]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/routing/gossip.rs
Add an async resolution option to `ChainAccess::get_utxo`
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
22 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
23 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
24 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
25 use crate::ln::msgs;
26 use crate::routing::utxo::{self, UtxoLookup};
27 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
28 use crate::util::logger::{Logger, Level};
29 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
31 use crate::util::string::PrintableString;
32 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
33
34 use crate::io;
35 use crate::io_extras::{copy, sink};
36 use crate::prelude::*;
37 use core::{cmp, fmt};
38 use crate::sync::{RwLock, RwLockReadGuard};
39 #[cfg(feature = "std")]
40 use core::sync::atomic::{AtomicUsize, Ordering};
41 use crate::sync::Mutex;
42 use core::ops::{Bound, Deref};
43
44 #[cfg(feature = "std")]
45 use std::time::{SystemTime, UNIX_EPOCH};
46
47 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
48 /// suggestion.
49 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
50
51 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
52 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83 impl fmt::Display for NodeId {
84         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85                 write!(f, "{}", log_bytes!(self.0))
86         }
87 }
88
89 impl core::hash::Hash for NodeId {
90         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
91                 self.0.hash(hasher);
92         }
93 }
94
95 impl Eq for NodeId {}
96
97 impl PartialEq for NodeId {
98         fn eq(&self, other: &Self) -> bool {
99                 self.0[..] == other.0[..]
100         }
101 }
102
103 impl cmp::PartialOrd for NodeId {
104         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
105                 Some(self.cmp(other))
106         }
107 }
108
109 impl Ord for NodeId {
110         fn cmp(&self, other: &Self) -> cmp::Ordering {
111                 self.0[..].cmp(&other.0[..])
112         }
113 }
114
115 impl Writeable for NodeId {
116         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
117                 writer.write_all(&self.0)?;
118                 Ok(())
119         }
120 }
121
122 impl Readable for NodeId {
123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
124                 let mut buf = [0; PUBLIC_KEY_SIZE];
125                 reader.read_exact(&mut buf)?;
126                 Ok(Self(buf))
127         }
128 }
129
130 /// Represents the network as nodes and channels between them
131 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
132         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
133         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
134         genesis_hash: BlockHash,
135         logger: L,
136         // Lock order: channels -> nodes
137         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
138         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
139         // Lock order: removed_channels -> removed_nodes
140         //
141         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
142         // of `std::time::Instant`s for a few reasons:
143         //   * We want it to be possible to do tracking in no-std environments where we can compare
144         //     a provided current UNIX timestamp with the time at which we started tracking.
145         //   * In the future, if we decide to persist these maps, they will already be serializable.
146         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
147         //     environment should be practical over the time period we are considering (on the order of a
148         //     week).
149         //
150         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
151         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
152         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
153         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
154         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
155         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
156         /// that once some time passes, we can potentially resync it from gossip again.
157         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
158         /// Announcement messages which are awaiting an on-chain lookup to be processed.
159         pub(super) pending_checks: utxo::PendingChecks,
160 }
161
162 /// A read-only view of [`NetworkGraph`].
163 pub struct ReadOnlyNetworkGraph<'a> {
164         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
165         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
166 }
167
168 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
169 /// return packet by a node along the route. See [BOLT #4] for details.
170 ///
171 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
172 #[derive(Clone, Debug, PartialEq, Eq)]
173 pub enum NetworkUpdate {
174         /// An error indicating a `channel_update` messages should be applied via
175         /// [`NetworkGraph::update_channel`].
176         ChannelUpdateMessage {
177                 /// The update to apply via [`NetworkGraph::update_channel`].
178                 msg: ChannelUpdate,
179         },
180         /// An error indicating that a channel failed to route a payment, which should be applied via
181         /// [`NetworkGraph::channel_failed`].
182         ChannelFailure {
183                 /// The short channel id of the closed channel.
184                 short_channel_id: u64,
185                 /// Whether the channel should be permanently removed or temporarily disabled until a new
186                 /// `channel_update` message is received.
187                 is_permanent: bool,
188         },
189         /// An error indicating that a node failed to route a payment, which should be applied via
190         /// [`NetworkGraph::node_failed_permanent`] if permanent.
191         NodeFailure {
192                 /// The node id of the failed node.
193                 node_id: PublicKey,
194                 /// Whether the node should be permanently removed from consideration or can be restored
195                 /// when a new `channel_update` message is received.
196                 is_permanent: bool,
197         }
198 }
199
200 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
201         (0, ChannelUpdateMessage) => {
202                 (0, msg, required),
203         },
204         (2, ChannelFailure) => {
205                 (0, short_channel_id, required),
206                 (2, is_permanent, required),
207         },
208         (4, NodeFailure) => {
209                 (0, node_id, required),
210                 (2, is_permanent, required),
211         },
212 );
213
214 /// Receives and validates network updates from peers,
215 /// stores authentic and relevant data as a network graph.
216 /// This network graph is then used for routing payments.
217 /// Provides interface to help with initial routing sync by
218 /// serving historical announcements.
219 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
220 where U::Target: UtxoLookup, L::Target: Logger
221 {
222         network_graph: G,
223         utxo_lookup: Option<U>,
224         #[cfg(feature = "std")]
225         full_syncs_requested: AtomicUsize,
226         pending_events: Mutex<Vec<MessageSendEvent>>,
227         logger: L,
228 }
229
230 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
231 where U::Target: UtxoLookup, L::Target: Logger
232 {
233         /// Creates a new tracker of the actual state of the network of channels and nodes,
234         /// assuming an existing Network Graph.
235         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
236         /// correct, and the announcement is signed with channel owners' keys.
237         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
238                 P2PGossipSync {
239                         network_graph,
240                         #[cfg(feature = "std")]
241                         full_syncs_requested: AtomicUsize::new(0),
242                         utxo_lookup,
243                         pending_events: Mutex::new(vec![]),
244                         logger,
245                 }
246         }
247
248         /// Adds a provider used to check new announcements. Does not affect
249         /// existing announcements unless they are updated.
250         /// Add, update or remove the provider would replace the current one.
251         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
252                 self.utxo_lookup = utxo_lookup;
253         }
254
255         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
256         /// [`P2PGossipSync::new`].
257         ///
258         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
259         pub fn network_graph(&self) -> &G {
260                 &self.network_graph
261         }
262
263         #[cfg(feature = "std")]
264         /// Returns true when a full routing table sync should be performed with a peer.
265         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
266                 //TODO: Determine whether to request a full sync based on the network map.
267                 const FULL_SYNCS_TO_REQUEST: usize = 5;
268                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
269                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
270                         true
271                 } else {
272                         false
273                 }
274         }
275 }
276
277 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
278         /// Handles any network updates originating from [`Event`]s.
279         ///
280         /// [`Event`]: crate::util::events::Event
281         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
282                 match *network_update {
283                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
284                                 let short_channel_id = msg.contents.short_channel_id;
285                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
286                                 let status = if is_enabled { "enabled" } else { "disabled" };
287                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
288                                 let _ = self.update_channel(msg);
289                         },
290                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
291                                 let action = if is_permanent { "Removing" } else { "Disabling" };
292                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
293                                 self.channel_failed(short_channel_id, is_permanent);
294                         },
295                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
296                                 if is_permanent {
297                                         log_debug!(self.logger,
298                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
299                                         self.node_failed_permanent(node_id);
300                                 };
301                         },
302                 }
303         }
304 }
305
306 macro_rules! secp_verify_sig {
307         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
308                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
309                         Ok(_) => {},
310                         Err(_) => {
311                                 return Err(LightningError {
312                                         err: format!("Invalid signature on {} message", $msg_type),
313                                         action: ErrorAction::SendWarningMessage {
314                                                 msg: msgs::WarningMessage {
315                                                         channel_id: [0; 32],
316                                                         data: format!("Invalid signature on {} message", $msg_type),
317                                                 },
318                                                 log_level: Level::Trace,
319                                         },
320                                 });
321                         },
322                 }
323         };
324 }
325
326 macro_rules! get_pubkey_from_node_id {
327         ( $node_id: expr, $msg_type: expr ) => {
328                 PublicKey::from_slice($node_id.as_slice())
329                         .map_err(|_| LightningError {
330                                 err: format!("Invalid public key on {} message", $msg_type),
331                                 action: ErrorAction::SendWarningMessage {
332                                         msg: msgs::WarningMessage {
333                                                 channel_id: [0; 32],
334                                                 data: format!("Invalid public key on {} message", $msg_type),
335                                         },
336                                         log_level: Level::Trace
337                                 }
338                         })?
339         }
340 }
341
342 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
343 where U::Target: UtxoLookup, L::Target: Logger
344 {
345         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
346                 self.network_graph.update_node_from_announcement(msg)?;
347                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
348                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
349                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
350         }
351
352         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
353                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
354                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
355                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
356         }
357
358         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
359                 self.network_graph.update_channel(msg)?;
360                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
361         }
362
363         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
364                 let channels = self.network_graph.channels.read().unwrap();
365                 for (_, ref chan) in channels.range(starting_point..) {
366                         if chan.announcement_message.is_some() {
367                                 let chan_announcement = chan.announcement_message.clone().unwrap();
368                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
369                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
370                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
371                                         one_to_two_announcement = one_to_two.last_update_message.clone();
372                                 }
373                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
374                                         two_to_one_announcement = two_to_one.last_update_message.clone();
375                                 }
376                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
377                         } else {
378                                 // TODO: We may end up sending un-announced channel_updates if we are sending
379                                 // initial sync data while receiving announce/updates for this channel.
380                         }
381                 }
382                 None
383         }
384
385         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
386                 let nodes = self.network_graph.nodes.read().unwrap();
387                 let iter = if let Some(node_id) = starting_point {
388                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
389                         } else {
390                                 nodes.range(..)
391                         };
392                 for (_, ref node) in iter {
393                         if let Some(node_info) = node.announcement_info.as_ref() {
394                                 if let Some(msg) = node_info.announcement_message.clone() {
395                                         return Some(msg);
396                                 }
397                         }
398                 }
399                 None
400         }
401
402         /// Initiates a stateless sync of routing gossip information with a peer
403         /// using gossip_queries. The default strategy used by this implementation
404         /// is to sync the full block range with several peers.
405         ///
406         /// We should expect one or more reply_channel_range messages in response
407         /// to our query_channel_range. Each reply will enqueue a query_scid message
408         /// to request gossip messages for each channel. The sync is considered complete
409         /// when the final reply_scids_end message is received, though we are not
410         /// tracking this directly.
411         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
412                 // We will only perform a sync with peers that support gossip_queries.
413                 if !init_msg.features.supports_gossip_queries() {
414                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
415                         // channels with peers even without being able to exchange gossip.
416                         return Ok(());
417                 }
418
419                 // The lightning network's gossip sync system is completely broken in numerous ways.
420                 //
421                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
422                 // to do a full sync from the first few peers we connect to, and then receive gossip
423                 // updates from all our peers normally.
424                 //
425                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
426                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
427                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
428                 // seen.
429                 //
430                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
431                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
432                 // channel data which you are missing. Except there was no way at all to identify which
433                 // `channel_update`s you were missing, so you still had to request everything, just in a
434                 // very complicated way with some queries instead of just getting the dump.
435                 //
436                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
437                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
438                 // relying on it useless.
439                 //
440                 // After gossip queries were introduced, support for receiving a full gossip table dump on
441                 // connection was removed from several nodes, making it impossible to get a full sync
442                 // without using the "gossip queries" messages.
443                 //
444                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
445                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
446                 // message, as the name implies, tells the peer to not forward any gossip messages with a
447                 // timestamp older than a given value (not the time the peer received the filter, but the
448                 // timestamp in the update message, which is often hours behind when the peer received the
449                 // message).
450                 //
451                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
452                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
453                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
454                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
455                 // will simply not forward any new updates they see to you which were generated some time
456                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
457                 // ago), you will always get the full routing graph from all your peers.
458                 //
459                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
460                 // propagated some time after it was generated, and, worse, often disable gossiping with
461                 // several peers after their first connection. The second behavior can cause gossip to not
462                 // propagate fully if there are cuts in the gossiping subgraph.
463                 //
464                 // In an attempt to cut a middle ground between always fetching the full graph from all of
465                 // our peers and never receiving gossip from peers at all, we send all of our peers a
466                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
467                 //
468                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
469                 #[allow(unused_mut, unused_assignments)]
470                 let mut gossip_start_time = 0;
471                 #[cfg(feature = "std")]
472                 {
473                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
474                         if self.should_request_full_sync(&their_node_id) {
475                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
476                         } else {
477                                 gossip_start_time -= 60 * 60; // an hour ago
478                         }
479                 }
480
481                 let mut pending_events = self.pending_events.lock().unwrap();
482                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
483                         node_id: their_node_id.clone(),
484                         msg: GossipTimestampFilter {
485                                 chain_hash: self.network_graph.genesis_hash,
486                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
487                                 timestamp_range: u32::max_value(),
488                         },
489                 });
490                 Ok(())
491         }
492
493         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
494                 // We don't make queries, so should never receive replies. If, in the future, the set
495                 // reconciliation extensions to gossip queries become broadly supported, we should revert
496                 // this code to its state pre-0.0.106.
497                 Ok(())
498         }
499
500         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
501                 // We don't make queries, so should never receive replies. If, in the future, the set
502                 // reconciliation extensions to gossip queries become broadly supported, we should revert
503                 // this code to its state pre-0.0.106.
504                 Ok(())
505         }
506
507         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
508         /// are in the specified block range. Due to message size limits, large range
509         /// queries may result in several reply messages. This implementation enqueues
510         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
511         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
512         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
513         /// memory constrained systems.
514         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
515                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
516
517                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
518
519                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
520                 // If so, we manually cap the ending block to avoid this overflow.
521                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
522
523                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
524                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
525                         let mut pending_events = self.pending_events.lock().unwrap();
526                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
527                                 node_id: their_node_id.clone(),
528                                 msg: ReplyChannelRange {
529                                         chain_hash: msg.chain_hash.clone(),
530                                         first_blocknum: msg.first_blocknum,
531                                         number_of_blocks: msg.number_of_blocks,
532                                         sync_complete: true,
533                                         short_channel_ids: vec![],
534                                 }
535                         });
536                         return Err(LightningError {
537                                 err: String::from("query_channel_range could not be processed"),
538                                 action: ErrorAction::IgnoreError,
539                         });
540                 }
541
542                 // Creates channel batches. We are not checking if the channel is routable
543                 // (has at least one update). A peer may still want to know the channel
544                 // exists even if its not yet routable.
545                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
546                 let channels = self.network_graph.channels.read().unwrap();
547                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
548                         if let Some(chan_announcement) = &chan.announcement_message {
549                                 // Construct a new batch if last one is full
550                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
551                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
552                                 }
553
554                                 let batch = batches.last_mut().unwrap();
555                                 batch.push(chan_announcement.contents.short_channel_id);
556                         }
557                 }
558                 drop(channels);
559
560                 let mut pending_events = self.pending_events.lock().unwrap();
561                 let batch_count = batches.len();
562                 let mut prev_batch_endblock = msg.first_blocknum;
563                 for (batch_index, batch) in batches.into_iter().enumerate() {
564                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
565                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
566                         //
567                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
568                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
569                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
570                         // significant diversion from the requirements set by the spec, and, in case of blocks
571                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
572                         // and *not* derive the first_blocknum from the actual first block of the reply.
573                         let first_blocknum = prev_batch_endblock;
574
575                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
576                         // fit in. Though there is no requirement that we use exactly the number of blocks its
577                         // contents are from, except for the bogus requirements c-lightning enforces, above.
578                         //
579                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
580                         // >= the query's end block. Thus, for the last reply, we calculate the difference
581                         // between the query's end block and the start of the reply.
582                         //
583                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
584                         // first_blocknum will be either msg.first_blocknum or a higher block height.
585                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
586                                 (true, msg.end_blocknum() - first_blocknum)
587                         }
588                         // Prior replies should use the number of blocks that fit into the reply. Overflow
589                         // safe since first_blocknum is always <= last SCID's block.
590                         else {
591                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
592                         };
593
594                         prev_batch_endblock = first_blocknum + number_of_blocks;
595
596                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
597                                 node_id: their_node_id.clone(),
598                                 msg: ReplyChannelRange {
599                                         chain_hash: msg.chain_hash.clone(),
600                                         first_blocknum,
601                                         number_of_blocks,
602                                         sync_complete,
603                                         short_channel_ids: batch,
604                                 }
605                         });
606                 }
607
608                 Ok(())
609         }
610
611         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
612                 // TODO
613                 Err(LightningError {
614                         err: String::from("Not implemented"),
615                         action: ErrorAction::IgnoreError,
616                 })
617         }
618
619         fn provided_node_features(&self) -> NodeFeatures {
620                 let mut features = NodeFeatures::empty();
621                 features.set_gossip_queries_optional();
622                 features
623         }
624
625         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
626                 let mut features = InitFeatures::empty();
627                 features.set_gossip_queries_optional();
628                 features
629         }
630 }
631
632 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
633 where
634         U::Target: UtxoLookup,
635         L::Target: Logger,
636 {
637         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
638                 let mut ret = Vec::new();
639                 let mut pending_events = self.pending_events.lock().unwrap();
640                 core::mem::swap(&mut ret, &mut pending_events);
641                 ret
642         }
643 }
644
645 #[derive(Clone, Debug, PartialEq, Eq)]
646 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
647 pub struct ChannelUpdateInfo {
648         /// When the last update to the channel direction was issued.
649         /// Value is opaque, as set in the announcement.
650         pub last_update: u32,
651         /// Whether the channel can be currently used for payments (in this one direction).
652         pub enabled: bool,
653         /// The difference in CLTV values that you must have when routing through this channel.
654         pub cltv_expiry_delta: u16,
655         /// The minimum value, which must be relayed to the next hop via the channel
656         pub htlc_minimum_msat: u64,
657         /// The maximum value which may be relayed to the next hop via the channel.
658         pub htlc_maximum_msat: u64,
659         /// Fees charged when the channel is used for routing
660         pub fees: RoutingFees,
661         /// Most recent update for the channel received from the network
662         /// Mostly redundant with the data we store in fields explicitly.
663         /// Everything else is useful only for sending out for initial routing sync.
664         /// Not stored if contains excess data to prevent DoS.
665         pub last_update_message: Option<ChannelUpdate>,
666 }
667
668 impl fmt::Display for ChannelUpdateInfo {
669         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
670                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
671                 Ok(())
672         }
673 }
674
675 impl Writeable for ChannelUpdateInfo {
676         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
677                 write_tlv_fields!(writer, {
678                         (0, self.last_update, required),
679                         (2, self.enabled, required),
680                         (4, self.cltv_expiry_delta, required),
681                         (6, self.htlc_minimum_msat, required),
682                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
683                         // compatibility with LDK versions prior to v0.0.110.
684                         (8, Some(self.htlc_maximum_msat), required),
685                         (10, self.fees, required),
686                         (12, self.last_update_message, required),
687                 });
688                 Ok(())
689         }
690 }
691
692 impl Readable for ChannelUpdateInfo {
693         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
694                 _init_tlv_field_var!(last_update, required);
695                 _init_tlv_field_var!(enabled, required);
696                 _init_tlv_field_var!(cltv_expiry_delta, required);
697                 _init_tlv_field_var!(htlc_minimum_msat, required);
698                 _init_tlv_field_var!(htlc_maximum_msat, option);
699                 _init_tlv_field_var!(fees, required);
700                 _init_tlv_field_var!(last_update_message, required);
701
702                 read_tlv_fields!(reader, {
703                         (0, last_update, required),
704                         (2, enabled, required),
705                         (4, cltv_expiry_delta, required),
706                         (6, htlc_minimum_msat, required),
707                         (8, htlc_maximum_msat, required),
708                         (10, fees, required),
709                         (12, last_update_message, required)
710                 });
711
712                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
713                         Ok(ChannelUpdateInfo {
714                                 last_update: _init_tlv_based_struct_field!(last_update, required),
715                                 enabled: _init_tlv_based_struct_field!(enabled, required),
716                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
717                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
718                                 htlc_maximum_msat,
719                                 fees: _init_tlv_based_struct_field!(fees, required),
720                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
721                         })
722                 } else {
723                         Err(DecodeError::InvalidValue)
724                 }
725         }
726 }
727
728 #[derive(Clone, Debug, PartialEq, Eq)]
729 /// Details about a channel (both directions).
730 /// Received within a channel announcement.
731 pub struct ChannelInfo {
732         /// Protocol features of a channel communicated during its announcement
733         pub features: ChannelFeatures,
734         /// Source node of the first direction of a channel
735         pub node_one: NodeId,
736         /// Details about the first direction of a channel
737         pub one_to_two: Option<ChannelUpdateInfo>,
738         /// Source node of the second direction of a channel
739         pub node_two: NodeId,
740         /// Details about the second direction of a channel
741         pub two_to_one: Option<ChannelUpdateInfo>,
742         /// The channel capacity as seen on-chain, if chain lookup is available.
743         pub capacity_sats: Option<u64>,
744         /// An initial announcement of the channel
745         /// Mostly redundant with the data we store in fields explicitly.
746         /// Everything else is useful only for sending out for initial routing sync.
747         /// Not stored if contains excess data to prevent DoS.
748         pub announcement_message: Option<ChannelAnnouncement>,
749         /// The timestamp when we received the announcement, if we are running with feature = "std"
750         /// (which we can probably assume we are - no-std environments probably won't have a full
751         /// network graph in memory!).
752         announcement_received_time: u64,
753 }
754
755 impl ChannelInfo {
756         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
757         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
758         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
759                 let (direction, source) = {
760                         if target == &self.node_one {
761                                 (self.two_to_one.as_ref(), &self.node_two)
762                         } else if target == &self.node_two {
763                                 (self.one_to_two.as_ref(), &self.node_one)
764                         } else {
765                                 return None;
766                         }
767                 };
768                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
769         }
770
771         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
772         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
773         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
774                 let (direction, target) = {
775                         if source == &self.node_one {
776                                 (self.one_to_two.as_ref(), &self.node_two)
777                         } else if source == &self.node_two {
778                                 (self.two_to_one.as_ref(), &self.node_one)
779                         } else {
780                                 return None;
781                         }
782                 };
783                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
784         }
785
786         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
787         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
788                 let direction = channel_flags & 1u8;
789                 if direction == 0 {
790                         self.one_to_two.as_ref()
791                 } else {
792                         self.two_to_one.as_ref()
793                 }
794         }
795 }
796
797 impl fmt::Display for ChannelInfo {
798         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
799                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
800                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
801                 Ok(())
802         }
803 }
804
805 impl Writeable for ChannelInfo {
806         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
807                 write_tlv_fields!(writer, {
808                         (0, self.features, required),
809                         (1, self.announcement_received_time, (default_value, 0)),
810                         (2, self.node_one, required),
811                         (4, self.one_to_two, required),
812                         (6, self.node_two, required),
813                         (8, self.two_to_one, required),
814                         (10, self.capacity_sats, required),
815                         (12, self.announcement_message, required),
816                 });
817                 Ok(())
818         }
819 }
820
821 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
822 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
823 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
824 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
825 // channel updates via the gossip network.
826 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
827
828 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
829         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
830                 match crate::util::ser::Readable::read(reader) {
831                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
832                         Err(DecodeError::ShortRead) => Ok(None),
833                         Err(DecodeError::InvalidValue) => Ok(None),
834                         Err(err) => Err(err),
835                 }
836         }
837 }
838
839 impl Readable for ChannelInfo {
840         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
841                 _init_tlv_field_var!(features, required);
842                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
843                 _init_tlv_field_var!(node_one, required);
844                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
845                 _init_tlv_field_var!(node_two, required);
846                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
847                 _init_tlv_field_var!(capacity_sats, required);
848                 _init_tlv_field_var!(announcement_message, required);
849                 read_tlv_fields!(reader, {
850                         (0, features, required),
851                         (1, announcement_received_time, (default_value, 0)),
852                         (2, node_one, required),
853                         (4, one_to_two_wrap, ignorable),
854                         (6, node_two, required),
855                         (8, two_to_one_wrap, ignorable),
856                         (10, capacity_sats, required),
857                         (12, announcement_message, required),
858                 });
859
860                 Ok(ChannelInfo {
861                         features: _init_tlv_based_struct_field!(features, required),
862                         node_one: _init_tlv_based_struct_field!(node_one, required),
863                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
864                         node_two: _init_tlv_based_struct_field!(node_two, required),
865                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
866                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
867                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
868                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
869                 })
870         }
871 }
872
873 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
874 /// source node to a target node.
875 #[derive(Clone)]
876 pub struct DirectedChannelInfo<'a> {
877         channel: &'a ChannelInfo,
878         direction: &'a ChannelUpdateInfo,
879         htlc_maximum_msat: u64,
880         effective_capacity: EffectiveCapacity,
881 }
882
883 impl<'a> DirectedChannelInfo<'a> {
884         #[inline]
885         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
886                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
887                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
888
889                 let effective_capacity = match capacity_msat {
890                         Some(capacity_msat) => {
891                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
892                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
893                         },
894                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
895                 };
896
897                 Self {
898                         channel, direction, htlc_maximum_msat, effective_capacity
899                 }
900         }
901
902         /// Returns information for the channel.
903         #[inline]
904         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
905
906         /// Returns the maximum HTLC amount allowed over the channel in the direction.
907         #[inline]
908         pub fn htlc_maximum_msat(&self) -> u64 {
909                 self.htlc_maximum_msat
910         }
911
912         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
913         ///
914         /// This is either the total capacity from the funding transaction, if known, or the
915         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
916         /// otherwise.
917         pub fn effective_capacity(&self) -> EffectiveCapacity {
918                 self.effective_capacity
919         }
920
921         /// Returns information for the direction.
922         #[inline]
923         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
924 }
925
926 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
927         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
928                 f.debug_struct("DirectedChannelInfo")
929                         .field("channel", &self.channel)
930                         .finish()
931         }
932 }
933
934 /// The effective capacity of a channel for routing purposes.
935 ///
936 /// While this may be smaller than the actual channel capacity, amounts greater than
937 /// [`Self::as_msat`] should not be routed through the channel.
938 #[derive(Clone, Copy, Debug)]
939 pub enum EffectiveCapacity {
940         /// The available liquidity in the channel known from being a channel counterparty, and thus a
941         /// direct hop.
942         ExactLiquidity {
943                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
944                 /// millisatoshi.
945                 liquidity_msat: u64,
946         },
947         /// The maximum HTLC amount in one direction as advertised on the gossip network.
948         MaximumHTLC {
949                 /// The maximum HTLC amount denominated in millisatoshi.
950                 amount_msat: u64,
951         },
952         /// The total capacity of the channel as determined by the funding transaction.
953         Total {
954                 /// The funding amount denominated in millisatoshi.
955                 capacity_msat: u64,
956                 /// The maximum HTLC amount denominated in millisatoshi.
957                 htlc_maximum_msat: u64
958         },
959         /// A capacity sufficient to route any payment, typically used for private channels provided by
960         /// an invoice.
961         Infinite,
962         /// A capacity that is unknown possibly because either the chain state is unavailable to know
963         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
964         Unknown,
965 }
966
967 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
968 /// use when making routing decisions.
969 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
970
971 impl EffectiveCapacity {
972         /// Returns the effective capacity denominated in millisatoshi.
973         pub fn as_msat(&self) -> u64 {
974                 match self {
975                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
976                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
977                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
978                         EffectiveCapacity::Infinite => u64::max_value(),
979                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
980                 }
981         }
982 }
983
984 /// Fees for routing via a given channel or a node
985 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
986 pub struct RoutingFees {
987         /// Flat routing fee in satoshis
988         pub base_msat: u32,
989         /// Liquidity-based routing fee in millionths of a routed amount.
990         /// In other words, 10000 is 1%.
991         pub proportional_millionths: u32,
992 }
993
994 impl_writeable_tlv_based!(RoutingFees, {
995         (0, base_msat, required),
996         (2, proportional_millionths, required)
997 });
998
999 #[derive(Clone, Debug, PartialEq, Eq)]
1000 /// Information received in the latest node_announcement from this node.
1001 pub struct NodeAnnouncementInfo {
1002         /// Protocol features the node announced support for
1003         pub features: NodeFeatures,
1004         /// When the last known update to the node state was issued.
1005         /// Value is opaque, as set in the announcement.
1006         pub last_update: u32,
1007         /// Color assigned to the node
1008         pub rgb: [u8; 3],
1009         /// Moniker assigned to the node.
1010         /// May be invalid or malicious (eg control chars),
1011         /// should not be exposed to the user.
1012         pub alias: NodeAlias,
1013         /// Internet-level addresses via which one can connect to the node
1014         pub addresses: Vec<NetAddress>,
1015         /// An initial announcement of the node
1016         /// Mostly redundant with the data we store in fields explicitly.
1017         /// Everything else is useful only for sending out for initial routing sync.
1018         /// Not stored if contains excess data to prevent DoS.
1019         pub announcement_message: Option<NodeAnnouncement>
1020 }
1021
1022 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1023         (0, features, required),
1024         (2, last_update, required),
1025         (4, rgb, required),
1026         (6, alias, required),
1027         (8, announcement_message, option),
1028         (10, addresses, vec_type),
1029 });
1030
1031 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1032 ///
1033 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1034 /// attacks. Care must be taken when processing.
1035 #[derive(Clone, Debug, PartialEq, Eq)]
1036 pub struct NodeAlias(pub [u8; 32]);
1037
1038 impl fmt::Display for NodeAlias {
1039         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1040                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1041                 let bytes = self.0.split_at(first_null).0;
1042                 match core::str::from_utf8(bytes) {
1043                         Ok(alias) => PrintableString(alias).fmt(f)?,
1044                         Err(_) => {
1045                                 use core::fmt::Write;
1046                                 for c in bytes.iter().map(|b| *b as char) {
1047                                         // Display printable ASCII characters
1048                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1049                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1050                                         f.write_char(c)?;
1051                                 }
1052                         },
1053                 };
1054                 Ok(())
1055         }
1056 }
1057
1058 impl Writeable for NodeAlias {
1059         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1060                 self.0.write(w)
1061         }
1062 }
1063
1064 impl Readable for NodeAlias {
1065         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1066                 Ok(NodeAlias(Readable::read(r)?))
1067         }
1068 }
1069
1070 #[derive(Clone, Debug, PartialEq, Eq)]
1071 /// Details about a node in the network, known from the network announcement.
1072 pub struct NodeInfo {
1073         /// All valid channels a node has announced
1074         pub channels: Vec<u64>,
1075         /// More information about a node from node_announcement.
1076         /// Optional because we store a Node entry after learning about it from
1077         /// a channel announcement, but before receiving a node announcement.
1078         pub announcement_info: Option<NodeAnnouncementInfo>
1079 }
1080
1081 impl fmt::Display for NodeInfo {
1082         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1083                 write!(f, " channels: {:?}, announcement_info: {:?}",
1084                         &self.channels[..], self.announcement_info)?;
1085                 Ok(())
1086         }
1087 }
1088
1089 impl Writeable for NodeInfo {
1090         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1091                 write_tlv_fields!(writer, {
1092                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1093                         (2, self.announcement_info, option),
1094                         (4, self.channels, vec_type),
1095                 });
1096                 Ok(())
1097         }
1098 }
1099
1100 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1101 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1102 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1103 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1104 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1105
1106 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1107         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1108                 match crate::util::ser::Readable::read(reader) {
1109                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1110                         Err(_) => {
1111                                 copy(reader, &mut sink()).unwrap();
1112                                 return Ok(None)
1113                         },
1114                 };
1115         }
1116 }
1117
1118 impl Readable for NodeInfo {
1119         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1120                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1121                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1122                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1123                 // requires additional complexity and lookups during routing, it ends up being a
1124                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1125                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1126                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1127                 _init_tlv_field_var!(channels, vec_type);
1128
1129                 read_tlv_fields!(reader, {
1130                         (0, _lowest_inbound_channel_fees, option),
1131                         (2, announcement_info_wrap, ignorable),
1132                         (4, channels, vec_type),
1133                 });
1134
1135                 Ok(NodeInfo {
1136                         announcement_info: announcement_info_wrap.map(|w| w.0),
1137                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1138                 })
1139         }
1140 }
1141
1142 const SERIALIZATION_VERSION: u8 = 1;
1143 const MIN_SERIALIZATION_VERSION: u8 = 1;
1144
1145 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1146         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1147                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1148
1149                 self.genesis_hash.write(writer)?;
1150                 let channels = self.channels.read().unwrap();
1151                 (channels.len() as u64).write(writer)?;
1152                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1153                         (*chan_id).write(writer)?;
1154                         chan_info.write(writer)?;
1155                 }
1156                 let nodes = self.nodes.read().unwrap();
1157                 (nodes.len() as u64).write(writer)?;
1158                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1159                         node_id.write(writer)?;
1160                         node_info.write(writer)?;
1161                 }
1162
1163                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1164                 write_tlv_fields!(writer, {
1165                         (1, last_rapid_gossip_sync_timestamp, option),
1166                 });
1167                 Ok(())
1168         }
1169 }
1170
1171 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1172         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1173                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1174
1175                 let genesis_hash: BlockHash = Readable::read(reader)?;
1176                 let channels_count: u64 = Readable::read(reader)?;
1177                 let mut channels = IndexedMap::new();
1178                 for _ in 0..channels_count {
1179                         let chan_id: u64 = Readable::read(reader)?;
1180                         let chan_info = Readable::read(reader)?;
1181                         channels.insert(chan_id, chan_info);
1182                 }
1183                 let nodes_count: u64 = Readable::read(reader)?;
1184                 let mut nodes = IndexedMap::new();
1185                 for _ in 0..nodes_count {
1186                         let node_id = Readable::read(reader)?;
1187                         let node_info = Readable::read(reader)?;
1188                         nodes.insert(node_id, node_info);
1189                 }
1190
1191                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1192                 read_tlv_fields!(reader, {
1193                         (1, last_rapid_gossip_sync_timestamp, option),
1194                 });
1195
1196                 Ok(NetworkGraph {
1197                         secp_ctx: Secp256k1::verification_only(),
1198                         genesis_hash,
1199                         logger,
1200                         channels: RwLock::new(channels),
1201                         nodes: RwLock::new(nodes),
1202                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1203                         removed_nodes: Mutex::new(HashMap::new()),
1204                         removed_channels: Mutex::new(HashMap::new()),
1205                         pending_checks: utxo::PendingChecks::new(),
1206                 })
1207         }
1208 }
1209
1210 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1211         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1212                 writeln!(f, "Network map\n[Channels]")?;
1213                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1214                         writeln!(f, " {}: {}", key, val)?;
1215                 }
1216                 writeln!(f, "[Nodes]")?;
1217                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1218                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1219                 }
1220                 Ok(())
1221         }
1222 }
1223
1224 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1225 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1226         fn eq(&self, other: &Self) -> bool {
1227                 self.genesis_hash == other.genesis_hash &&
1228                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1229                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1230         }
1231 }
1232
1233 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1234         /// Creates a new, empty, network graph.
1235         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1236                 Self {
1237                         secp_ctx: Secp256k1::verification_only(),
1238                         genesis_hash,
1239                         logger,
1240                         channels: RwLock::new(IndexedMap::new()),
1241                         nodes: RwLock::new(IndexedMap::new()),
1242                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1243                         removed_channels: Mutex::new(HashMap::new()),
1244                         removed_nodes: Mutex::new(HashMap::new()),
1245                         pending_checks: utxo::PendingChecks::new(),
1246                 }
1247         }
1248
1249         /// Returns a read-only view of the network graph.
1250         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1251                 let channels = self.channels.read().unwrap();
1252                 let nodes = self.nodes.read().unwrap();
1253                 ReadOnlyNetworkGraph {
1254                         channels,
1255                         nodes,
1256                 }
1257         }
1258
1259         /// The unix timestamp provided by the most recent rapid gossip sync.
1260         /// It will be set by the rapid sync process after every sync completion.
1261         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1262                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1263         }
1264
1265         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1266         /// This should be done automatically by the rapid sync process after every sync completion.
1267         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1268                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1269         }
1270
1271         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1272         /// purposes.
1273         #[cfg(test)]
1274         pub fn clear_nodes_announcement_info(&self) {
1275                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1276                         node.1.announcement_info = None;
1277                 }
1278         }
1279
1280         /// For an already known node (from channel announcements), update its stored properties from a
1281         /// given node announcement.
1282         ///
1283         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1284         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1285         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1286         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1287                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1288                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1289                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1290         }
1291
1292         /// For an already known node (from channel announcements), update its stored properties from a
1293         /// given node announcement without verifying the associated signatures. Because we aren't
1294         /// given the associated signatures here we cannot relay the node announcement to any of our
1295         /// peers.
1296         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1297                 self.update_node_from_announcement_intern(msg, None)
1298         }
1299
1300         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1301                 match self.nodes.write().unwrap().get_mut(&msg.node_id) {
1302                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1303                         Some(node) => {
1304                                 if let Some(node_info) = node.announcement_info.as_ref() {
1305                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1306                                         // updates to ensure you always have the latest one, only vaguely suggesting
1307                                         // that it be at least the current time.
1308                                         if node_info.last_update  > msg.timestamp {
1309                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1310                                         } else if node_info.last_update  == msg.timestamp {
1311                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1312                                         }
1313                                 }
1314
1315                                 let should_relay =
1316                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1317                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1318                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1319                                 node.announcement_info = Some(NodeAnnouncementInfo {
1320                                         features: msg.features.clone(),
1321                                         last_update: msg.timestamp,
1322                                         rgb: msg.rgb,
1323                                         alias: NodeAlias(msg.alias),
1324                                         addresses: msg.addresses.clone(),
1325                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1326                                 });
1327
1328                                 Ok(())
1329                         }
1330                 }
1331         }
1332
1333         /// Store or update channel info from a channel announcement.
1334         ///
1335         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1336         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1337         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1338         ///
1339         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1340         /// the corresponding UTXO exists on chain and is correctly-formatted.
1341         pub fn update_channel_from_announcement<U: Deref>(
1342                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1343         ) -> Result<(), LightningError>
1344         where
1345                 U::Target: UtxoLookup,
1346         {
1347                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1348                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1349                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1350                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1351                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1352                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1353         }
1354
1355         /// Store or update channel info from a channel announcement without verifying the associated
1356         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1357         /// channel announcement to any of our peers.
1358         ///
1359         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1360         /// the corresponding UTXO exists on chain and is correctly-formatted.
1361         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1362                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1363         ) -> Result<(), LightningError>
1364         where
1365                 U::Target: UtxoLookup,
1366         {
1367                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1368         }
1369
1370         /// Update channel from partial announcement data received via rapid gossip sync
1371         ///
1372         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1373         /// rapid gossip sync server)
1374         ///
1375         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1376         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1377                 if node_id_1 == node_id_2 {
1378                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1379                 };
1380
1381                 let node_1 = NodeId::from_pubkey(&node_id_1);
1382                 let node_2 = NodeId::from_pubkey(&node_id_2);
1383                 let channel_info = ChannelInfo {
1384                         features,
1385                         node_one: node_1.clone(),
1386                         one_to_two: None,
1387                         node_two: node_2.clone(),
1388                         two_to_one: None,
1389                         capacity_sats: None,
1390                         announcement_message: None,
1391                         announcement_received_time: timestamp,
1392                 };
1393
1394                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1395         }
1396
1397         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1398                 let mut channels = self.channels.write().unwrap();
1399                 let mut nodes = self.nodes.write().unwrap();
1400
1401                 let node_id_a = channel_info.node_one.clone();
1402                 let node_id_b = channel_info.node_two.clone();
1403
1404                 match channels.entry(short_channel_id) {
1405                         IndexedMapEntry::Occupied(mut entry) => {
1406                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1407                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1408                                 //exactly how...
1409                                 if utxo_value.is_some() {
1410                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1411                                         // only sometimes returns results. In any case remove the previous entry. Note
1412                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1413                                         // do that because
1414                                         // a) we don't *require* a UTXO provider that always returns results.
1415                                         // b) we don't track UTXOs of channels we know about and remove them if they
1416                                         //    get reorg'd out.
1417                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1418                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1419                                         *entry.get_mut() = channel_info;
1420                                 } else {
1421                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1422                                 }
1423                         },
1424                         IndexedMapEntry::Vacant(entry) => {
1425                                 entry.insert(channel_info);
1426                         }
1427                 };
1428
1429                 for current_node_id in [node_id_a, node_id_b].iter() {
1430                         match nodes.entry(current_node_id.clone()) {
1431                                 IndexedMapEntry::Occupied(node_entry) => {
1432                                         node_entry.into_mut().channels.push(short_channel_id);
1433                                 },
1434                                 IndexedMapEntry::Vacant(node_entry) => {
1435                                         node_entry.insert(NodeInfo {
1436                                                 channels: vec!(short_channel_id),
1437                                                 announcement_info: None,
1438                                         });
1439                                 }
1440                         };
1441                 };
1442
1443                 Ok(())
1444         }
1445
1446         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1447                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1448         ) -> Result<(), LightningError>
1449         where
1450                 U::Target: UtxoLookup,
1451         {
1452                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1453                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1454                 }
1455
1456                 {
1457                         let channels = self.channels.read().unwrap();
1458
1459                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1460                                 if chan.capacity_sats.is_some() {
1461                                         // If we'd previously looked up the channel on-chain and checked the script
1462                                         // against what appears on-chain, ignore the duplicate announcement.
1463                                         //
1464                                         // Because a reorg could replace one channel with another at the same SCID, if
1465                                         // the channel appears to be different, we re-validate. This doesn't expose us
1466                                         // to any more DoS risk than not, as a peer can always flood us with
1467                                         // randomly-generated SCID values anyway.
1468                                         //
1469                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1470                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1471                                         // if the peers on the channel changed anyway.
1472                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1473                                                 return Err(LightningError {
1474                                                         err: "Already have chain-validated channel".to_owned(),
1475                                                         action: ErrorAction::IgnoreDuplicateGossip
1476                                                 });
1477                                         }
1478                                 } else if utxo_lookup.is_none() {
1479                                         // Similarly, if we can't check the chain right now anyway, ignore the
1480                                         // duplicate announcement without bothering to take the channels write lock.
1481                                         return Err(LightningError {
1482                                                 err: "Already have non-chain-validated channel".to_owned(),
1483                                                 action: ErrorAction::IgnoreDuplicateGossip
1484                                         });
1485                                 }
1486                         }
1487                 }
1488
1489                 {
1490                         let removed_channels = self.removed_channels.lock().unwrap();
1491                         let removed_nodes = self.removed_nodes.lock().unwrap();
1492                         if removed_channels.contains_key(&msg.short_channel_id) ||
1493                                 removed_nodes.contains_key(&msg.node_id_1) ||
1494                                 removed_nodes.contains_key(&msg.node_id_2) {
1495                                 return Err(LightningError{
1496                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1497                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1498                         }
1499                 }
1500
1501                 let utxo_value = self.pending_checks.check_channel_announcement(
1502                         utxo_lookup, msg, full_msg)?;
1503
1504                 #[allow(unused_mut, unused_assignments)]
1505                 let mut announcement_received_time = 0;
1506                 #[cfg(feature = "std")]
1507                 {
1508                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1509                 }
1510
1511                 let chan_info = ChannelInfo {
1512                         features: msg.features.clone(),
1513                         node_one: msg.node_id_1,
1514                         one_to_two: None,
1515                         node_two: msg.node_id_2,
1516                         two_to_one: None,
1517                         capacity_sats: utxo_value,
1518                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1519                                 { full_msg.cloned() } else { None },
1520                         announcement_received_time,
1521                 };
1522
1523                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1524         }
1525
1526         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1527         /// If permanent, removes a channel from the local storage.
1528         /// May cause the removal of nodes too, if this was their last channel.
1529         /// If not permanent, makes channels unavailable for routing.
1530         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1531                 #[cfg(feature = "std")]
1532                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1533                 #[cfg(not(feature = "std"))]
1534                 let current_time_unix = None;
1535
1536                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1537         }
1538
1539         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1540         /// If permanent, removes a channel from the local storage.
1541         /// May cause the removal of nodes too, if this was their last channel.
1542         /// If not permanent, makes channels unavailable for routing.
1543         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1544                 let mut channels = self.channels.write().unwrap();
1545                 if is_permanent {
1546                         if let Some(chan) = channels.remove(&short_channel_id) {
1547                                 let mut nodes = self.nodes.write().unwrap();
1548                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1549                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1550                         }
1551                 } else {
1552                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1553                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1554                                         one_to_two.enabled = false;
1555                                 }
1556                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1557                                         two_to_one.enabled = false;
1558                                 }
1559                         }
1560                 }
1561         }
1562
1563         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1564         /// from local storage.
1565         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1566                 #[cfg(feature = "std")]
1567                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1568                 #[cfg(not(feature = "std"))]
1569                 let current_time_unix = None;
1570
1571                 let node_id = NodeId::from_pubkey(node_id);
1572                 let mut channels = self.channels.write().unwrap();
1573                 let mut nodes = self.nodes.write().unwrap();
1574                 let mut removed_channels = self.removed_channels.lock().unwrap();
1575                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1576
1577                 if let Some(node) = nodes.remove(&node_id) {
1578                         for scid in node.channels.iter() {
1579                                 if let Some(chan_info) = channels.remove(scid) {
1580                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1581                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1582                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1583                                                         *scid != *chan_id
1584                                                 });
1585                                                 if other_node_entry.get().channels.is_empty() {
1586                                                         other_node_entry.remove_entry();
1587                                                 }
1588                                         }
1589                                         removed_channels.insert(*scid, current_time_unix);
1590                                 }
1591                         }
1592                         removed_nodes.insert(node_id, current_time_unix);
1593                 }
1594         }
1595
1596         #[cfg(feature = "std")]
1597         /// Removes information about channels that we haven't heard any updates about in some time.
1598         /// This can be used regularly to prune the network graph of channels that likely no longer
1599         /// exist.
1600         ///
1601         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1602         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1603         /// pruning occur for updates which are at least two weeks old, which we implement here.
1604         ///
1605         /// Note that for users of the `lightning-background-processor` crate this method may be
1606         /// automatically called regularly for you.
1607         ///
1608         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1609         /// in the map for a while so that these can be resynced from gossip in the future.
1610         ///
1611         /// This method is only available with the `std` feature. See
1612         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1613         pub fn remove_stale_channels_and_tracking(&self) {
1614                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1615                 self.remove_stale_channels_and_tracking_with_time(time);
1616         }
1617
1618         /// Removes information about channels that we haven't heard any updates about in some time.
1619         /// This can be used regularly to prune the network graph of channels that likely no longer
1620         /// exist.
1621         ///
1622         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1623         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1624         /// pruning occur for updates which are at least two weeks old, which we implement here.
1625         ///
1626         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1627         /// in the map for a while so that these can be resynced from gossip in the future.
1628         ///
1629         /// This function takes the current unix time as an argument. For users with the `std` feature
1630         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1631         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1632                 let mut channels = self.channels.write().unwrap();
1633                 // Time out if we haven't received an update in at least 14 days.
1634                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1635                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1636                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1637                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1638                 // time.
1639                 let mut scids_to_remove = Vec::new();
1640                 for (scid, info) in channels.unordered_iter_mut() {
1641                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1642                                 info.one_to_two = None;
1643                         }
1644                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1645                                 info.two_to_one = None;
1646                         }
1647                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1648                                 // We check the announcement_received_time here to ensure we don't drop
1649                                 // announcements that we just received and are just waiting for our peer to send a
1650                                 // channel_update for.
1651                                 if info.announcement_received_time < min_time_unix as u64 {
1652                                         scids_to_remove.push(*scid);
1653                                 }
1654                         }
1655                 }
1656                 if !scids_to_remove.is_empty() {
1657                         let mut nodes = self.nodes.write().unwrap();
1658                         for scid in scids_to_remove {
1659                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1660                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1661                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1662                         }
1663                 }
1664
1665                 let should_keep_tracking = |time: &mut Option<u64>| {
1666                         if let Some(time) = time {
1667                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1668                         } else {
1669                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1670                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1671                                 // of this function.
1672                                 #[cfg(feature = "no-std")]
1673                                 {
1674                                         let mut tracked_time = Some(current_time_unix);
1675                                         core::mem::swap(time, &mut tracked_time);
1676                                         return true;
1677                                 }
1678                                 #[allow(unreachable_code)]
1679                                 false
1680                         }};
1681
1682                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1683                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1684         }
1685
1686         /// For an already known (from announcement) channel, update info about one of the directions
1687         /// of the channel.
1688         ///
1689         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1690         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1691         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1692         ///
1693         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1694         /// materially in the future will be rejected.
1695         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1696                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1697         }
1698
1699         /// For an already known (from announcement) channel, update info about one of the directions
1700         /// of the channel without verifying the associated signatures. Because we aren't given the
1701         /// associated signatures here we cannot relay the channel update to any of our peers.
1702         ///
1703         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1704         /// materially in the future will be rejected.
1705         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1706                 self.update_channel_intern(msg, None, None)
1707         }
1708
1709         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1710                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1711
1712                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1713                 {
1714                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1715                         // disable this check during tests!
1716                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1717                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1718                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1719                         }
1720                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1721                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1722                         }
1723                 }
1724
1725                 let mut channels = self.channels.write().unwrap();
1726                 match channels.get_mut(&msg.short_channel_id) {
1727                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1728                         Some(channel) => {
1729                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1730                                         return Err(LightningError{err:
1731                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1732                                                 action: ErrorAction::IgnoreError});
1733                                 }
1734
1735                                 if let Some(capacity_sats) = channel.capacity_sats {
1736                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1737                                         // Don't query UTXO set here to reduce DoS risks.
1738                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1739                                                 return Err(LightningError{err:
1740                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1741                                                         action: ErrorAction::IgnoreError});
1742                                         }
1743                                 }
1744                                 macro_rules! check_update_latest {
1745                                         ($target: expr) => {
1746                                                 if let Some(existing_chan_info) = $target.as_ref() {
1747                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1748                                                         // order updates to ensure you always have the latest one, only
1749                                                         // suggesting  that it be at least the current time. For
1750                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1751                                                         // pruning based on the timestamp field being more than two weeks old,
1752                                                         // but only in the non-normative section.
1753                                                         if existing_chan_info.last_update > msg.timestamp {
1754                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1755                                                         } else if existing_chan_info.last_update == msg.timestamp {
1756                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1757                                                         }
1758                                                 }
1759                                         }
1760                                 }
1761
1762                                 macro_rules! get_new_channel_info {
1763                                         () => { {
1764                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1765                                                         { full_msg.cloned() } else { None };
1766
1767                                                 let updated_channel_update_info = ChannelUpdateInfo {
1768                                                         enabled: chan_enabled,
1769                                                         last_update: msg.timestamp,
1770                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1771                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1772                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1773                                                         fees: RoutingFees {
1774                                                                 base_msat: msg.fee_base_msat,
1775                                                                 proportional_millionths: msg.fee_proportional_millionths,
1776                                                         },
1777                                                         last_update_message
1778                                                 };
1779                                                 Some(updated_channel_update_info)
1780                                         } }
1781                                 }
1782
1783                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1784                                 if msg.flags & 1 == 1 {
1785                                         check_update_latest!(channel.two_to_one);
1786                                         if let Some(sig) = sig {
1787                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1788                                                         err: "Couldn't parse source node pubkey".to_owned(),
1789                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1790                                                 })?, "channel_update");
1791                                         }
1792                                         channel.two_to_one = get_new_channel_info!();
1793                                 } else {
1794                                         check_update_latest!(channel.one_to_two);
1795                                         if let Some(sig) = sig {
1796                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1797                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1798                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1799                                                 })?, "channel_update");
1800                                         }
1801                                         channel.one_to_two = get_new_channel_info!();
1802                                 }
1803                         }
1804                 }
1805
1806                 Ok(())
1807         }
1808
1809         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1810                 macro_rules! remove_from_node {
1811                         ($node_id: expr) => {
1812                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1813                                         entry.get_mut().channels.retain(|chan_id| {
1814                                                 short_channel_id != *chan_id
1815                                         });
1816                                         if entry.get().channels.is_empty() {
1817                                                 entry.remove_entry();
1818                                         }
1819                                 } else {
1820                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1821                                 }
1822                         }
1823                 }
1824
1825                 remove_from_node!(chan.node_one);
1826                 remove_from_node!(chan.node_two);
1827         }
1828 }
1829
1830 impl ReadOnlyNetworkGraph<'_> {
1831         /// Returns all known valid channels' short ids along with announced channel info.
1832         ///
1833         /// (C-not exported) because we don't want to return lifetime'd references
1834         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1835                 &*self.channels
1836         }
1837
1838         /// Returns information on a channel with the given id.
1839         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1840                 self.channels.get(&short_channel_id)
1841         }
1842
1843         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1844         /// Returns the list of channels in the graph
1845         pub fn list_channels(&self) -> Vec<u64> {
1846                 self.channels.unordered_keys().map(|c| *c).collect()
1847         }
1848
1849         /// Returns all known nodes' public keys along with announced node info.
1850         ///
1851         /// (C-not exported) because we don't want to return lifetime'd references
1852         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1853                 &*self.nodes
1854         }
1855
1856         /// Returns information on a node with the given id.
1857         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1858                 self.nodes.get(node_id)
1859         }
1860
1861         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1862         /// Returns the list of nodes in the graph
1863         pub fn list_nodes(&self) -> Vec<NodeId> {
1864                 self.nodes.unordered_keys().map(|n| *n).collect()
1865         }
1866
1867         /// Get network addresses by node id.
1868         /// Returns None if the requested node is completely unknown,
1869         /// or if node announcement for the node was never received.
1870         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1871                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1872                         if let Some(node_info) = node.announcement_info.as_ref() {
1873                                 return Some(node_info.addresses.clone())
1874                         }
1875                 }
1876                 None
1877         }
1878 }
1879
1880 #[cfg(test)]
1881 mod tests {
1882         use crate::ln::channelmanager;
1883         use crate::ln::chan_utils::make_funding_redeemscript;
1884         #[cfg(feature = "std")]
1885         use crate::ln::features::InitFeatures;
1886         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1887         use crate::routing::utxo::UtxoLookupError;
1888         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1889                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1890                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1891         use crate::util::config::UserConfig;
1892         use crate::util::test_utils;
1893         use crate::util::ser::{ReadableArgs, Writeable};
1894         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1895         use crate::util::scid_utils::scid_from_parts;
1896
1897         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1898         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1899
1900         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1901         use bitcoin::hashes::Hash;
1902         use bitcoin::network::constants::Network;
1903         use bitcoin::blockdata::constants::genesis_block;
1904         use bitcoin::blockdata::script::Script;
1905         use bitcoin::blockdata::transaction::TxOut;
1906
1907         use hex;
1908
1909         use bitcoin::secp256k1::{PublicKey, SecretKey};
1910         use bitcoin::secp256k1::{All, Secp256k1};
1911
1912         use crate::io;
1913         use bitcoin::secp256k1;
1914         use crate::prelude::*;
1915         use crate::sync::Arc;
1916
1917         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1918                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1919                 let logger = Arc::new(test_utils::TestLogger::new());
1920                 NetworkGraph::new(genesis_hash, logger)
1921         }
1922
1923         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1924                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1925                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1926         ) {
1927                 let secp_ctx = Secp256k1::new();
1928                 let logger = Arc::new(test_utils::TestLogger::new());
1929                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1930                 (secp_ctx, gossip_sync)
1931         }
1932
1933         #[test]
1934         #[cfg(feature = "std")]
1935         fn request_full_sync_finite_times() {
1936                 let network_graph = create_network_graph();
1937                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1938                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1939
1940                 assert!(gossip_sync.should_request_full_sync(&node_id));
1941                 assert!(gossip_sync.should_request_full_sync(&node_id));
1942                 assert!(gossip_sync.should_request_full_sync(&node_id));
1943                 assert!(gossip_sync.should_request_full_sync(&node_id));
1944                 assert!(gossip_sync.should_request_full_sync(&node_id));
1945                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1946         }
1947
1948         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1949                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1950                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1951                         features: channelmanager::provided_node_features(&UserConfig::default()),
1952                         timestamp: 100,
1953                         node_id,
1954                         rgb: [0; 3],
1955                         alias: [0; 32],
1956                         addresses: Vec::new(),
1957                         excess_address_data: Vec::new(),
1958                         excess_data: Vec::new(),
1959                 };
1960                 f(&mut unsigned_announcement);
1961                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1962                 NodeAnnouncement {
1963                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1964                         contents: unsigned_announcement
1965                 }
1966         }
1967
1968         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1969                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1970                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1971                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1972                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1973
1974                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1975                         features: channelmanager::provided_channel_features(&UserConfig::default()),
1976                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1977                         short_channel_id: 0,
1978                         node_id_1: NodeId::from_pubkey(&node_id_1),
1979                         node_id_2: NodeId::from_pubkey(&node_id_2),
1980                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
1981                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
1982                         excess_data: Vec::new(),
1983                 };
1984                 f(&mut unsigned_announcement);
1985                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1986                 ChannelAnnouncement {
1987                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1988                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1989                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1990                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1991                         contents: unsigned_announcement,
1992                 }
1993         }
1994
1995         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1996                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1997                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1998                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1999                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2000         }
2001
2002         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2003                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2004                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2005                         short_channel_id: 0,
2006                         timestamp: 100,
2007                         flags: 0,
2008                         cltv_expiry_delta: 144,
2009                         htlc_minimum_msat: 1_000_000,
2010                         htlc_maximum_msat: 1_000_000,
2011                         fee_base_msat: 10_000,
2012                         fee_proportional_millionths: 20,
2013                         excess_data: Vec::new()
2014                 };
2015                 f(&mut unsigned_channel_update);
2016                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2017                 ChannelUpdate {
2018                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2019                         contents: unsigned_channel_update
2020                 }
2021         }
2022
2023         #[test]
2024         fn handling_node_announcements() {
2025                 let network_graph = create_network_graph();
2026                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2027
2028                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2029                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2030                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2031
2032                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2033                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2034                         Ok(_) => panic!(),
2035                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2036                 };
2037
2038                 {
2039                         // Announce a channel to add a corresponding node.
2040                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2041                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2042                                 Ok(res) => assert!(res),
2043                                 _ => panic!()
2044                         };
2045                 }
2046
2047                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2048                         Ok(res) => assert!(res),
2049                         Err(_) => panic!()
2050                 };
2051
2052                 let fake_msghash = hash_to_message!(&zero_hash);
2053                 match gossip_sync.handle_node_announcement(
2054                         &NodeAnnouncement {
2055                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2056                                 contents: valid_announcement.contents.clone()
2057                 }) {
2058                         Ok(_) => panic!(),
2059                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2060                 };
2061
2062                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2063                         unsigned_announcement.timestamp += 1000;
2064                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2065                 }, node_1_privkey, &secp_ctx);
2066                 // Return false because contains excess data.
2067                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2068                         Ok(res) => assert!(!res),
2069                         Err(_) => panic!()
2070                 };
2071
2072                 // Even though previous announcement was not relayed further, we still accepted it,
2073                 // so we now won't accept announcements before the previous one.
2074                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2075                         unsigned_announcement.timestamp += 1000 - 10;
2076                 }, node_1_privkey, &secp_ctx);
2077                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2078                         Ok(_) => panic!(),
2079                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2080                 };
2081         }
2082
2083         #[test]
2084         fn handling_channel_announcements() {
2085                 let secp_ctx = Secp256k1::new();
2086                 let logger = test_utils::TestLogger::new();
2087
2088                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2089                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2090
2091                 let good_script = get_channel_script(&secp_ctx);
2092                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2093
2094                 // Test if the UTXO lookups were not supported
2095                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2096                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2097                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2098                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2099                         Ok(res) => assert!(res),
2100                         _ => panic!()
2101                 };
2102
2103                 {
2104                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2105                                 None => panic!(),
2106                                 Some(_) => ()
2107                         };
2108                 }
2109
2110                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2111                 // drop new one on the floor, since we can't see any changes.
2112                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2113                         Ok(_) => panic!(),
2114                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2115                 };
2116
2117                 // Test if an associated transaction were not on-chain (or not confirmed).
2118                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2119                 *chain_source.utxo_ret.lock().unwrap() = Err(UtxoLookupError::UnknownTx);
2120                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2121                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2122
2123                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2124                         unsigned_announcement.short_channel_id += 1;
2125                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2126                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2127                         Ok(_) => panic!(),
2128                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2129                 };
2130
2131                 // Now test if the transaction is found in the UTXO set and the script is correct.
2132                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2133                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2134                         unsigned_announcement.short_channel_id += 2;
2135                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2136                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2137                         Ok(res) => assert!(res),
2138                         _ => panic!()
2139                 };
2140
2141                 {
2142                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2143                                 None => panic!(),
2144                                 Some(_) => ()
2145                         };
2146                 }
2147
2148                 // If we receive announcement for the same channel, once we've validated it against the
2149                 // chain, we simply ignore all new (duplicate) announcements.
2150                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2151                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2152                         Ok(_) => panic!(),
2153                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2154                 };
2155
2156                 #[cfg(feature = "std")]
2157                 {
2158                         use std::time::{SystemTime, UNIX_EPOCH};
2159
2160                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2161                         // Mark a node as permanently failed so it's tracked as removed.
2162                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2163
2164                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2165                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2166                                 unsigned_announcement.short_channel_id += 3;
2167                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2168                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2169                                 Ok(_) => panic!(),
2170                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2171                         }
2172
2173                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2174
2175                         // The above channel announcement should be handled as per normal now.
2176                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2177                                 Ok(res) => assert!(res),
2178                                 _ => panic!()
2179                         }
2180                 }
2181
2182                 // Don't relay valid channels with excess data
2183                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2184                         unsigned_announcement.short_channel_id += 4;
2185                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2186                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2187                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2188                         Ok(res) => assert!(!res),
2189                         _ => panic!()
2190                 };
2191
2192                 let mut invalid_sig_announcement = valid_announcement.clone();
2193                 invalid_sig_announcement.contents.excess_data = Vec::new();
2194                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2195                         Ok(_) => panic!(),
2196                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2197                 };
2198
2199                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2200                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2201                         Ok(_) => panic!(),
2202                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2203                 };
2204         }
2205
2206         #[test]
2207         fn handling_channel_update() {
2208                 let secp_ctx = Secp256k1::new();
2209                 let logger = test_utils::TestLogger::new();
2210                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2211                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2212                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2213                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2214
2215                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2216                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2217
2218                 let amount_sats = 1000_000;
2219                 let short_channel_id;
2220
2221                 {
2222                         // Announce a channel we will update
2223                         let good_script = get_channel_script(&secp_ctx);
2224                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2225
2226                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2227                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2228                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2229                                 Ok(_) => (),
2230                                 Err(_) => panic!()
2231                         };
2232
2233                 }
2234
2235                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2236                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2237                         Ok(res) => assert!(res),
2238                         _ => panic!(),
2239                 };
2240
2241                 {
2242                         match network_graph.read_only().channels().get(&short_channel_id) {
2243                                 None => panic!(),
2244                                 Some(channel_info) => {
2245                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2246                                         assert!(channel_info.two_to_one.is_none());
2247                                 }
2248                         };
2249                 }
2250
2251                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2252                         unsigned_channel_update.timestamp += 100;
2253                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2254                 }, node_1_privkey, &secp_ctx);
2255                 // Return false because contains excess data
2256                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2257                         Ok(res) => assert!(!res),
2258                         _ => panic!()
2259                 };
2260
2261                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2262                         unsigned_channel_update.timestamp += 110;
2263                         unsigned_channel_update.short_channel_id += 1;
2264                 }, node_1_privkey, &secp_ctx);
2265                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2266                         Ok(_) => panic!(),
2267                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2268                 };
2269
2270                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2271                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2272                         unsigned_channel_update.timestamp += 110;
2273                 }, node_1_privkey, &secp_ctx);
2274                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2275                         Ok(_) => panic!(),
2276                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2277                 };
2278
2279                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2280                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2281                         unsigned_channel_update.timestamp += 110;
2282                 }, node_1_privkey, &secp_ctx);
2283                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2284                         Ok(_) => panic!(),
2285                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2286                 };
2287
2288                 // Even though previous update was not relayed further, we still accepted it,
2289                 // so we now won't accept update before the previous one.
2290                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2291                         unsigned_channel_update.timestamp += 100;
2292                 }, node_1_privkey, &secp_ctx);
2293                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2294                         Ok(_) => panic!(),
2295                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2296                 };
2297
2298                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2299                         unsigned_channel_update.timestamp += 500;
2300                 }, node_1_privkey, &secp_ctx);
2301                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2302                 let fake_msghash = hash_to_message!(&zero_hash);
2303                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2304                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2305                         Ok(_) => panic!(),
2306                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2307                 };
2308         }
2309
2310         #[test]
2311         fn handling_network_update() {
2312                 let logger = test_utils::TestLogger::new();
2313                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2314                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2315                 let secp_ctx = Secp256k1::new();
2316
2317                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2318                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2319                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2320
2321                 {
2322                         // There is no nodes in the table at the beginning.
2323                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2324                 }
2325
2326                 let short_channel_id;
2327                 {
2328                         // Announce a channel we will update
2329                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2330                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2331                         let chain_source: Option<&test_utils::TestChainSource> = None;
2332                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2333                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2334
2335                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2336                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2337
2338                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2339                                 msg: valid_channel_update,
2340                         });
2341
2342                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2343                 }
2344
2345                 // Non-permanent closing just disables a channel
2346                 {
2347                         match network_graph.read_only().channels().get(&short_channel_id) {
2348                                 None => panic!(),
2349                                 Some(channel_info) => {
2350                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2351                                 }
2352                         };
2353
2354                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2355                                 short_channel_id,
2356                                 is_permanent: false,
2357                         });
2358
2359                         match network_graph.read_only().channels().get(&short_channel_id) {
2360                                 None => panic!(),
2361                                 Some(channel_info) => {
2362                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2363                                 }
2364                         };
2365                 }
2366
2367                 // Permanent closing deletes a channel
2368                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2369                         short_channel_id,
2370                         is_permanent: true,
2371                 });
2372
2373                 assert_eq!(network_graph.read_only().channels().len(), 0);
2374                 // Nodes are also deleted because there are no associated channels anymore
2375                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2376
2377                 {
2378                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2379                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2380
2381                         // Announce a channel to test permanent node failure
2382                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2383                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2384                         let chain_source: Option<&test_utils::TestChainSource> = None;
2385                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2386                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2387
2388                         // Non-permanent node failure does not delete any nodes or channels
2389                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2390                                 node_id: node_2_id,
2391                                 is_permanent: false,
2392                         });
2393
2394                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2395                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2396
2397                         // Permanent node failure deletes node and its channels
2398                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2399                                 node_id: node_2_id,
2400                                 is_permanent: true,
2401                         });
2402
2403                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2404                         // Channels are also deleted because the associated node has been deleted
2405                         assert_eq!(network_graph.read_only().channels().len(), 0);
2406                 }
2407         }
2408
2409         #[test]
2410         fn test_channel_timeouts() {
2411                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2412                 let logger = test_utils::TestLogger::new();
2413                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2414                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2415                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2416                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2417                 let secp_ctx = Secp256k1::new();
2418
2419                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2420                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2421
2422                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2423                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2424                 let chain_source: Option<&test_utils::TestChainSource> = None;
2425                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2426                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2427
2428                 // Submit two channel updates for each channel direction (update.flags bit).
2429                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2430                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2431                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2432
2433                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2434                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2435                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2436
2437                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2438                 assert_eq!(network_graph.read_only().channels().len(), 1);
2439                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2440
2441                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2442                 #[cfg(not(feature = "std"))] {
2443                         // Make sure removed channels are tracked.
2444                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2445                 }
2446                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2447                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2448
2449                 #[cfg(feature = "std")]
2450                 {
2451                         // In std mode, a further check is performed before fully removing the channel -
2452                         // the channel_announcement must have been received at least two weeks ago. We
2453                         // fudge that here by indicating the time has jumped two weeks.
2454                         assert_eq!(network_graph.read_only().channels().len(), 1);
2455                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2456
2457                         // Note that the directional channel information will have been removed already..
2458                         // We want to check that this will work even if *one* of the channel updates is recent,
2459                         // so we should add it with a recent timestamp.
2460                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2461                         use std::time::{SystemTime, UNIX_EPOCH};
2462                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2463                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2464                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2465                         }, node_1_privkey, &secp_ctx);
2466                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2467                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2468                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2469                         // Make sure removed channels are tracked.
2470                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2471                         // Provide a later time so that sufficient time has passed
2472                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2473                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2474                 }
2475
2476                 assert_eq!(network_graph.read_only().channels().len(), 0);
2477                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2478                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2479
2480                 #[cfg(feature = "std")]
2481                 {
2482                         use std::time::{SystemTime, UNIX_EPOCH};
2483
2484                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2485
2486                         // Clear tracked nodes and channels for clean slate
2487                         network_graph.removed_channels.lock().unwrap().clear();
2488                         network_graph.removed_nodes.lock().unwrap().clear();
2489
2490                         // Add a channel and nodes from channel announcement. So our network graph will
2491                         // now only consist of two nodes and one channel between them.
2492                         assert!(network_graph.update_channel_from_announcement(
2493                                 &valid_channel_announcement, &chain_source).is_ok());
2494
2495                         // Mark the channel as permanently failed. This will also remove the two nodes
2496                         // and all of the entries will be tracked as removed.
2497                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2498
2499                         // Should not remove from tracking if insufficient time has passed
2500                         network_graph.remove_stale_channels_and_tracking_with_time(
2501                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2502                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2503
2504                         // Provide a later time so that sufficient time has passed
2505                         network_graph.remove_stale_channels_and_tracking_with_time(
2506                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2507                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2508                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2509                 }
2510
2511                 #[cfg(not(feature = "std"))]
2512                 {
2513                         // When we don't have access to the system clock, the time we started tracking removal will only
2514                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2515                         // only if sufficient time has passed after that first call, will the next call remove it from
2516                         // tracking.
2517                         let removal_time = 1664619654;
2518
2519                         // Clear removed nodes and channels for clean slate
2520                         network_graph.removed_channels.lock().unwrap().clear();
2521                         network_graph.removed_nodes.lock().unwrap().clear();
2522
2523                         // Add a channel and nodes from channel announcement. So our network graph will
2524                         // now only consist of two nodes and one channel between them.
2525                         assert!(network_graph.update_channel_from_announcement(
2526                                 &valid_channel_announcement, &chain_source).is_ok());
2527
2528                         // Mark the channel as permanently failed. This will also remove the two nodes
2529                         // and all of the entries will be tracked as removed.
2530                         network_graph.channel_failed(short_channel_id, true);
2531
2532                         // The first time we call the following, the channel will have a removal time assigned.
2533                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2534                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2535
2536                         // Provide a later time so that sufficient time has passed
2537                         network_graph.remove_stale_channels_and_tracking_with_time(
2538                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2539                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2540                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2541                 }
2542         }
2543
2544         #[test]
2545         fn getting_next_channel_announcements() {
2546                 let network_graph = create_network_graph();
2547                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2548                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2549                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2550
2551                 // Channels were not announced yet.
2552                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2553                 assert!(channels_with_announcements.is_none());
2554
2555                 let short_channel_id;
2556                 {
2557                         // Announce a channel we will update
2558                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2559                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2560                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2561                                 Ok(_) => (),
2562                                 Err(_) => panic!()
2563                         };
2564                 }
2565
2566                 // Contains initial channel announcement now.
2567                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2568                 if let Some(channel_announcements) = channels_with_announcements {
2569                         let (_, ref update_1, ref update_2) = channel_announcements;
2570                         assert_eq!(update_1, &None);
2571                         assert_eq!(update_2, &None);
2572                 } else {
2573                         panic!();
2574                 }
2575
2576                 {
2577                         // Valid channel update
2578                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2579                                 unsigned_channel_update.timestamp = 101;
2580                         }, node_1_privkey, &secp_ctx);
2581                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2582                                 Ok(_) => (),
2583                                 Err(_) => panic!()
2584                         };
2585                 }
2586
2587                 // Now contains an initial announcement and an update.
2588                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2589                 if let Some(channel_announcements) = channels_with_announcements {
2590                         let (_, ref update_1, ref update_2) = channel_announcements;
2591                         assert_ne!(update_1, &None);
2592                         assert_eq!(update_2, &None);
2593                 } else {
2594                         panic!();
2595                 }
2596
2597                 {
2598                         // Channel update with excess data.
2599                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2600                                 unsigned_channel_update.timestamp = 102;
2601                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2602                         }, node_1_privkey, &secp_ctx);
2603                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2604                                 Ok(_) => (),
2605                                 Err(_) => panic!()
2606                         };
2607                 }
2608
2609                 // Test that announcements with excess data won't be returned
2610                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2611                 if let Some(channel_announcements) = channels_with_announcements {
2612                         let (_, ref update_1, ref update_2) = channel_announcements;
2613                         assert_eq!(update_1, &None);
2614                         assert_eq!(update_2, &None);
2615                 } else {
2616                         panic!();
2617                 }
2618
2619                 // Further starting point have no channels after it
2620                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2621                 assert!(channels_with_announcements.is_none());
2622         }
2623
2624         #[test]
2625         fn getting_next_node_announcements() {
2626                 let network_graph = create_network_graph();
2627                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2628                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2629                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2630                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2631
2632                 // No nodes yet.
2633                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2634                 assert!(next_announcements.is_none());
2635
2636                 {
2637                         // Announce a channel to add 2 nodes
2638                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2639                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2640                                 Ok(_) => (),
2641                                 Err(_) => panic!()
2642                         };
2643                 }
2644
2645                 // Nodes were never announced
2646                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2647                 assert!(next_announcements.is_none());
2648
2649                 {
2650                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2651                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2652                                 Ok(_) => (),
2653                                 Err(_) => panic!()
2654                         };
2655
2656                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2657                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2658                                 Ok(_) => (),
2659                                 Err(_) => panic!()
2660                         };
2661                 }
2662
2663                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2664                 assert!(next_announcements.is_some());
2665
2666                 // Skip the first node.
2667                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2668                 assert!(next_announcements.is_some());
2669
2670                 {
2671                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2672                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2673                                 unsigned_announcement.timestamp += 10;
2674                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2675                         }, node_2_privkey, &secp_ctx);
2676                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2677                                 Ok(res) => assert!(!res),
2678                                 Err(_) => panic!()
2679                         };
2680                 }
2681
2682                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2683                 assert!(next_announcements.is_none());
2684         }
2685
2686         #[test]
2687         fn network_graph_serialization() {
2688                 let network_graph = create_network_graph();
2689                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2690
2691                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2692                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2693
2694                 // Announce a channel to add a corresponding node.
2695                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2696                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2697                         Ok(res) => assert!(res),
2698                         _ => panic!()
2699                 };
2700
2701                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2702                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2703                         Ok(_) => (),
2704                         Err(_) => panic!()
2705                 };
2706
2707                 let mut w = test_utils::TestVecWriter(Vec::new());
2708                 assert!(!network_graph.read_only().nodes().is_empty());
2709                 assert!(!network_graph.read_only().channels().is_empty());
2710                 network_graph.write(&mut w).unwrap();
2711
2712                 let logger = Arc::new(test_utils::TestLogger::new());
2713                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2714         }
2715
2716         #[test]
2717         fn network_graph_tlv_serialization() {
2718                 let network_graph = create_network_graph();
2719                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2720
2721                 let mut w = test_utils::TestVecWriter(Vec::new());
2722                 network_graph.write(&mut w).unwrap();
2723
2724                 let logger = Arc::new(test_utils::TestLogger::new());
2725                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2726                 assert!(reassembled_network_graph == network_graph);
2727                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2728         }
2729
2730         #[test]
2731         #[cfg(feature = "std")]
2732         fn calling_sync_routing_table() {
2733                 use std::time::{SystemTime, UNIX_EPOCH};
2734                 use crate::ln::msgs::Init;
2735
2736                 let network_graph = create_network_graph();
2737                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2738                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2739                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2740
2741                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2742
2743                 // It should ignore if gossip_queries feature is not enabled
2744                 {
2745                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2746                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2747                         let events = gossip_sync.get_and_clear_pending_msg_events();
2748                         assert_eq!(events.len(), 0);
2749                 }
2750
2751                 // It should send a gossip_timestamp_filter with the correct information
2752                 {
2753                         let mut features = InitFeatures::empty();
2754                         features.set_gossip_queries_optional();
2755                         let init_msg = Init { features, remote_network_address: None };
2756                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2757                         let events = gossip_sync.get_and_clear_pending_msg_events();
2758                         assert_eq!(events.len(), 1);
2759                         match &events[0] {
2760                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2761                                         assert_eq!(node_id, &node_id_1);
2762                                         assert_eq!(msg.chain_hash, chain_hash);
2763                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2764                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2765                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2766                                         assert_eq!(msg.timestamp_range, u32::max_value());
2767                                 },
2768                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2769                         };
2770                 }
2771         }
2772
2773         #[test]
2774         fn handling_query_channel_range() {
2775                 let network_graph = create_network_graph();
2776                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2777
2778                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2779                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2780                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2781                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2782
2783                 let mut scids: Vec<u64> = vec![
2784                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2785                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2786                 ];
2787
2788                 // used for testing multipart reply across blocks
2789                 for block in 100000..=108001 {
2790                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2791                 }
2792
2793                 // used for testing resumption on same block
2794                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2795
2796                 for scid in scids {
2797                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2798                                 unsigned_announcement.short_channel_id = scid;
2799                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2800                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2801                                 Ok(_) => (),
2802                                 _ => panic!()
2803                         };
2804                 }
2805
2806                 // Error when number_of_blocks=0
2807                 do_handling_query_channel_range(
2808                         &gossip_sync,
2809                         &node_id_2,
2810                         QueryChannelRange {
2811                                 chain_hash: chain_hash.clone(),
2812                                 first_blocknum: 0,
2813                                 number_of_blocks: 0,
2814                         },
2815                         false,
2816                         vec![ReplyChannelRange {
2817                                 chain_hash: chain_hash.clone(),
2818                                 first_blocknum: 0,
2819                                 number_of_blocks: 0,
2820                                 sync_complete: true,
2821                                 short_channel_ids: vec![]
2822                         }]
2823                 );
2824
2825                 // Error when wrong chain
2826                 do_handling_query_channel_range(
2827                         &gossip_sync,
2828                         &node_id_2,
2829                         QueryChannelRange {
2830                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2831                                 first_blocknum: 0,
2832                                 number_of_blocks: 0xffff_ffff,
2833                         },
2834                         false,
2835                         vec![ReplyChannelRange {
2836                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2837                                 first_blocknum: 0,
2838                                 number_of_blocks: 0xffff_ffff,
2839                                 sync_complete: true,
2840                                 short_channel_ids: vec![],
2841                         }]
2842                 );
2843
2844                 // Error when first_blocknum > 0xffffff
2845                 do_handling_query_channel_range(
2846                         &gossip_sync,
2847                         &node_id_2,
2848                         QueryChannelRange {
2849                                 chain_hash: chain_hash.clone(),
2850                                 first_blocknum: 0x01000000,
2851                                 number_of_blocks: 0xffff_ffff,
2852                         },
2853                         false,
2854                         vec![ReplyChannelRange {
2855                                 chain_hash: chain_hash.clone(),
2856                                 first_blocknum: 0x01000000,
2857                                 number_of_blocks: 0xffff_ffff,
2858                                 sync_complete: true,
2859                                 short_channel_ids: vec![]
2860                         }]
2861                 );
2862
2863                 // Empty reply when max valid SCID block num
2864                 do_handling_query_channel_range(
2865                         &gossip_sync,
2866                         &node_id_2,
2867                         QueryChannelRange {
2868                                 chain_hash: chain_hash.clone(),
2869                                 first_blocknum: 0xffffff,
2870                                 number_of_blocks: 1,
2871                         },
2872                         true,
2873                         vec![
2874                                 ReplyChannelRange {
2875                                         chain_hash: chain_hash.clone(),
2876                                         first_blocknum: 0xffffff,
2877                                         number_of_blocks: 1,
2878                                         sync_complete: true,
2879                                         short_channel_ids: vec![]
2880                                 },
2881                         ]
2882                 );
2883
2884                 // No results in valid query range
2885                 do_handling_query_channel_range(
2886                         &gossip_sync,
2887                         &node_id_2,
2888                         QueryChannelRange {
2889                                 chain_hash: chain_hash.clone(),
2890                                 first_blocknum: 1000,
2891                                 number_of_blocks: 1000,
2892                         },
2893                         true,
2894                         vec![
2895                                 ReplyChannelRange {
2896                                         chain_hash: chain_hash.clone(),
2897                                         first_blocknum: 1000,
2898                                         number_of_blocks: 1000,
2899                                         sync_complete: true,
2900                                         short_channel_ids: vec![],
2901                                 }
2902                         ]
2903                 );
2904
2905                 // Overflow first_blocknum + number_of_blocks
2906                 do_handling_query_channel_range(
2907                         &gossip_sync,
2908                         &node_id_2,
2909                         QueryChannelRange {
2910                                 chain_hash: chain_hash.clone(),
2911                                 first_blocknum: 0xfe0000,
2912                                 number_of_blocks: 0xffffffff,
2913                         },
2914                         true,
2915                         vec![
2916                                 ReplyChannelRange {
2917                                         chain_hash: chain_hash.clone(),
2918                                         first_blocknum: 0xfe0000,
2919                                         number_of_blocks: 0xffffffff - 0xfe0000,
2920                                         sync_complete: true,
2921                                         short_channel_ids: vec![
2922                                                 0xfffffe_ffffff_ffff, // max
2923                                         ]
2924                                 }
2925                         ]
2926                 );
2927
2928                 // Single block exactly full
2929                 do_handling_query_channel_range(
2930                         &gossip_sync,
2931                         &node_id_2,
2932                         QueryChannelRange {
2933                                 chain_hash: chain_hash.clone(),
2934                                 first_blocknum: 100000,
2935                                 number_of_blocks: 8000,
2936                         },
2937                         true,
2938                         vec![
2939                                 ReplyChannelRange {
2940                                         chain_hash: chain_hash.clone(),
2941                                         first_blocknum: 100000,
2942                                         number_of_blocks: 8000,
2943                                         sync_complete: true,
2944                                         short_channel_ids: (100000..=107999)
2945                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2946                                                 .collect(),
2947                                 },
2948                         ]
2949                 );
2950
2951                 // Multiple split on new block
2952                 do_handling_query_channel_range(
2953                         &gossip_sync,
2954                         &node_id_2,
2955                         QueryChannelRange {
2956                                 chain_hash: chain_hash.clone(),
2957                                 first_blocknum: 100000,
2958                                 number_of_blocks: 8001,
2959                         },
2960                         true,
2961                         vec![
2962                                 ReplyChannelRange {
2963                                         chain_hash: chain_hash.clone(),
2964                                         first_blocknum: 100000,
2965                                         number_of_blocks: 7999,
2966                                         sync_complete: false,
2967                                         short_channel_ids: (100000..=107999)
2968                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2969                                                 .collect(),
2970                                 },
2971                                 ReplyChannelRange {
2972                                         chain_hash: chain_hash.clone(),
2973                                         first_blocknum: 107999,
2974                                         number_of_blocks: 2,
2975                                         sync_complete: true,
2976                                         short_channel_ids: vec![
2977                                                 scid_from_parts(108000, 0, 0).unwrap(),
2978                                         ],
2979                                 }
2980                         ]
2981                 );
2982
2983                 // Multiple split on same block
2984                 do_handling_query_channel_range(
2985                         &gossip_sync,
2986                         &node_id_2,
2987                         QueryChannelRange {
2988                                 chain_hash: chain_hash.clone(),
2989                                 first_blocknum: 100002,
2990                                 number_of_blocks: 8000,
2991                         },
2992                         true,
2993                         vec![
2994                                 ReplyChannelRange {
2995                                         chain_hash: chain_hash.clone(),
2996                                         first_blocknum: 100002,
2997                                         number_of_blocks: 7999,
2998                                         sync_complete: false,
2999                                         short_channel_ids: (100002..=108001)
3000                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3001                                                 .collect(),
3002                                 },
3003                                 ReplyChannelRange {
3004                                         chain_hash: chain_hash.clone(),
3005                                         first_blocknum: 108001,
3006                                         number_of_blocks: 1,
3007                                         sync_complete: true,
3008                                         short_channel_ids: vec![
3009                                                 scid_from_parts(108001, 1, 0).unwrap(),
3010                                         ],
3011                                 }
3012                         ]
3013                 );
3014         }
3015
3016         fn do_handling_query_channel_range(
3017                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3018                 test_node_id: &PublicKey,
3019                 msg: QueryChannelRange,
3020                 expected_ok: bool,
3021                 expected_replies: Vec<ReplyChannelRange>
3022         ) {
3023                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3024                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3025                 let query_end_blocknum = msg.end_blocknum();
3026                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3027
3028                 if expected_ok {
3029                         assert!(result.is_ok());
3030                 } else {
3031                         assert!(result.is_err());
3032                 }
3033
3034                 let events = gossip_sync.get_and_clear_pending_msg_events();
3035                 assert_eq!(events.len(), expected_replies.len());
3036
3037                 for i in 0..events.len() {
3038                         let expected_reply = &expected_replies[i];
3039                         match &events[i] {
3040                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3041                                         assert_eq!(node_id, test_node_id);
3042                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3043                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3044                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3045                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3046                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3047
3048                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3049                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3050                                         assert!(msg.first_blocknum >= max_firstblocknum);
3051                                         max_firstblocknum = msg.first_blocknum;
3052                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3053
3054                                         // Check that the last block count is >= the query's end_blocknum
3055                                         if i == events.len() - 1 {
3056                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3057                                         }
3058                                 },
3059                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3060                         }
3061                 }
3062         }
3063
3064         #[test]
3065         fn handling_query_short_channel_ids() {
3066                 let network_graph = create_network_graph();
3067                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3068                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3069                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3070
3071                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3072
3073                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3074                         chain_hash,
3075                         short_channel_ids: vec![0x0003e8_000000_0000],
3076                 });
3077                 assert!(result.is_err());
3078         }
3079
3080         #[test]
3081         fn displays_node_alias() {
3082                 let format_str_alias = |alias: &str| {
3083                         let mut bytes = [0u8; 32];
3084                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3085                         format!("{}", NodeAlias(bytes))
3086                 };
3087
3088                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3089                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3090                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3091
3092                 let format_bytes_alias = |alias: &[u8]| {
3093                         let mut bytes = [0u8; 32];
3094                         bytes[..alias.len()].copy_from_slice(alias);
3095                         format!("{}", NodeAlias(bytes))
3096                 };
3097
3098                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3099                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3100                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3101         }
3102
3103         #[test]
3104         fn channel_info_is_readable() {
3105                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3106                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3107                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3108                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3109                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3110
3111                 // 1. Test encoding/decoding of ChannelUpdateInfo
3112                 let chan_update_info = ChannelUpdateInfo {
3113                         last_update: 23,
3114                         enabled: true,
3115                         cltv_expiry_delta: 42,
3116                         htlc_minimum_msat: 1234,
3117                         htlc_maximum_msat: 5678,
3118                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3119                         last_update_message: None,
3120                 };
3121
3122                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3123                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3124
3125                 // First make sure we can read ChannelUpdateInfos we just wrote
3126                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3127                 assert_eq!(chan_update_info, read_chan_update_info);
3128
3129                 // Check the serialization hasn't changed.
3130                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3131                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3132
3133                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3134                 // or the ChannelUpdate enclosed with `last_update_message`.
3135                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3136                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3137                 assert!(read_chan_update_info_res.is_err());
3138
3139                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3140                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3141                 assert!(read_chan_update_info_res.is_err());
3142
3143                 // 2. Test encoding/decoding of ChannelInfo
3144                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3145                 let chan_info_none_updates = ChannelInfo {
3146                         features: channelmanager::provided_channel_features(&config),
3147                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3148                         one_to_two: None,
3149                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3150                         two_to_one: None,
3151                         capacity_sats: None,
3152                         announcement_message: None,
3153                         announcement_received_time: 87654,
3154                 };
3155
3156                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3157                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3158
3159                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3160                 assert_eq!(chan_info_none_updates, read_chan_info);
3161
3162                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3163                 let chan_info_some_updates = ChannelInfo {
3164                         features: channelmanager::provided_channel_features(&config),
3165                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3166                         one_to_two: Some(chan_update_info.clone()),
3167                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3168                         two_to_one: Some(chan_update_info.clone()),
3169                         capacity_sats: None,
3170                         announcement_message: None,
3171                         announcement_received_time: 87654,
3172                 };
3173
3174                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3175                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3176
3177                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3178                 assert_eq!(chan_info_some_updates, read_chan_info);
3179
3180                 // Check the serialization hasn't changed.
3181                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3182                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3183
3184                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3185                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3186                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3187                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3188                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3189                 assert_eq!(read_chan_info.one_to_two, None);
3190                 assert_eq!(read_chan_info.two_to_one, None);
3191
3192                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3193                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3194                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3195                 assert_eq!(read_chan_info.one_to_two, None);
3196                 assert_eq!(read_chan_info.two_to_one, None);
3197         }
3198
3199         #[test]
3200         fn node_info_is_readable() {
3201                 use std::convert::TryFrom;
3202
3203                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3204                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3205                 let valid_node_ann_info = NodeAnnouncementInfo {
3206                         features: channelmanager::provided_node_features(&UserConfig::default()),
3207                         last_update: 0,
3208                         rgb: [0u8; 3],
3209                         alias: NodeAlias([0u8; 32]),
3210                         addresses: vec![valid_netaddr],
3211                         announcement_message: None,
3212                 };
3213
3214                 let mut encoded_valid_node_ann_info = Vec::new();
3215                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3216                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3217                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3218
3219                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3220                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3221                 assert!(read_invalid_node_ann_info_res.is_err());
3222
3223                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3224                 let valid_node_info = NodeInfo {
3225                         channels: Vec::new(),
3226                         announcement_info: Some(valid_node_ann_info),
3227                 };
3228
3229                 let mut encoded_valid_node_info = Vec::new();
3230                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3231                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3232                 assert_eq!(read_valid_node_info, valid_node_info);
3233
3234                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3235                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3236                 assert_eq!(read_invalid_node_info.announcement_info, None);
3237         }
3238 }
3239
3240 #[cfg(all(test, feature = "_bench_unstable"))]
3241 mod benches {
3242         use super::*;
3243
3244         use test::Bencher;
3245         use std::io::Read;
3246
3247         #[bench]
3248         fn read_network_graph(bench: &mut Bencher) {
3249                 let logger = crate::util::test_utils::TestLogger::new();
3250                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3251                 let mut v = Vec::new();
3252                 d.read_to_end(&mut v).unwrap();
3253                 bench.iter(|| {
3254                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3255                 });
3256         }
3257
3258         #[bench]
3259         fn write_network_graph(bench: &mut Bencher) {
3260                 let logger = crate::util::test_utils::TestLogger::new();
3261                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3262                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3263                 bench.iter(|| {
3264                         let _ = net_graph.encode();
3265                 });
3266         }
3267 }