Add `networks` TLV to `Init`'s TLV stream
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hashes::hex::FromHex;
20 use bitcoin::hash_types::BlockHash;
21
22 use bitcoin::network::constants::Network;
23 use bitcoin::blockdata::constants::genesis_block;
24
25 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
26 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
27 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use crate::ln::msgs;
31 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
32 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
33 use crate::util::logger::{Logger, Level};
34 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35 use crate::util::string::PrintableString;
36 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
37
38 use crate::io;
39 use crate::io_extras::{copy, sink};
40 use crate::prelude::*;
41 use core::{cmp, fmt};
42 use core::convert::TryFrom;
43 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
44 #[cfg(feature = "std")]
45 use core::sync::atomic::{AtomicUsize, Ordering};
46 use crate::sync::Mutex;
47 use core::ops::{Bound, Deref};
48 use core::str::FromStr;
49
50 #[cfg(feature = "std")]
51 use std::time::{SystemTime, UNIX_EPOCH};
52
53 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
54 /// suggestion.
55 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
56
57 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
58 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
59
60 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
61 /// refuse to relay the message.
62 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
63
64 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
65 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
66 const MAX_SCIDS_PER_REPLY: usize = 8000;
67
68 /// Represents the compressed public key of a node
69 #[derive(Clone, Copy)]
70 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
71
72 impl NodeId {
73         /// Create a new NodeId from a public key
74         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
75                 NodeId(pubkey.serialize())
76         }
77
78         /// Get the public key slice from this NodeId
79         pub fn as_slice(&self) -> &[u8] {
80                 &self.0
81         }
82
83         /// Get the public key from this NodeId
84         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
85                 PublicKey::from_slice(&self.0)
86         }
87 }
88
89 impl fmt::Debug for NodeId {
90         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
91                 write!(f, "NodeId({})", log_bytes!(self.0))
92         }
93 }
94 impl fmt::Display for NodeId {
95         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
96                 write!(f, "{}", log_bytes!(self.0))
97         }
98 }
99
100 impl core::hash::Hash for NodeId {
101         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
102                 self.0.hash(hasher);
103         }
104 }
105
106 impl Eq for NodeId {}
107
108 impl PartialEq for NodeId {
109         fn eq(&self, other: &Self) -> bool {
110                 self.0[..] == other.0[..]
111         }
112 }
113
114 impl cmp::PartialOrd for NodeId {
115         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
116                 Some(self.cmp(other))
117         }
118 }
119
120 impl Ord for NodeId {
121         fn cmp(&self, other: &Self) -> cmp::Ordering {
122                 self.0[..].cmp(&other.0[..])
123         }
124 }
125
126 impl Writeable for NodeId {
127         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
128                 writer.write_all(&self.0)?;
129                 Ok(())
130         }
131 }
132
133 impl Readable for NodeId {
134         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
135                 let mut buf = [0; PUBLIC_KEY_SIZE];
136                 reader.read_exact(&mut buf)?;
137                 Ok(Self(buf))
138         }
139 }
140
141 impl From<PublicKey> for NodeId {
142         fn from(pubkey: PublicKey) -> Self {
143                 Self::from_pubkey(&pubkey)
144         }
145 }
146
147 impl TryFrom<NodeId> for PublicKey {
148         type Error = secp256k1::Error;
149
150         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
151                 node_id.as_pubkey()
152         }
153 }
154
155 impl FromStr for NodeId {
156         type Err = bitcoin::hashes::hex::Error;
157
158         fn from_str(s: &str) -> Result<Self, Self::Err> {
159                 let data: [u8; PUBLIC_KEY_SIZE] = FromHex::from_hex(s)?;
160                 Ok(NodeId(data))
161         }
162 }
163
164 /// Represents the network as nodes and channels between them
165 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
166         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
167         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
168         genesis_hash: BlockHash,
169         logger: L,
170         // Lock order: channels -> nodes
171         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
172         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
173         // Lock order: removed_channels -> removed_nodes
174         //
175         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
176         // of `std::time::Instant`s for a few reasons:
177         //   * We want it to be possible to do tracking in no-std environments where we can compare
178         //     a provided current UNIX timestamp with the time at which we started tracking.
179         //   * In the future, if we decide to persist these maps, they will already be serializable.
180         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
181         //     environment should be practical over the time period we are considering (on the order of a
182         //     week).
183         //
184         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
185         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
186         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
187         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
188         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
189         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
190         /// that once some time passes, we can potentially resync it from gossip again.
191         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
192         /// Announcement messages which are awaiting an on-chain lookup to be processed.
193         pub(super) pending_checks: utxo::PendingChecks,
194 }
195
196 /// A read-only view of [`NetworkGraph`].
197 pub struct ReadOnlyNetworkGraph<'a> {
198         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
199         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
200 }
201
202 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
203 /// return packet by a node along the route. See [BOLT #4] for details.
204 ///
205 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
206 #[derive(Clone, Debug, PartialEq, Eq)]
207 pub enum NetworkUpdate {
208         /// An error indicating a `channel_update` messages should be applied via
209         /// [`NetworkGraph::update_channel`].
210         ChannelUpdateMessage {
211                 /// The update to apply via [`NetworkGraph::update_channel`].
212                 msg: ChannelUpdate,
213         },
214         /// An error indicating that a channel failed to route a payment, which should be applied via
215         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
216         ChannelFailure {
217                 /// The short channel id of the closed channel.
218                 short_channel_id: u64,
219                 /// Whether the channel should be permanently removed or temporarily disabled until a new
220                 /// `channel_update` message is received.
221                 is_permanent: bool,
222         },
223         /// An error indicating that a node failed to route a payment, which should be applied via
224         /// [`NetworkGraph::node_failed_permanent`] if permanent.
225         NodeFailure {
226                 /// The node id of the failed node.
227                 node_id: PublicKey,
228                 /// Whether the node should be permanently removed from consideration or can be restored
229                 /// when a new `channel_update` message is received.
230                 is_permanent: bool,
231         }
232 }
233
234 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
235         (0, ChannelUpdateMessage) => {
236                 (0, msg, required),
237         },
238         (2, ChannelFailure) => {
239                 (0, short_channel_id, required),
240                 (2, is_permanent, required),
241         },
242         (4, NodeFailure) => {
243                 (0, node_id, required),
244                 (2, is_permanent, required),
245         },
246 );
247
248 /// Receives and validates network updates from peers,
249 /// stores authentic and relevant data as a network graph.
250 /// This network graph is then used for routing payments.
251 /// Provides interface to help with initial routing sync by
252 /// serving historical announcements.
253 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
254 where U::Target: UtxoLookup, L::Target: Logger
255 {
256         network_graph: G,
257         utxo_lookup: Option<U>,
258         #[cfg(feature = "std")]
259         full_syncs_requested: AtomicUsize,
260         pending_events: Mutex<Vec<MessageSendEvent>>,
261         logger: L,
262 }
263
264 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
265 where U::Target: UtxoLookup, L::Target: Logger
266 {
267         /// Creates a new tracker of the actual state of the network of channels and nodes,
268         /// assuming an existing [`NetworkGraph`].
269         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
270         /// correct, and the announcement is signed with channel owners' keys.
271         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
272                 P2PGossipSync {
273                         network_graph,
274                         #[cfg(feature = "std")]
275                         full_syncs_requested: AtomicUsize::new(0),
276                         utxo_lookup,
277                         pending_events: Mutex::new(vec![]),
278                         logger,
279                 }
280         }
281
282         /// Adds a provider used to check new announcements. Does not affect
283         /// existing announcements unless they are updated.
284         /// Add, update or remove the provider would replace the current one.
285         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
286                 self.utxo_lookup = utxo_lookup;
287         }
288
289         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
290         /// [`P2PGossipSync::new`].
291         ///
292         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
293         pub fn network_graph(&self) -> &G {
294                 &self.network_graph
295         }
296
297         #[cfg(feature = "std")]
298         /// Returns true when a full routing table sync should be performed with a peer.
299         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
300                 //TODO: Determine whether to request a full sync based on the network map.
301                 const FULL_SYNCS_TO_REQUEST: usize = 5;
302                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
303                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
304                         true
305                 } else {
306                         false
307                 }
308         }
309
310         /// Used to broadcast forward gossip messages which were validated async.
311         ///
312         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
313         /// data.
314         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
315                 match &mut ev {
316                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
317                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
318                                 if update_msg.as_ref()
319                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
320                                 {
321                                         *update_msg = None;
322                                 }
323                         },
324                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
325                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
326                         },
327                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
328                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
329                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
330                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
331                                 {
332                                         return;
333                                 }
334                         },
335                         _ => return,
336                 }
337                 self.pending_events.lock().unwrap().push(ev);
338         }
339 }
340
341 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
342         /// Handles any network updates originating from [`Event`]s.
343         ///
344         /// [`Event`]: crate::events::Event
345         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
346                 match *network_update {
347                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
348                                 let short_channel_id = msg.contents.short_channel_id;
349                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
350                                 let status = if is_enabled { "enabled" } else { "disabled" };
351                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
352                                 let _ = self.update_channel(msg);
353                         },
354                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
355                                 if is_permanent {
356                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
357                                         self.channel_failed_permanent(short_channel_id);
358                                 }
359                         },
360                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
361                                 if is_permanent {
362                                         log_debug!(self.logger,
363                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
364                                         self.node_failed_permanent(node_id);
365                                 };
366                         },
367                 }
368         }
369
370         /// Gets the genesis hash for this network graph.
371         pub fn get_genesis_hash(&self) -> BlockHash {
372                 self.genesis_hash
373         }
374 }
375
376 macro_rules! secp_verify_sig {
377         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
378                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
379                         Ok(_) => {},
380                         Err(_) => {
381                                 return Err(LightningError {
382                                         err: format!("Invalid signature on {} message", $msg_type),
383                                         action: ErrorAction::SendWarningMessage {
384                                                 msg: msgs::WarningMessage {
385                                                         channel_id: [0; 32],
386                                                         data: format!("Invalid signature on {} message", $msg_type),
387                                                 },
388                                                 log_level: Level::Trace,
389                                         },
390                                 });
391                         },
392                 }
393         };
394 }
395
396 macro_rules! get_pubkey_from_node_id {
397         ( $node_id: expr, $msg_type: expr ) => {
398                 PublicKey::from_slice($node_id.as_slice())
399                         .map_err(|_| LightningError {
400                                 err: format!("Invalid public key on {} message", $msg_type),
401                                 action: ErrorAction::SendWarningMessage {
402                                         msg: msgs::WarningMessage {
403                                                 channel_id: [0; 32],
404                                                 data: format!("Invalid public key on {} message", $msg_type),
405                                         },
406                                         log_level: Level::Trace
407                                 }
408                         })?
409         }
410 }
411
412 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
413 where U::Target: UtxoLookup, L::Target: Logger
414 {
415         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
416                 self.network_graph.update_node_from_announcement(msg)?;
417                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
418                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
419                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
420         }
421
422         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
423                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
424                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
425         }
426
427         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
428                 self.network_graph.update_channel(msg)?;
429                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
430         }
431
432         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
433                 let mut channels = self.network_graph.channels.write().unwrap();
434                 for (_, ref chan) in channels.range(starting_point..) {
435                         if chan.announcement_message.is_some() {
436                                 let chan_announcement = chan.announcement_message.clone().unwrap();
437                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
438                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
439                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
440                                         one_to_two_announcement = one_to_two.last_update_message.clone();
441                                 }
442                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
443                                         two_to_one_announcement = two_to_one.last_update_message.clone();
444                                 }
445                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
446                         } else {
447                                 // TODO: We may end up sending un-announced channel_updates if we are sending
448                                 // initial sync data while receiving announce/updates for this channel.
449                         }
450                 }
451                 None
452         }
453
454         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
455                 let mut nodes = self.network_graph.nodes.write().unwrap();
456                 let iter = if let Some(node_id) = starting_point {
457                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
458                         } else {
459                                 nodes.range(..)
460                         };
461                 for (_, ref node) in iter {
462                         if let Some(node_info) = node.announcement_info.as_ref() {
463                                 if let Some(msg) = node_info.announcement_message.clone() {
464                                         return Some(msg);
465                                 }
466                         }
467                 }
468                 None
469         }
470
471         /// Initiates a stateless sync of routing gossip information with a peer
472         /// using [`gossip_queries`]. The default strategy used by this implementation
473         /// is to sync the full block range with several peers.
474         ///
475         /// We should expect one or more [`reply_channel_range`] messages in response
476         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
477         /// to request gossip messages for each channel. The sync is considered complete
478         /// when the final [`reply_scids_end`] message is received, though we are not
479         /// tracking this directly.
480         ///
481         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
482         /// [`reply_channel_range`]: msgs::ReplyChannelRange
483         /// [`query_channel_range`]: msgs::QueryChannelRange
484         /// [`query_scid`]: msgs::QueryShortChannelIds
485         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
486         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
487                 // We will only perform a sync with peers that support gossip_queries.
488                 if !init_msg.features.supports_gossip_queries() {
489                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
490                         // channels with peers even without being able to exchange gossip.
491                         return Ok(());
492                 }
493
494                 // The lightning network's gossip sync system is completely broken in numerous ways.
495                 //
496                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
497                 // to do a full sync from the first few peers we connect to, and then receive gossip
498                 // updates from all our peers normally.
499                 //
500                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
501                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
502                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
503                 // seen.
504                 //
505                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
506                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
507                 // channel data which you are missing. Except there was no way at all to identify which
508                 // `channel_update`s you were missing, so you still had to request everything, just in a
509                 // very complicated way with some queries instead of just getting the dump.
510                 //
511                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
512                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
513                 // relying on it useless.
514                 //
515                 // After gossip queries were introduced, support for receiving a full gossip table dump on
516                 // connection was removed from several nodes, making it impossible to get a full sync
517                 // without using the "gossip queries" messages.
518                 //
519                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
520                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
521                 // message, as the name implies, tells the peer to not forward any gossip messages with a
522                 // timestamp older than a given value (not the time the peer received the filter, but the
523                 // timestamp in the update message, which is often hours behind when the peer received the
524                 // message).
525                 //
526                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
527                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
528                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
529                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
530                 // will simply not forward any new updates they see to you which were generated some time
531                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
532                 // ago), you will always get the full routing graph from all your peers.
533                 //
534                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
535                 // propagated some time after it was generated, and, worse, often disable gossiping with
536                 // several peers after their first connection. The second behavior can cause gossip to not
537                 // propagate fully if there are cuts in the gossiping subgraph.
538                 //
539                 // In an attempt to cut a middle ground between always fetching the full graph from all of
540                 // our peers and never receiving gossip from peers at all, we send all of our peers a
541                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
542                 //
543                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
544                 #[allow(unused_mut, unused_assignments)]
545                 let mut gossip_start_time = 0;
546                 #[cfg(feature = "std")]
547                 {
548                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
549                         if self.should_request_full_sync(&their_node_id) {
550                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
551                         } else {
552                                 gossip_start_time -= 60 * 60; // an hour ago
553                         }
554                 }
555
556                 let mut pending_events = self.pending_events.lock().unwrap();
557                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
558                         node_id: their_node_id.clone(),
559                         msg: GossipTimestampFilter {
560                                 chain_hash: self.network_graph.genesis_hash,
561                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
562                                 timestamp_range: u32::max_value(),
563                         },
564                 });
565                 Ok(())
566         }
567
568         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
569                 // We don't make queries, so should never receive replies. If, in the future, the set
570                 // reconciliation extensions to gossip queries become broadly supported, we should revert
571                 // this code to its state pre-0.0.106.
572                 Ok(())
573         }
574
575         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
576                 // We don't make queries, so should never receive replies. If, in the future, the set
577                 // reconciliation extensions to gossip queries become broadly supported, we should revert
578                 // this code to its state pre-0.0.106.
579                 Ok(())
580         }
581
582         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
583         /// are in the specified block range. Due to message size limits, large range
584         /// queries may result in several reply messages. This implementation enqueues
585         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
586         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
587         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
588         /// memory constrained systems.
589         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
590                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
591
592                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
593
594                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
595                 // If so, we manually cap the ending block to avoid this overflow.
596                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
597
598                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
599                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
600                         let mut pending_events = self.pending_events.lock().unwrap();
601                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
602                                 node_id: their_node_id.clone(),
603                                 msg: ReplyChannelRange {
604                                         chain_hash: msg.chain_hash.clone(),
605                                         first_blocknum: msg.first_blocknum,
606                                         number_of_blocks: msg.number_of_blocks,
607                                         sync_complete: true,
608                                         short_channel_ids: vec![],
609                                 }
610                         });
611                         return Err(LightningError {
612                                 err: String::from("query_channel_range could not be processed"),
613                                 action: ErrorAction::IgnoreError,
614                         });
615                 }
616
617                 // Creates channel batches. We are not checking if the channel is routable
618                 // (has at least one update). A peer may still want to know the channel
619                 // exists even if its not yet routable.
620                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
621                 let mut channels = self.network_graph.channels.write().unwrap();
622                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
623                         if let Some(chan_announcement) = &chan.announcement_message {
624                                 // Construct a new batch if last one is full
625                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
626                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
627                                 }
628
629                                 let batch = batches.last_mut().unwrap();
630                                 batch.push(chan_announcement.contents.short_channel_id);
631                         }
632                 }
633                 drop(channels);
634
635                 let mut pending_events = self.pending_events.lock().unwrap();
636                 let batch_count = batches.len();
637                 let mut prev_batch_endblock = msg.first_blocknum;
638                 for (batch_index, batch) in batches.into_iter().enumerate() {
639                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
640                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
641                         //
642                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
643                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
644                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
645                         // significant diversion from the requirements set by the spec, and, in case of blocks
646                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
647                         // and *not* derive the first_blocknum from the actual first block of the reply.
648                         let first_blocknum = prev_batch_endblock;
649
650                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
651                         // fit in. Though there is no requirement that we use exactly the number of blocks its
652                         // contents are from, except for the bogus requirements c-lightning enforces, above.
653                         //
654                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
655                         // >= the query's end block. Thus, for the last reply, we calculate the difference
656                         // between the query's end block and the start of the reply.
657                         //
658                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
659                         // first_blocknum will be either msg.first_blocknum or a higher block height.
660                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
661                                 (true, msg.end_blocknum() - first_blocknum)
662                         }
663                         // Prior replies should use the number of blocks that fit into the reply. Overflow
664                         // safe since first_blocknum is always <= last SCID's block.
665                         else {
666                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
667                         };
668
669                         prev_batch_endblock = first_blocknum + number_of_blocks;
670
671                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
672                                 node_id: their_node_id.clone(),
673                                 msg: ReplyChannelRange {
674                                         chain_hash: msg.chain_hash.clone(),
675                                         first_blocknum,
676                                         number_of_blocks,
677                                         sync_complete,
678                                         short_channel_ids: batch,
679                                 }
680                         });
681                 }
682
683                 Ok(())
684         }
685
686         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
687                 // TODO
688                 Err(LightningError {
689                         err: String::from("Not implemented"),
690                         action: ErrorAction::IgnoreError,
691                 })
692         }
693
694         fn provided_node_features(&self) -> NodeFeatures {
695                 let mut features = NodeFeatures::empty();
696                 features.set_gossip_queries_optional();
697                 features
698         }
699
700         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
701                 let mut features = InitFeatures::empty();
702                 features.set_gossip_queries_optional();
703                 features
704         }
705
706         fn processing_queue_high(&self) -> bool {
707                 self.network_graph.pending_checks.too_many_checks_pending()
708         }
709 }
710
711 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
712 where
713         U::Target: UtxoLookup,
714         L::Target: Logger,
715 {
716         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
717                 let mut ret = Vec::new();
718                 let mut pending_events = self.pending_events.lock().unwrap();
719                 core::mem::swap(&mut ret, &mut pending_events);
720                 ret
721         }
722 }
723
724 #[derive(Clone, Debug, PartialEq, Eq)]
725 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
726 pub struct ChannelUpdateInfo {
727         /// When the last update to the channel direction was issued.
728         /// Value is opaque, as set in the announcement.
729         pub last_update: u32,
730         /// Whether the channel can be currently used for payments (in this one direction).
731         pub enabled: bool,
732         /// The difference in CLTV values that you must have when routing through this channel.
733         pub cltv_expiry_delta: u16,
734         /// The minimum value, which must be relayed to the next hop via the channel
735         pub htlc_minimum_msat: u64,
736         /// The maximum value which may be relayed to the next hop via the channel.
737         pub htlc_maximum_msat: u64,
738         /// Fees charged when the channel is used for routing
739         pub fees: RoutingFees,
740         /// Most recent update for the channel received from the network
741         /// Mostly redundant with the data we store in fields explicitly.
742         /// Everything else is useful only for sending out for initial routing sync.
743         /// Not stored if contains excess data to prevent DoS.
744         pub last_update_message: Option<ChannelUpdate>,
745 }
746
747 impl fmt::Display for ChannelUpdateInfo {
748         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
749                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
750                 Ok(())
751         }
752 }
753
754 impl Writeable for ChannelUpdateInfo {
755         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
756                 write_tlv_fields!(writer, {
757                         (0, self.last_update, required),
758                         (2, self.enabled, required),
759                         (4, self.cltv_expiry_delta, required),
760                         (6, self.htlc_minimum_msat, required),
761                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
762                         // compatibility with LDK versions prior to v0.0.110.
763                         (8, Some(self.htlc_maximum_msat), required),
764                         (10, self.fees, required),
765                         (12, self.last_update_message, required),
766                 });
767                 Ok(())
768         }
769 }
770
771 impl Readable for ChannelUpdateInfo {
772         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
773                 _init_tlv_field_var!(last_update, required);
774                 _init_tlv_field_var!(enabled, required);
775                 _init_tlv_field_var!(cltv_expiry_delta, required);
776                 _init_tlv_field_var!(htlc_minimum_msat, required);
777                 _init_tlv_field_var!(htlc_maximum_msat, option);
778                 _init_tlv_field_var!(fees, required);
779                 _init_tlv_field_var!(last_update_message, required);
780
781                 read_tlv_fields!(reader, {
782                         (0, last_update, required),
783                         (2, enabled, required),
784                         (4, cltv_expiry_delta, required),
785                         (6, htlc_minimum_msat, required),
786                         (8, htlc_maximum_msat, required),
787                         (10, fees, required),
788                         (12, last_update_message, required)
789                 });
790
791                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
792                         Ok(ChannelUpdateInfo {
793                                 last_update: _init_tlv_based_struct_field!(last_update, required),
794                                 enabled: _init_tlv_based_struct_field!(enabled, required),
795                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
796                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
797                                 htlc_maximum_msat,
798                                 fees: _init_tlv_based_struct_field!(fees, required),
799                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
800                         })
801                 } else {
802                         Err(DecodeError::InvalidValue)
803                 }
804         }
805 }
806
807 #[derive(Clone, Debug, PartialEq, Eq)]
808 /// Details about a channel (both directions).
809 /// Received within a channel announcement.
810 pub struct ChannelInfo {
811         /// Protocol features of a channel communicated during its announcement
812         pub features: ChannelFeatures,
813         /// Source node of the first direction of a channel
814         pub node_one: NodeId,
815         /// Details about the first direction of a channel
816         pub one_to_two: Option<ChannelUpdateInfo>,
817         /// Source node of the second direction of a channel
818         pub node_two: NodeId,
819         /// Details about the second direction of a channel
820         pub two_to_one: Option<ChannelUpdateInfo>,
821         /// The channel capacity as seen on-chain, if chain lookup is available.
822         pub capacity_sats: Option<u64>,
823         /// An initial announcement of the channel
824         /// Mostly redundant with the data we store in fields explicitly.
825         /// Everything else is useful only for sending out for initial routing sync.
826         /// Not stored if contains excess data to prevent DoS.
827         pub announcement_message: Option<ChannelAnnouncement>,
828         /// The timestamp when we received the announcement, if we are running with feature = "std"
829         /// (which we can probably assume we are - no-std environments probably won't have a full
830         /// network graph in memory!).
831         announcement_received_time: u64,
832 }
833
834 impl ChannelInfo {
835         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
836         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
837         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
838                 let (direction, source) = {
839                         if target == &self.node_one {
840                                 (self.two_to_one.as_ref(), &self.node_two)
841                         } else if target == &self.node_two {
842                                 (self.one_to_two.as_ref(), &self.node_one)
843                         } else {
844                                 return None;
845                         }
846                 };
847                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
848         }
849
850         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
851         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
852         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
853                 let (direction, target) = {
854                         if source == &self.node_one {
855                                 (self.one_to_two.as_ref(), &self.node_two)
856                         } else if source == &self.node_two {
857                                 (self.two_to_one.as_ref(), &self.node_one)
858                         } else {
859                                 return None;
860                         }
861                 };
862                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
863         }
864
865         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
866         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
867                 let direction = channel_flags & 1u8;
868                 if direction == 0 {
869                         self.one_to_two.as_ref()
870                 } else {
871                         self.two_to_one.as_ref()
872                 }
873         }
874 }
875
876 impl fmt::Display for ChannelInfo {
877         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
878                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
879                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
880                 Ok(())
881         }
882 }
883
884 impl Writeable for ChannelInfo {
885         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
886                 write_tlv_fields!(writer, {
887                         (0, self.features, required),
888                         (1, self.announcement_received_time, (default_value, 0)),
889                         (2, self.node_one, required),
890                         (4, self.one_to_two, required),
891                         (6, self.node_two, required),
892                         (8, self.two_to_one, required),
893                         (10, self.capacity_sats, required),
894                         (12, self.announcement_message, required),
895                 });
896                 Ok(())
897         }
898 }
899
900 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
901 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
902 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
903 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
904 // channel updates via the gossip network.
905 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
906
907 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
908         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
909                 match crate::util::ser::Readable::read(reader) {
910                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
911                         Err(DecodeError::ShortRead) => Ok(None),
912                         Err(DecodeError::InvalidValue) => Ok(None),
913                         Err(err) => Err(err),
914                 }
915         }
916 }
917
918 impl Readable for ChannelInfo {
919         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
920                 _init_tlv_field_var!(features, required);
921                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
922                 _init_tlv_field_var!(node_one, required);
923                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
924                 _init_tlv_field_var!(node_two, required);
925                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
926                 _init_tlv_field_var!(capacity_sats, required);
927                 _init_tlv_field_var!(announcement_message, required);
928                 read_tlv_fields!(reader, {
929                         (0, features, required),
930                         (1, announcement_received_time, (default_value, 0)),
931                         (2, node_one, required),
932                         (4, one_to_two_wrap, upgradable_option),
933                         (6, node_two, required),
934                         (8, two_to_one_wrap, upgradable_option),
935                         (10, capacity_sats, required),
936                         (12, announcement_message, required),
937                 });
938
939                 Ok(ChannelInfo {
940                         features: _init_tlv_based_struct_field!(features, required),
941                         node_one: _init_tlv_based_struct_field!(node_one, required),
942                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
943                         node_two: _init_tlv_based_struct_field!(node_two, required),
944                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
945                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
946                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
947                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
948                 })
949         }
950 }
951
952 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
953 /// source node to a target node.
954 #[derive(Clone)]
955 pub struct DirectedChannelInfo<'a> {
956         channel: &'a ChannelInfo,
957         direction: &'a ChannelUpdateInfo,
958         htlc_maximum_msat: u64,
959         effective_capacity: EffectiveCapacity,
960 }
961
962 impl<'a> DirectedChannelInfo<'a> {
963         #[inline]
964         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
965                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
966                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
967
968                 let effective_capacity = match capacity_msat {
969                         Some(capacity_msat) => {
970                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
971                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
972                         },
973                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
974                 };
975
976                 Self {
977                         channel, direction, htlc_maximum_msat, effective_capacity
978                 }
979         }
980
981         /// Returns information for the channel.
982         #[inline]
983         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
984
985         /// Returns the maximum HTLC amount allowed over the channel in the direction.
986         #[inline]
987         pub fn htlc_maximum_msat(&self) -> u64 {
988                 self.htlc_maximum_msat
989         }
990
991         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
992         ///
993         /// This is either the total capacity from the funding transaction, if known, or the
994         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
995         /// otherwise.
996         pub fn effective_capacity(&self) -> EffectiveCapacity {
997                 self.effective_capacity
998         }
999
1000         /// Returns information for the direction.
1001         #[inline]
1002         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1003 }
1004
1005 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1006         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1007                 f.debug_struct("DirectedChannelInfo")
1008                         .field("channel", &self.channel)
1009                         .finish()
1010         }
1011 }
1012
1013 /// The effective capacity of a channel for routing purposes.
1014 ///
1015 /// While this may be smaller than the actual channel capacity, amounts greater than
1016 /// [`Self::as_msat`] should not be routed through the channel.
1017 #[derive(Clone, Copy, Debug, PartialEq)]
1018 pub enum EffectiveCapacity {
1019         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1020         /// direct hop.
1021         ExactLiquidity {
1022                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1023                 /// millisatoshi.
1024                 liquidity_msat: u64,
1025         },
1026         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1027         MaximumHTLC {
1028                 /// The maximum HTLC amount denominated in millisatoshi.
1029                 amount_msat: u64,
1030         },
1031         /// The total capacity of the channel as determined by the funding transaction.
1032         Total {
1033                 /// The funding amount denominated in millisatoshi.
1034                 capacity_msat: u64,
1035                 /// The maximum HTLC amount denominated in millisatoshi.
1036                 htlc_maximum_msat: u64
1037         },
1038         /// A capacity sufficient to route any payment, typically used for private channels provided by
1039         /// an invoice.
1040         Infinite,
1041         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1042         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1043         Unknown,
1044 }
1045
1046 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1047 /// use when making routing decisions.
1048 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1049
1050 impl EffectiveCapacity {
1051         /// Returns the effective capacity denominated in millisatoshi.
1052         pub fn as_msat(&self) -> u64 {
1053                 match self {
1054                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1055                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1056                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1057                         EffectiveCapacity::Infinite => u64::max_value(),
1058                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1059                 }
1060         }
1061 }
1062
1063 /// Fees for routing via a given channel or a node
1064 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1065 pub struct RoutingFees {
1066         /// Flat routing fee in millisatoshis.
1067         pub base_msat: u32,
1068         /// Liquidity-based routing fee in millionths of a routed amount.
1069         /// In other words, 10000 is 1%.
1070         pub proportional_millionths: u32,
1071 }
1072
1073 impl_writeable_tlv_based!(RoutingFees, {
1074         (0, base_msat, required),
1075         (2, proportional_millionths, required)
1076 });
1077
1078 #[derive(Clone, Debug, PartialEq, Eq)]
1079 /// Information received in the latest node_announcement from this node.
1080 pub struct NodeAnnouncementInfo {
1081         /// Protocol features the node announced support for
1082         pub features: NodeFeatures,
1083         /// When the last known update to the node state was issued.
1084         /// Value is opaque, as set in the announcement.
1085         pub last_update: u32,
1086         /// Color assigned to the node
1087         pub rgb: [u8; 3],
1088         /// Moniker assigned to the node.
1089         /// May be invalid or malicious (eg control chars),
1090         /// should not be exposed to the user.
1091         pub alias: NodeAlias,
1092         /// An initial announcement of the node
1093         /// Mostly redundant with the data we store in fields explicitly.
1094         /// Everything else is useful only for sending out for initial routing sync.
1095         /// Not stored if contains excess data to prevent DoS.
1096         pub announcement_message: Option<NodeAnnouncement>
1097 }
1098
1099 impl NodeAnnouncementInfo {
1100         /// Internet-level addresses via which one can connect to the node
1101         pub fn addresses(&self) -> &[NetAddress] {
1102                 self.announcement_message.as_ref()
1103                         .map(|msg| msg.contents.addresses.as_slice())
1104                         .unwrap_or_default()
1105         }
1106 }
1107
1108 impl Writeable for NodeAnnouncementInfo {
1109         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1110                 let empty_addresses = Vec::<NetAddress>::new();
1111                 write_tlv_fields!(writer, {
1112                         (0, self.features, required),
1113                         (2, self.last_update, required),
1114                         (4, self.rgb, required),
1115                         (6, self.alias, required),
1116                         (8, self.announcement_message, option),
1117                         (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1118                 });
1119                 Ok(())
1120         }
1121 }
1122
1123 impl Readable for NodeAnnouncementInfo {
1124     fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1125                 _init_and_read_tlv_fields!(reader, {
1126                         (0, features, required),
1127                         (2, last_update, required),
1128                         (4, rgb, required),
1129                         (6, alias, required),
1130                         (8, announcement_message, option),
1131                         (10, _addresses, vec_type), // deprecated, not used anymore
1132                 });
1133                 let _: Option<Vec<NetAddress>> = _addresses;
1134                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1135                         alias: alias.0.unwrap(), announcement_message })
1136     }
1137 }
1138
1139 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1140 ///
1141 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1142 /// attacks. Care must be taken when processing.
1143 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1144 pub struct NodeAlias(pub [u8; 32]);
1145
1146 impl fmt::Display for NodeAlias {
1147         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1148                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1149                 let bytes = self.0.split_at(first_null).0;
1150                 match core::str::from_utf8(bytes) {
1151                         Ok(alias) => PrintableString(alias).fmt(f)?,
1152                         Err(_) => {
1153                                 use core::fmt::Write;
1154                                 for c in bytes.iter().map(|b| *b as char) {
1155                                         // Display printable ASCII characters
1156                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1157                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1158                                         f.write_char(c)?;
1159                                 }
1160                         },
1161                 };
1162                 Ok(())
1163         }
1164 }
1165
1166 impl Writeable for NodeAlias {
1167         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1168                 self.0.write(w)
1169         }
1170 }
1171
1172 impl Readable for NodeAlias {
1173         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1174                 Ok(NodeAlias(Readable::read(r)?))
1175         }
1176 }
1177
1178 #[derive(Clone, Debug, PartialEq, Eq)]
1179 /// Details about a node in the network, known from the network announcement.
1180 pub struct NodeInfo {
1181         /// All valid channels a node has announced
1182         pub channels: Vec<u64>,
1183         /// More information about a node from node_announcement.
1184         /// Optional because we store a Node entry after learning about it from
1185         /// a channel announcement, but before receiving a node announcement.
1186         pub announcement_info: Option<NodeAnnouncementInfo>
1187 }
1188
1189 impl fmt::Display for NodeInfo {
1190         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1191                 write!(f, " channels: {:?}, announcement_info: {:?}",
1192                         &self.channels[..], self.announcement_info)?;
1193                 Ok(())
1194         }
1195 }
1196
1197 impl Writeable for NodeInfo {
1198         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1199                 write_tlv_fields!(writer, {
1200                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1201                         (2, self.announcement_info, option),
1202                         (4, self.channels, vec_type),
1203                 });
1204                 Ok(())
1205         }
1206 }
1207
1208 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1209 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1210 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1211 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1212 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1213
1214 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1215         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1216                 match crate::util::ser::Readable::read(reader) {
1217                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1218                         Err(_) => {
1219                                 copy(reader, &mut sink()).unwrap();
1220                                 return Ok(None)
1221                         },
1222                 };
1223         }
1224 }
1225
1226 impl Readable for NodeInfo {
1227         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1228                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1229                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1230                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1231                 // requires additional complexity and lookups during routing, it ends up being a
1232                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1233                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1234                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1235                 _init_tlv_field_var!(channels, vec_type);
1236
1237                 read_tlv_fields!(reader, {
1238                         (0, _lowest_inbound_channel_fees, option),
1239                         (2, announcement_info_wrap, upgradable_option),
1240                         (4, channels, vec_type),
1241                 });
1242
1243                 Ok(NodeInfo {
1244                         announcement_info: announcement_info_wrap.map(|w| w.0),
1245                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1246                 })
1247         }
1248 }
1249
1250 const SERIALIZATION_VERSION: u8 = 1;
1251 const MIN_SERIALIZATION_VERSION: u8 = 1;
1252
1253 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1254         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1255                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1256
1257                 self.genesis_hash.write(writer)?;
1258                 let channels = self.channels.read().unwrap();
1259                 (channels.len() as u64).write(writer)?;
1260                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1261                         (*chan_id).write(writer)?;
1262                         chan_info.write(writer)?;
1263                 }
1264                 let nodes = self.nodes.read().unwrap();
1265                 (nodes.len() as u64).write(writer)?;
1266                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1267                         node_id.write(writer)?;
1268                         node_info.write(writer)?;
1269                 }
1270
1271                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1272                 write_tlv_fields!(writer, {
1273                         (1, last_rapid_gossip_sync_timestamp, option),
1274                 });
1275                 Ok(())
1276         }
1277 }
1278
1279 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1280         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1281                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1282
1283                 let genesis_hash: BlockHash = Readable::read(reader)?;
1284                 let channels_count: u64 = Readable::read(reader)?;
1285                 let mut channels = IndexedMap::new();
1286                 for _ in 0..channels_count {
1287                         let chan_id: u64 = Readable::read(reader)?;
1288                         let chan_info = Readable::read(reader)?;
1289                         channels.insert(chan_id, chan_info);
1290                 }
1291                 let nodes_count: u64 = Readable::read(reader)?;
1292                 let mut nodes = IndexedMap::new();
1293                 for _ in 0..nodes_count {
1294                         let node_id = Readable::read(reader)?;
1295                         let node_info = Readable::read(reader)?;
1296                         nodes.insert(node_id, node_info);
1297                 }
1298
1299                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1300                 read_tlv_fields!(reader, {
1301                         (1, last_rapid_gossip_sync_timestamp, option),
1302                 });
1303
1304                 Ok(NetworkGraph {
1305                         secp_ctx: Secp256k1::verification_only(),
1306                         genesis_hash,
1307                         logger,
1308                         channels: RwLock::new(channels),
1309                         nodes: RwLock::new(nodes),
1310                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1311                         removed_nodes: Mutex::new(HashMap::new()),
1312                         removed_channels: Mutex::new(HashMap::new()),
1313                         pending_checks: utxo::PendingChecks::new(),
1314                 })
1315         }
1316 }
1317
1318 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1319         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1320                 writeln!(f, "Network map\n[Channels]")?;
1321                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1322                         writeln!(f, " {}: {}", key, val)?;
1323                 }
1324                 writeln!(f, "[Nodes]")?;
1325                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1326                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1327                 }
1328                 Ok(())
1329         }
1330 }
1331
1332 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1333 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1334         fn eq(&self, other: &Self) -> bool {
1335                 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1336                 // (Assumes that we can't move within memory while a lock is held).
1337                 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1338                 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1339                 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1340                 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1341                 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1342                 self.genesis_hash.eq(&other.genesis_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1343         }
1344 }
1345
1346 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1347         /// Creates a new, empty, network graph.
1348         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1349                 Self {
1350                         secp_ctx: Secp256k1::verification_only(),
1351                         genesis_hash: genesis_block(network).header.block_hash(),
1352                         logger,
1353                         channels: RwLock::new(IndexedMap::new()),
1354                         nodes: RwLock::new(IndexedMap::new()),
1355                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1356                         removed_channels: Mutex::new(HashMap::new()),
1357                         removed_nodes: Mutex::new(HashMap::new()),
1358                         pending_checks: utxo::PendingChecks::new(),
1359                 }
1360         }
1361
1362         /// Returns a read-only view of the network graph.
1363         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1364                 let channels = self.channels.read().unwrap();
1365                 let nodes = self.nodes.read().unwrap();
1366                 ReadOnlyNetworkGraph {
1367                         channels,
1368                         nodes,
1369                 }
1370         }
1371
1372         /// The unix timestamp provided by the most recent rapid gossip sync.
1373         /// It will be set by the rapid sync process after every sync completion.
1374         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1375                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1376         }
1377
1378         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1379         /// This should be done automatically by the rapid sync process after every sync completion.
1380         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1381                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1382         }
1383
1384         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1385         /// purposes.
1386         #[cfg(test)]
1387         pub fn clear_nodes_announcement_info(&self) {
1388                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1389                         node.1.announcement_info = None;
1390                 }
1391         }
1392
1393         /// For an already known node (from channel announcements), update its stored properties from a
1394         /// given node announcement.
1395         ///
1396         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1397         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1398         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1399         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1400                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1401                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1402                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1403         }
1404
1405         /// For an already known node (from channel announcements), update its stored properties from a
1406         /// given node announcement without verifying the associated signatures. Because we aren't
1407         /// given the associated signatures here we cannot relay the node announcement to any of our
1408         /// peers.
1409         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1410                 self.update_node_from_announcement_intern(msg, None)
1411         }
1412
1413         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1414                 let mut nodes = self.nodes.write().unwrap();
1415                 match nodes.get_mut(&msg.node_id) {
1416                         None => {
1417                                 core::mem::drop(nodes);
1418                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1419                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1420                         },
1421                         Some(node) => {
1422                                 if let Some(node_info) = node.announcement_info.as_ref() {
1423                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1424                                         // updates to ensure you always have the latest one, only vaguely suggesting
1425                                         // that it be at least the current time.
1426                                         if node_info.last_update  > msg.timestamp {
1427                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1428                                         } else if node_info.last_update  == msg.timestamp {
1429                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1430                                         }
1431                                 }
1432
1433                                 let should_relay =
1434                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1435                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1436                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1437                                 node.announcement_info = Some(NodeAnnouncementInfo {
1438                                         features: msg.features.clone(),
1439                                         last_update: msg.timestamp,
1440                                         rgb: msg.rgb,
1441                                         alias: msg.alias,
1442                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1443                                 });
1444
1445                                 Ok(())
1446                         }
1447                 }
1448         }
1449
1450         /// Store or update channel info from a channel announcement.
1451         ///
1452         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1453         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1454         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1455         ///
1456         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1457         /// the corresponding UTXO exists on chain and is correctly-formatted.
1458         pub fn update_channel_from_announcement<U: Deref>(
1459                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1460         ) -> Result<(), LightningError>
1461         where
1462                 U::Target: UtxoLookup,
1463         {
1464                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1465                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1466                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1467                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1468                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1469                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1470         }
1471
1472         /// Store or update channel info from a channel announcement.
1473         ///
1474         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1475         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1476         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1477         ///
1478         /// This will skip verification of if the channel is actually on-chain.
1479         pub fn update_channel_from_announcement_no_lookup(
1480                 &self, msg: &ChannelAnnouncement
1481         ) -> Result<(), LightningError> {
1482                 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1483         }
1484
1485         /// Store or update channel info from a channel announcement without verifying the associated
1486         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1487         /// channel announcement to any of our peers.
1488         ///
1489         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1490         /// the corresponding UTXO exists on chain and is correctly-formatted.
1491         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1492                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1493         ) -> Result<(), LightningError>
1494         where
1495                 U::Target: UtxoLookup,
1496         {
1497                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1498         }
1499
1500         /// Update channel from partial announcement data received via rapid gossip sync
1501         ///
1502         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1503         /// rapid gossip sync server)
1504         ///
1505         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1506         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1507                 if node_id_1 == node_id_2 {
1508                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1509                 };
1510
1511                 let node_1 = NodeId::from_pubkey(&node_id_1);
1512                 let node_2 = NodeId::from_pubkey(&node_id_2);
1513                 let channel_info = ChannelInfo {
1514                         features,
1515                         node_one: node_1.clone(),
1516                         one_to_two: None,
1517                         node_two: node_2.clone(),
1518                         two_to_one: None,
1519                         capacity_sats: None,
1520                         announcement_message: None,
1521                         announcement_received_time: timestamp,
1522                 };
1523
1524                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1525         }
1526
1527         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1528                 let mut channels = self.channels.write().unwrap();
1529                 let mut nodes = self.nodes.write().unwrap();
1530
1531                 let node_id_a = channel_info.node_one.clone();
1532                 let node_id_b = channel_info.node_two.clone();
1533
1534                 match channels.entry(short_channel_id) {
1535                         IndexedMapEntry::Occupied(mut entry) => {
1536                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1537                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1538                                 //exactly how...
1539                                 if utxo_value.is_some() {
1540                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1541                                         // only sometimes returns results. In any case remove the previous entry. Note
1542                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1543                                         // do that because
1544                                         // a) we don't *require* a UTXO provider that always returns results.
1545                                         // b) we don't track UTXOs of channels we know about and remove them if they
1546                                         //    get reorg'd out.
1547                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1548                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1549                                         *entry.get_mut() = channel_info;
1550                                 } else {
1551                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1552                                 }
1553                         },
1554                         IndexedMapEntry::Vacant(entry) => {
1555                                 entry.insert(channel_info);
1556                         }
1557                 };
1558
1559                 for current_node_id in [node_id_a, node_id_b].iter() {
1560                         match nodes.entry(current_node_id.clone()) {
1561                                 IndexedMapEntry::Occupied(node_entry) => {
1562                                         node_entry.into_mut().channels.push(short_channel_id);
1563                                 },
1564                                 IndexedMapEntry::Vacant(node_entry) => {
1565                                         node_entry.insert(NodeInfo {
1566                                                 channels: vec!(short_channel_id),
1567                                                 announcement_info: None,
1568                                         });
1569                                 }
1570                         };
1571                 };
1572
1573                 Ok(())
1574         }
1575
1576         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1577                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1578         ) -> Result<(), LightningError>
1579         where
1580                 U::Target: UtxoLookup,
1581         {
1582                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1583                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1584                 }
1585
1586                 if msg.chain_hash != self.genesis_hash {
1587                         return Err(LightningError {
1588                                 err: "Channel announcement chain hash does not match genesis hash".to_owned(), 
1589                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1590                         });
1591                 }
1592
1593                 {
1594                         let channels = self.channels.read().unwrap();
1595
1596                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1597                                 if chan.capacity_sats.is_some() {
1598                                         // If we'd previously looked up the channel on-chain and checked the script
1599                                         // against what appears on-chain, ignore the duplicate announcement.
1600                                         //
1601                                         // Because a reorg could replace one channel with another at the same SCID, if
1602                                         // the channel appears to be different, we re-validate. This doesn't expose us
1603                                         // to any more DoS risk than not, as a peer can always flood us with
1604                                         // randomly-generated SCID values anyway.
1605                                         //
1606                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1607                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1608                                         // if the peers on the channel changed anyway.
1609                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1610                                                 return Err(LightningError {
1611                                                         err: "Already have chain-validated channel".to_owned(),
1612                                                         action: ErrorAction::IgnoreDuplicateGossip
1613                                                 });
1614                                         }
1615                                 } else if utxo_lookup.is_none() {
1616                                         // Similarly, if we can't check the chain right now anyway, ignore the
1617                                         // duplicate announcement without bothering to take the channels write lock.
1618                                         return Err(LightningError {
1619                                                 err: "Already have non-chain-validated channel".to_owned(),
1620                                                 action: ErrorAction::IgnoreDuplicateGossip
1621                                         });
1622                                 }
1623                         }
1624                 }
1625
1626                 {
1627                         let removed_channels = self.removed_channels.lock().unwrap();
1628                         let removed_nodes = self.removed_nodes.lock().unwrap();
1629                         if removed_channels.contains_key(&msg.short_channel_id) ||
1630                                 removed_nodes.contains_key(&msg.node_id_1) ||
1631                                 removed_nodes.contains_key(&msg.node_id_2) {
1632                                 return Err(LightningError{
1633                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1634                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1635                         }
1636                 }
1637
1638                 let utxo_value = self.pending_checks.check_channel_announcement(
1639                         utxo_lookup, msg, full_msg)?;
1640
1641                 #[allow(unused_mut, unused_assignments)]
1642                 let mut announcement_received_time = 0;
1643                 #[cfg(feature = "std")]
1644                 {
1645                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1646                 }
1647
1648                 let chan_info = ChannelInfo {
1649                         features: msg.features.clone(),
1650                         node_one: msg.node_id_1,
1651                         one_to_two: None,
1652                         node_two: msg.node_id_2,
1653                         two_to_one: None,
1654                         capacity_sats: utxo_value,
1655                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1656                                 { full_msg.cloned() } else { None },
1657                         announcement_received_time,
1658                 };
1659
1660                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1661
1662                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1663                 Ok(())
1664         }
1665
1666         /// Marks a channel in the graph as failed permanently.
1667         ///
1668         /// The channel and any node for which this was their last channel are removed from the graph.
1669         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1670                 #[cfg(feature = "std")]
1671                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1672                 #[cfg(not(feature = "std"))]
1673                 let current_time_unix = None;
1674
1675                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1676         }
1677
1678         /// Marks a channel in the graph as failed permanently.
1679         ///
1680         /// The channel and any node for which this was their last channel are removed from the graph.
1681         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1682                 let mut channels = self.channels.write().unwrap();
1683                 if let Some(chan) = channels.remove(&short_channel_id) {
1684                         let mut nodes = self.nodes.write().unwrap();
1685                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1686                         Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1687                 }
1688         }
1689
1690         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1691         /// from local storage.
1692         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1693                 #[cfg(feature = "std")]
1694                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1695                 #[cfg(not(feature = "std"))]
1696                 let current_time_unix = None;
1697
1698                 let node_id = NodeId::from_pubkey(node_id);
1699                 let mut channels = self.channels.write().unwrap();
1700                 let mut nodes = self.nodes.write().unwrap();
1701                 let mut removed_channels = self.removed_channels.lock().unwrap();
1702                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1703
1704                 if let Some(node) = nodes.remove(&node_id) {
1705                         for scid in node.channels.iter() {
1706                                 if let Some(chan_info) = channels.remove(scid) {
1707                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1708                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1709                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1710                                                         *scid != *chan_id
1711                                                 });
1712                                                 if other_node_entry.get().channels.is_empty() {
1713                                                         other_node_entry.remove_entry();
1714                                                 }
1715                                         }
1716                                         removed_channels.insert(*scid, current_time_unix);
1717                                 }
1718                         }
1719                         removed_nodes.insert(node_id, current_time_unix);
1720                 }
1721         }
1722
1723         #[cfg(feature = "std")]
1724         /// Removes information about channels that we haven't heard any updates about in some time.
1725         /// This can be used regularly to prune the network graph of channels that likely no longer
1726         /// exist.
1727         ///
1728         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1729         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1730         /// pruning occur for updates which are at least two weeks old, which we implement here.
1731         ///
1732         /// Note that for users of the `lightning-background-processor` crate this method may be
1733         /// automatically called regularly for you.
1734         ///
1735         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1736         /// in the map for a while so that these can be resynced from gossip in the future.
1737         ///
1738         /// This method is only available with the `std` feature. See
1739         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1740         pub fn remove_stale_channels_and_tracking(&self) {
1741                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1742                 self.remove_stale_channels_and_tracking_with_time(time);
1743         }
1744
1745         /// Removes information about channels that we haven't heard any updates about in some time.
1746         /// This can be used regularly to prune the network graph of channels that likely no longer
1747         /// exist.
1748         ///
1749         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1750         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1751         /// pruning occur for updates which are at least two weeks old, which we implement here.
1752         ///
1753         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1754         /// in the map for a while so that these can be resynced from gossip in the future.
1755         ///
1756         /// This function takes the current unix time as an argument. For users with the `std` feature
1757         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1758         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1759                 let mut channels = self.channels.write().unwrap();
1760                 // Time out if we haven't received an update in at least 14 days.
1761                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1762                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1763                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1764                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1765                 // time.
1766                 let mut scids_to_remove = Vec::new();
1767                 for (scid, info) in channels.unordered_iter_mut() {
1768                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1769                                 info.one_to_two = None;
1770                         }
1771                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1772                                 info.two_to_one = None;
1773                         }
1774                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1775                                 // We check the announcement_received_time here to ensure we don't drop
1776                                 // announcements that we just received and are just waiting for our peer to send a
1777                                 // channel_update for.
1778                                 if info.announcement_received_time < min_time_unix as u64 {
1779                                         scids_to_remove.push(*scid);
1780                                 }
1781                         }
1782                 }
1783                 if !scids_to_remove.is_empty() {
1784                         let mut nodes = self.nodes.write().unwrap();
1785                         for scid in scids_to_remove {
1786                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1787                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1788                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1789                         }
1790                 }
1791
1792                 let should_keep_tracking = |time: &mut Option<u64>| {
1793                         if let Some(time) = time {
1794                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1795                         } else {
1796                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1797                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1798                                 // of this function.
1799                                 #[cfg(feature = "no-std")]
1800                                 {
1801                                         let mut tracked_time = Some(current_time_unix);
1802                                         core::mem::swap(time, &mut tracked_time);
1803                                         return true;
1804                                 }
1805                                 #[allow(unreachable_code)]
1806                                 false
1807                         }};
1808
1809                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1810                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1811         }
1812
1813         /// For an already known (from announcement) channel, update info about one of the directions
1814         /// of the channel.
1815         ///
1816         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1817         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1818         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1819         ///
1820         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1821         /// materially in the future will be rejected.
1822         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1823                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1824         }
1825
1826         /// For an already known (from announcement) channel, update info about one of the directions
1827         /// of the channel without verifying the associated signatures. Because we aren't given the
1828         /// associated signatures here we cannot relay the channel update to any of our peers.
1829         ///
1830         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1831         /// materially in the future will be rejected.
1832         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1833                 self.update_channel_intern(msg, None, None)
1834         }
1835
1836         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1837                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1838
1839                 if msg.chain_hash != self.genesis_hash {
1840                         return Err(LightningError {
1841                                 err: "Channel update chain hash does not match genesis hash".to_owned(),
1842                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1843                         });
1844                 }
1845
1846                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1847                 {
1848                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1849                         // disable this check during tests!
1850                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1851                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1852                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1853                         }
1854                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1855                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1856                         }
1857                 }
1858
1859                 let mut channels = self.channels.write().unwrap();
1860                 match channels.get_mut(&msg.short_channel_id) {
1861                         None => {
1862                                 core::mem::drop(channels);
1863                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1864                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1865                         },
1866                         Some(channel) => {
1867                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1868                                         return Err(LightningError{err:
1869                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1870                                                 action: ErrorAction::IgnoreError});
1871                                 }
1872
1873                                 if let Some(capacity_sats) = channel.capacity_sats {
1874                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1875                                         // Don't query UTXO set here to reduce DoS risks.
1876                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1877                                                 return Err(LightningError{err:
1878                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1879                                                         action: ErrorAction::IgnoreError});
1880                                         }
1881                                 }
1882                                 macro_rules! check_update_latest {
1883                                         ($target: expr) => {
1884                                                 if let Some(existing_chan_info) = $target.as_ref() {
1885                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1886                                                         // order updates to ensure you always have the latest one, only
1887                                                         // suggesting  that it be at least the current time. For
1888                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1889                                                         // pruning based on the timestamp field being more than two weeks old,
1890                                                         // but only in the non-normative section.
1891                                                         if existing_chan_info.last_update > msg.timestamp {
1892                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1893                                                         } else if existing_chan_info.last_update == msg.timestamp {
1894                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1895                                                         }
1896                                                 }
1897                                         }
1898                                 }
1899
1900                                 macro_rules! get_new_channel_info {
1901                                         () => { {
1902                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1903                                                         { full_msg.cloned() } else { None };
1904
1905                                                 let updated_channel_update_info = ChannelUpdateInfo {
1906                                                         enabled: chan_enabled,
1907                                                         last_update: msg.timestamp,
1908                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1909                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1910                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1911                                                         fees: RoutingFees {
1912                                                                 base_msat: msg.fee_base_msat,
1913                                                                 proportional_millionths: msg.fee_proportional_millionths,
1914                                                         },
1915                                                         last_update_message
1916                                                 };
1917                                                 Some(updated_channel_update_info)
1918                                         } }
1919                                 }
1920
1921                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1922                                 if msg.flags & 1 == 1 {
1923                                         check_update_latest!(channel.two_to_one);
1924                                         if let Some(sig) = sig {
1925                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1926                                                         err: "Couldn't parse source node pubkey".to_owned(),
1927                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1928                                                 })?, "channel_update");
1929                                         }
1930                                         channel.two_to_one = get_new_channel_info!();
1931                                 } else {
1932                                         check_update_latest!(channel.one_to_two);
1933                                         if let Some(sig) = sig {
1934                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1935                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1936                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1937                                                 })?, "channel_update");
1938                                         }
1939                                         channel.one_to_two = get_new_channel_info!();
1940                                 }
1941                         }
1942                 }
1943
1944                 Ok(())
1945         }
1946
1947         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1948                 macro_rules! remove_from_node {
1949                         ($node_id: expr) => {
1950                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1951                                         entry.get_mut().channels.retain(|chan_id| {
1952                                                 short_channel_id != *chan_id
1953                                         });
1954                                         if entry.get().channels.is_empty() {
1955                                                 entry.remove_entry();
1956                                         }
1957                                 } else {
1958                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1959                                 }
1960                         }
1961                 }
1962
1963                 remove_from_node!(chan.node_one);
1964                 remove_from_node!(chan.node_two);
1965         }
1966 }
1967
1968 impl ReadOnlyNetworkGraph<'_> {
1969         /// Returns all known valid channels' short ids along with announced channel info.
1970         ///
1971         /// This is not exported to bindings users because we don't want to return lifetime'd references
1972         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1973                 &*self.channels
1974         }
1975
1976         /// Returns information on a channel with the given id.
1977         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1978                 self.channels.get(&short_channel_id)
1979         }
1980
1981         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1982         /// Returns the list of channels in the graph
1983         pub fn list_channels(&self) -> Vec<u64> {
1984                 self.channels.unordered_keys().map(|c| *c).collect()
1985         }
1986
1987         /// Returns all known nodes' public keys along with announced node info.
1988         ///
1989         /// This is not exported to bindings users because we don't want to return lifetime'd references
1990         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1991                 &*self.nodes
1992         }
1993
1994         /// Returns information on a node with the given id.
1995         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1996                 self.nodes.get(node_id)
1997         }
1998
1999         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2000         /// Returns the list of nodes in the graph
2001         pub fn list_nodes(&self) -> Vec<NodeId> {
2002                 self.nodes.unordered_keys().map(|n| *n).collect()
2003         }
2004
2005         /// Get network addresses by node id.
2006         /// Returns None if the requested node is completely unknown,
2007         /// or if node announcement for the node was never received.
2008         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
2009                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2010                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2011         }
2012 }
2013
2014 #[cfg(test)]
2015 pub(crate) mod tests {
2016         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2017         use crate::ln::channelmanager;
2018         use crate::ln::chan_utils::make_funding_redeemscript;
2019         #[cfg(feature = "std")]
2020         use crate::ln::features::InitFeatures;
2021         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2022         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2023         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2024                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2025                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2026         use crate::util::config::UserConfig;
2027         use crate::util::test_utils;
2028         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2029         use crate::util::scid_utils::scid_from_parts;
2030
2031         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2032         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2033
2034         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2035         use bitcoin::hashes::Hash;
2036         use bitcoin::network::constants::Network;
2037         use bitcoin::blockdata::constants::genesis_block;
2038         use bitcoin::blockdata::script::Script;
2039         use bitcoin::blockdata::transaction::TxOut;
2040
2041         use hex;
2042
2043         use bitcoin::secp256k1::{PublicKey, SecretKey};
2044         use bitcoin::secp256k1::{All, Secp256k1};
2045
2046         use crate::io;
2047         use bitcoin::secp256k1;
2048         use crate::prelude::*;
2049         use crate::sync::Arc;
2050
2051         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2052                 let logger = Arc::new(test_utils::TestLogger::new());
2053                 NetworkGraph::new(Network::Testnet, logger)
2054         }
2055
2056         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2057                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2058                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2059         ) {
2060                 let secp_ctx = Secp256k1::new();
2061                 let logger = Arc::new(test_utils::TestLogger::new());
2062                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2063                 (secp_ctx, gossip_sync)
2064         }
2065
2066         #[test]
2067         #[cfg(feature = "std")]
2068         fn request_full_sync_finite_times() {
2069                 let network_graph = create_network_graph();
2070                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2071                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2072
2073                 assert!(gossip_sync.should_request_full_sync(&node_id));
2074                 assert!(gossip_sync.should_request_full_sync(&node_id));
2075                 assert!(gossip_sync.should_request_full_sync(&node_id));
2076                 assert!(gossip_sync.should_request_full_sync(&node_id));
2077                 assert!(gossip_sync.should_request_full_sync(&node_id));
2078                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2079         }
2080
2081         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2082                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2083                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2084                         features: channelmanager::provided_node_features(&UserConfig::default()),
2085                         timestamp: 100,
2086                         node_id,
2087                         rgb: [0; 3],
2088                         alias: NodeAlias([0; 32]),
2089                         addresses: Vec::new(),
2090                         excess_address_data: Vec::new(),
2091                         excess_data: Vec::new(),
2092                 };
2093                 f(&mut unsigned_announcement);
2094                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2095                 NodeAnnouncement {
2096                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2097                         contents: unsigned_announcement
2098                 }
2099         }
2100
2101         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2102                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2103                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2104                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2105                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2106
2107                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2108                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2109                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2110                         short_channel_id: 0,
2111                         node_id_1: NodeId::from_pubkey(&node_id_1),
2112                         node_id_2: NodeId::from_pubkey(&node_id_2),
2113                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2114                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2115                         excess_data: Vec::new(),
2116                 };
2117                 f(&mut unsigned_announcement);
2118                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2119                 ChannelAnnouncement {
2120                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2121                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2122                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2123                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2124                         contents: unsigned_announcement,
2125                 }
2126         }
2127
2128         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2129                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2130                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2131                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2132                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2133         }
2134
2135         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2136                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2137                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2138                         short_channel_id: 0,
2139                         timestamp: 100,
2140                         flags: 0,
2141                         cltv_expiry_delta: 144,
2142                         htlc_minimum_msat: 1_000_000,
2143                         htlc_maximum_msat: 1_000_000,
2144                         fee_base_msat: 10_000,
2145                         fee_proportional_millionths: 20,
2146                         excess_data: Vec::new()
2147                 };
2148                 f(&mut unsigned_channel_update);
2149                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2150                 ChannelUpdate {
2151                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2152                         contents: unsigned_channel_update
2153                 }
2154         }
2155
2156         #[test]
2157         fn handling_node_announcements() {
2158                 let network_graph = create_network_graph();
2159                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2160
2161                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2162                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2163                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2164
2165                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2166                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2167                         Ok(_) => panic!(),
2168                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2169                 };
2170
2171                 {
2172                         // Announce a channel to add a corresponding node.
2173                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2174                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2175                                 Ok(res) => assert!(res),
2176                                 _ => panic!()
2177                         };
2178                 }
2179
2180                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2181                         Ok(res) => assert!(res),
2182                         Err(_) => panic!()
2183                 };
2184
2185                 let fake_msghash = hash_to_message!(&zero_hash);
2186                 match gossip_sync.handle_node_announcement(
2187                         &NodeAnnouncement {
2188                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2189                                 contents: valid_announcement.contents.clone()
2190                 }) {
2191                         Ok(_) => panic!(),
2192                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2193                 };
2194
2195                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2196                         unsigned_announcement.timestamp += 1000;
2197                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2198                 }, node_1_privkey, &secp_ctx);
2199                 // Return false because contains excess data.
2200                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2201                         Ok(res) => assert!(!res),
2202                         Err(_) => panic!()
2203                 };
2204
2205                 // Even though previous announcement was not relayed further, we still accepted it,
2206                 // so we now won't accept announcements before the previous one.
2207                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2208                         unsigned_announcement.timestamp += 1000 - 10;
2209                 }, node_1_privkey, &secp_ctx);
2210                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2211                         Ok(_) => panic!(),
2212                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2213                 };
2214         }
2215
2216         #[test]
2217         fn handling_channel_announcements() {
2218                 let secp_ctx = Secp256k1::new();
2219                 let logger = test_utils::TestLogger::new();
2220
2221                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2222                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2223
2224                 let good_script = get_channel_script(&secp_ctx);
2225                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2226
2227                 // Test if the UTXO lookups were not supported
2228                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2229                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2230                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2231                         Ok(res) => assert!(res),
2232                         _ => panic!()
2233                 };
2234
2235                 {
2236                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2237                                 None => panic!(),
2238                                 Some(_) => ()
2239                         };
2240                 }
2241
2242                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2243                 // drop new one on the floor, since we can't see any changes.
2244                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2245                         Ok(_) => panic!(),
2246                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2247                 };
2248
2249                 // Test if an associated transaction were not on-chain (or not confirmed).
2250                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2251                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2252                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2253                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2254
2255                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2256                         unsigned_announcement.short_channel_id += 1;
2257                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2258                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2259                         Ok(_) => panic!(),
2260                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2261                 };
2262
2263                 // Now test if the transaction is found in the UTXO set and the script is correct.
2264                 *chain_source.utxo_ret.lock().unwrap() =
2265                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2266                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2267                         unsigned_announcement.short_channel_id += 2;
2268                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2269                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2270                         Ok(res) => assert!(res),
2271                         _ => panic!()
2272                 };
2273
2274                 {
2275                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2276                                 None => panic!(),
2277                                 Some(_) => ()
2278                         };
2279                 }
2280
2281                 // If we receive announcement for the same channel, once we've validated it against the
2282                 // chain, we simply ignore all new (duplicate) announcements.
2283                 *chain_source.utxo_ret.lock().unwrap() =
2284                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2285                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2286                         Ok(_) => panic!(),
2287                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2288                 };
2289
2290                 #[cfg(feature = "std")]
2291                 {
2292                         use std::time::{SystemTime, UNIX_EPOCH};
2293
2294                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2295                         // Mark a node as permanently failed so it's tracked as removed.
2296                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2297
2298                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2299                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2300                                 unsigned_announcement.short_channel_id += 3;
2301                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2302                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2303                                 Ok(_) => panic!(),
2304                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2305                         }
2306
2307                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2308
2309                         // The above channel announcement should be handled as per normal now.
2310                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2311                                 Ok(res) => assert!(res),
2312                                 _ => panic!()
2313                         }
2314                 }
2315
2316                 // Don't relay valid channels with excess data
2317                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2318                         unsigned_announcement.short_channel_id += 4;
2319                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2320                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2321                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2322                         Ok(res) => assert!(!res),
2323                         _ => panic!()
2324                 };
2325
2326                 let mut invalid_sig_announcement = valid_announcement.clone();
2327                 invalid_sig_announcement.contents.excess_data = Vec::new();
2328                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2329                         Ok(_) => panic!(),
2330                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2331                 };
2332
2333                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2334                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2335                         Ok(_) => panic!(),
2336                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2337                 };
2338
2339                 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2340                 // announcement is mainnet).
2341                 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2342                         unsigned_announcement.chain_hash = genesis_block(Network::Bitcoin).header.block_hash();
2343                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2344                 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2345                         Ok(_) => panic!(),
2346                         Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2347                 };
2348         }
2349
2350         #[test]
2351         fn handling_channel_update() {
2352                 let secp_ctx = Secp256k1::new();
2353                 let logger = test_utils::TestLogger::new();
2354                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2355                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2356                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2357
2358                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2359                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2360
2361                 let amount_sats = 1000_000;
2362                 let short_channel_id;
2363
2364                 {
2365                         // Announce a channel we will update
2366                         let good_script = get_channel_script(&secp_ctx);
2367                         *chain_source.utxo_ret.lock().unwrap() =
2368                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2369
2370                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2371                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2372                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2373                                 Ok(_) => (),
2374                                 Err(_) => panic!()
2375                         };
2376
2377                 }
2378
2379                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2380                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2381                         Ok(res) => assert!(res),
2382                         _ => panic!(),
2383                 };
2384
2385                 {
2386                         match network_graph.read_only().channels().get(&short_channel_id) {
2387                                 None => panic!(),
2388                                 Some(channel_info) => {
2389                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2390                                         assert!(channel_info.two_to_one.is_none());
2391                                 }
2392                         };
2393                 }
2394
2395                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2396                         unsigned_channel_update.timestamp += 100;
2397                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2398                 }, node_1_privkey, &secp_ctx);
2399                 // Return false because contains excess data
2400                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2401                         Ok(res) => assert!(!res),
2402                         _ => panic!()
2403                 };
2404
2405                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2406                         unsigned_channel_update.timestamp += 110;
2407                         unsigned_channel_update.short_channel_id += 1;
2408                 }, node_1_privkey, &secp_ctx);
2409                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2410                         Ok(_) => panic!(),
2411                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2412                 };
2413
2414                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2415                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2416                         unsigned_channel_update.timestamp += 110;
2417                 }, node_1_privkey, &secp_ctx);
2418                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2419                         Ok(_) => panic!(),
2420                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2421                 };
2422
2423                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2424                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2425                         unsigned_channel_update.timestamp += 110;
2426                 }, node_1_privkey, &secp_ctx);
2427                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2428                         Ok(_) => panic!(),
2429                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2430                 };
2431
2432                 // Even though previous update was not relayed further, we still accepted it,
2433                 // so we now won't accept update before the previous one.
2434                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2435                         unsigned_channel_update.timestamp += 100;
2436                 }, node_1_privkey, &secp_ctx);
2437                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2438                         Ok(_) => panic!(),
2439                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2440                 };
2441
2442                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2443                         unsigned_channel_update.timestamp += 500;
2444                 }, node_1_privkey, &secp_ctx);
2445                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2446                 let fake_msghash = hash_to_message!(&zero_hash);
2447                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2448                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2449                         Ok(_) => panic!(),
2450                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2451                 };
2452
2453                 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2454                 // update is mainet).
2455                 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2456                         unsigned_channel_update.chain_hash = genesis_block(Network::Bitcoin).header.block_hash();
2457                 }, node_1_privkey, &secp_ctx);
2458
2459                 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2460                         Ok(_) => panic!(),
2461                         Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2462                 };
2463         }
2464
2465         #[test]
2466         fn handling_network_update() {
2467                 let logger = test_utils::TestLogger::new();
2468                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2469                 let secp_ctx = Secp256k1::new();
2470
2471                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2472                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2473                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2474
2475                 {
2476                         // There is no nodes in the table at the beginning.
2477                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2478                 }
2479
2480                 let short_channel_id;
2481                 {
2482                         // Announce a channel we will update
2483                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2484                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2485                         let chain_source: Option<&test_utils::TestChainSource> = None;
2486                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2487                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2488
2489                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2490                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2491
2492                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2493                                 msg: valid_channel_update,
2494                         });
2495
2496                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2497                 }
2498
2499                 // Non-permanent failure doesn't touch the channel at all
2500                 {
2501                         match network_graph.read_only().channels().get(&short_channel_id) {
2502                                 None => panic!(),
2503                                 Some(channel_info) => {
2504                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2505                                 }
2506                         };
2507
2508                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2509                                 short_channel_id,
2510                                 is_permanent: false,
2511                         });
2512
2513                         match network_graph.read_only().channels().get(&short_channel_id) {
2514                                 None => panic!(),
2515                                 Some(channel_info) => {
2516                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2517                                 }
2518                         };
2519                 }
2520
2521                 // Permanent closing deletes a channel
2522                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2523                         short_channel_id,
2524                         is_permanent: true,
2525                 });
2526
2527                 assert_eq!(network_graph.read_only().channels().len(), 0);
2528                 // Nodes are also deleted because there are no associated channels anymore
2529                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2530
2531                 {
2532                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2533                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2534
2535                         // Announce a channel to test permanent node failure
2536                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2537                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2538                         let chain_source: Option<&test_utils::TestChainSource> = None;
2539                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2540                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2541
2542                         // Non-permanent node failure does not delete any nodes or channels
2543                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2544                                 node_id: node_2_id,
2545                                 is_permanent: false,
2546                         });
2547
2548                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2549                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2550
2551                         // Permanent node failure deletes node and its channels
2552                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2553                                 node_id: node_2_id,
2554                                 is_permanent: true,
2555                         });
2556
2557                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2558                         // Channels are also deleted because the associated node has been deleted
2559                         assert_eq!(network_graph.read_only().channels().len(), 0);
2560                 }
2561         }
2562
2563         #[test]
2564         fn test_channel_timeouts() {
2565                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2566                 let logger = test_utils::TestLogger::new();
2567                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2568                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2569                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2570                 let secp_ctx = Secp256k1::new();
2571
2572                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2573                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2574
2575                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2576                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2577                 let chain_source: Option<&test_utils::TestChainSource> = None;
2578                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2579                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2580
2581                 // Submit two channel updates for each channel direction (update.flags bit).
2582                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2583                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2584                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2585
2586                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2587                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2588                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2589
2590                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2591                 assert_eq!(network_graph.read_only().channels().len(), 1);
2592                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2593
2594                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2595                 #[cfg(not(feature = "std"))] {
2596                         // Make sure removed channels are tracked.
2597                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2598                 }
2599                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2600                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2601
2602                 #[cfg(feature = "std")]
2603                 {
2604                         // In std mode, a further check is performed before fully removing the channel -
2605                         // the channel_announcement must have been received at least two weeks ago. We
2606                         // fudge that here by indicating the time has jumped two weeks.
2607                         assert_eq!(network_graph.read_only().channels().len(), 1);
2608                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2609
2610                         // Note that the directional channel information will have been removed already..
2611                         // We want to check that this will work even if *one* of the channel updates is recent,
2612                         // so we should add it with a recent timestamp.
2613                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2614                         use std::time::{SystemTime, UNIX_EPOCH};
2615                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2616                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2617                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2618                         }, node_1_privkey, &secp_ctx);
2619                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2620                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2621                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2622                         // Make sure removed channels are tracked.
2623                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2624                         // Provide a later time so that sufficient time has passed
2625                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2626                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2627                 }
2628
2629                 assert_eq!(network_graph.read_only().channels().len(), 0);
2630                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2631                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2632
2633                 #[cfg(feature = "std")]
2634                 {
2635                         use std::time::{SystemTime, UNIX_EPOCH};
2636
2637                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2638
2639                         // Clear tracked nodes and channels for clean slate
2640                         network_graph.removed_channels.lock().unwrap().clear();
2641                         network_graph.removed_nodes.lock().unwrap().clear();
2642
2643                         // Add a channel and nodes from channel announcement. So our network graph will
2644                         // now only consist of two nodes and one channel between them.
2645                         assert!(network_graph.update_channel_from_announcement(
2646                                 &valid_channel_announcement, &chain_source).is_ok());
2647
2648                         // Mark the channel as permanently failed. This will also remove the two nodes
2649                         // and all of the entries will be tracked as removed.
2650                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2651
2652                         // Should not remove from tracking if insufficient time has passed
2653                         network_graph.remove_stale_channels_and_tracking_with_time(
2654                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2655                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2656
2657                         // Provide a later time so that sufficient time has passed
2658                         network_graph.remove_stale_channels_and_tracking_with_time(
2659                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2660                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2661                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2662                 }
2663
2664                 #[cfg(not(feature = "std"))]
2665                 {
2666                         // When we don't have access to the system clock, the time we started tracking removal will only
2667                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2668                         // only if sufficient time has passed after that first call, will the next call remove it from
2669                         // tracking.
2670                         let removal_time = 1664619654;
2671
2672                         // Clear removed nodes and channels for clean slate
2673                         network_graph.removed_channels.lock().unwrap().clear();
2674                         network_graph.removed_nodes.lock().unwrap().clear();
2675
2676                         // Add a channel and nodes from channel announcement. So our network graph will
2677                         // now only consist of two nodes and one channel between them.
2678                         assert!(network_graph.update_channel_from_announcement(
2679                                 &valid_channel_announcement, &chain_source).is_ok());
2680
2681                         // Mark the channel as permanently failed. This will also remove the two nodes
2682                         // and all of the entries will be tracked as removed.
2683                         network_graph.channel_failed_permanent(short_channel_id);
2684
2685                         // The first time we call the following, the channel will have a removal time assigned.
2686                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2687                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2688
2689                         // Provide a later time so that sufficient time has passed
2690                         network_graph.remove_stale_channels_and_tracking_with_time(
2691                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2692                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2693                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2694                 }
2695         }
2696
2697         #[test]
2698         fn getting_next_channel_announcements() {
2699                 let network_graph = create_network_graph();
2700                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2701                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2702                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2703
2704                 // Channels were not announced yet.
2705                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2706                 assert!(channels_with_announcements.is_none());
2707
2708                 let short_channel_id;
2709                 {
2710                         // Announce a channel we will update
2711                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2712                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2713                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2714                                 Ok(_) => (),
2715                                 Err(_) => panic!()
2716                         };
2717                 }
2718
2719                 // Contains initial channel announcement now.
2720                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2721                 if let Some(channel_announcements) = channels_with_announcements {
2722                         let (_, ref update_1, ref update_2) = channel_announcements;
2723                         assert_eq!(update_1, &None);
2724                         assert_eq!(update_2, &None);
2725                 } else {
2726                         panic!();
2727                 }
2728
2729                 {
2730                         // Valid channel update
2731                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2732                                 unsigned_channel_update.timestamp = 101;
2733                         }, node_1_privkey, &secp_ctx);
2734                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2735                                 Ok(_) => (),
2736                                 Err(_) => panic!()
2737                         };
2738                 }
2739
2740                 // Now contains an initial announcement and an update.
2741                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2742                 if let Some(channel_announcements) = channels_with_announcements {
2743                         let (_, ref update_1, ref update_2) = channel_announcements;
2744                         assert_ne!(update_1, &None);
2745                         assert_eq!(update_2, &None);
2746                 } else {
2747                         panic!();
2748                 }
2749
2750                 {
2751                         // Channel update with excess data.
2752                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2753                                 unsigned_channel_update.timestamp = 102;
2754                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2755                         }, node_1_privkey, &secp_ctx);
2756                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2757                                 Ok(_) => (),
2758                                 Err(_) => panic!()
2759                         };
2760                 }
2761
2762                 // Test that announcements with excess data won't be returned
2763                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2764                 if let Some(channel_announcements) = channels_with_announcements {
2765                         let (_, ref update_1, ref update_2) = channel_announcements;
2766                         assert_eq!(update_1, &None);
2767                         assert_eq!(update_2, &None);
2768                 } else {
2769                         panic!();
2770                 }
2771
2772                 // Further starting point have no channels after it
2773                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2774                 assert!(channels_with_announcements.is_none());
2775         }
2776
2777         #[test]
2778         fn getting_next_node_announcements() {
2779                 let network_graph = create_network_graph();
2780                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2781                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2782                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2783                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2784
2785                 // No nodes yet.
2786                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2787                 assert!(next_announcements.is_none());
2788
2789                 {
2790                         // Announce a channel to add 2 nodes
2791                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2792                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2793                                 Ok(_) => (),
2794                                 Err(_) => panic!()
2795                         };
2796                 }
2797
2798                 // Nodes were never announced
2799                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2800                 assert!(next_announcements.is_none());
2801
2802                 {
2803                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2804                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2805                                 Ok(_) => (),
2806                                 Err(_) => panic!()
2807                         };
2808
2809                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2810                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2811                                 Ok(_) => (),
2812                                 Err(_) => panic!()
2813                         };
2814                 }
2815
2816                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2817                 assert!(next_announcements.is_some());
2818
2819                 // Skip the first node.
2820                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2821                 assert!(next_announcements.is_some());
2822
2823                 {
2824                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2825                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2826                                 unsigned_announcement.timestamp += 10;
2827                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2828                         }, node_2_privkey, &secp_ctx);
2829                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2830                                 Ok(res) => assert!(!res),
2831                                 Err(_) => panic!()
2832                         };
2833                 }
2834
2835                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2836                 assert!(next_announcements.is_none());
2837         }
2838
2839         #[test]
2840         fn network_graph_serialization() {
2841                 let network_graph = create_network_graph();
2842                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2843
2844                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2845                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2846
2847                 // Announce a channel to add a corresponding node.
2848                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2849                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2850                         Ok(res) => assert!(res),
2851                         _ => panic!()
2852                 };
2853
2854                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2855                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2856                         Ok(_) => (),
2857                         Err(_) => panic!()
2858                 };
2859
2860                 let mut w = test_utils::TestVecWriter(Vec::new());
2861                 assert!(!network_graph.read_only().nodes().is_empty());
2862                 assert!(!network_graph.read_only().channels().is_empty());
2863                 network_graph.write(&mut w).unwrap();
2864
2865                 let logger = Arc::new(test_utils::TestLogger::new());
2866                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2867         }
2868
2869         #[test]
2870         fn network_graph_tlv_serialization() {
2871                 let network_graph = create_network_graph();
2872                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2873
2874                 let mut w = test_utils::TestVecWriter(Vec::new());
2875                 network_graph.write(&mut w).unwrap();
2876
2877                 let logger = Arc::new(test_utils::TestLogger::new());
2878                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2879                 assert!(reassembled_network_graph == network_graph);
2880                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2881         }
2882
2883         #[test]
2884         #[cfg(feature = "std")]
2885         fn calling_sync_routing_table() {
2886                 use std::time::{SystemTime, UNIX_EPOCH};
2887                 use crate::ln::msgs::Init;
2888
2889                 let network_graph = create_network_graph();
2890                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2891                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2892                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2893
2894                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2895
2896                 // It should ignore if gossip_queries feature is not enabled
2897                 {
2898                         let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
2899                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2900                         let events = gossip_sync.get_and_clear_pending_msg_events();
2901                         assert_eq!(events.len(), 0);
2902                 }
2903
2904                 // It should send a gossip_timestamp_filter with the correct information
2905                 {
2906                         let mut features = InitFeatures::empty();
2907                         features.set_gossip_queries_optional();
2908                         let init_msg = Init { features, networks: None, remote_network_address: None };
2909                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2910                         let events = gossip_sync.get_and_clear_pending_msg_events();
2911                         assert_eq!(events.len(), 1);
2912                         match &events[0] {
2913                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2914                                         assert_eq!(node_id, &node_id_1);
2915                                         assert_eq!(msg.chain_hash, chain_hash);
2916                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2917                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2918                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2919                                         assert_eq!(msg.timestamp_range, u32::max_value());
2920                                 },
2921                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2922                         };
2923                 }
2924         }
2925
2926         #[test]
2927         fn handling_query_channel_range() {
2928                 let network_graph = create_network_graph();
2929                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2930
2931                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2932                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2933                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2934                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2935
2936                 let mut scids: Vec<u64> = vec![
2937                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2938                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2939                 ];
2940
2941                 // used for testing multipart reply across blocks
2942                 for block in 100000..=108001 {
2943                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2944                 }
2945
2946                 // used for testing resumption on same block
2947                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2948
2949                 for scid in scids {
2950                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2951                                 unsigned_announcement.short_channel_id = scid;
2952                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2953                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2954                                 Ok(_) => (),
2955                                 _ => panic!()
2956                         };
2957                 }
2958
2959                 // Error when number_of_blocks=0
2960                 do_handling_query_channel_range(
2961                         &gossip_sync,
2962                         &node_id_2,
2963                         QueryChannelRange {
2964                                 chain_hash: chain_hash.clone(),
2965                                 first_blocknum: 0,
2966                                 number_of_blocks: 0,
2967                         },
2968                         false,
2969                         vec![ReplyChannelRange {
2970                                 chain_hash: chain_hash.clone(),
2971                                 first_blocknum: 0,
2972                                 number_of_blocks: 0,
2973                                 sync_complete: true,
2974                                 short_channel_ids: vec![]
2975                         }]
2976                 );
2977
2978                 // Error when wrong chain
2979                 do_handling_query_channel_range(
2980                         &gossip_sync,
2981                         &node_id_2,
2982                         QueryChannelRange {
2983                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2984                                 first_blocknum: 0,
2985                                 number_of_blocks: 0xffff_ffff,
2986                         },
2987                         false,
2988                         vec![ReplyChannelRange {
2989                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2990                                 first_blocknum: 0,
2991                                 number_of_blocks: 0xffff_ffff,
2992                                 sync_complete: true,
2993                                 short_channel_ids: vec![],
2994                         }]
2995                 );
2996
2997                 // Error when first_blocknum > 0xffffff
2998                 do_handling_query_channel_range(
2999                         &gossip_sync,
3000                         &node_id_2,
3001                         QueryChannelRange {
3002                                 chain_hash: chain_hash.clone(),
3003                                 first_blocknum: 0x01000000,
3004                                 number_of_blocks: 0xffff_ffff,
3005                         },
3006                         false,
3007                         vec![ReplyChannelRange {
3008                                 chain_hash: chain_hash.clone(),
3009                                 first_blocknum: 0x01000000,
3010                                 number_of_blocks: 0xffff_ffff,
3011                                 sync_complete: true,
3012                                 short_channel_ids: vec![]
3013                         }]
3014                 );
3015
3016                 // Empty reply when max valid SCID block num
3017                 do_handling_query_channel_range(
3018                         &gossip_sync,
3019                         &node_id_2,
3020                         QueryChannelRange {
3021                                 chain_hash: chain_hash.clone(),
3022                                 first_blocknum: 0xffffff,
3023                                 number_of_blocks: 1,
3024                         },
3025                         true,
3026                         vec![
3027                                 ReplyChannelRange {
3028                                         chain_hash: chain_hash.clone(),
3029                                         first_blocknum: 0xffffff,
3030                                         number_of_blocks: 1,
3031                                         sync_complete: true,
3032                                         short_channel_ids: vec![]
3033                                 },
3034                         ]
3035                 );
3036
3037                 // No results in valid query range
3038                 do_handling_query_channel_range(
3039                         &gossip_sync,
3040                         &node_id_2,
3041                         QueryChannelRange {
3042                                 chain_hash: chain_hash.clone(),
3043                                 first_blocknum: 1000,
3044                                 number_of_blocks: 1000,
3045                         },
3046                         true,
3047                         vec![
3048                                 ReplyChannelRange {
3049                                         chain_hash: chain_hash.clone(),
3050                                         first_blocknum: 1000,
3051                                         number_of_blocks: 1000,
3052                                         sync_complete: true,
3053                                         short_channel_ids: vec![],
3054                                 }
3055                         ]
3056                 );
3057
3058                 // Overflow first_blocknum + number_of_blocks
3059                 do_handling_query_channel_range(
3060                         &gossip_sync,
3061                         &node_id_2,
3062                         QueryChannelRange {
3063                                 chain_hash: chain_hash.clone(),
3064                                 first_blocknum: 0xfe0000,
3065                                 number_of_blocks: 0xffffffff,
3066                         },
3067                         true,
3068                         vec![
3069                                 ReplyChannelRange {
3070                                         chain_hash: chain_hash.clone(),
3071                                         first_blocknum: 0xfe0000,
3072                                         number_of_blocks: 0xffffffff - 0xfe0000,
3073                                         sync_complete: true,
3074                                         short_channel_ids: vec![
3075                                                 0xfffffe_ffffff_ffff, // max
3076                                         ]
3077                                 }
3078                         ]
3079                 );
3080
3081                 // Single block exactly full
3082                 do_handling_query_channel_range(
3083                         &gossip_sync,
3084                         &node_id_2,
3085                         QueryChannelRange {
3086                                 chain_hash: chain_hash.clone(),
3087                                 first_blocknum: 100000,
3088                                 number_of_blocks: 8000,
3089                         },
3090                         true,
3091                         vec![
3092                                 ReplyChannelRange {
3093                                         chain_hash: chain_hash.clone(),
3094                                         first_blocknum: 100000,
3095                                         number_of_blocks: 8000,
3096                                         sync_complete: true,
3097                                         short_channel_ids: (100000..=107999)
3098                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3099                                                 .collect(),
3100                                 },
3101                         ]
3102                 );
3103
3104                 // Multiple split on new block
3105                 do_handling_query_channel_range(
3106                         &gossip_sync,
3107                         &node_id_2,
3108                         QueryChannelRange {
3109                                 chain_hash: chain_hash.clone(),
3110                                 first_blocknum: 100000,
3111                                 number_of_blocks: 8001,
3112                         },
3113                         true,
3114                         vec![
3115                                 ReplyChannelRange {
3116                                         chain_hash: chain_hash.clone(),
3117                                         first_blocknum: 100000,
3118                                         number_of_blocks: 7999,
3119                                         sync_complete: false,
3120                                         short_channel_ids: (100000..=107999)
3121                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3122                                                 .collect(),
3123                                 },
3124                                 ReplyChannelRange {
3125                                         chain_hash: chain_hash.clone(),
3126                                         first_blocknum: 107999,
3127                                         number_of_blocks: 2,
3128                                         sync_complete: true,
3129                                         short_channel_ids: vec![
3130                                                 scid_from_parts(108000, 0, 0).unwrap(),
3131                                         ],
3132                                 }
3133                         ]
3134                 );
3135
3136                 // Multiple split on same block
3137                 do_handling_query_channel_range(
3138                         &gossip_sync,
3139                         &node_id_2,
3140                         QueryChannelRange {
3141                                 chain_hash: chain_hash.clone(),
3142                                 first_blocknum: 100002,
3143                                 number_of_blocks: 8000,
3144                         },
3145                         true,
3146                         vec![
3147                                 ReplyChannelRange {
3148                                         chain_hash: chain_hash.clone(),
3149                                         first_blocknum: 100002,
3150                                         number_of_blocks: 7999,
3151                                         sync_complete: false,
3152                                         short_channel_ids: (100002..=108001)
3153                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3154                                                 .collect(),
3155                                 },
3156                                 ReplyChannelRange {
3157                                         chain_hash: chain_hash.clone(),
3158                                         first_blocknum: 108001,
3159                                         number_of_blocks: 1,
3160                                         sync_complete: true,
3161                                         short_channel_ids: vec![
3162                                                 scid_from_parts(108001, 1, 0).unwrap(),
3163                                         ],
3164                                 }
3165                         ]
3166                 );
3167         }
3168
3169         fn do_handling_query_channel_range(
3170                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3171                 test_node_id: &PublicKey,
3172                 msg: QueryChannelRange,
3173                 expected_ok: bool,
3174                 expected_replies: Vec<ReplyChannelRange>
3175         ) {
3176                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3177                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3178                 let query_end_blocknum = msg.end_blocknum();
3179                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3180
3181                 if expected_ok {
3182                         assert!(result.is_ok());
3183                 } else {
3184                         assert!(result.is_err());
3185                 }
3186
3187                 let events = gossip_sync.get_and_clear_pending_msg_events();
3188                 assert_eq!(events.len(), expected_replies.len());
3189
3190                 for i in 0..events.len() {
3191                         let expected_reply = &expected_replies[i];
3192                         match &events[i] {
3193                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3194                                         assert_eq!(node_id, test_node_id);
3195                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3196                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3197                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3198                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3199                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3200
3201                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3202                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3203                                         assert!(msg.first_blocknum >= max_firstblocknum);
3204                                         max_firstblocknum = msg.first_blocknum;
3205                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3206
3207                                         // Check that the last block count is >= the query's end_blocknum
3208                                         if i == events.len() - 1 {
3209                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3210                                         }
3211                                 },
3212                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3213                         }
3214                 }
3215         }
3216
3217         #[test]
3218         fn handling_query_short_channel_ids() {
3219                 let network_graph = create_network_graph();
3220                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3221                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3222                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3223
3224                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3225
3226                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3227                         chain_hash,
3228                         short_channel_ids: vec![0x0003e8_000000_0000],
3229                 });
3230                 assert!(result.is_err());
3231         }
3232
3233         #[test]
3234         fn displays_node_alias() {
3235                 let format_str_alias = |alias: &str| {
3236                         let mut bytes = [0u8; 32];
3237                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3238                         format!("{}", NodeAlias(bytes))
3239                 };
3240
3241                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3242                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3243                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3244
3245                 let format_bytes_alias = |alias: &[u8]| {
3246                         let mut bytes = [0u8; 32];
3247                         bytes[..alias.len()].copy_from_slice(alias);
3248                         format!("{}", NodeAlias(bytes))
3249                 };
3250
3251                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3252                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3253                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3254         }
3255
3256         #[test]
3257         fn channel_info_is_readable() {
3258                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3259                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3260                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3261                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3262                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3263
3264                 // 1. Test encoding/decoding of ChannelUpdateInfo
3265                 let chan_update_info = ChannelUpdateInfo {
3266                         last_update: 23,
3267                         enabled: true,
3268                         cltv_expiry_delta: 42,
3269                         htlc_minimum_msat: 1234,
3270                         htlc_maximum_msat: 5678,
3271                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3272                         last_update_message: None,
3273                 };
3274
3275                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3276                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3277
3278                 // First make sure we can read ChannelUpdateInfos we just wrote
3279                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3280                 assert_eq!(chan_update_info, read_chan_update_info);
3281
3282                 // Check the serialization hasn't changed.
3283                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3284                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3285
3286                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3287                 // or the ChannelUpdate enclosed with `last_update_message`.
3288                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3289                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3290                 assert!(read_chan_update_info_res.is_err());
3291
3292                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3293                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3294                 assert!(read_chan_update_info_res.is_err());
3295
3296                 // 2. Test encoding/decoding of ChannelInfo
3297                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3298                 let chan_info_none_updates = ChannelInfo {
3299                         features: channelmanager::provided_channel_features(&config),
3300                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3301                         one_to_two: None,
3302                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3303                         two_to_one: None,
3304                         capacity_sats: None,
3305                         announcement_message: None,
3306                         announcement_received_time: 87654,
3307                 };
3308
3309                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3310                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3311
3312                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3313                 assert_eq!(chan_info_none_updates, read_chan_info);
3314
3315                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3316                 let chan_info_some_updates = ChannelInfo {
3317                         features: channelmanager::provided_channel_features(&config),
3318                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3319                         one_to_two: Some(chan_update_info.clone()),
3320                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3321                         two_to_one: Some(chan_update_info.clone()),
3322                         capacity_sats: None,
3323                         announcement_message: None,
3324                         announcement_received_time: 87654,
3325                 };
3326
3327                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3328                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3329
3330                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3331                 assert_eq!(chan_info_some_updates, read_chan_info);
3332
3333                 // Check the serialization hasn't changed.
3334                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3335                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3336
3337                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3338                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3339                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3340                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3341                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3342                 assert_eq!(read_chan_info.one_to_two, None);
3343                 assert_eq!(read_chan_info.two_to_one, None);
3344
3345                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3346                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3347                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3348                 assert_eq!(read_chan_info.one_to_two, None);
3349                 assert_eq!(read_chan_info.two_to_one, None);
3350         }
3351
3352         #[test]
3353         fn node_info_is_readable() {
3354                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3355                 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3356                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3357                 let valid_node_ann_info = NodeAnnouncementInfo {
3358                         features: channelmanager::provided_node_features(&UserConfig::default()),
3359                         last_update: 0,
3360                         rgb: [0u8; 3],
3361                         alias: NodeAlias([0u8; 32]),
3362                         announcement_message: Some(announcement_message)
3363                 };
3364
3365                 let mut encoded_valid_node_ann_info = Vec::new();
3366                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3367                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3368                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3369                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3370
3371                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3372                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3373                 assert!(read_invalid_node_ann_info_res.is_err());
3374
3375                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3376                 let valid_node_info = NodeInfo {
3377                         channels: Vec::new(),
3378                         announcement_info: Some(valid_node_ann_info),
3379                 };
3380
3381                 let mut encoded_valid_node_info = Vec::new();
3382                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3383                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3384                 assert_eq!(read_valid_node_info, valid_node_info);
3385
3386                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3387                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3388                 assert_eq!(read_invalid_node_info.announcement_info, None);
3389         }
3390
3391         #[test]
3392         fn test_node_info_keeps_compatibility() {
3393                 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3394                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3395                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3396                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3397                 assert!(ann_info_with_addresses.addresses().is_empty());
3398         }
3399 }
3400
3401 #[cfg(ldk_bench)]
3402 pub mod benches {
3403         use super::*;
3404         use std::io::Read;
3405         use criterion::{black_box, Criterion};
3406
3407         pub fn read_network_graph(bench: &mut Criterion) {
3408                 let logger = crate::util::test_utils::TestLogger::new();
3409                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3410                 let mut v = Vec::new();
3411                 d.read_to_end(&mut v).unwrap();
3412                 bench.bench_function("read_network_graph", |b| b.iter(||
3413                         NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3414                 ));
3415         }
3416
3417         pub fn write_network_graph(bench: &mut Criterion) {
3418                 let logger = crate::util::test_utils::TestLogger::new();
3419                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3420                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3421                 bench.bench_function("write_network_graph", |b| b.iter(||
3422                         black_box(&net_graph).encode()
3423                 ));
3424         }
3425 }