_id, is_permanent);
272                                         },
273                                 }
274                         }
275                 }
276         }
277 }
278
279 macro_rules! secp_verify_sig {
280         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
281                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
282                         Ok(_) => {},
283                         Err(_) => {
284                                 return Err(LightningError {
285                                         err: format!("Invalid signature on {} message", $msg_type),
286                                         action: ErrorAction::SendWarningMessage {
287                                                 msg: msgs::WarningMessage {
288                                                         channel_id: [0; 32],
289                                                         data: format!("Invalid signature on {} message", $msg_type),
290                                                 },
291                                                 log_level: Level::Trace,
292                                         },
293                                 });
294                         },
295                 }
296         };
297 }
298
299 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
300 where C::Target: chain::Access, L::Target: Logger
301 {
302         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
303                 self.network_graph.update_node_from_announcement(msg)?;
304                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
305                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
306                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
307         }
308
309         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
310                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
311                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
312                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
313         }
314
315         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
316                 self.network_graph.update_channel(msg)?;
317                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
318         }
319
320         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
321                 let channels = self.network_graph.channels.read().unwrap();
322                 for (_, ref chan) in channels.range(starting_point..) {
323                         if chan.announcement_message.is_some() {
324                                 let chan_announcement = chan.announcement_message.clone().unwrap();
325                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
326                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
327                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
328                                         one_to_two_announcement = one_to_two.last_update_message.clone();
329                                 }
330                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
331                                         two_to_one_announcement = two_to_one.last_update_message.clone();
332                                 }
333                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
334                         } else {
335                                 // TODO: We may end up sending un-announced channel_updates if we are sending
336                                 // initial sync data while receiving announce/updates for this channel.
337                         }
338                 }
339                 None
340         }
341
342         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
343                 let nodes = self.network_graph.nodes.read().unwrap();
344                 let iter = if let Some(pubkey) = starting_point {
345                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
346                         } else {
347                                 nodes.range(..)
348                         };
349                 for (_, ref node) in iter {
350                         if let Some(node_info) = node.announcement_info.as_ref() {
351                                 if let Some(msg) = node_info.announcement_message.clone() {
352                                         return Some(msg);
353                                 }
354                         }
355                 }
356                 None
357         }
358
359         /// Initiates a stateless sync of routing gossip information with a peer
360         /// using gossip_queries. The default strategy used by this implementation
361         /// is to sync the full block range with several peers.
362         ///
363         /// We should expect one or more reply_channel_range messages in response
364         /// to our query_channel_range. Each reply will enqueue a query_scid message
365         /// to request gossip messages for each channel. The sync is considered complete
366         /// when the final reply_scids_end message is received, though we are not
367         /// tracking this directly.
368         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
369                 // We will only perform a sync with peers that support gossip_queries.
370                 if !init_msg.features.supports_gossip_queries() {
371                         return ();
372                 }
373
374                 // The lightning network's gossip sync system is completely broken in numerous ways.
375                 //
376                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
377                 // to do a full sync from the first few peers we connect to, and then receive gossip
378                 // updates from all our peers normally.
379                 //
380                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
381                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
382                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
383                 // seen.
384                 //
385                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
386                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
387                 // channel data which you are missing. Except there was no way at all to identify which
388                 // `channel_update`s you were missing, so you still had to request everything, just in a
389                 // very complicated way with some queries instead of just getting the dump.
390                 //
391                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
392                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
393                 // relying on it useless.
394                 //
395                 // After gossip queries were introduced, support for receiving a full gossip table dump on
396                 // connection was removed from several nodes, making it impossible to get a full sync
397                 // without using the "gossip queries" messages.
398                 //
399                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
400                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
401                 // message, as the name implies, tells the peer to not forward any gossip messages with a
402                 // timestamp older than a given value (not the time the peer received the filter, but the
403                 // timestamp in the update message, which is often hours behind when the peer received the
404                 // message).
405                 //
406                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
407                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
408                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
409                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
410                 // will simply not forward any new updates they see to you which were generated some time
411                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
412                 // ago), you will always get the full routing graph from all your peers.
413                 //
414                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
415                 // propagated some time after it was generated, and, worse, often disable gossiping with
416                 // several peers after their first connection. The second behavior can cause gossip to not
417                 // propagate fully if there are cuts in the gossiping subgraph.
418                 //
419                 // In an attempt to cut a middle ground between always fetching the full graph from all of
420                 // our peers and never receiving gossip from peers at all, we send all of our peers a
421                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
422                 //
423                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
424                 let should_request_full_sync = self.should_request_full_sync(&their_node_id);
425                 #[allow(unused_mut, unused_assignments)]
426                 let mut gossip_start_time = 0;
427                 #[cfg(feature = "std")]
428                 {
429                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
430                         if should_request_full_sync {
431                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
432                         } else {
433                                 gossip_start_time -= 60 * 60; // an hour ago
434                         }
435                 }
436
437                 let mut pending_events = self.pending_events.lock().unwrap();
438                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
439                         node_id: their_node_id.clone(),
440                         msg: GossipTimestampFilter {
441                                 chain_hash: self.network_graph.genesis_hash,
442                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
443                                 timestamp_range: u32::max_value(),
444                         },
445                 });
446         }
447
448         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
449                 // We don't make queries, so should never receive replies. If, in the future, the set
450                 // reconciliation extensions to gossip queries become broadly supported, we should revert
451                 // this code to its state pre-0.0.106.
452                 Ok(())
453         }
454
455         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
456                 // We don't make queries, so should never receive replies. If, in the future, the set
457                 // reconciliation extensions to gossip queries become broadly supported, we should revert
458                 // this code to its state pre-0.0.106.
459                 Ok(())
460         }
461
462         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
463         /// are in the specified block range. Due to message size limits, large range
464         /// queries may result in several reply messages. This implementation enqueues
465         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
466         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
467         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
468         /// memory constrained systems.
469         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
470                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
471
472                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
473
474                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
475                 // If so, we manually cap the ending block to avoid this overflow.
476                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
477
478                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
479                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
480                         let mut pending_events = self.pending_events.lock().unwrap();
481                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
482                                 node_id: their_node_id.clone(),
483                                 msg: ReplyChannelRange {
484                                         chain_hash: msg.chain_hash.clone(),
485                                         first_blocknum: msg.first_blocknum,
486                                         number_of_blocks: msg.number_of_blocks,
487                                         sync_complete: true,
488                                         short_channel_ids: vec![],
489                                 }
490                         });
491                         return Err(LightningError {
492                                 err: String::from("query_channel_range could not be processed"),
493                                 action: ErrorAction::IgnoreError,
494                         });
495                 }
496
497                 // Creates channel batches. We are not checking if the channel is routable
498                 // (has at least one update). A peer may still want to know the channel
499                 // exists even if its not yet routable.
500                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
501                 let channels = self.network_graph.channels.read().unwrap();
502                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
503                         if let Some(chan_announcement) = &chan.announcement_message {
504                                 // Construct a new batch if last one is full
505                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
506                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
507                                 }
508
509                                 let batch = batches.last_mut().unwrap();
510                                 batch.push(chan_announcement.contents.short_channel_id);
511                         }
512                 }
513                 drop(channels);
514
515                 let mut pending_events = self.pending_events.lock().unwrap();
516                 let batch_count = batches.len();
517                 let mut prev_batch_endblock = msg.first_blocknum;
518                 for (batch_index, batch) in batches.into_iter().enumerate() {
519                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
520                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
521                         //
522                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
523                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
524                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
525                         // significant diversion from the requirements set by the spec, and, in case of blocks
526                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
527                         // and *not* derive the first_blocknum from the actual first block of the reply.
528                         let first_blocknum = prev_batch_endblock;
529
530                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
531                         // fit in. Though there is no requirement that we use exactly the number of blocks its
532                         // contents are from, except for the bogus requirements c-lightning enforces, above.
533                         //
534                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
535                         // >= the query's end block. Thus, for the last reply, we calculate the difference
536                         // between the query's end block and the start of the reply.
537                         //
538                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
539                         // first_blocknum will be either msg.first_blocknum or a higher block height.
540                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
541                                 (true, msg.end_blocknum() - first_blocknum)
542                         }
543                         // Prior replies should use the number of blocks that fit into the reply. Overflow
544                         // safe since first_blocknum is always <= last SCID's block.
545                         else {
546                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
547                         };
548
549                         prev_batch_endblock = first_blocknum + number_of_blocks;
550
551                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
552                                 node_id: their_node_id.clone(),
553                                 msg: ReplyChannelRange {
554                                         chain_hash: msg.chain_hash.clone(),
555                                         first_blocknum,
556                                         number_of_blocks,
557                                         sync_complete,
558                                         short_channel_ids: batch,
559                                 }
560                         });
561                 }
562
563                 Ok(())
564         }
565
566         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
567                 // TODO
568                 Err(LightningError {
569                         err: String::from("Not implemented"),
570                         action: ErrorAction::IgnoreError,
571                 })
572         }
573
574         fn provided_node_features(&self) -> NodeFeatures {
575                 let mut features = NodeFeatures::empty();
576                 features.set_gossip_queries_optional();
577                 features
578         }
579
580         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
581                 let mut features = InitFeatures::empty();
582                 features.set_gossip_queries_optional();
583                 features
584         }
585 }
586
587 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
588 where
589         C::Target: chain::Access,
590         L::Target: Logger,
591 {
592         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
593                 let mut ret = Vec::new();
594                 let mut pending_events = self.pending_events.lock().unwrap();
595                 core::mem::swap(&mut ret, &mut pending_events);
596                 ret
597         }
598 }
599
600 #[derive(Clone, Debug, PartialEq)]
601 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
602 pub struct ChannelUpdateInfo {
603         /// When the last update to the channel direction was issued.
604         /// Value is opaque, as set in the announcement.
605         pub last_update: u32,
606         /// Whether the channel can be currently used for payments (in this one direction).
607         pub enabled: bool,
608         /// The difference in CLTV values that you must have when routing through this channel.
609         pub cltv_expiry_delta: u16,
610         /// The minimum value, which must be relayed to the next hop via the channel
611         pub htlc_minimum_msat: u64,
612         /// The maximum value which may be relayed to the next hop via the channel.
613         pub htlc_maximum_msat: u64,
614         /// Fees charged when the channel is used for routing
615         pub fees: RoutingFees,
616         /// Most recent update for the channel received from the network
617         /// Mostly redundant with the data we store in fields explicitly.
618         /// Everything else is useful only for sending out for initial routing sync.
619         /// Not stored if contains excess data to prevent DoS.
620         pub last_update_message: Option<ChannelUpdate>,
621 }
622
623 impl fmt::Display for ChannelUpdateInfo {
624         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
625                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
626                 Ok(())
627         }
628 }
629
630 impl Writeable for ChannelUpdateInfo {
631         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
632                 write_tlv_fields!(writer, {
633                         (0, self.last_update, required),
634                         (2, self.enabled, required),
635                         (4, self.cltv_expiry_delta, required),
636                         (6, self.htlc_minimum_msat, required),
637                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
638                         // compatibility with LDK versions prior to v0.0.110.
639                         (8, Some(self.htlc_maximum_msat), required),
640                         (10, self.fees, required),
641                         (12, self.last_update_message, required),
642                 });
643                 Ok(())
644         }
645 }
646
647 impl Readable for ChannelUpdateInfo {
648         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
649                 init_tlv_field_var!(last_update, required);
650                 init_tlv_field_var!(enabled, required);
651                 init_tlv_field_var!(cltv_expiry_delta, required);
652                 init_tlv_field_var!(htlc_minimum_msat, required);
653                 init_tlv_field_var!(htlc_maximum_msat, option);
654                 init_tlv_field_var!(fees, required);
655                 init_tlv_field_var!(last_update_message, required);
656
657                 read_tlv_fields!(reader, {
658                         (0, last_update, required),
659                         (2, enabled, required),
660                         (4, cltv_expiry_delta, required),
661                         (6, htlc_minimum_msat, required),
662                         (8, htlc_maximum_msat, required),
663                         (10, fees, required),
664                         (12, last_update_message, required)
665                 });
666
667                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
668                         Ok(ChannelUpdateInfo {
669                                 last_update: init_tlv_based_struct_field!(last_update, required),
670                                 enabled: init_tlv_based_struct_field!(enabled, required),
671                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
672                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
673                                 htlc_maximum_msat,
674                                 fees: init_tlv_based_struct_field!(fees, required),
675                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
676                         })
677                 } else {
678                         Err(DecodeError::InvalidValue)
679                 }
680         }
681 }
682
683 #[derive(Clone, Debug, PartialEq)]
684 /// Details about a channel (both directions).
685 /// Received within a channel announcement.
686 pub struct ChannelInfo {
687         /// Protocol features of a channel communicated during its announcement
688         pub features: ChannelFeatures,
689         /// Source node of the first direction of a channel
690         pub node_one: NodeId,
691         /// Details about the first direction of a channel
692         pub one_to_two: Option<ChannelUpdateInfo>,
693         /// Source node of the second direction of a channel
694         pub node_two: NodeId,
695         /// Details about the second direction of a channel
696         pub two_to_one: Option<ChannelUpdateInfo>,
697         /// The channel capacity as seen on-chain, if chain lookup is available.
698         pub capacity_sats: Option<u64>,
699         /// An initial announcement of the channel
700         /// Mostly redundant with the data we store in fields explicitly.
701         /// Everything else is useful only for sending out for initial routing sync.
702         /// Not stored if contains excess data to prevent DoS.
703         pub announcement_message: Option<ChannelAnnouncement>,
704         /// The timestamp when we received the announcement, if we are running with feature = "std"
705         /// (which we can probably assume we are - no-std environments probably won't have a full
706         /// network graph in memory!).
707         announcement_received_time: u64,
708 }
709
710 impl ChannelInfo {
711         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
712         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
713         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
714                 let (direction, source) = {
715                         if target == &self.node_one {
716                                 (self.two_to_one.as_ref(), &self.node_two)
717                         } else if target == &self.node_two {
718                                 (self.one_to_two.as_ref(), &self.node_one)
719                         } else {
720                                 return None;
721                         }
722                 };
723                 Some((DirectedChannelInfo::new(self, direction), source))
724         }
725
726         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
727         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
728         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
729                 let (direction, target) = {
730                         if source == &self.node_one {
731                                 (self.one_to_two.as_ref(), &self.node_two)
732                         } else if source == &self.node_two {
733                                 (self.two_to_one.as_ref(), &self.node_one)
734                         } else {
735                                 return None;
736                         }
737                 };
738                 Some((DirectedChannelInfo::new(self, direction), target))
739         }
740
741         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
742         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
743                 let direction = channel_flags & 1u8;
744                 if direction == 0 {
745                         self.one_to_two.as_ref()
746                 } else {
747                         self.two_to_one.as_ref()
748                 }
749         }
750 }
751
752 impl fmt::Display for ChannelInfo {
753         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
754                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
755                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
756                 Ok(())
757         }
758 }
759
760 impl Writeable for ChannelInfo {
761         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
762                 write_tlv_fields!(writer, {
763                         (0, self.features, required),
764                         (1, self.announcement_received_time, (default_value, 0)),
765                         (2, self.node_one, required),
766                         (4, self.one_to_two, required),
767                         (6, self.node_two, required),
768                         (8, self.two_to_one, required),
769                         (10, self.capacity_sats, required),
770                         (12, self.announcement_message, required),
771                 });
772                 Ok(())
773         }
774 }
775
776 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
777 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
778 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
779 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
780 // channel updates via the gossip network.
781 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
782
783 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
784         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
785                 match ::util::ser::Readable::read(reader) {
786                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
787                         Err(DecodeError::ShortRead) => Ok(None),
788                         Err(DecodeError::InvalidValue) => Ok(None),
789                         Err(err) => Err(err),
790                 }
791         }
792 }
793
794 impl Readable for ChannelInfo {
795         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
796                 init_tlv_field_var!(features, required);
797                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
798                 init_tlv_field_var!(node_one, required);
799                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
800                 init_tlv_field_var!(node_two, required);
801                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
802                 init_tlv_field_var!(capacity_sats, required);
803                 init_tlv_field_var!(announcement_message, required);
804                 read_tlv_fields!(reader, {
805                         (0, features, required),
806                         (1, announcement_received_time, (default_value, 0)),
807                         (2, node_one, required),
808                         (4, one_to_two_wrap, ignorable),
809                         (6, node_two, required),
810                         (8, two_to_one_wrap, ignorable),
811                         (10, capacity_sats, required),
812                         (12, announcement_message, required),
813                 });
814
815                 Ok(ChannelInfo {
816                         features: init_tlv_based_struct_field!(features, required),
817                         node_one: init_tlv_based_struct_field!(node_one, required),
818                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
819                         node_two: init_tlv_based_struct_field!(node_two, required),
820                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
821                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
822                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
823                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
824                 })
825         }
826 }
827
828 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
829 /// source node to a target node.
830 #[derive(Clone)]
831 pub struct DirectedChannelInfo<'a> {
832         channel: &'a ChannelInfo,
833         direction: Option<&'a ChannelUpdateInfo>,
834         htlc_maximum_msat: u64,
835         effective_capacity: EffectiveCapacity,
836 }
837
838 impl<'a> DirectedChannelInfo<'a> {
839         #[inline]
840         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
841                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
842                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
843
844                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
845                         (Some(amount_msat), Some(capacity_msat)) => {
846                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
847                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
848                         },
849                         (Some(amount_msat), None) => {
850                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
851                         },
852                         (None, Some(capacity_msat)) => {
853                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
854                         },
855                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
856                 };
857
858                 Self {
859                         channel, direction, htlc_maximum_msat, effective_capacity
860                 }
861         }
862
863         /// Returns information for the channel.
864         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
865
866         /// Returns information for the direction.
867         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
868
869         /// Returns the maximum HTLC amount allowed over the channel in the direction.
870         pub fn htlc_maximum_msat(&self) -> u64 {
871                 self.htlc_maximum_msat
872         }
873
874         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
875         ///
876         /// This is either the total capacity from the funding transaction, if known, or the
877         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
878         /// otherwise.
879         pub fn effective_capacity(&self) -> EffectiveCapacity {
880                 self.effective_capacity
881         }
882
883         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
884         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
885                 match self.direction {
886                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
887                         None => None,
888                 }
889         }
890 }
891
892 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
893         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
894                 f.debug_struct("DirectedChannelInfo")
895                         .field("channel", &self.channel)
896                         .finish()
897         }
898 }
899
900 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
901 #[derive(Clone)]
902 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
903         inner: DirectedChannelInfo<'a>,
904 }
905
906 impl<'a> DirectedChannelInfoWithUpdate<'a> {
907         /// Returns information for the channel.
908         #[inline]
909         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
910
911         /// Returns information for the direction.
912         #[inline]
913         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
914
915         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
916         #[inline]
917         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
918 }
919
920 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
921         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
922                 self.inner.fmt(f)
923         }
924 }
925
926 /// The effective capacity of a channel for routing purposes.
927 ///
928 /// While this may be smaller than the actual channel capacity, amounts greater than
929 /// [`Self::as_msat`] should not be routed through the channel.
930 #[derive(Clone, Copy, Debug)]
931 pub enum EffectiveCapacity {
932         /// The available liquidity in the channel known from being a channel counterparty, and thus a
933         /// direct hop.
934         ExactLiquidity {
935                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
936                 /// millisatoshi.
937                 liquidity_msat: u64,
938         },
939         /// The maximum HTLC amount in one direction as advertised on the gossip network.
940         MaximumHTLC {
941                 /// The maximum HTLC amount denominated in millisatoshi.
942                 amount_msat: u64,
943         },
944         /// The total capacity of the channel as determined by the funding transaction.
945         Total {
946                 /// The funding amount denominated in millisatoshi.
947                 capacity_msat: u64,
948                 /// The maximum HTLC amount denominated in millisatoshi.
949                 htlc_maximum_msat: Option<u64>
950         },
951         /// A capacity sufficient to route any payment, typically used for private channels provided by
952         /// an invoice.
953         Infinite,
954         /// A capacity that is unknown possibly because either the chain state is unavailable to know
955         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
956         Unknown,
957 }
958
959 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
960 /// use when making routing decisions.
961 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
962
963 impl EffectiveCapacity {
964         /// Returns the effective capacity denominated in millisatoshi.
965         pub fn as_msat(&self) -> u64 {
966                 match self {
967                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
968                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
969                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
970                         EffectiveCapacity::Infinite => u64::max_value(),
971                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
972                 }
973         }
974 }
975
976 /// Fees for routing via a given channel or a node
977 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
978 pub struct RoutingFees {
979         /// Flat routing fee in satoshis
980         pub base_msat: u32,
981         /// Liquidity-based routing fee in millionths of a routed amount.
982         /// In other words, 10000 is 1%.
983         pub proportional_millionths: u32,
984 }
985
986 impl_writeable_tlv_based!(RoutingFees, {
987         (0, base_msat, required),
988         (2, proportional_millionths, required)
989 });
990
991 #[derive(Clone, Debug, PartialEq)]
992 /// Information received in the latest node_announcement from this node.
993 pub struct NodeAnnouncementInfo {
994         /// Protocol features the node announced support for
995         pub features: NodeFeatures,
996         /// When the last known update to the node state was issued.
997         /// Value is opaque, as set in the announcement.
998         pub last_update: u32,
999         /// Color assigned to the node
1000         pub rgb: [u8; 3],
1001         /// Moniker assigned to the node.
1002         /// May be invalid or malicious (eg control chars),
1003         /// should not be exposed to the user.
1004         pub alias: NodeAlias,
1005         /// Internet-level addresses via which one can connect to the node
1006         pub addresses: Vec<NetAddress>,
1007         /// An initial announcement of the node
1008         /// Mostly redundant with the data we store in fields explicitly.
1009         /// Everything else is useful only for sending out for initial routing sync.
1010         /// Not stored if contains excess data to prevent DoS.
1011         pub announcement_message: Option<NodeAnnouncement>
1012 }
1013
1014 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1015         (0, features, required),
1016         (2, last_update, required),
1017         (4, rgb, required),
1018         (6, alias, required),
1019         (8, announcement_message, option),
1020         (10, addresses, vec_type),
1021 });
1022
1023 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1024 ///
1025 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1026 /// attacks. Care must be taken when processing.
1027 #[derive(Clone, Debug, PartialEq)]
1028 pub struct NodeAlias(pub [u8; 32]);
1029
1030 impl fmt::Display for NodeAlias {
1031         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1032                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1033                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1034                 let bytes = self.0.split_at(first_null).0;
1035                 match core::str::from_utf8(bytes) {
1036                         Ok(alias) => {
1037                                 for c in alias.chars() {
1038                                         let mut bytes = [0u8; 4];
1039                                         let c = if !c.is_control() { c } else { control_symbol };
1040                                         f.write_str(c.encode_utf8(&mut bytes))?;
1041                                 }
1042                         },
1043                         Err(_) => {
1044                                 for c in bytes.iter().map(|b| *b as char) {
1045                                         // Display printable ASCII characters
1046                                         let mut bytes = [0u8; 4];
1047                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1048                                         f.write_str(c.encode_utf8(&mut bytes))?;
1049                                 }
1050                         },
1051                 };
1052                 Ok(())
1053         }
1054 }
1055
1056 impl Writeable for NodeAlias {
1057         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1058                 self.0.write(w)
1059         }
1060 }
1061
1062 impl Readable for NodeAlias {
1063         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1064                 Ok(NodeAlias(Readable::read(r)?))
1065         }
1066 }
1067
1068 #[derive(Clone, Debug, PartialEq)]
1069 /// Details about a node in the network, known from the network announcement.
1070 pub struct NodeInfo {
1071         /// All valid channels a node has announced
1072         pub channels: Vec<u64>,
1073         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1074         /// The two fields (flat and proportional fee) are independent,
1075         /// meaning they don't have to refer to the same channel.
1076         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1077         /// More information about a node from node_announcement.
1078         /// Optional because we store a Node entry after learning about it from
1079         /// a channel announcement, but before receiving a node announcement.
1080         pub announcement_info: Option<NodeAnnouncementInfo>
1081 }
1082
1083 impl fmt::Display for NodeInfo {
1084         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1085                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1086                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1087                 Ok(())
1088         }
1089 }
1090
1091 impl Writeable for NodeInfo {
1092         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1093                 write_tlv_fields!(writer, {
1094                         (0, self.lowest_inbound_channel_fees, option),
1095                         (2, self.announcement_info, option),
1096                         (4, self.channels, vec_type),
1097                 });
1098                 Ok(())
1099         }
1100 }
1101
1102 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1103 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1104 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1105 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1106 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1107
1108 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1109         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1110                 match ::util::ser::Readable::read(reader) {
1111                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1112                         Err(_) => {
1113                                 copy(reader, &mut sink()).unwrap();
1114                                 return Ok(None)
1115                         },
1116                 };
1117         }
1118 }
1119
1120 impl Readable for NodeInfo {
1121         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1122                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1123                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1124                 init_tlv_field_var!(channels, vec_type);
1125
1126                 read_tlv_fields!(reader, {
1127                         (0, lowest_inbound_channel_fees, option),
1128                         (2, announcement_info_wrap, ignorable),
1129                         (4, channels, vec_type),
1130                 });
1131
1132                 Ok(NodeInfo {
1133                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1134                         announcement_info: announcement_info_wrap.map(|w| w.0),
1135                         channels: init_tlv_based_struct_field!(channels, vec_type),
1136                 })
1137         }
1138 }
1139
1140 const SERIALIZATION_VERSION: u8 = 1;
1141 const MIN_SERIALIZATION_VERSION: u8 = 1;
1142
1143 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1144         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1145                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1146
1147                 self.genesis_hash.write(writer)?;
1148                 let channels = self.channels.read().unwrap();
1149                 (channels.len() as u64).write(writer)?;
1150                 for (ref chan_id, ref chan_info) in channels.iter() {
1151                         (*chan_id).write(writer)?;
1152                         chan_info.write(writer)?;
1153                 }
1154                 let nodes = self.nodes.read().unwrap();
1155                 (nodes.len() as u64).write(writer)?;
1156                 for (ref node_id, ref node_info) in nodes.iter() {
1157                         node_id.write(writer)?;
1158                         node_info.write(writer)?;
1159                 }
1160
1161                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1162                 write_tlv_fields!(writer, {
1163                         (1, last_rapid_gossip_sync_timestamp, option),
1164                 });
1165                 Ok(())
1166         }
1167 }
1168
1169 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1170         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1171                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1172
1173                 let genesis_hash: BlockHash = Readable::read(reader)?;
1174                 let channels_count: u64 = Readable::read(reader)?;
1175                 let mut channels = BTreeMap::new();
1176                 for _ in 0..channels_count {
1177                         let chan_id: u64 = Readable::read(reader)?;
1178                         let chan_info = Readable::read(reader)?;
1179                         channels.insert(chan_id, chan_info);
1180                 }
1181                 let nodes_count: u64 = Readable::read(reader)?;
1182                 let mut nodes = BTreeMap::new();
1183                 for _ in 0..nodes_count {
1184                         let node_id = Readable::read(reader)?;
1185                         let node_info = Readable::read(reader)?;
1186                         nodes.insert(node_id, node_info);
1187                 }
1188
1189                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1190                 read_tlv_fields!(reader, {
1191                         (1, last_rapid_gossip_sync_timestamp, option),
1192                 });
1193
1194                 Ok(NetworkGraph {
1195                         secp_ctx: Secp256k1::verification_only(),
1196                         genesis_hash,
1197                         logger,
1198                         channels: RwLock::new(channels),
1199                         nodes: RwLock::new(nodes),
1200                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1201                 })
1202         }
1203 }
1204
1205 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1206         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1207                 writeln!(f, "Network map\n[Channels]")?;
1208                 for (key, val) in self.channels.read().unwrap().iter() {
1209                         writeln!(f, " {}: {}", key, val)?;
1210                 }
1211                 writeln!(f, "[Nodes]")?;
1212                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1213                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1214                 }
1215                 Ok(())
1216         }
1217 }
1218
1219 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1220         fn eq(&self, other: &Self) -> bool {
1221                 self.genesis_hash == other.genesis_hash &&
1222                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1223                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1224         }
1225 }
1226
1227 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1228         /// Creates a new, empty, network graph.
1229         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1230                 Self {
1231                         secp_ctx: Secp256k1::verification_only(),
1232                         genesis_hash,
1233                         logger,
1234                         channels: RwLock::new(BTreeMap::new()),
1235                         nodes: RwLock::new(BTreeMap::new()),
1236                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1237                 }
1238         }
1239
1240         /// Returns a read-only view of the network graph.
1241         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1242                 let channels = self.channels.read().unwrap();
1243                 let nodes = self.nodes.read().unwrap();
1244                 ReadOnlyNetworkGraph {
1245                         channels,
1246                         nodes,
1247                 }
1248         }
1249
1250         /// The unix timestamp provided by the most recent rapid gossip sync.
1251         /// It will be set by the rapid sync process after every sync completion.
1252         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1253                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1254         }
1255
1256         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1257         /// This should be done automatically by the rapid sync process after every sync completion.
1258         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1259                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1260         }
1261
1262         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1263         /// purposes.
1264         #[cfg(test)]
1265         pub fn clear_nodes_announcement_info(&self) {
1266                 for node in self.nodes.write().unwrap().iter_mut() {
1267                         node.1.announcement_info = None;
1268                 }
1269         }
1270
1271         /// For an already known node (from channel announcements), update its stored properties from a
1272         /// given node announcement.
1273         ///
1274         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1275         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1276         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1277         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1278                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1279                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1280                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1281         }
1282
1283         /// For an already known node (from channel announcements), update its stored properties from a
1284         /// given node announcement without verifying the associated signatures. Because we aren't
1285         /// given the associated signatures here we cannot relay the node announcement to any of our
1286         /// peers.
1287         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1288                 self.update_node_from_announcement_intern(msg, None)
1289         }
1290
1291         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1292                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1293                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1294                         Some(node) => {
1295                                 if let Some(node_info) = node.announcement_info.as_ref() {
1296                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1297                                         // updates to ensure you always have the latest one, only vaguely suggesting
1298                                         // that it be at least the current time.
1299                                         if node_info.last_update  > msg.timestamp {
1300                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1301                                         } else if node_info.last_update  == msg.timestamp {
1302                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1303                                         }
1304                                 }
1305
1306                                 let should_relay =
1307                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1308                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1309                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1310                                 node.announcement_info = Some(NodeAnnouncementInfo {
1311                                         features: msg.features.clone(),
1312                                         last_update: msg.timestamp,
1313                                         rgb: msg.rgb,
1314                                         alias: NodeAlias(msg.alias),
1315                                         addresses: msg.addresses.clone(),
1316                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1317                                 });
1318
1319                                 Ok(())
1320                         }
1321                 }
1322         }
1323
1324         /// Store or update channel info from a channel announcement.
1325         ///
1326         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1327         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1328         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1329         ///
1330         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1331         /// the corresponding UTXO exists on chain and is correctly-formatted.
1332         pub fn update_channel_from_announcement<C: Deref>(
1333                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1334         ) -> Result<(), LightningError>
1335         where
1336                 C::Target: chain::Access,
1337         {
1338                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1339                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1340                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1341                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1342                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1343                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1344         }
1345
1346         /// Store or update channel info from a channel announcement without verifying the associated
1347         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1348         /// channel announcement to any of our peers.
1349         ///
1350         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1351         /// the corresponding UTXO exists on chain and is correctly-formatted.
1352         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1353                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1354         ) -> Result<(), LightningError>
1355         where
1356                 C::Target: chain::Access,
1357         {
1358                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1359         }
1360
1361         /// Update channel from partial announcement data received via rapid gossip sync
1362         ///
1363         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1364         /// rapid gossip sync server)
1365         ///
1366         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1367         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1368                 if node_id_1 == node_id_2 {
1369                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1370                 };
1371
1372                 let node_1 = NodeId::from_pubkey(&node_id_1);
1373                 let node_2 = NodeId::from_pubkey(&node_id_2);
1374                 let channel_info = ChannelInfo {
1375                         features,
1376                         node_one: node_1.clone(),
1377                         one_to_two: None,
1378                         node_two: node_2.clone(),
1379                         two_to_one: None,
1380                         capacity_sats: None,
1381                         announcement_message: None,
1382                         announcement_received_time: timestamp,
1383                 };
1384
1385                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1386         }
1387
1388         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1389                 let mut channels = self.channels.write().unwrap();
1390                 let mut nodes = self.nodes.write().unwrap();
1391
1392                 let node_id_a = channel_info.node_one.clone();
1393                 let node_id_b = channel_info.node_two.clone();
1394
1395                 match channels.entry(short_channel_id) {
1396                         BtreeEntry::Occupied(mut entry) => {
1397                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1398                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1399                                 //exactly how...
1400                                 if utxo_value.is_some() {
1401                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1402                                         // only sometimes returns results. In any case remove the previous entry. Note
1403                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1404                                         // do that because
1405                                         // a) we don't *require* a UTXO provider that always returns results.
1406                                         // b) we don't track UTXOs of channels we know about and remove them if they
1407                                         //    get reorg'd out.
1408                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1409                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1410                                         *entry.get_mut() = channel_info;
1411                                 } else {
1412                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1413                                 }
1414                         },
1415                         BtreeEntry::Vacant(entry) => {
1416                                 entry.insert(channel_info);
1417                         }
1418                 };
1419
1420                 for current_node_id in [node_id_a, node_id_b].iter() {
1421                         match nodes.entry(current_node_id.clone()) {
1422                                 BtreeEntry::Occupied(node_entry) => {
1423                                         node_entry.into_mut().channels.push(short_channel_id);
1424                                 },
1425                                 BtreeEntry::Vacant(node_entry) => {
1426                                         node_entry.insert(NodeInfo {
1427                                                 channels: vec!(short_channel_id),
1428                                                 lowest_inbound_channel_fees: None,
1429                                                 announcement_info: None,
1430                                         });
1431                                 }
1432                         };
1433                 };
1434
1435                 Ok(())
1436         }
1437
1438         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1439                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1440         ) -> Result<(), LightningError>
1441         where
1442                 C::Target: chain::Access,
1443         {
1444                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1445                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1446                 }
1447
1448                 {
1449                         let channels = self.channels.read().unwrap();
1450
1451                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1452                                 if chan.capacity_sats.is_some() {
1453                                         // If we'd previously looked up the channel on-chain and checked the script
1454                                         // against what appears on-chain, ignore the duplicate announcement.
1455                                         //
1456                                         // Because a reorg could replace one channel with another at the same SCID, if
1457                                         // the channel appears to be different, we re-validate. This doesn't expose us
1458                                         // to any more DoS risk than not, as a peer can always flood us with
1459                                         // randomly-generated SCID values anyway.
1460                                         //
1461                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1462                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1463                                         // if the peers on the channel changed anyway.
1464                                         if NodeId::from_pubkey(&msg.node_id_1) == chan.node_one && NodeId::from_pubkey(&msg.node_id_2) == chan.node_two {
1465                                                 return Err(LightningError {
1466                                                         err: "Already have chain-validated channel".to_owned(),
1467                                                         action: ErrorAction::IgnoreDuplicateGossip
1468                                                 });
1469                                         }
1470                                 } else if chain_access.is_none() {
1471                                         // Similarly, if we can't check the chain right now anyway, ignore the
1472                                         // duplicate announcement without bothering to take the channels write lock.
1473                                         return Err(LightningError {
1474                                                 err: "Already have non-chain-validated channel".to_owned(),
1475                                                 action: ErrorAction::IgnoreDuplicateGossip
1476                                         });
1477                                 }
1478                         }
1479                 }
1480
1481                 let utxo_value = match &chain_access {
1482                         &None => {
1483                                 // Tentatively accept, potentially exposing us to DoS attacks
1484                                 None
1485                         },
1486                         &Some(ref chain_access) => {
1487                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1488                                         Ok(TxOut { value, script_pubkey }) => {
1489                                                 let expected_script =
1490                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1491                                                 if script_pubkey != expected_script {
1492                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1493                                                 }
1494                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1495                                                 //to the new HTLC max field in channel_update
1496                                                 Some(value)
1497                                         },
1498                                         Err(chain::AccessError::UnknownChain) => {
1499                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1500                                         },
1501                                         Err(chain::AccessError::UnknownTx) => {
1502                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1503                                         },
1504                                 }
1505                         },
1506                 };
1507
1508                 #[allow(unused_mut, unused_assignments)]
1509                 let mut announcement_received_time = 0;
1510                 #[cfg(feature = "std")]
1511                 {
1512                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1513                 }
1514
1515                 let chan_info = ChannelInfo {
1516                         features: msg.features.clone(),
1517                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1518                         one_to_two: None,
1519                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1520                         two_to_one: None,
1521                         capacity_sats: utxo_value,
1522                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1523                                 { full_msg.cloned() } else { None },
1524                         announcement_received_time,
1525                 };
1526
1527                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1528         }
1529
1530         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1531         /// If permanent, removes a channel from the local storage.
1532         /// May cause the removal of nodes too, if this was their last channel.
1533         /// If not permanent, makes channels unavailable for routing.
1534         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1535                 let mut channels = self.channels.write().unwrap();
1536                 if is_permanent {
1537                         if let Some(chan) = channels.remove(&short_channel_id) {
1538                                 let mut nodes = self.nodes.write().unwrap();
1539                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1540                         }
1541                 } else {
1542                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1543                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1544                                         one_to_two.enabled = false;
1545                                 }
1546                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1547                                         two_to_one.enabled = false;
1548                                 }
1549                         }
1550                 }
1551         }
1552
1553         /// Marks a node in the graph as failed.
1554         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1555                 if is_permanent {
1556                         // TODO: Wholly remove the node
1557                 } else {
1558                         // TODO: downgrade the node
1559                 }
1560         }
1561
1562         #[cfg(feature = "std")]
1563         /// Removes information about channels that we haven't heard any updates about in some time.
1564         /// This can be used regularly to prune the network graph of channels that likely no longer
1565         /// exist.
1566         ///
1567         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1568         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1569         /// pruning occur for updates which are at least two weeks old, which we implement here.
1570         ///
1571         /// Note that for users of the `lightning-background-processor` crate this method may be
1572         /// automatically called regularly for you.
1573         ///
1574         /// This method is only available with the `std` feature. See
1575         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1576         pub fn remove_stale_channels(&self) {
1577                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1578                 self.remove_stale_channels_with_time(time);
1579         }
1580
1581         /// Removes information about channels that we haven't heard any updates about in some time.
1582         /// This can be used regularly to prune the network graph of channels that likely no longer
1583         /// exist.
1584         ///
1585         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1586         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1587         /// pruning occur for updates which are at least two weeks old, which we implement here.
1588         ///
1589         /// This function takes the current unix time as an argument. For users with the `std` feature
1590         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1591         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1592                 let mut channels = self.channels.write().unwrap();
1593                 // Time out if we haven't received an update in at least 14 days.
1594                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1595                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1596                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1597                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1598                 // time.
1599                 let mut scids_to_remove = Vec::new();
1600                 for (scid, info) in channels.iter_mut() {
1601                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1602                                 info.one_to_two = None;
1603                         }
1604                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1605                                 info.two_to_one = None;
1606                         }
1607                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1608                                 // We check the announcement_received_time here to ensure we don't drop
1609                                 // announcements that we just received and are just waiting for our peer to send a
1610                                 // channel_update for.
1611                                 if info.announcement_received_time < min_time_unix as u64 {
1612                                         scids_to_remove.push(*scid);
1613                                 }
1614                         }
1615                 }
1616                 if !scids_to_remove.is_empty() {
1617                         let mut nodes = self.nodes.write().unwrap();
1618                         for scid in scids_to_remove {
1619                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1620                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1621                         }
1622                 }
1623         }
1624
1625         /// For an already known (from announcement) channel, update info about one of the directions
1626         /// of the channel.
1627         ///
1628         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1629         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1630         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1631         ///
1632         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1633         /// materially in the future will be rejected.
1634         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1635                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1636         }
1637
1638         /// For an already known (from announcement) channel, update info about one of the directions
1639         /// of the channel without verifying the associated signatures. Because we aren't given the
1640         /// associated signatures here we cannot relay the channel update to any of our peers.
1641         ///
1642         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1643         /// materially in the future will be rejected.
1644         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1645                 self.update_channel_intern(msg, None, None)
1646         }
1647
1648         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1649                 let dest_node_id;
1650                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1651                 let chan_was_enabled;
1652
1653                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1654                 {
1655                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1656                         // disable this check during tests!
1657                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1658                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1659                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1660                         }
1661                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1662                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1663                         }
1664                 }
1665
1666                 let mut channels = self.channels.write().unwrap();
1667                 match channels.get_mut(&msg.short_channel_id) {
1668                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1669                         Some(channel) => {
1670                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1671                                         return Err(LightningError{err:
1672                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1673                                                 action: ErrorAction::IgnoreError});
1674                                 }
1675
1676                                 if let Some(capacity_sats) = channel.capacity_sats {
1677                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1678                                         // Don't query UTXO set here to reduce DoS risks.
1679                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1680                                                 return Err(LightningError{err:
1681                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1682                                                         action: ErrorAction::IgnoreError});
1683                                         }
1684                                 }
1685                                 macro_rules! check_update_latest {
1686                                         ($target: expr) => {
1687                                                 if let Some(existing_chan_info) = $target.as_ref() {
1688                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1689                                                         // order updates to ensure you always have the latest one, only
1690                                                         // suggesting  that it be at least the current time. For
1691                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1692                                                         // pruning based on the timestamp field being more than two weeks old,
1693                                                         // but only in the non-normative section.
1694                                                         if existing_chan_info.last_update > msg.timestamp {
1695                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1696                                                         } else if existing_chan_info.last_update == msg.timestamp {
1697                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1698                                                         }
1699                                                         chan_was_enabled = existing_chan_info.enabled;
1700                                                 } else {
1701                                                         chan_was_enabled = false;
1702                                                 }
1703                                         }
1704                                 }
1705
1706                                 macro_rules! get_new_channel_info {
1707                                         () => { {
1708                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1709                                                         { full_msg.cloned() } else { None };
1710
1711                                                 let updated_channel_update_info = ChannelUpdateInfo {
1712                                                         enabled: chan_enabled,
1713                                                         last_update: msg.timestamp,
1714                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1715                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1716                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1717                                                         fees: RoutingFees {
1718                                                                 base_msat: msg.fee_base_msat,
1719                                                                 proportional_millionths: msg.fee_proportional_millionths,
1720                                                         },
1721                                                         last_update_message
1722                                                 };
1723                                                 Some(updated_channel_update_info)
1724                                         } }
1725                                 }
1726
1727                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1728                                 if msg.flags & 1 == 1 {
1729                                         dest_node_id = channel.node_one.clone();
1730                                         check_update_latest!(channel.two_to_one);
1731                                         if let Some(sig) = sig {
1732                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1733                                                         err: "Couldn't parse source node pubkey".to_owned(),
1734                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1735                                                 })?, "channel_update");
1736                                         }
1737                                         channel.two_to_one = get_new_channel_info!();
1738                                 } else {
1739                                         dest_node_id = channel.node_two.clone();
1740                                         check_update_latest!(channel.one_to_two);
1741                                         if let Some(sig) = sig {
1742                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1743                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1744                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1745                                                 })?, "channel_update");
1746                                         }
1747                                         channel.one_to_two = get_new_channel_info!();
1748                                 }
1749                         }
1750                 }
1751
1752                 let mut nodes = self.nodes.write().unwrap();
1753                 if chan_enabled {
1754                         let node = nodes.get_mut(&dest_node_id).unwrap();
1755                         let mut base_msat = msg.fee_base_msat;
1756                         let mut proportional_millionths = msg.fee_proportional_millionths;
1757                         if let Some(fees) = node.lowest_inbound_channel_fees {
1758                                 base_msat = cmp::min(base_msat, fees.base_msat);
1759                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1760                         }
1761                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1762                                 base_msat,
1763                                 proportional_millionths
1764                         });
1765                 } else if chan_was_enabled {
1766                         let node = nodes.get_mut(&dest_node_id).unwrap();
1767                         let mut lowest_inbound_channel_fees = None;
1768
1769                         for chan_id in node.channels.iter() {
1770                                 let chan = channels.get(chan_id).unwrap();
1771                                 let chan_info_opt;
1772                                 if chan.node_one == dest_node_id {
1773                                         chan_info_opt = chan.two_to_one.as_ref();
1774                                 } else {
1775                                         chan_info_opt = chan.one_to_two.as_ref();
1776                                 }
1777                                 if let Some(chan_info) = chan_info_opt {
1778                                         if chan_info.enabled {
1779                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1780                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1781                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1782                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1783                                         }
1784                                 }
1785                         }
1786
1787                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1788                 }
1789
1790                 Ok(())
1791         }
1792
1793         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1794                 macro_rules! remove_from_node {
1795                         ($node_id: expr) => {
1796                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1797                                         entry.get_mut().channels.retain(|chan_id| {
1798                                                 short_channel_id != *chan_id
1799                                         });
1800                                         if entry.get().channels.is_empty() {
1801                                                 entry.remove_entry();
1802                                         }
1803                                 } else {
1804                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1805                                 }
1806                         }
1807                 }
1808
1809                 remove_from_node!(chan.node_one);
1810                 remove_from_node!(chan.node_two);
1811         }
1812 }
1813
1814 impl ReadOnlyNetworkGraph<'_> {
1815         /// Returns all known valid channels' short ids along with announced channel info.
1816         ///
1817         /// (C-not exported) because we have no mapping for `BTreeMap`s
1818         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1819                 &*self.channels
1820         }
1821
1822         /// Returns information on a channel with the given id.
1823         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1824                 self.channels.get(&short_channel_id)
1825         }
1826
1827         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1828         /// Returns the list of channels in the graph
1829         pub fn list_channels(&self) -> Vec<u64> {
1830                 self.channels.keys().map(|c| *c).collect()
1831         }
1832
1833         /// Returns all known nodes' public keys along with announced node info.
1834         ///
1835         /// (C-not exported) because we have no mapping for `BTreeMap`s
1836         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1837                 &*self.nodes
1838         }
1839
1840         /// Returns information on a node with the given id.
1841         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1842                 self.nodes.get(node_id)
1843         }
1844
1845         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1846         /// Returns the list of nodes in the graph
1847         pub fn list_nodes(&self) -> Vec<NodeId> {
1848                 self.nodes.keys().map(|n| *n).collect()
1849         }
1850
1851         /// Get network addresses by node id.
1852         /// Returns None if the requested node is completely unknown,
1853         /// or if node announcement for the node was never received.
1854         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1855                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1856                         if let Some(node_info) = node.announcement_info.as_ref() {
1857                                 return Some(node_info.addresses.clone())
1858                         }
1859                 }
1860                 None
1861         }
1862 }
1863
1864 #[cfg(test)]
1865 mod tests {
1866         use chain;
1867         use ln::chan_utils::make_funding_redeemscript;
1868         use ln::PaymentHash;
1869         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1870         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1871         use ln::msgs::{Init, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1872                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1873                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1874         use util::test_utils;
1875         use util::ser::{ReadableArgs, Writeable};
1876         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1877         use util::scid_utils::scid_from_parts;
1878
1879         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1880
1881         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1882         use bitcoin::hashes::Hash;
1883         use bitcoin::network::constants::Network;
1884         use bitcoin::blockdata::constants::genesis_block;
1885         use bitcoin::blockdata::script::Script;
1886         use bitcoin::blockdata::transaction::TxOut;
1887
1888         use hex;
1889
1890         use bitcoin::secp256k1::{PublicKey, SecretKey};
1891         use bitcoin::secp256k1::{All, Secp256k1};
1892
1893         use io;
1894         use bitcoin::secp256k1;
1895         use prelude::*;
1896         use sync::Arc;
1897
1898         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1899                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1900                 let logger = Arc::new(test_utils::TestLogger::new());
1901                 NetworkGraph::new(genesis_hash, logger)
1902         }
1903
1904         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1905                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1906                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1907         ) {
1908                 let secp_ctx = Secp256k1::new();
1909                 let logger = Arc::new(test_utils::TestLogger::new());
1910                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1911                 (secp_ctx, gossip_sync)
1912         }
1913
1914         #[test]
1915         fn request_full_sync_finite_times() {
1916                 let network_graph = create_network_graph();
1917                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1918                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1919
1920                 assert!(gossip_sync.should_request_full_sync(&node_id));
1921                 assert!(gossip_sync.should_request_full_sync(&node_id));
1922                 assert!(gossip_sync.should_request_full_sync(&node_id));
1923                 assert!(gossip_sync.should_request_full_sync(&node_id));
1924                 assert!(gossip_sync.should_request_full_sync(&node_id));
1925                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1926         }
1927
1928         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1929                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1930                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1931                         features: NodeFeatures::known(),
1932                         timestamp: 100,
1933                         node_id: node_id,
1934                         rgb: [0; 3],
1935                         alias: [0; 32],
1936                         addresses: Vec::new(),
1937                         excess_address_data: Vec::new(),
1938                         excess_data: Vec::new(),
1939                 };
1940                 f(&mut unsigned_announcement);
1941                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1942                 NodeAnnouncement {
1943                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1944                         contents: unsigned_announcement
1945                 }
1946         }
1947
1948         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1949                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1950                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1951                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1952                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1953
1954                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1955                         features: ChannelFeatures::known(),
1956                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1957                         short_channel_id: 0,
1958                         node_id_1,
1959                         node_id_2,
1960                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1961                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1962                         excess_data: Vec::new(),
1963                 };
1964                 f(&mut unsigned_announcement);
1965                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1966                 ChannelAnnouncement {
1967                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1968                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1969                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1970                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1971                         contents: unsigned_announcement,
1972                 }
1973         }
1974
1975         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1976                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1977                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1978                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1979                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
1980         }
1981
1982         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1983                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1984                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1985                         short_channel_id: 0,
1986                         timestamp: 100,
1987                         flags: 0,
1988                         cltv_expiry_delta: 144,
1989                         htlc_minimum_msat: 1_000_000,
1990                         htlc_maximum_msat: 1_000_000,
1991                         fee_base_msat: 10_000,
1992                         fee_proportional_millionths: 20,
1993                         excess_data: Vec::new()
1994                 };
1995                 f(&mut unsigned_channel_update);
1996                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1997                 ChannelUpdate {
1998                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1999                         contents: unsigned_channel_update
2000                 }
2001         }
2002
2003         #[test]
2004         fn handling_node_announcements() {
2005                 let network_graph = create_network_graph();
2006                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2007
2008                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2009                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2010                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2011
2012                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2013                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2014                         Ok(_) => panic!(),
2015                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2016                 };
2017
2018                 {
2019                         // Announce a channel to add a corresponding node.
2020                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2021                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2022                                 Ok(res) => assert!(res),
2023                                 _ => panic!()
2024                         };
2025                 }
2026
2027                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2028                         Ok(res) => assert!(res),
2029                         Err(_) => panic!()
2030                 };
2031
2032                 let fake_msghash = hash_to_message!(&zero_hash);
2033                 match gossip_sync.handle_node_announcement(
2034                         &NodeAnnouncement {
2035                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2036                                 contents: valid_announcement.contents.clone()
2037                 }) {
2038                         Ok(_) => panic!(),
2039                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2040                 };
2041
2042                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2043                         unsigned_announcement.timestamp += 1000;
2044                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2045                 }, node_1_privkey, &secp_ctx);
2046                 // Return false because contains excess data.
2047                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2048                         Ok(res) => assert!(!res),
2049                         Err(_) => panic!()
2050                 };
2051
2052                 // Even though previous announcement was not relayed further, we still accepted it,
2053                 // so we now won't accept announcements before the previous one.
2054                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2055                         unsigned_announcement.timestamp += 1000 - 10;
2056                 }, node_1_privkey, &secp_ctx);
2057                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2058                         Ok(_) => panic!(),
2059                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2060                 };
2061         }
2062
2063         #[test]
2064         fn handling_channel_announcements() {
2065                 let secp_ctx = Secp256k1::new();
2066                 let logger = test_utils::TestLogger::new();
2067
2068                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2069                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2070
2071                 let good_script = get_channel_script(&secp_ctx);
2072                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2073
2074                 // Test if the UTXO lookups were not supported
2075                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2076                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2077                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2078                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2079                         Ok(res) => assert!(res),
2080                         _ => panic!()
2081                 };
2082
2083                 {
2084                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2085                                 None => panic!(),
2086                                 Some(_) => ()
2087                         };
2088                 }
2089
2090                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2091                 // drop new one on the floor, since we can't see any changes.
2092                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2093                         Ok(_) => panic!(),
2094                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2095                 };
2096
2097                 // Test if an associated transaction were not on-chain (or not confirmed).
2098                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2099                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2100                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2101                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2102
2103                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2104                         unsigned_announcement.short_channel_id += 1;
2105                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2106                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2107                         Ok(_) => panic!(),
2108                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2109                 };
2110
2111                 // Now test if the transaction is found in the UTXO set and the script is correct.
2112                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2113                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2114                         unsigned_announcement.short_channel_id += 2;
2115                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2116                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2117                         Ok(res) => assert!(res),
2118                         _ => panic!()
2119                 };
2120
2121                 {
2122                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2123                                 None => panic!(),
2124                                 Some(_) => ()
2125                         };
2126                 }
2127
2128                 // If we receive announcement for the same channel, once we've validated it against the
2129                 // chain, we simply ignore all new (duplicate) announcements.
2130                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2131                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2132                         Ok(_) => panic!(),
2133                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2134                 };
2135
2136                 // Don't relay valid channels with excess data
2137                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2138                         unsigned_announcement.short_channel_id += 3;
2139                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2140                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2141                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2142                         Ok(res) => assert!(!res),
2143                         _ => panic!()
2144                 };
2145
2146                 let mut invalid_sig_announcement = valid_announcement.clone();
2147                 invalid_sig_announcement.contents.excess_data = Vec::new();
2148                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2149                         Ok(_) => panic!(),
2150                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2151                 };
2152
2153                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2154                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2155                         Ok(_) => panic!(),
2156                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2157                 };
2158         }
2159
2160         #[test]
2161         fn handling_channel_update() {
2162                 let secp_ctx = Secp256k1::new();
2163                 let logger = test_utils::TestLogger::new();
2164                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2165                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2166                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2167                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2168
2169                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2170                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2171
2172                 let amount_sats = 1000_000;
2173                 let short_channel_id;
2174
2175                 {
2176                         // Announce a channel we will update
2177                         let good_script = get_channel_script(&secp_ctx);
2178                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2179
2180                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2181                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2182                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2183                                 Ok(_) => (),
2184                                 Err(_) => panic!()
2185                         };
2186
2187                 }
2188
2189                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2190                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2191                         Ok(res) => assert!(res),
2192                         _ => panic!(),
2193                 };
2194
2195                 {
2196                         match network_graph.read_only().channels().get(&short_channel_id) {
2197                                 None => panic!(),
2198                                 Some(channel_info) => {
2199                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2200                                         assert!(channel_info.two_to_one.is_none());
2201                                 }
2202                         };
2203                 }
2204
2205                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2206                         unsigned_channel_update.timestamp += 100;
2207                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2208                 }, node_1_privkey, &secp_ctx);
2209                 // Return false because contains excess data
2210                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2211                         Ok(res) => assert!(!res),
2212                         _ => panic!()
2213                 };
2214
2215                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2216                         unsigned_channel_update.timestamp += 110;
2217                         unsigned_channel_update.short_channel_id += 1;
2218                 }, node_1_privkey, &secp_ctx);
2219                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2220                         Ok(_) => panic!(),
2221                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2222                 };
2223
2224                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2225                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2226                         unsigned_channel_update.timestamp += 110;
2227                 }, node_1_privkey, &secp_ctx);
2228                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2229                         Ok(_) => panic!(),
2230                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2231                 };
2232
2233                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2234                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2235                         unsigned_channel_update.timestamp += 110;
2236                 }, node_1_privkey, &secp_ctx);
2237                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2238                         Ok(_) => panic!(),
2239                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2240                 };
2241
2242                 // Even though previous update was not relayed further, we still accepted it,
2243                 // so we now won't accept update before the previous one.
2244                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2245                         unsigned_channel_update.timestamp += 100;
2246                 }, node_1_privkey, &secp_ctx);
2247                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2248                         Ok(_) => panic!(),
2249                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2250                 };
2251
2252                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2253                         unsigned_channel_update.timestamp += 500;
2254                 }, node_1_privkey, &secp_ctx);
2255                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2256                 let fake_msghash = hash_to_message!(&zero_hash);
2257                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2258                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2259                         Ok(_) => panic!(),
2260                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2261                 };
2262         }
2263
2264         #[test]
2265         fn handling_network_update() {
2266                 let logger = test_utils::TestLogger::new();
2267                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2268                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2269                 let secp_ctx = Secp256k1::new();
2270
2271                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2272                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2273
2274                 {
2275                         // There is no nodes in the table at the beginning.
2276                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2277                 }
2278
2279                 let short_channel_id;
2280                 {
2281                         // Announce a channel we will update
2282                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2283                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2284                         let chain_source: Option<&test_utils::TestChainSource> = None;
2285                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2286                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2287
2288                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2289                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2290
2291                         network_graph.handle_event(&Event::PaymentPathFailed {
2292                                 payment_id: None,
2293                                 payment_hash: PaymentHash([0; 32]),
2294                                 payment_failed_permanently: false,
2295                                 all_paths_failed: true,
2296                                 path: vec![],
2297                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2298                                         msg: valid_channel_update,
2299                                 }),
2300                                 short_channel_id: None,
2301                                 retry: None,
2302                                 error_code: None,
2303                                 error_data: None,
2304                         });
2305
2306                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2307                 }
2308
2309                 // Non-permanent closing just disables a channel
2310                 {
2311                         match network_graph.read_only().channels().get(&short_channel_id) {
2312                                 None => panic!(),
2313                                 Some(channel_info) => {
2314                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2315                                 }
2316                         };
2317
2318                         network_graph.handle_event(&Event::PaymentPathFailed {
2319                                 payment_id: None,
2320                                 payment_hash: PaymentHash([0; 32]),
2321                                 payment_failed_permanently: false,
2322                                 all_paths_failed: true,
2323                                 path: vec![],
2324                                 network_update: Some(NetworkUpdate::ChannelFailure {
2325                                         short_channel_id,
2326                                         is_permanent: false,
2327                                 }),
2328                                 short_channel_id: None,
2329                                 retry: None,
2330                                 error_code: None,
2331                                 error_data: None,
2332                         });
2333
2334                         match network_graph.read_only().channels().get(&short_channel_id) {
2335                                 None => panic!(),
2336                                 Some(channel_info) => {
2337                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2338                                 }
2339                         };
2340                 }
2341
2342                 // Permanent closing deletes a channel
2343                 network_graph.handle_event(&Event::PaymentPathFailed {
2344                         payment_id: None,
2345                         payment_hash: PaymentHash([0; 32]),
2346                         payment_failed_permanently: false,
2347                         all_paths_failed: true,
2348                         path: vec![],
2349                         network_update: Some(NetworkUpdate::ChannelFailure {
2350                                 short_channel_id,
2351                                 is_permanent: true,
2352                         }),
2353                         short_channel_id: None,
2354                         retry: None,
2355                         error_code: None,
2356                         error_data: None,
2357                 });
2358
2359                 assert_eq!(network_graph.read_only().channels().len(), 0);
2360                 // Nodes are also deleted because there are no associated channels anymore
2361                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2362                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2363         }
2364
2365         #[test]
2366         fn test_channel_timeouts() {
2367                 // Test the removal of channels with `remove_stale_channels`.
2368                 let logger = test_utils::TestLogger::new();
2369                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2370                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2371                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2372                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2373                 let secp_ctx = Secp256k1::new();
2374
2375                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2376                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2377
2378                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2379                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2380                 let chain_source: Option<&test_utils::TestChainSource> = None;
2381                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2382                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2383
2384                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2385                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2386                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2387
2388                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2389                 assert_eq!(network_graph.read_only().channels().len(), 1);
2390                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2391
2392                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2393                 #[cfg(feature = "std")]
2394                 {
2395                         // In std mode, a further check is performed before fully removing the channel -
2396                         // the channel_announcement must have been received at least two weeks ago. We
2397                         // fudge that here by indicating the time has jumped two weeks. Note that the
2398                         // directional channel information will have been removed already..
2399                         assert_eq!(network_graph.read_only().channels().len(), 1);
2400                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2401                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2402
2403                         use std::time::{SystemTime, UNIX_EPOCH};
2404                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2405                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2406                 }
2407
2408                 assert_eq!(network_graph.read_only().channels().len(), 0);
2409                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2410         }
2411
2412         #[test]
2413         fn getting_next_channel_announcements() {
2414                 let network_graph = create_network_graph();
2415                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2416                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2417                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2418
2419                 // Channels were not announced yet.
2420                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2421                 assert!(channels_with_announcements.is_none());
2422
2423                 let short_channel_id;
2424                 {
2425                         // Announce a channel we will update
2426                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2427                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2428                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2429                                 Ok(_) => (),
2430                                 Err(_) => panic!()
2431                         };
2432                 }
2433
2434                 // Contains initial channel announcement now.
2435                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2436                 if let Some(channel_announcements) = channels_with_announcements {
2437                         let (_, ref update_1, ref update_2) = channel_announcements;
2438                         assert_eq!(update_1, &None);
2439                         assert_eq!(update_2, &None);
2440                 } else {
2441                         panic!();
2442                 }
2443
2444                 {
2445                         // Valid channel update
2446                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2447                                 unsigned_channel_update.timestamp = 101;
2448                         }, node_1_privkey, &secp_ctx);
2449                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2450                                 Ok(_) => (),
2451                                 Err(_) => panic!()
2452                         };
2453                 }
2454
2455                 // Now contains an initial announcement and an update.
2456                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2457                 if let Some(channel_announcements) = channels_with_announcements {
2458                         let (_, ref update_1, ref update_2) = channel_announcements;
2459                         assert_ne!(update_1, &None);
2460                         assert_eq!(update_2, &None);
2461                 } else {
2462                         panic!();
2463                 }
2464
2465                 {
2466                         // Channel update with excess data.
2467                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2468                                 unsigned_channel_update.timestamp = 102;
2469                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2470                         }, node_1_privkey, &secp_ctx);
2471                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2472                                 Ok(_) => (),
2473                                 Err(_) => panic!()
2474                         };
2475                 }
2476
2477                 // Test that announcements with excess data won't be returned
2478                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2479                 if let Some(channel_announcements) = channels_with_announcements {
2480                         let (_, ref update_1, ref update_2) = channel_announcements;
2481                         assert_eq!(update_1, &None);
2482                         assert_eq!(update_2, &None);
2483                 } else {
2484                         panic!();
2485                 }
2486
2487                 // Further starting point have no channels after it
2488                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2489                 assert!(channels_with_announcements.is_none());
2490         }
2491
2492         #[test]
2493         fn getting_next_node_announcements() {
2494                 let network_graph = create_network_graph();
2495                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2496                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2497                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2498                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2499
2500                 // No nodes yet.
2501                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2502                 assert!(next_announcements.is_none());
2503
2504                 {
2505                         // Announce a channel to add 2 nodes
2506                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2507                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2508                                 Ok(_) => (),
2509                                 Err(_) => panic!()
2510                         };
2511                 }
2512
2513                 // Nodes were never announced
2514                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2515                 assert!(next_announcements.is_none());
2516
2517                 {
2518                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2519                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2520                                 Ok(_) => (),
2521                                 Err(_) => panic!()
2522                         };
2523
2524                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2525                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2526                                 Ok(_) => (),
2527                                 Err(_) => panic!()
2528                         };
2529                 }
2530
2531                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2532                 assert!(next_announcements.is_some());
2533
2534                 // Skip the first node.
2535                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2536                 assert!(next_announcements.is_some());
2537
2538                 {
2539                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2540                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2541                                 unsigned_announcement.timestamp += 10;
2542                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2543                         }, node_2_privkey, &secp_ctx);
2544                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2545                                 Ok(res) => assert!(!res),
2546                                 Err(_) => panic!()
2547                         };
2548                 }
2549
2550                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2551                 assert!(next_announcements.is_none());
2552         }
2553
2554         #[test]
2555         fn network_graph_serialization() {
2556                 let network_graph = create_network_graph();
2557                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2558
2559                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2560                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2561
2562                 // Announce a channel to add a corresponding node.
2563                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2564                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2565                         Ok(res) => assert!(res),
2566                         _ => panic!()
2567                 };
2568
2569                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2570                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2571                         Ok(_) => (),
2572                         Err(_) => panic!()
2573                 };
2574
2575                 let mut w = test_utils::TestVecWriter(Vec::new());
2576                 assert!(!network_graph.read_only().nodes().is_empty());
2577                 assert!(!network_graph.read_only().channels().is_empty());
2578                 network_graph.write(&mut w).unwrap();
2579
2580                 let logger = Arc::new(test_utils::TestLogger::new());
2581                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2582         }
2583
2584         #[test]
2585         fn network_graph_tlv_serialization() {
2586                 let network_graph = create_network_graph();
2587                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2588
2589                 let mut w = test_utils::TestVecWriter(Vec::new());
2590                 network_graph.write(&mut w).unwrap();
2591
2592                 let logger = Arc::new(test_utils::TestLogger::new());
2593                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2594                 assert!(reassembled_network_graph == network_graph);
2595                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2596         }
2597
2598         #[test]
2599         #[cfg(feature = "std")]
2600         fn calling_sync_routing_table() {
2601                 use std::time::{SystemTime, UNIX_EPOCH};
2602
2603                 let network_graph = create_network_graph();
2604                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2605                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2606                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2607
2608                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2609
2610                 // It should ignore if gossip_queries feature is not enabled
2611                 {
2612                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries(), remote_network_address: None };
2613                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2614                         let events = gossip_sync.get_and_clear_pending_msg_events();
2615                         assert_eq!(events.len(), 0);
2616                 }
2617
2618                 // It should send a gossip_timestamp_filter with the correct information
2619                 {
2620                         let init_msg = Init { features: InitFeatures::known(), remote_network_address: None };
2621                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2622                         let events = gossip_sync.get_and_clear_pending_msg_events();
2623                         assert_eq!(events.len(), 1);
2624                         match &events[0] {
2625                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2626                                         assert_eq!(node_id, &node_id_1);
2627                                         assert_eq!(msg.chain_hash, chain_hash);
2628                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2629                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2630                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2631                                         assert_eq!(msg.timestamp_range, u32::max_value());
2632                                 },
2633                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2634                         };
2635                 }
2636         }
2637
2638         #[test]
2639         fn handling_query_channel_range() {
2640                 let network_graph = create_network_graph();
2641                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2642
2643                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2644                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2645                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2646                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2647
2648                 let mut scids: Vec<u64> = vec![
2649                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2650                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2651                 ];
2652
2653                 // used for testing multipart reply across blocks
2654                 for block in 100000..=108001 {
2655                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2656                 }
2657
2658                 // used for testing resumption on same block
2659                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2660
2661                 for scid in scids {
2662                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2663                                 unsigned_announcement.short_channel_id = scid;
2664                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2665                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2666                                 Ok(_) => (),
2667                                 _ => panic!()
2668                         };
2669                 }
2670
2671                 // Error when number_of_blocks=0
2672                 do_handling_query_channel_range(
2673                         &gossip_sync,
2674                         &node_id_2,
2675                         QueryChannelRange {
2676                                 chain_hash: chain_hash.clone(),
2677                                 first_blocknum: 0,
2678                                 number_of_blocks: 0,
2679                         },
2680                         false,
2681                         vec![ReplyChannelRange {
2682                                 chain_hash: chain_hash.clone(),
2683                                 first_blocknum: 0,
2684                                 number_of_blocks: 0,
2685                                 sync_complete: true,
2686                                 short_channel_ids: vec![]
2687                         }]
2688                 );
2689
2690                 // Error when wrong chain
2691                 do_handling_query_channel_range(
2692                         &gossip_sync,
2693                         &node_id_2,
2694                         QueryChannelRange {
2695                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2696                                 first_blocknum: 0,
2697                                 number_of_blocks: 0xffff_ffff,
2698                         },
2699                         false,
2700                         vec![ReplyChannelRange {
2701                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2702                                 first_blocknum: 0,
2703                                 number_of_blocks: 0xffff_ffff,
2704                                 sync_complete: true,
2705                                 short_channel_ids: vec![],
2706                         }]
2707                 );
2708
2709                 // Error when first_blocknum > 0xffffff
2710                 do_handling_query_channel_range(
2711                         &gossip_sync,
2712                         &node_id_2,
2713                         QueryChannelRange {
2714                                 chain_hash: chain_hash.clone(),
2715                                 first_blocknum: 0x01000000,
2716                                 number_of_blocks: 0xffff_ffff,
2717                         },
2718                         false,
2719                         vec![ReplyChannelRange {
2720                                 chain_hash: chain_hash.clone(),
2721                                 first_blocknum: 0x01000000,
2722                                 number_of_blocks: 0xffff_ffff,
2723                                 sync_complete: true,
2724                                 short_channel_ids: vec![]
2725                         }]
2726                 );
2727
2728                 // Empty reply when max valid SCID block num
2729                 do_handling_query_channel_range(
2730                         &gossip_sync,
2731                         &node_id_2,
2732                         QueryChannelRange {
2733                                 chain_hash: chain_hash.clone(),
2734                                 first_blocknum: 0xffffff,
2735                                 number_of_blocks: 1,
2736                         },
2737                         true,
2738                         vec![
2739                                 ReplyChannelRange {
2740                                         chain_hash: chain_hash.clone(),
2741                                         first_blocknum: 0xffffff,
2742                                         number_of_blocks: 1,
2743                                         sync_complete: true,
2744                                         short_channel_ids: vec![]
2745                                 },
2746                         ]
2747                 );
2748
2749                 // No results in valid query range
2750                 do_handling_query_channel_range(
2751                         &gossip_sync,
2752                         &node_id_2,
2753                         QueryChannelRange {
2754                                 chain_hash: chain_hash.clone(),
2755                                 first_blocknum: 1000,
2756                                 number_of_blocks: 1000,
2757                         },
2758                         true,
2759                         vec![
2760                                 ReplyChannelRange {
2761                                         chain_hash: chain_hash.clone(),
2762                                         first_blocknum: 1000,
2763                                         number_of_blocks: 1000,
2764                                         sync_complete: true,
2765                                         short_channel_ids: vec![],
2766                                 }
2767                         ]
2768                 );
2769
2770                 // Overflow first_blocknum + number_of_blocks
2771                 do_handling_query_channel_range(
2772                         &gossip_sync,
2773                         &node_id_2,
2774                         QueryChannelRange {
2775                                 chain_hash: chain_hash.clone(),
2776                                 first_blocknum: 0xfe0000,
2777                                 number_of_blocks: 0xffffffff,
2778                         },
2779                         true,
2780                         vec![
2781                                 ReplyChannelRange {
2782                                         chain_hash: chain_hash.clone(),
2783                                         first_blocknum: 0xfe0000,
2784                                         number_of_blocks: 0xffffffff - 0xfe0000,
2785                                         sync_complete: true,
2786                                         short_channel_ids: vec![
2787                                                 0xfffffe_ffffff_ffff, // max
2788                                         ]
2789                                 }
2790                         ]
2791                 );
2792
2793                 // Single block exactly full
2794                 do_handling_query_channel_range(
2795                         &gossip_sync,
2796                         &node_id_2,
2797                         QueryChannelRange {
2798                                 chain_hash: chain_hash.clone(),
2799                                 first_blocknum: 100000,
2800                                 number_of_blocks: 8000,
2801                         },
2802                         true,
2803                         vec![
2804                                 ReplyChannelRange {
2805                                         chain_hash: chain_hash.clone(),
2806                                         first_blocknum: 100000,
2807                                         number_of_blocks: 8000,
2808                                         sync_complete: true,
2809                                         short_channel_ids: (100000..=107999)
2810                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2811                                                 .collect(),
2812                                 },
2813                         ]
2814                 );
2815
2816                 // Multiple split on new block
2817                 do_handling_query_channel_range(
2818                         &gossip_sync,
2819                         &node_id_2,
2820                         QueryChannelRange {
2821                                 chain_hash: chain_hash.clone(),
2822                                 first_blocknum: 100000,
2823                                 number_of_blocks: 8001,
2824                         },
2825                         true,
2826                         vec![
2827                                 ReplyChannelRange {
2828                                         chain_hash: chain_hash.clone(),
2829                                         first_blocknum: 100000,
2830                                         number_of_blocks: 7999,
2831                                         sync_complete: false,
2832                                         short_channel_ids: (100000..=107999)
2833                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2834                                                 .collect(),
2835                                 },
2836                                 ReplyChannelRange {
2837                                         chain_hash: chain_hash.clone(),
2838                                         first_blocknum: 107999,
2839                                         number_of_blocks: 2,
2840                                         sync_complete: true,
2841                                         short_channel_ids: vec![
2842                                                 scid_from_parts(108000, 0, 0).unwrap(),
2843                                         ],
2844                                 }
2845                         ]
2846                 );
2847
2848                 // Multiple split on same block
2849                 do_handling_query_channel_range(
2850                         &gossip_sync,
2851                         &node_id_2,
2852                         QueryChannelRange {
2853                                 chain_hash: chain_hash.clone(),
2854                                 first_blocknum: 100002,
2855                                 number_of_blocks: 8000,
2856                         },
2857                         true,
2858                         vec![
2859                                 ReplyChannelRange {
2860                                         chain_hash: chain_hash.clone(),
2861                                         first_blocknum: 100002,
2862                                         number_of_blocks: 7999,
2863                                         sync_complete: false,
2864                                         short_channel_ids: (100002..=108001)
2865                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2866                                                 .collect(),
2867                                 },
2868                                 ReplyChannelRange {
2869                                         chain_hash: chain_hash.clone(),
2870                                         first_blocknum: 108001,
2871                                         number_of_blocks: 1,
2872                                         sync_complete: true,
2873                                         short_channel_ids: vec![
2874                                                 scid_from_parts(108001, 1, 0).unwrap(),
2875                                         ],
2876                                 }
2877                         ]
2878                 );
2879         }
2880
2881         fn do_handling_query_channel_range(
2882                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2883                 test_node_id: &PublicKey,
2884                 msg: QueryChannelRange,
2885                 expected_ok: bool,
2886                 expected_replies: Vec<ReplyChannelRange>
2887         ) {
2888                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2889                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2890                 let query_end_blocknum = msg.end_blocknum();
2891                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2892
2893                 if expected_ok {
2894                         assert!(result.is_ok());
2895                 } else {
2896                         assert!(result.is_err());
2897                 }
2898
2899                 let events = gossip_sync.get_and_clear_pending_msg_events();
2900                 assert_eq!(events.len(), expected_replies.len());
2901
2902                 for i in 0..events.len() {
2903                         let expected_reply = &expected_replies[i];
2904                         match &events[i] {
2905                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2906                                         assert_eq!(node_id, test_node_id);
2907                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2908                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2909                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2910                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2911                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2912
2913                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2914                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2915                                         assert!(msg.first_blocknum >= max_firstblocknum);
2916                                         max_firstblocknum = msg.first_blocknum;
2917                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2918
2919                                         // Check that the last block count is >= the query's end_blocknum
2920                                         if i == events.len() - 1 {
2921                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2922                                         }
2923                                 },
2924                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2925                         }
2926                 }
2927         }
2928
2929         #[test]
2930         fn handling_query_short_channel_ids() {
2931                 let network_graph = create_network_graph();
2932                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2933                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2934                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2935
2936                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2937
2938                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2939                         chain_hash,
2940                         short_channel_ids: vec![0x0003e8_000000_0000],
2941                 });
2942                 assert!(result.is_err());
2943         }
2944
2945         #[test]
2946         fn displays_node_alias() {
2947                 let format_str_alias = |alias: &str| {
2948                         let mut bytes = [0u8; 32];
2949                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2950                         format!("{}", NodeAlias(bytes))
2951                 };
2952
2953                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2954                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2955                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2956
2957                 let format_bytes_alias = |alias: &[u8]| {
2958                         let mut bytes = [0u8; 32];
2959                         bytes[..alias.len()].copy_from_slice(alias);
2960                         format!("{}", NodeAlias(bytes))
2961                 };
2962
2963                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2964                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2965                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2966         }
2967
2968         #[test]
2969         fn channel_info_is_readable() {
2970                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2971                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2972                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2973                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2974
2975                 // 1. Test encoding/decoding of ChannelUpdateInfo
2976                 let chan_update_info = ChannelUpdateInfo {
2977                         last_update: 23,
2978                         enabled: true,
2979                         cltv_expiry_delta: 42,
2980                         htlc_minimum_msat: 1234,
2981                         htlc_maximum_msat: 5678,
2982                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2983                         last_update_message: None,
2984                 };
2985
2986                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2987                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2988
2989                 // First make sure we can read ChannelUpdateInfos we just wrote
2990                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
2991                 assert_eq!(chan_update_info, read_chan_update_info);
2992
2993                 // Check the serialization hasn't changed.
2994                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
2995                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
2996
2997                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
2998                 // or the ChannelUpdate enclosed with `last_update_message`.
2999                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3000                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3001                 assert!(read_chan_update_info_res.is_err());
3002
3003                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3004                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3005                 assert!(read_chan_update_info_res.is_err());
3006
3007                 // 2. Test encoding/decoding of ChannelInfo
3008                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3009                 let chan_info_none_updates = ChannelInfo {
3010                         features: ChannelFeatures::known(),
3011                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3012                         one_to_two: None,
3013                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3014                         two_to_one: None,
3015                         capacity_sats: None,
3016                         announcement_message: None,
3017                         announcement_received_time: 87654,
3018                 };
3019
3020                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3021                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3022
3023                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3024                 assert_eq!(chan_info_none_updates, read_chan_info);
3025
3026                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3027                 let chan_info_some_updates = ChannelInfo {
3028                         features: ChannelFeatures::known(),
3029                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3030                         one_to_two: Some(chan_update_info.clone()),
3031                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3032                         two_to_one: Some(chan_update_info.clone()),
3033                         capacity_sats: None,
3034                         announcement_message: None,
3035                         announcement_received_time: 87654,
3036                 };
3037
3038                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3039                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3040
3041                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3042                 assert_eq!(chan_info_some_updates, read_chan_info);
3043
3044                 // Check the serialization hasn't changed.
3045                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3046                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3047
3048                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3049                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3050                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3051                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3052                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3053                 assert_eq!(read_chan_info.one_to_two, None);
3054                 assert_eq!(read_chan_info.two_to_one, None);
3055
3056                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3057                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3058                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3059                 assert_eq!(read_chan_info.one_to_two, None);
3060                 assert_eq!(read_chan_info.two_to_one, None);
3061         }
3062
3063         #[test]
3064         fn node_info_is_readable() {
3065                 use std::convert::TryFrom;
3066
3067                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3068                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3069                 let valid_node_ann_info = NodeAnnouncementInfo {
3070                         features: NodeFeatures::known(),
3071                         last_update: 0,
3072                         rgb: [0u8; 3],
3073                         alias: NodeAlias([0u8; 32]),
3074                         addresses: vec![valid_netaddr],
3075                         announcement_message: None,
3076                 };
3077
3078                 let mut encoded_valid_node_ann_info = Vec::new();
3079                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3080                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3081                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3082
3083                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3084                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3085                 assert!(read_invalid_node_ann_info_res.is_err());
3086
3087                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3088                 let valid_node_info = NodeInfo {
3089                         channels: Vec::new(),
3090                         lowest_inbound_channel_fees: None,
3091                         announcement_info: Some(valid_node_ann_info),
3092                 };
3093
3094                 let mut encoded_valid_node_info = Vec::new();
3095                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3096                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3097                 assert_eq!(read_valid_node_info, valid_node_info);
3098
3099                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3100                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3101                 assert_eq!(read_invalid_node_info.announcement_info, None);
3102         }
3103 }
3104
3105 #[cfg(all(test, feature = "_bench_unstable"))]
3106 mod benches {
3107         use super::*;
3108
3109         use test::Bencher;
3110         use std::io::Read;
3111
3112         #[bench]
3113         fn read_network_graph(bench: &mut Bencher) {
3114                 let logger = ::util::test_utils::TestLogger::new();
3115                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3116                 let mut v = Vec::new();
3117                 d.read_to_end(&mut v).unwrap();
3118                 bench.iter(|| {
3119                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3120                 });
3121         }
3122
3123         #[bench]
3124         fn write_network_graph(bench: &mut Bencher) {
3125                 let logger = ::util::test_utils::TestLogger::new();
3126                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3127                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3128                 bench.iter(|| {
3129                         let _ = net_graph.encode();
3130                 });
3131         }
3132 }