Allow `RoutingMessageHandler` to signal backpressure
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
22 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
23 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
24 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
25 use crate::ln::msgs;
26 use crate::routing::utxo::{self, UtxoLookup};
27 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
28 use crate::util::logger::{Logger, Level};
29 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
31 use crate::util::string::PrintableString;
32 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
33
34 use crate::io;
35 use crate::io_extras::{copy, sink};
36 use crate::prelude::*;
37 use core::{cmp, fmt};
38 use crate::sync::{RwLock, RwLockReadGuard};
39 #[cfg(feature = "std")]
40 use core::sync::atomic::{AtomicUsize, Ordering};
41 use crate::sync::Mutex;
42 use core::ops::{Bound, Deref};
43
44 #[cfg(feature = "std")]
45 use std::time::{SystemTime, UNIX_EPOCH};
46
47 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
48 /// suggestion.
49 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
50
51 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
52 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83 impl fmt::Display for NodeId {
84         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85                 write!(f, "{}", log_bytes!(self.0))
86         }
87 }
88
89 impl core::hash::Hash for NodeId {
90         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
91                 self.0.hash(hasher);
92         }
93 }
94
95 impl Eq for NodeId {}
96
97 impl PartialEq for NodeId {
98         fn eq(&self, other: &Self) -> bool {
99                 self.0[..] == other.0[..]
100         }
101 }
102
103 impl cmp::PartialOrd for NodeId {
104         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
105                 Some(self.cmp(other))
106         }
107 }
108
109 impl Ord for NodeId {
110         fn cmp(&self, other: &Self) -> cmp::Ordering {
111                 self.0[..].cmp(&other.0[..])
112         }
113 }
114
115 impl Writeable for NodeId {
116         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
117                 writer.write_all(&self.0)?;
118                 Ok(())
119         }
120 }
121
122 impl Readable for NodeId {
123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
124                 let mut buf = [0; PUBLIC_KEY_SIZE];
125                 reader.read_exact(&mut buf)?;
126                 Ok(Self(buf))
127         }
128 }
129
130 /// Represents the network as nodes and channels between them
131 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
132         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
133         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
134         genesis_hash: BlockHash,
135         logger: L,
136         // Lock order: channels -> nodes
137         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
138         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
139         // Lock order: removed_channels -> removed_nodes
140         //
141         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
142         // of `std::time::Instant`s for a few reasons:
143         //   * We want it to be possible to do tracking in no-std environments where we can compare
144         //     a provided current UNIX timestamp with the time at which we started tracking.
145         //   * In the future, if we decide to persist these maps, they will already be serializable.
146         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
147         //     environment should be practical over the time period we are considering (on the order of a
148         //     week).
149         //
150         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
151         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
152         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
153         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
154         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
155         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
156         /// that once some time passes, we can potentially resync it from gossip again.
157         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
158         /// Announcement messages which are awaiting an on-chain lookup to be processed.
159         pub(super) pending_checks: utxo::PendingChecks,
160 }
161
162 /// A read-only view of [`NetworkGraph`].
163 pub struct ReadOnlyNetworkGraph<'a> {
164         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
165         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
166 }
167
168 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
169 /// return packet by a node along the route. See [BOLT #4] for details.
170 ///
171 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
172 #[derive(Clone, Debug, PartialEq, Eq)]
173 pub enum NetworkUpdate {
174         /// An error indicating a `channel_update` messages should be applied via
175         /// [`NetworkGraph::update_channel`].
176         ChannelUpdateMessage {
177                 /// The update to apply via [`NetworkGraph::update_channel`].
178                 msg: ChannelUpdate,
179         },
180         /// An error indicating that a channel failed to route a payment, which should be applied via
181         /// [`NetworkGraph::channel_failed`].
182         ChannelFailure {
183                 /// The short channel id of the closed channel.
184                 short_channel_id: u64,
185                 /// Whether the channel should be permanently removed or temporarily disabled until a new
186                 /// `channel_update` message is received.
187                 is_permanent: bool,
188         },
189         /// An error indicating that a node failed to route a payment, which should be applied via
190         /// [`NetworkGraph::node_failed_permanent`] if permanent.
191         NodeFailure {
192                 /// The node id of the failed node.
193                 node_id: PublicKey,
194                 /// Whether the node should be permanently removed from consideration or can be restored
195                 /// when a new `channel_update` message is received.
196                 is_permanent: bool,
197         }
198 }
199
200 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
201         (0, ChannelUpdateMessage) => {
202                 (0, msg, required),
203         },
204         (2, ChannelFailure) => {
205                 (0, short_channel_id, required),
206                 (2, is_permanent, required),
207         },
208         (4, NodeFailure) => {
209                 (0, node_id, required),
210                 (2, is_permanent, required),
211         },
212 );
213
214 /// Receives and validates network updates from peers,
215 /// stores authentic and relevant data as a network graph.
216 /// This network graph is then used for routing payments.
217 /// Provides interface to help with initial routing sync by
218 /// serving historical announcements.
219 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
220 where U::Target: UtxoLookup, L::Target: Logger
221 {
222         network_graph: G,
223         utxo_lookup: Option<U>,
224         #[cfg(feature = "std")]
225         full_syncs_requested: AtomicUsize,
226         pending_events: Mutex<Vec<MessageSendEvent>>,
227         logger: L,
228 }
229
230 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
231 where U::Target: UtxoLookup, L::Target: Logger
232 {
233         /// Creates a new tracker of the actual state of the network of channels and nodes,
234         /// assuming an existing Network Graph.
235         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
236         /// correct, and the announcement is signed with channel owners' keys.
237         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
238                 P2PGossipSync {
239                         network_graph,
240                         #[cfg(feature = "std")]
241                         full_syncs_requested: AtomicUsize::new(0),
242                         utxo_lookup,
243                         pending_events: Mutex::new(vec![]),
244                         logger,
245                 }
246         }
247
248         /// Adds a provider used to check new announcements. Does not affect
249         /// existing announcements unless they are updated.
250         /// Add, update or remove the provider would replace the current one.
251         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
252                 self.utxo_lookup = utxo_lookup;
253         }
254
255         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
256         /// [`P2PGossipSync::new`].
257         ///
258         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
259         pub fn network_graph(&self) -> &G {
260                 &self.network_graph
261         }
262
263         #[cfg(feature = "std")]
264         /// Returns true when a full routing table sync should be performed with a peer.
265         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
266                 //TODO: Determine whether to request a full sync based on the network map.
267                 const FULL_SYNCS_TO_REQUEST: usize = 5;
268                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
269                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
270                         true
271                 } else {
272                         false
273                 }
274         }
275
276         /// Used to broadcast forward gossip messages which were validated async.
277         ///
278         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
279         /// data.
280         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
281                 match &mut ev {
282                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
283                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
284                                 if update_msg.as_ref()
285                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
286                                 {
287                                         *update_msg = None;
288                                 }
289                         },
290                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
291                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
292                         },
293                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
294                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
295                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
296                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
297                                 {
298                                         return;
299                                 }
300                         },
301                         _ => return,
302                 }
303                 self.pending_events.lock().unwrap().push(ev);
304         }
305 }
306
307 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
308         /// Handles any network updates originating from [`Event`]s.
309         ///
310         /// [`Event`]: crate::util::events::Event
311         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
312                 match *network_update {
313                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
314                                 let short_channel_id = msg.contents.short_channel_id;
315                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
316                                 let status = if is_enabled { "enabled" } else { "disabled" };
317                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
318                                 let _ = self.update_channel(msg);
319                         },
320                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
321                                 let action = if is_permanent { "Removing" } else { "Disabling" };
322                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
323                                 self.channel_failed(short_channel_id, is_permanent);
324                         },
325                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
326                                 if is_permanent {
327                                         log_debug!(self.logger,
328                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
329                                         self.node_failed_permanent(node_id);
330                                 };
331                         },
332                 }
333         }
334 }
335
336 macro_rules! secp_verify_sig {
337         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
338                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
339                         Ok(_) => {},
340                         Err(_) => {
341                                 return Err(LightningError {
342                                         err: format!("Invalid signature on {} message", $msg_type),
343                                         action: ErrorAction::SendWarningMessage {
344                                                 msg: msgs::WarningMessage {
345                                                         channel_id: [0; 32],
346                                                         data: format!("Invalid signature on {} message", $msg_type),
347                                                 },
348                                                 log_level: Level::Trace,
349                                         },
350                                 });
351                         },
352                 }
353         };
354 }
355
356 macro_rules! get_pubkey_from_node_id {
357         ( $node_id: expr, $msg_type: expr ) => {
358                 PublicKey::from_slice($node_id.as_slice())
359                         .map_err(|_| LightningError {
360                                 err: format!("Invalid public key on {} message", $msg_type),
361                                 action: ErrorAction::SendWarningMessage {
362                                         msg: msgs::WarningMessage {
363                                                 channel_id: [0; 32],
364                                                 data: format!("Invalid public key on {} message", $msg_type),
365                                         },
366                                         log_level: Level::Trace
367                                 }
368                         })?
369         }
370 }
371
372 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
373 where U::Target: UtxoLookup, L::Target: Logger
374 {
375         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
376                 self.network_graph.update_node_from_announcement(msg)?;
377                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
378                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
379                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
380         }
381
382         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
383                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
384                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
385                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
386         }
387
388         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
389                 self.network_graph.update_channel(msg)?;
390                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
391         }
392
393         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
394                 let channels = self.network_graph.channels.read().unwrap();
395                 for (_, ref chan) in channels.range(starting_point..) {
396                         if chan.announcement_message.is_some() {
397                                 let chan_announcement = chan.announcement_message.clone().unwrap();
398                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
399                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
400                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
401                                         one_to_two_announcement = one_to_two.last_update_message.clone();
402                                 }
403                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
404                                         two_to_one_announcement = two_to_one.last_update_message.clone();
405                                 }
406                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
407                         } else {
408                                 // TODO: We may end up sending un-announced channel_updates if we are sending
409                                 // initial sync data while receiving announce/updates for this channel.
410                         }
411                 }
412                 None
413         }
414
415         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
416                 let nodes = self.network_graph.nodes.read().unwrap();
417                 let iter = if let Some(node_id) = starting_point {
418                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
419                         } else {
420                                 nodes.range(..)
421                         };
422                 for (_, ref node) in iter {
423                         if let Some(node_info) = node.announcement_info.as_ref() {
424                                 if let Some(msg) = node_info.announcement_message.clone() {
425                                         return Some(msg);
426                                 }
427                         }
428                 }
429                 None
430         }
431
432         /// Initiates a stateless sync of routing gossip information with a peer
433         /// using gossip_queries. The default strategy used by this implementation
434         /// is to sync the full block range with several peers.
435         ///
436         /// We should expect one or more reply_channel_range messages in response
437         /// to our query_channel_range. Each reply will enqueue a query_scid message
438         /// to request gossip messages for each channel. The sync is considered complete
439         /// when the final reply_scids_end message is received, though we are not
440         /// tracking this directly.
441         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
442                 // We will only perform a sync with peers that support gossip_queries.
443                 if !init_msg.features.supports_gossip_queries() {
444                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
445                         // channels with peers even without being able to exchange gossip.
446                         return Ok(());
447                 }
448
449                 // The lightning network's gossip sync system is completely broken in numerous ways.
450                 //
451                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
452                 // to do a full sync from the first few peers we connect to, and then receive gossip
453                 // updates from all our peers normally.
454                 //
455                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
456                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
457                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
458                 // seen.
459                 //
460                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
461                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
462                 // channel data which you are missing. Except there was no way at all to identify which
463                 // `channel_update`s you were missing, so you still had to request everything, just in a
464                 // very complicated way with some queries instead of just getting the dump.
465                 //
466                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
467                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
468                 // relying on it useless.
469                 //
470                 // After gossip queries were introduced, support for receiving a full gossip table dump on
471                 // connection was removed from several nodes, making it impossible to get a full sync
472                 // without using the "gossip queries" messages.
473                 //
474                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
475                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
476                 // message, as the name implies, tells the peer to not forward any gossip messages with a
477                 // timestamp older than a given value (not the time the peer received the filter, but the
478                 // timestamp in the update message, which is often hours behind when the peer received the
479                 // message).
480                 //
481                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
482                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
483                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
484                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
485                 // will simply not forward any new updates they see to you which were generated some time
486                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
487                 // ago), you will always get the full routing graph from all your peers.
488                 //
489                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
490                 // propagated some time after it was generated, and, worse, often disable gossiping with
491                 // several peers after their first connection. The second behavior can cause gossip to not
492                 // propagate fully if there are cuts in the gossiping subgraph.
493                 //
494                 // In an attempt to cut a middle ground between always fetching the full graph from all of
495                 // our peers and never receiving gossip from peers at all, we send all of our peers a
496                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
497                 //
498                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
499                 #[allow(unused_mut, unused_assignments)]
500                 let mut gossip_start_time = 0;
501                 #[cfg(feature = "std")]
502                 {
503                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
504                         if self.should_request_full_sync(&their_node_id) {
505                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
506                         } else {
507                                 gossip_start_time -= 60 * 60; // an hour ago
508                         }
509                 }
510
511                 let mut pending_events = self.pending_events.lock().unwrap();
512                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
513                         node_id: their_node_id.clone(),
514                         msg: GossipTimestampFilter {
515                                 chain_hash: self.network_graph.genesis_hash,
516                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
517                                 timestamp_range: u32::max_value(),
518                         },
519                 });
520                 Ok(())
521         }
522
523         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
524                 // We don't make queries, so should never receive replies. If, in the future, the set
525                 // reconciliation extensions to gossip queries become broadly supported, we should revert
526                 // this code to its state pre-0.0.106.
527                 Ok(())
528         }
529
530         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
531                 // We don't make queries, so should never receive replies. If, in the future, the set
532                 // reconciliation extensions to gossip queries become broadly supported, we should revert
533                 // this code to its state pre-0.0.106.
534                 Ok(())
535         }
536
537         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
538         /// are in the specified block range. Due to message size limits, large range
539         /// queries may result in several reply messages. This implementation enqueues
540         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
541         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
542         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
543         /// memory constrained systems.
544         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
545                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
546
547                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
548
549                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
550                 // If so, we manually cap the ending block to avoid this overflow.
551                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
552
553                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
554                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
555                         let mut pending_events = self.pending_events.lock().unwrap();
556                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
557                                 node_id: their_node_id.clone(),
558                                 msg: ReplyChannelRange {
559                                         chain_hash: msg.chain_hash.clone(),
560                                         first_blocknum: msg.first_blocknum,
561                                         number_of_blocks: msg.number_of_blocks,
562                                         sync_complete: true,
563                                         short_channel_ids: vec![],
564                                 }
565                         });
566                         return Err(LightningError {
567                                 err: String::from("query_channel_range could not be processed"),
568                                 action: ErrorAction::IgnoreError,
569                         });
570                 }
571
572                 // Creates channel batches. We are not checking if the channel is routable
573                 // (has at least one update). A peer may still want to know the channel
574                 // exists even if its not yet routable.
575                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
576                 let channels = self.network_graph.channels.read().unwrap();
577                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
578                         if let Some(chan_announcement) = &chan.announcement_message {
579                                 // Construct a new batch if last one is full
580                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
581                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
582                                 }
583
584                                 let batch = batches.last_mut().unwrap();
585                                 batch.push(chan_announcement.contents.short_channel_id);
586                         }
587                 }
588                 drop(channels);
589
590                 let mut pending_events = self.pending_events.lock().unwrap();
591                 let batch_count = batches.len();
592                 let mut prev_batch_endblock = msg.first_blocknum;
593                 for (batch_index, batch) in batches.into_iter().enumerate() {
594                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
595                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
596                         //
597                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
598                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
599                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
600                         // significant diversion from the requirements set by the spec, and, in case of blocks
601                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
602                         // and *not* derive the first_blocknum from the actual first block of the reply.
603                         let first_blocknum = prev_batch_endblock;
604
605                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
606                         // fit in. Though there is no requirement that we use exactly the number of blocks its
607                         // contents are from, except for the bogus requirements c-lightning enforces, above.
608                         //
609                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
610                         // >= the query's end block. Thus, for the last reply, we calculate the difference
611                         // between the query's end block and the start of the reply.
612                         //
613                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
614                         // first_blocknum will be either msg.first_blocknum or a higher block height.
615                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
616                                 (true, msg.end_blocknum() - first_blocknum)
617                         }
618                         // Prior replies should use the number of blocks that fit into the reply. Overflow
619                         // safe since first_blocknum is always <= last SCID's block.
620                         else {
621                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
622                         };
623
624                         prev_batch_endblock = first_blocknum + number_of_blocks;
625
626                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
627                                 node_id: their_node_id.clone(),
628                                 msg: ReplyChannelRange {
629                                         chain_hash: msg.chain_hash.clone(),
630                                         first_blocknum,
631                                         number_of_blocks,
632                                         sync_complete,
633                                         short_channel_ids: batch,
634                                 }
635                         });
636                 }
637
638                 Ok(())
639         }
640
641         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
642                 // TODO
643                 Err(LightningError {
644                         err: String::from("Not implemented"),
645                         action: ErrorAction::IgnoreError,
646                 })
647         }
648
649         fn provided_node_features(&self) -> NodeFeatures {
650                 let mut features = NodeFeatures::empty();
651                 features.set_gossip_queries_optional();
652                 features
653         }
654
655         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
656                 let mut features = InitFeatures::empty();
657                 features.set_gossip_queries_optional();
658                 features
659         }
660
661         fn processing_queue_high(&self) -> bool {
662                 self.network_graph.pending_checks.too_many_checks_pending()
663         }
664 }
665
666 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
667 where
668         U::Target: UtxoLookup,
669         L::Target: Logger,
670 {
671         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
672                 let mut ret = Vec::new();
673                 let mut pending_events = self.pending_events.lock().unwrap();
674                 core::mem::swap(&mut ret, &mut pending_events);
675                 ret
676         }
677 }
678
679 #[derive(Clone, Debug, PartialEq, Eq)]
680 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
681 pub struct ChannelUpdateInfo {
682         /// When the last update to the channel direction was issued.
683         /// Value is opaque, as set in the announcement.
684         pub last_update: u32,
685         /// Whether the channel can be currently used for payments (in this one direction).
686         pub enabled: bool,
687         /// The difference in CLTV values that you must have when routing through this channel.
688         pub cltv_expiry_delta: u16,
689         /// The minimum value, which must be relayed to the next hop via the channel
690         pub htlc_minimum_msat: u64,
691         /// The maximum value which may be relayed to the next hop via the channel.
692         pub htlc_maximum_msat: u64,
693         /// Fees charged when the channel is used for routing
694         pub fees: RoutingFees,
695         /// Most recent update for the channel received from the network
696         /// Mostly redundant with the data we store in fields explicitly.
697         /// Everything else is useful only for sending out for initial routing sync.
698         /// Not stored if contains excess data to prevent DoS.
699         pub last_update_message: Option<ChannelUpdate>,
700 }
701
702 impl fmt::Display for ChannelUpdateInfo {
703         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
704                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
705                 Ok(())
706         }
707 }
708
709 impl Writeable for ChannelUpdateInfo {
710         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
711                 write_tlv_fields!(writer, {
712                         (0, self.last_update, required),
713                         (2, self.enabled, required),
714                         (4, self.cltv_expiry_delta, required),
715                         (6, self.htlc_minimum_msat, required),
716                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
717                         // compatibility with LDK versions prior to v0.0.110.
718                         (8, Some(self.htlc_maximum_msat), required),
719                         (10, self.fees, required),
720                         (12, self.last_update_message, required),
721                 });
722                 Ok(())
723         }
724 }
725
726 impl Readable for ChannelUpdateInfo {
727         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
728                 _init_tlv_field_var!(last_update, required);
729                 _init_tlv_field_var!(enabled, required);
730                 _init_tlv_field_var!(cltv_expiry_delta, required);
731                 _init_tlv_field_var!(htlc_minimum_msat, required);
732                 _init_tlv_field_var!(htlc_maximum_msat, option);
733                 _init_tlv_field_var!(fees, required);
734                 _init_tlv_field_var!(last_update_message, required);
735
736                 read_tlv_fields!(reader, {
737                         (0, last_update, required),
738                         (2, enabled, required),
739                         (4, cltv_expiry_delta, required),
740                         (6, htlc_minimum_msat, required),
741                         (8, htlc_maximum_msat, required),
742                         (10, fees, required),
743                         (12, last_update_message, required)
744                 });
745
746                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
747                         Ok(ChannelUpdateInfo {
748                                 last_update: _init_tlv_based_struct_field!(last_update, required),
749                                 enabled: _init_tlv_based_struct_field!(enabled, required),
750                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
751                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
752                                 htlc_maximum_msat,
753                                 fees: _init_tlv_based_struct_field!(fees, required),
754                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
755                         })
756                 } else {
757                         Err(DecodeError::InvalidValue)
758                 }
759         }
760 }
761
762 #[derive(Clone, Debug, PartialEq, Eq)]
763 /// Details about a channel (both directions).
764 /// Received within a channel announcement.
765 pub struct ChannelInfo {
766         /// Protocol features of a channel communicated during its announcement
767         pub features: ChannelFeatures,
768         /// Source node of the first direction of a channel
769         pub node_one: NodeId,
770         /// Details about the first direction of a channel
771         pub one_to_two: Option<ChannelUpdateInfo>,
772         /// Source node of the second direction of a channel
773         pub node_two: NodeId,
774         /// Details about the second direction of a channel
775         pub two_to_one: Option<ChannelUpdateInfo>,
776         /// The channel capacity as seen on-chain, if chain lookup is available.
777         pub capacity_sats: Option<u64>,
778         /// An initial announcement of the channel
779         /// Mostly redundant with the data we store in fields explicitly.
780         /// Everything else is useful only for sending out for initial routing sync.
781         /// Not stored if contains excess data to prevent DoS.
782         pub announcement_message: Option<ChannelAnnouncement>,
783         /// The timestamp when we received the announcement, if we are running with feature = "std"
784         /// (which we can probably assume we are - no-std environments probably won't have a full
785         /// network graph in memory!).
786         announcement_received_time: u64,
787 }
788
789 impl ChannelInfo {
790         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
791         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
792         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
793                 let (direction, source) = {
794                         if target == &self.node_one {
795                                 (self.two_to_one.as_ref(), &self.node_two)
796                         } else if target == &self.node_two {
797                                 (self.one_to_two.as_ref(), &self.node_one)
798                         } else {
799                                 return None;
800                         }
801                 };
802                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
803         }
804
805         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
806         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
807         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
808                 let (direction, target) = {
809                         if source == &self.node_one {
810                                 (self.one_to_two.as_ref(), &self.node_two)
811                         } else if source == &self.node_two {
812                                 (self.two_to_one.as_ref(), &self.node_one)
813                         } else {
814                                 return None;
815                         }
816                 };
817                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
818         }
819
820         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
821         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
822                 let direction = channel_flags & 1u8;
823                 if direction == 0 {
824                         self.one_to_two.as_ref()
825                 } else {
826                         self.two_to_one.as_ref()
827                 }
828         }
829 }
830
831 impl fmt::Display for ChannelInfo {
832         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
833                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
834                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
835                 Ok(())
836         }
837 }
838
839 impl Writeable for ChannelInfo {
840         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
841                 write_tlv_fields!(writer, {
842                         (0, self.features, required),
843                         (1, self.announcement_received_time, (default_value, 0)),
844                         (2, self.node_one, required),
845                         (4, self.one_to_two, required),
846                         (6, self.node_two, required),
847                         (8, self.two_to_one, required),
848                         (10, self.capacity_sats, required),
849                         (12, self.announcement_message, required),
850                 });
851                 Ok(())
852         }
853 }
854
855 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
856 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
857 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
858 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
859 // channel updates via the gossip network.
860 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
861
862 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
863         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
864                 match crate::util::ser::Readable::read(reader) {
865                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
866                         Err(DecodeError::ShortRead) => Ok(None),
867                         Err(DecodeError::InvalidValue) => Ok(None),
868                         Err(err) => Err(err),
869                 }
870         }
871 }
872
873 impl Readable for ChannelInfo {
874         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
875                 _init_tlv_field_var!(features, required);
876                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
877                 _init_tlv_field_var!(node_one, required);
878                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
879                 _init_tlv_field_var!(node_two, required);
880                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
881                 _init_tlv_field_var!(capacity_sats, required);
882                 _init_tlv_field_var!(announcement_message, required);
883                 read_tlv_fields!(reader, {
884                         (0, features, required),
885                         (1, announcement_received_time, (default_value, 0)),
886                         (2, node_one, required),
887                         (4, one_to_two_wrap, ignorable),
888                         (6, node_two, required),
889                         (8, two_to_one_wrap, ignorable),
890                         (10, capacity_sats, required),
891                         (12, announcement_message, required),
892                 });
893
894                 Ok(ChannelInfo {
895                         features: _init_tlv_based_struct_field!(features, required),
896                         node_one: _init_tlv_based_struct_field!(node_one, required),
897                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
898                         node_two: _init_tlv_based_struct_field!(node_two, required),
899                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
900                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
901                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
902                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
903                 })
904         }
905 }
906
907 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
908 /// source node to a target node.
909 #[derive(Clone)]
910 pub struct DirectedChannelInfo<'a> {
911         channel: &'a ChannelInfo,
912         direction: &'a ChannelUpdateInfo,
913         htlc_maximum_msat: u64,
914         effective_capacity: EffectiveCapacity,
915 }
916
917 impl<'a> DirectedChannelInfo<'a> {
918         #[inline]
919         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
920                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
921                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
922
923                 let effective_capacity = match capacity_msat {
924                         Some(capacity_msat) => {
925                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
926                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
927                         },
928                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
929                 };
930
931                 Self {
932                         channel, direction, htlc_maximum_msat, effective_capacity
933                 }
934         }
935
936         /// Returns information for the channel.
937         #[inline]
938         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
939
940         /// Returns the maximum HTLC amount allowed over the channel in the direction.
941         #[inline]
942         pub fn htlc_maximum_msat(&self) -> u64 {
943                 self.htlc_maximum_msat
944         }
945
946         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
947         ///
948         /// This is either the total capacity from the funding transaction, if known, or the
949         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
950         /// otherwise.
951         pub fn effective_capacity(&self) -> EffectiveCapacity {
952                 self.effective_capacity
953         }
954
955         /// Returns information for the direction.
956         #[inline]
957         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
958 }
959
960 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
961         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
962                 f.debug_struct("DirectedChannelInfo")
963                         .field("channel", &self.channel)
964                         .finish()
965         }
966 }
967
968 /// The effective capacity of a channel for routing purposes.
969 ///
970 /// While this may be smaller than the actual channel capacity, amounts greater than
971 /// [`Self::as_msat`] should not be routed through the channel.
972 #[derive(Clone, Copy, Debug)]
973 pub enum EffectiveCapacity {
974         /// The available liquidity in the channel known from being a channel counterparty, and thus a
975         /// direct hop.
976         ExactLiquidity {
977                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
978                 /// millisatoshi.
979                 liquidity_msat: u64,
980         },
981         /// The maximum HTLC amount in one direction as advertised on the gossip network.
982         MaximumHTLC {
983                 /// The maximum HTLC amount denominated in millisatoshi.
984                 amount_msat: u64,
985         },
986         /// The total capacity of the channel as determined by the funding transaction.
987         Total {
988                 /// The funding amount denominated in millisatoshi.
989                 capacity_msat: u64,
990                 /// The maximum HTLC amount denominated in millisatoshi.
991                 htlc_maximum_msat: u64
992         },
993         /// A capacity sufficient to route any payment, typically used for private channels provided by
994         /// an invoice.
995         Infinite,
996         /// A capacity that is unknown possibly because either the chain state is unavailable to know
997         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
998         Unknown,
999 }
1000
1001 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1002 /// use when making routing decisions.
1003 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1004
1005 impl EffectiveCapacity {
1006         /// Returns the effective capacity denominated in millisatoshi.
1007         pub fn as_msat(&self) -> u64 {
1008                 match self {
1009                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1010                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1011                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1012                         EffectiveCapacity::Infinite => u64::max_value(),
1013                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1014                 }
1015         }
1016 }
1017
1018 /// Fees for routing via a given channel or a node
1019 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1020 pub struct RoutingFees {
1021         /// Flat routing fee in satoshis
1022         pub base_msat: u32,
1023         /// Liquidity-based routing fee in millionths of a routed amount.
1024         /// In other words, 10000 is 1%.
1025         pub proportional_millionths: u32,
1026 }
1027
1028 impl_writeable_tlv_based!(RoutingFees, {
1029         (0, base_msat, required),
1030         (2, proportional_millionths, required)
1031 });
1032
1033 #[derive(Clone, Debug, PartialEq, Eq)]
1034 /// Information received in the latest node_announcement from this node.
1035 pub struct NodeAnnouncementInfo {
1036         /// Protocol features the node announced support for
1037         pub features: NodeFeatures,
1038         /// When the last known update to the node state was issued.
1039         /// Value is opaque, as set in the announcement.
1040         pub last_update: u32,
1041         /// Color assigned to the node
1042         pub rgb: [u8; 3],
1043         /// Moniker assigned to the node.
1044         /// May be invalid or malicious (eg control chars),
1045         /// should not be exposed to the user.
1046         pub alias: NodeAlias,
1047         /// Internet-level addresses via which one can connect to the node
1048         pub addresses: Vec<NetAddress>,
1049         /// An initial announcement of the node
1050         /// Mostly redundant with the data we store in fields explicitly.
1051         /// Everything else is useful only for sending out for initial routing sync.
1052         /// Not stored if contains excess data to prevent DoS.
1053         pub announcement_message: Option<NodeAnnouncement>
1054 }
1055
1056 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1057         (0, features, required),
1058         (2, last_update, required),
1059         (4, rgb, required),
1060         (6, alias, required),
1061         (8, announcement_message, option),
1062         (10, addresses, vec_type),
1063 });
1064
1065 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1066 ///
1067 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1068 /// attacks. Care must be taken when processing.
1069 #[derive(Clone, Debug, PartialEq, Eq)]
1070 pub struct NodeAlias(pub [u8; 32]);
1071
1072 impl fmt::Display for NodeAlias {
1073         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1074                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1075                 let bytes = self.0.split_at(first_null).0;
1076                 match core::str::from_utf8(bytes) {
1077                         Ok(alias) => PrintableString(alias).fmt(f)?,
1078                         Err(_) => {
1079                                 use core::fmt::Write;
1080                                 for c in bytes.iter().map(|b| *b as char) {
1081                                         // Display printable ASCII characters
1082                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1083                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1084                                         f.write_char(c)?;
1085                                 }
1086                         },
1087                 };
1088                 Ok(())
1089         }
1090 }
1091
1092 impl Writeable for NodeAlias {
1093         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1094                 self.0.write(w)
1095         }
1096 }
1097
1098 impl Readable for NodeAlias {
1099         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1100                 Ok(NodeAlias(Readable::read(r)?))
1101         }
1102 }
1103
1104 #[derive(Clone, Debug, PartialEq, Eq)]
1105 /// Details about a node in the network, known from the network announcement.
1106 pub struct NodeInfo {
1107         /// All valid channels a node has announced
1108         pub channels: Vec<u64>,
1109         /// More information about a node from node_announcement.
1110         /// Optional because we store a Node entry after learning about it from
1111         /// a channel announcement, but before receiving a node announcement.
1112         pub announcement_info: Option<NodeAnnouncementInfo>
1113 }
1114
1115 impl fmt::Display for NodeInfo {
1116         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1117                 write!(f, " channels: {:?}, announcement_info: {:?}",
1118                         &self.channels[..], self.announcement_info)?;
1119                 Ok(())
1120         }
1121 }
1122
1123 impl Writeable for NodeInfo {
1124         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1125                 write_tlv_fields!(writer, {
1126                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1127                         (2, self.announcement_info, option),
1128                         (4, self.channels, vec_type),
1129                 });
1130                 Ok(())
1131         }
1132 }
1133
1134 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1135 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1136 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1137 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1138 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1139
1140 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1141         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1142                 match crate::util::ser::Readable::read(reader) {
1143                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1144                         Err(_) => {
1145                                 copy(reader, &mut sink()).unwrap();
1146                                 return Ok(None)
1147                         },
1148                 };
1149         }
1150 }
1151
1152 impl Readable for NodeInfo {
1153         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1154                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1155                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1156                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1157                 // requires additional complexity and lookups during routing, it ends up being a
1158                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1159                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1160                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1161                 _init_tlv_field_var!(channels, vec_type);
1162
1163                 read_tlv_fields!(reader, {
1164                         (0, _lowest_inbound_channel_fees, option),
1165                         (2, announcement_info_wrap, ignorable),
1166                         (4, channels, vec_type),
1167                 });
1168
1169                 Ok(NodeInfo {
1170                         announcement_info: announcement_info_wrap.map(|w| w.0),
1171                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1172                 })
1173         }
1174 }
1175
1176 const SERIALIZATION_VERSION: u8 = 1;
1177 const MIN_SERIALIZATION_VERSION: u8 = 1;
1178
1179 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1180         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1181                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1182
1183                 self.genesis_hash.write(writer)?;
1184                 let channels = self.channels.read().unwrap();
1185                 (channels.len() as u64).write(writer)?;
1186                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1187                         (*chan_id).write(writer)?;
1188                         chan_info.write(writer)?;
1189                 }
1190                 let nodes = self.nodes.read().unwrap();
1191                 (nodes.len() as u64).write(writer)?;
1192                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1193                         node_id.write(writer)?;
1194                         node_info.write(writer)?;
1195                 }
1196
1197                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1198                 write_tlv_fields!(writer, {
1199                         (1, last_rapid_gossip_sync_timestamp, option),
1200                 });
1201                 Ok(())
1202         }
1203 }
1204
1205 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1206         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1207                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1208
1209                 let genesis_hash: BlockHash = Readable::read(reader)?;
1210                 let channels_count: u64 = Readable::read(reader)?;
1211                 let mut channels = IndexedMap::new();
1212                 for _ in 0..channels_count {
1213                         let chan_id: u64 = Readable::read(reader)?;
1214                         let chan_info = Readable::read(reader)?;
1215                         channels.insert(chan_id, chan_info);
1216                 }
1217                 let nodes_count: u64 = Readable::read(reader)?;
1218                 let mut nodes = IndexedMap::new();
1219                 for _ in 0..nodes_count {
1220                         let node_id = Readable::read(reader)?;
1221                         let node_info = Readable::read(reader)?;
1222                         nodes.insert(node_id, node_info);
1223                 }
1224
1225                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1226                 read_tlv_fields!(reader, {
1227                         (1, last_rapid_gossip_sync_timestamp, option),
1228                 });
1229
1230                 Ok(NetworkGraph {
1231                         secp_ctx: Secp256k1::verification_only(),
1232                         genesis_hash,
1233                         logger,
1234                         channels: RwLock::new(channels),
1235                         nodes: RwLock::new(nodes),
1236                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1237                         removed_nodes: Mutex::new(HashMap::new()),
1238                         removed_channels: Mutex::new(HashMap::new()),
1239                         pending_checks: utxo::PendingChecks::new(),
1240                 })
1241         }
1242 }
1243
1244 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1245         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1246                 writeln!(f, "Network map\n[Channels]")?;
1247                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1248                         writeln!(f, " {}: {}", key, val)?;
1249                 }
1250                 writeln!(f, "[Nodes]")?;
1251                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1252                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1253                 }
1254                 Ok(())
1255         }
1256 }
1257
1258 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1259 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1260         fn eq(&self, other: &Self) -> bool {
1261                 self.genesis_hash == other.genesis_hash &&
1262                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1263                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1264         }
1265 }
1266
1267 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1268         /// Creates a new, empty, network graph.
1269         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1270                 Self {
1271                         secp_ctx: Secp256k1::verification_only(),
1272                         genesis_hash,
1273                         logger,
1274                         channels: RwLock::new(IndexedMap::new()),
1275                         nodes: RwLock::new(IndexedMap::new()),
1276                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1277                         removed_channels: Mutex::new(HashMap::new()),
1278                         removed_nodes: Mutex::new(HashMap::new()),
1279                         pending_checks: utxo::PendingChecks::new(),
1280                 }
1281         }
1282
1283         /// Returns a read-only view of the network graph.
1284         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1285                 let channels = self.channels.read().unwrap();
1286                 let nodes = self.nodes.read().unwrap();
1287                 ReadOnlyNetworkGraph {
1288                         channels,
1289                         nodes,
1290                 }
1291         }
1292
1293         /// The unix timestamp provided by the most recent rapid gossip sync.
1294         /// It will be set by the rapid sync process after every sync completion.
1295         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1296                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1297         }
1298
1299         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1300         /// This should be done automatically by the rapid sync process after every sync completion.
1301         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1302                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1303         }
1304
1305         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1306         /// purposes.
1307         #[cfg(test)]
1308         pub fn clear_nodes_announcement_info(&self) {
1309                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1310                         node.1.announcement_info = None;
1311                 }
1312         }
1313
1314         /// For an already known node (from channel announcements), update its stored properties from a
1315         /// given node announcement.
1316         ///
1317         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1318         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1319         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1320         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1321                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1322                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1323                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1324         }
1325
1326         /// For an already known node (from channel announcements), update its stored properties from a
1327         /// given node announcement without verifying the associated signatures. Because we aren't
1328         /// given the associated signatures here we cannot relay the node announcement to any of our
1329         /// peers.
1330         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1331                 self.update_node_from_announcement_intern(msg, None)
1332         }
1333
1334         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1335                 let mut nodes = self.nodes.write().unwrap();
1336                 match nodes.get_mut(&msg.node_id) {
1337                         None => {
1338                                 core::mem::drop(nodes);
1339                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1340                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1341                         },
1342                         Some(node) => {
1343                                 if let Some(node_info) = node.announcement_info.as_ref() {
1344                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1345                                         // updates to ensure you always have the latest one, only vaguely suggesting
1346                                         // that it be at least the current time.
1347                                         if node_info.last_update  > msg.timestamp {
1348                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1349                                         } else if node_info.last_update  == msg.timestamp {
1350                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1351                                         }
1352                                 }
1353
1354                                 let should_relay =
1355                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1356                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1357                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1358                                 node.announcement_info = Some(NodeAnnouncementInfo {
1359                                         features: msg.features.clone(),
1360                                         last_update: msg.timestamp,
1361                                         rgb: msg.rgb,
1362                                         alias: NodeAlias(msg.alias),
1363                                         addresses: msg.addresses.clone(),
1364                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1365                                 });
1366
1367                                 Ok(())
1368                         }
1369                 }
1370         }
1371
1372         /// Store or update channel info from a channel announcement.
1373         ///
1374         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1375         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1376         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1377         ///
1378         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1379         /// the corresponding UTXO exists on chain and is correctly-formatted.
1380         pub fn update_channel_from_announcement<U: Deref>(
1381                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1382         ) -> Result<(), LightningError>
1383         where
1384                 U::Target: UtxoLookup,
1385         {
1386                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1387                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1388                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1389                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1390                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1391                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1392         }
1393
1394         /// Store or update channel info from a channel announcement without verifying the associated
1395         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1396         /// channel announcement to any of our peers.
1397         ///
1398         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1399         /// the corresponding UTXO exists on chain and is correctly-formatted.
1400         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1401                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1402         ) -> Result<(), LightningError>
1403         where
1404                 U::Target: UtxoLookup,
1405         {
1406                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1407         }
1408
1409         /// Update channel from partial announcement data received via rapid gossip sync
1410         ///
1411         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1412         /// rapid gossip sync server)
1413         ///
1414         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1415         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1416                 if node_id_1 == node_id_2 {
1417                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1418                 };
1419
1420                 let node_1 = NodeId::from_pubkey(&node_id_1);
1421                 let node_2 = NodeId::from_pubkey(&node_id_2);
1422                 let channel_info = ChannelInfo {
1423                         features,
1424                         node_one: node_1.clone(),
1425                         one_to_two: None,
1426                         node_two: node_2.clone(),
1427                         two_to_one: None,
1428                         capacity_sats: None,
1429                         announcement_message: None,
1430                         announcement_received_time: timestamp,
1431                 };
1432
1433                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1434         }
1435
1436         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1437                 let mut channels = self.channels.write().unwrap();
1438                 let mut nodes = self.nodes.write().unwrap();
1439
1440                 let node_id_a = channel_info.node_one.clone();
1441                 let node_id_b = channel_info.node_two.clone();
1442
1443                 match channels.entry(short_channel_id) {
1444                         IndexedMapEntry::Occupied(mut entry) => {
1445                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1446                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1447                                 //exactly how...
1448                                 if utxo_value.is_some() {
1449                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1450                                         // only sometimes returns results. In any case remove the previous entry. Note
1451                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1452                                         // do that because
1453                                         // a) we don't *require* a UTXO provider that always returns results.
1454                                         // b) we don't track UTXOs of channels we know about and remove them if they
1455                                         //    get reorg'd out.
1456                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1457                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1458                                         *entry.get_mut() = channel_info;
1459                                 } else {
1460                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1461                                 }
1462                         },
1463                         IndexedMapEntry::Vacant(entry) => {
1464                                 entry.insert(channel_info);
1465                         }
1466                 };
1467
1468                 for current_node_id in [node_id_a, node_id_b].iter() {
1469                         match nodes.entry(current_node_id.clone()) {
1470                                 IndexedMapEntry::Occupied(node_entry) => {
1471                                         node_entry.into_mut().channels.push(short_channel_id);
1472                                 },
1473                                 IndexedMapEntry::Vacant(node_entry) => {
1474                                         node_entry.insert(NodeInfo {
1475                                                 channels: vec!(short_channel_id),
1476                                                 announcement_info: None,
1477                                         });
1478                                 }
1479                         };
1480                 };
1481
1482                 Ok(())
1483         }
1484
1485         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1486                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1487         ) -> Result<(), LightningError>
1488         where
1489                 U::Target: UtxoLookup,
1490         {
1491                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1492                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1493                 }
1494
1495                 {
1496                         let channels = self.channels.read().unwrap();
1497
1498                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1499                                 if chan.capacity_sats.is_some() {
1500                                         // If we'd previously looked up the channel on-chain and checked the script
1501                                         // against what appears on-chain, ignore the duplicate announcement.
1502                                         //
1503                                         // Because a reorg could replace one channel with another at the same SCID, if
1504                                         // the channel appears to be different, we re-validate. This doesn't expose us
1505                                         // to any more DoS risk than not, as a peer can always flood us with
1506                                         // randomly-generated SCID values anyway.
1507                                         //
1508                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1509                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1510                                         // if the peers on the channel changed anyway.
1511                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1512                                                 return Err(LightningError {
1513                                                         err: "Already have chain-validated channel".to_owned(),
1514                                                         action: ErrorAction::IgnoreDuplicateGossip
1515                                                 });
1516                                         }
1517                                 } else if utxo_lookup.is_none() {
1518                                         // Similarly, if we can't check the chain right now anyway, ignore the
1519                                         // duplicate announcement without bothering to take the channels write lock.
1520                                         return Err(LightningError {
1521                                                 err: "Already have non-chain-validated channel".to_owned(),
1522                                                 action: ErrorAction::IgnoreDuplicateGossip
1523                                         });
1524                                 }
1525                         }
1526                 }
1527
1528                 {
1529                         let removed_channels = self.removed_channels.lock().unwrap();
1530                         let removed_nodes = self.removed_nodes.lock().unwrap();
1531                         if removed_channels.contains_key(&msg.short_channel_id) ||
1532                                 removed_nodes.contains_key(&msg.node_id_1) ||
1533                                 removed_nodes.contains_key(&msg.node_id_2) {
1534                                 return Err(LightningError{
1535                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1536                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1537                         }
1538                 }
1539
1540                 let utxo_value = self.pending_checks.check_channel_announcement(
1541                         utxo_lookup, msg, full_msg)?;
1542
1543                 #[allow(unused_mut, unused_assignments)]
1544                 let mut announcement_received_time = 0;
1545                 #[cfg(feature = "std")]
1546                 {
1547                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1548                 }
1549
1550                 let chan_info = ChannelInfo {
1551                         features: msg.features.clone(),
1552                         node_one: msg.node_id_1,
1553                         one_to_two: None,
1554                         node_two: msg.node_id_2,
1555                         two_to_one: None,
1556                         capacity_sats: utxo_value,
1557                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1558                                 { full_msg.cloned() } else { None },
1559                         announcement_received_time,
1560                 };
1561
1562                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1563         }
1564
1565         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1566         /// If permanent, removes a channel from the local storage.
1567         /// May cause the removal of nodes too, if this was their last channel.
1568         /// If not permanent, makes channels unavailable for routing.
1569         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1570                 #[cfg(feature = "std")]
1571                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1572                 #[cfg(not(feature = "std"))]
1573                 let current_time_unix = None;
1574
1575                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1576         }
1577
1578         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1579         /// If permanent, removes a channel from the local storage.
1580         /// May cause the removal of nodes too, if this was their last channel.
1581         /// If not permanent, makes channels unavailable for routing.
1582         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1583                 let mut channels = self.channels.write().unwrap();
1584                 if is_permanent {
1585                         if let Some(chan) = channels.remove(&short_channel_id) {
1586                                 let mut nodes = self.nodes.write().unwrap();
1587                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1588                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1589                         }
1590                 } else {
1591                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1592                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1593                                         one_to_two.enabled = false;
1594                                 }
1595                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1596                                         two_to_one.enabled = false;
1597                                 }
1598                         }
1599                 }
1600         }
1601
1602         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1603         /// from local storage.
1604         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1605                 #[cfg(feature = "std")]
1606                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1607                 #[cfg(not(feature = "std"))]
1608                 let current_time_unix = None;
1609
1610                 let node_id = NodeId::from_pubkey(node_id);
1611                 let mut channels = self.channels.write().unwrap();
1612                 let mut nodes = self.nodes.write().unwrap();
1613                 let mut removed_channels = self.removed_channels.lock().unwrap();
1614                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1615
1616                 if let Some(node) = nodes.remove(&node_id) {
1617                         for scid in node.channels.iter() {
1618                                 if let Some(chan_info) = channels.remove(scid) {
1619                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1620                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1621                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1622                                                         *scid != *chan_id
1623                                                 });
1624                                                 if other_node_entry.get().channels.is_empty() {
1625                                                         other_node_entry.remove_entry();
1626                                                 }
1627                                         }
1628                                         removed_channels.insert(*scid, current_time_unix);
1629                                 }
1630                         }
1631                         removed_nodes.insert(node_id, current_time_unix);
1632                 }
1633         }
1634
1635         #[cfg(feature = "std")]
1636         /// Removes information about channels that we haven't heard any updates about in some time.
1637         /// This can be used regularly to prune the network graph of channels that likely no longer
1638         /// exist.
1639         ///
1640         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1641         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1642         /// pruning occur for updates which are at least two weeks old, which we implement here.
1643         ///
1644         /// Note that for users of the `lightning-background-processor` crate this method may be
1645         /// automatically called regularly for you.
1646         ///
1647         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1648         /// in the map for a while so that these can be resynced from gossip in the future.
1649         ///
1650         /// This method is only available with the `std` feature. See
1651         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1652         pub fn remove_stale_channels_and_tracking(&self) {
1653                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1654                 self.remove_stale_channels_and_tracking_with_time(time);
1655         }
1656
1657         /// Removes information about channels that we haven't heard any updates about in some time.
1658         /// This can be used regularly to prune the network graph of channels that likely no longer
1659         /// exist.
1660         ///
1661         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1662         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1663         /// pruning occur for updates which are at least two weeks old, which we implement here.
1664         ///
1665         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1666         /// in the map for a while so that these can be resynced from gossip in the future.
1667         ///
1668         /// This function takes the current unix time as an argument. For users with the `std` feature
1669         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1670         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1671                 let mut channels = self.channels.write().unwrap();
1672                 // Time out if we haven't received an update in at least 14 days.
1673                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1674                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1675                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1676                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1677                 // time.
1678                 let mut scids_to_remove = Vec::new();
1679                 for (scid, info) in channels.unordered_iter_mut() {
1680                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1681                                 info.one_to_two = None;
1682                         }
1683                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1684                                 info.two_to_one = None;
1685                         }
1686                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1687                                 // We check the announcement_received_time here to ensure we don't drop
1688                                 // announcements that we just received and are just waiting for our peer to send a
1689                                 // channel_update for.
1690                                 if info.announcement_received_time < min_time_unix as u64 {
1691                                         scids_to_remove.push(*scid);
1692                                 }
1693                         }
1694                 }
1695                 if !scids_to_remove.is_empty() {
1696                         let mut nodes = self.nodes.write().unwrap();
1697                         for scid in scids_to_remove {
1698                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1699                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1700                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1701                         }
1702                 }
1703
1704                 let should_keep_tracking = |time: &mut Option<u64>| {
1705                         if let Some(time) = time {
1706                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1707                         } else {
1708                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1709                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1710                                 // of this function.
1711                                 #[cfg(feature = "no-std")]
1712                                 {
1713                                         let mut tracked_time = Some(current_time_unix);
1714                                         core::mem::swap(time, &mut tracked_time);
1715                                         return true;
1716                                 }
1717                                 #[allow(unreachable_code)]
1718                                 false
1719                         }};
1720
1721                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1722                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1723         }
1724
1725         /// For an already known (from announcement) channel, update info about one of the directions
1726         /// of the channel.
1727         ///
1728         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1729         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1730         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1731         ///
1732         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1733         /// materially in the future will be rejected.
1734         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1735                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1736         }
1737
1738         /// For an already known (from announcement) channel, update info about one of the directions
1739         /// of the channel without verifying the associated signatures. Because we aren't given the
1740         /// associated signatures here we cannot relay the channel update to any of our peers.
1741         ///
1742         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1743         /// materially in the future will be rejected.
1744         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1745                 self.update_channel_intern(msg, None, None)
1746         }
1747
1748         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1749                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1750
1751                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1752                 {
1753                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1754                         // disable this check during tests!
1755                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1756                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1757                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1758                         }
1759                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1760                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1761                         }
1762                 }
1763
1764                 let mut channels = self.channels.write().unwrap();
1765                 match channels.get_mut(&msg.short_channel_id) {
1766                         None => {
1767                                 core::mem::drop(channels);
1768                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1769                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1770                         },
1771                         Some(channel) => {
1772                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1773                                         return Err(LightningError{err:
1774                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1775                                                 action: ErrorAction::IgnoreError});
1776                                 }
1777
1778                                 if let Some(capacity_sats) = channel.capacity_sats {
1779                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1780                                         // Don't query UTXO set here to reduce DoS risks.
1781                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1782                                                 return Err(LightningError{err:
1783                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1784                                                         action: ErrorAction::IgnoreError});
1785                                         }
1786                                 }
1787                                 macro_rules! check_update_latest {
1788                                         ($target: expr) => {
1789                                                 if let Some(existing_chan_info) = $target.as_ref() {
1790                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1791                                                         // order updates to ensure you always have the latest one, only
1792                                                         // suggesting  that it be at least the current time. For
1793                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1794                                                         // pruning based on the timestamp field being more than two weeks old,
1795                                                         // but only in the non-normative section.
1796                                                         if existing_chan_info.last_update > msg.timestamp {
1797                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1798                                                         } else if existing_chan_info.last_update == msg.timestamp {
1799                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1800                                                         }
1801                                                 }
1802                                         }
1803                                 }
1804
1805                                 macro_rules! get_new_channel_info {
1806                                         () => { {
1807                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1808                                                         { full_msg.cloned() } else { None };
1809
1810                                                 let updated_channel_update_info = ChannelUpdateInfo {
1811                                                         enabled: chan_enabled,
1812                                                         last_update: msg.timestamp,
1813                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1814                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1815                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1816                                                         fees: RoutingFees {
1817                                                                 base_msat: msg.fee_base_msat,
1818                                                                 proportional_millionths: msg.fee_proportional_millionths,
1819                                                         },
1820                                                         last_update_message
1821                                                 };
1822                                                 Some(updated_channel_update_info)
1823                                         } }
1824                                 }
1825
1826                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1827                                 if msg.flags & 1 == 1 {
1828                                         check_update_latest!(channel.two_to_one);
1829                                         if let Some(sig) = sig {
1830                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1831                                                         err: "Couldn't parse source node pubkey".to_owned(),
1832                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1833                                                 })?, "channel_update");
1834                                         }
1835                                         channel.two_to_one = get_new_channel_info!();
1836                                 } else {
1837                                         check_update_latest!(channel.one_to_two);
1838                                         if let Some(sig) = sig {
1839                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1840                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1841                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1842                                                 })?, "channel_update");
1843                                         }
1844                                         channel.one_to_two = get_new_channel_info!();
1845                                 }
1846                         }
1847                 }
1848
1849                 Ok(())
1850         }
1851
1852         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1853                 macro_rules! remove_from_node {
1854                         ($node_id: expr) => {
1855                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1856                                         entry.get_mut().channels.retain(|chan_id| {
1857                                                 short_channel_id != *chan_id
1858                                         });
1859                                         if entry.get().channels.is_empty() {
1860                                                 entry.remove_entry();
1861                                         }
1862                                 } else {
1863                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1864                                 }
1865                         }
1866                 }
1867
1868                 remove_from_node!(chan.node_one);
1869                 remove_from_node!(chan.node_two);
1870         }
1871 }
1872
1873 impl ReadOnlyNetworkGraph<'_> {
1874         /// Returns all known valid channels' short ids along with announced channel info.
1875         ///
1876         /// (C-not exported) because we don't want to return lifetime'd references
1877         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1878                 &*self.channels
1879         }
1880
1881         /// Returns information on a channel with the given id.
1882         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1883                 self.channels.get(&short_channel_id)
1884         }
1885
1886         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1887         /// Returns the list of channels in the graph
1888         pub fn list_channels(&self) -> Vec<u64> {
1889                 self.channels.unordered_keys().map(|c| *c).collect()
1890         }
1891
1892         /// Returns all known nodes' public keys along with announced node info.
1893         ///
1894         /// (C-not exported) because we don't want to return lifetime'd references
1895         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1896                 &*self.nodes
1897         }
1898
1899         /// Returns information on a node with the given id.
1900         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1901                 self.nodes.get(node_id)
1902         }
1903
1904         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1905         /// Returns the list of nodes in the graph
1906         pub fn list_nodes(&self) -> Vec<NodeId> {
1907                 self.nodes.unordered_keys().map(|n| *n).collect()
1908         }
1909
1910         /// Get network addresses by node id.
1911         /// Returns None if the requested node is completely unknown,
1912         /// or if node announcement for the node was never received.
1913         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1914                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1915                         if let Some(node_info) = node.announcement_info.as_ref() {
1916                                 return Some(node_info.addresses.clone())
1917                         }
1918                 }
1919                 None
1920         }
1921 }
1922
1923 #[cfg(test)]
1924 mod tests {
1925         use crate::ln::channelmanager;
1926         use crate::ln::chan_utils::make_funding_redeemscript;
1927         #[cfg(feature = "std")]
1928         use crate::ln::features::InitFeatures;
1929         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1930         use crate::routing::utxo::UtxoLookupError;
1931         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1932                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1933                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1934         use crate::util::config::UserConfig;
1935         use crate::util::test_utils;
1936         use crate::util::ser::{ReadableArgs, Writeable};
1937         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1938         use crate::util::scid_utils::scid_from_parts;
1939
1940         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1941         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1942
1943         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1944         use bitcoin::hashes::Hash;
1945         use bitcoin::network::constants::Network;
1946         use bitcoin::blockdata::constants::genesis_block;
1947         use bitcoin::blockdata::script::Script;
1948         use bitcoin::blockdata::transaction::TxOut;
1949
1950         use hex;
1951
1952         use bitcoin::secp256k1::{PublicKey, SecretKey};
1953         use bitcoin::secp256k1::{All, Secp256k1};
1954
1955         use crate::io;
1956         use bitcoin::secp256k1;
1957         use crate::prelude::*;
1958         use crate::sync::Arc;
1959
1960         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1961                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1962                 let logger = Arc::new(test_utils::TestLogger::new());
1963                 NetworkGraph::new(genesis_hash, logger)
1964         }
1965
1966         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1967                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1968                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1969         ) {
1970                 let secp_ctx = Secp256k1::new();
1971                 let logger = Arc::new(test_utils::TestLogger::new());
1972                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1973                 (secp_ctx, gossip_sync)
1974         }
1975
1976         #[test]
1977         #[cfg(feature = "std")]
1978         fn request_full_sync_finite_times() {
1979                 let network_graph = create_network_graph();
1980                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1981                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1982
1983                 assert!(gossip_sync.should_request_full_sync(&node_id));
1984                 assert!(gossip_sync.should_request_full_sync(&node_id));
1985                 assert!(gossip_sync.should_request_full_sync(&node_id));
1986                 assert!(gossip_sync.should_request_full_sync(&node_id));
1987                 assert!(gossip_sync.should_request_full_sync(&node_id));
1988                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1989         }
1990
1991         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1992                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1993                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1994                         features: channelmanager::provided_node_features(&UserConfig::default()),
1995                         timestamp: 100,
1996                         node_id,
1997                         rgb: [0; 3],
1998                         alias: [0; 32],
1999                         addresses: Vec::new(),
2000                         excess_address_data: Vec::new(),
2001                         excess_data: Vec::new(),
2002                 };
2003                 f(&mut unsigned_announcement);
2004                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2005                 NodeAnnouncement {
2006                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2007                         contents: unsigned_announcement
2008                 }
2009         }
2010
2011         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2012                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2013                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2014                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2015                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2016
2017                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2018                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2019                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2020                         short_channel_id: 0,
2021                         node_id_1: NodeId::from_pubkey(&node_id_1),
2022                         node_id_2: NodeId::from_pubkey(&node_id_2),
2023                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2024                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2025                         excess_data: Vec::new(),
2026                 };
2027                 f(&mut unsigned_announcement);
2028                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2029                 ChannelAnnouncement {
2030                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2031                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2032                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2033                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2034                         contents: unsigned_announcement,
2035                 }
2036         }
2037
2038         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2039                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2040                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2041                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2042                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2043         }
2044
2045         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2046                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2047                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2048                         short_channel_id: 0,
2049                         timestamp: 100,
2050                         flags: 0,
2051                         cltv_expiry_delta: 144,
2052                         htlc_minimum_msat: 1_000_000,
2053                         htlc_maximum_msat: 1_000_000,
2054                         fee_base_msat: 10_000,
2055                         fee_proportional_millionths: 20,
2056                         excess_data: Vec::new()
2057                 };
2058                 f(&mut unsigned_channel_update);
2059                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2060                 ChannelUpdate {
2061                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2062                         contents: unsigned_channel_update
2063                 }
2064         }
2065
2066         #[test]
2067         fn handling_node_announcements() {
2068                 let network_graph = create_network_graph();
2069                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2070
2071                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2072                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2073                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2074
2075                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2076                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2077                         Ok(_) => panic!(),
2078                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2079                 };
2080
2081                 {
2082                         // Announce a channel to add a corresponding node.
2083                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2084                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2085                                 Ok(res) => assert!(res),
2086                                 _ => panic!()
2087                         };
2088                 }
2089
2090                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2091                         Ok(res) => assert!(res),
2092                         Err(_) => panic!()
2093                 };
2094
2095                 let fake_msghash = hash_to_message!(&zero_hash);
2096                 match gossip_sync.handle_node_announcement(
2097                         &NodeAnnouncement {
2098                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2099                                 contents: valid_announcement.contents.clone()
2100                 }) {
2101                         Ok(_) => panic!(),
2102                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2103                 };
2104
2105                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2106                         unsigned_announcement.timestamp += 1000;
2107                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2108                 }, node_1_privkey, &secp_ctx);
2109                 // Return false because contains excess data.
2110                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2111                         Ok(res) => assert!(!res),
2112                         Err(_) => panic!()
2113                 };
2114
2115                 // Even though previous announcement was not relayed further, we still accepted it,
2116                 // so we now won't accept announcements before the previous one.
2117                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2118                         unsigned_announcement.timestamp += 1000 - 10;
2119                 }, node_1_privkey, &secp_ctx);
2120                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2121                         Ok(_) => panic!(),
2122                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2123                 };
2124         }
2125
2126         #[test]
2127         fn handling_channel_announcements() {
2128                 let secp_ctx = Secp256k1::new();
2129                 let logger = test_utils::TestLogger::new();
2130
2131                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2132                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2133
2134                 let good_script = get_channel_script(&secp_ctx);
2135                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2136
2137                 // Test if the UTXO lookups were not supported
2138                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2139                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2140                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2141                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2142                         Ok(res) => assert!(res),
2143                         _ => panic!()
2144                 };
2145
2146                 {
2147                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2148                                 None => panic!(),
2149                                 Some(_) => ()
2150                         };
2151                 }
2152
2153                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2154                 // drop new one on the floor, since we can't see any changes.
2155                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2156                         Ok(_) => panic!(),
2157                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2158                 };
2159
2160                 // Test if an associated transaction were not on-chain (or not confirmed).
2161                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2162                 *chain_source.utxo_ret.lock().unwrap() = Err(UtxoLookupError::UnknownTx);
2163                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2164                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2165
2166                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2167                         unsigned_announcement.short_channel_id += 1;
2168                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2169                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2170                         Ok(_) => panic!(),
2171                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2172                 };
2173
2174                 // Now test if the transaction is found in the UTXO set and the script is correct.
2175                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2176                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2177                         unsigned_announcement.short_channel_id += 2;
2178                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2179                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2180                         Ok(res) => assert!(res),
2181                         _ => panic!()
2182                 };
2183
2184                 {
2185                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2186                                 None => panic!(),
2187                                 Some(_) => ()
2188                         };
2189                 }
2190
2191                 // If we receive announcement for the same channel, once we've validated it against the
2192                 // chain, we simply ignore all new (duplicate) announcements.
2193                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2194                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2195                         Ok(_) => panic!(),
2196                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2197                 };
2198
2199                 #[cfg(feature = "std")]
2200                 {
2201                         use std::time::{SystemTime, UNIX_EPOCH};
2202
2203                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2204                         // Mark a node as permanently failed so it's tracked as removed.
2205                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2206
2207                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2208                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2209                                 unsigned_announcement.short_channel_id += 3;
2210                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2211                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2212                                 Ok(_) => panic!(),
2213                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2214                         }
2215
2216                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2217
2218                         // The above channel announcement should be handled as per normal now.
2219                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2220                                 Ok(res) => assert!(res),
2221                                 _ => panic!()
2222                         }
2223                 }
2224
2225                 // Don't relay valid channels with excess data
2226                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2227                         unsigned_announcement.short_channel_id += 4;
2228                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2229                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2230                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2231                         Ok(res) => assert!(!res),
2232                         _ => panic!()
2233                 };
2234
2235                 let mut invalid_sig_announcement = valid_announcement.clone();
2236                 invalid_sig_announcement.contents.excess_data = Vec::new();
2237                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2238                         Ok(_) => panic!(),
2239                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2240                 };
2241
2242                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2243                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2244                         Ok(_) => panic!(),
2245                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2246                 };
2247         }
2248
2249         #[test]
2250         fn handling_channel_update() {
2251                 let secp_ctx = Secp256k1::new();
2252                 let logger = test_utils::TestLogger::new();
2253                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2254                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2255                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2256                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2257
2258                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2259                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2260
2261                 let amount_sats = 1000_000;
2262                 let short_channel_id;
2263
2264                 {
2265                         // Announce a channel we will update
2266                         let good_script = get_channel_script(&secp_ctx);
2267                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2268
2269                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2270                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2271                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2272                                 Ok(_) => (),
2273                                 Err(_) => panic!()
2274                         };
2275
2276                 }
2277
2278                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2279                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2280                         Ok(res) => assert!(res),
2281                         _ => panic!(),
2282                 };
2283
2284                 {
2285                         match network_graph.read_only().channels().get(&short_channel_id) {
2286                                 None => panic!(),
2287                                 Some(channel_info) => {
2288                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2289                                         assert!(channel_info.two_to_one.is_none());
2290                                 }
2291                         };
2292                 }
2293
2294                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2295                         unsigned_channel_update.timestamp += 100;
2296                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2297                 }, node_1_privkey, &secp_ctx);
2298                 // Return false because contains excess data
2299                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2300                         Ok(res) => assert!(!res),
2301                         _ => panic!()
2302                 };
2303
2304                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2305                         unsigned_channel_update.timestamp += 110;
2306                         unsigned_channel_update.short_channel_id += 1;
2307                 }, node_1_privkey, &secp_ctx);
2308                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2309                         Ok(_) => panic!(),
2310                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2311                 };
2312
2313                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2314                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2315                         unsigned_channel_update.timestamp += 110;
2316                 }, node_1_privkey, &secp_ctx);
2317                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2318                         Ok(_) => panic!(),
2319                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2320                 };
2321
2322                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2323                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2324                         unsigned_channel_update.timestamp += 110;
2325                 }, node_1_privkey, &secp_ctx);
2326                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2327                         Ok(_) => panic!(),
2328                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2329                 };
2330
2331                 // Even though previous update was not relayed further, we still accepted it,
2332                 // so we now won't accept update before the previous one.
2333                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2334                         unsigned_channel_update.timestamp += 100;
2335                 }, node_1_privkey, &secp_ctx);
2336                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2337                         Ok(_) => panic!(),
2338                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2339                 };
2340
2341                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2342                         unsigned_channel_update.timestamp += 500;
2343                 }, node_1_privkey, &secp_ctx);
2344                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2345                 let fake_msghash = hash_to_message!(&zero_hash);
2346                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2347                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2348                         Ok(_) => panic!(),
2349                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2350                 };
2351         }
2352
2353         #[test]
2354         fn handling_network_update() {
2355                 let logger = test_utils::TestLogger::new();
2356                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2357                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2358                 let secp_ctx = Secp256k1::new();
2359
2360                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2361                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2362                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2363
2364                 {
2365                         // There is no nodes in the table at the beginning.
2366                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2367                 }
2368
2369                 let short_channel_id;
2370                 {
2371                         // Announce a channel we will update
2372                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2373                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2374                         let chain_source: Option<&test_utils::TestChainSource> = None;
2375                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2376                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2377
2378                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2379                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2380
2381                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2382                                 msg: valid_channel_update,
2383                         });
2384
2385                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2386                 }
2387
2388                 // Non-permanent closing just disables a channel
2389                 {
2390                         match network_graph.read_only().channels().get(&short_channel_id) {
2391                                 None => panic!(),
2392                                 Some(channel_info) => {
2393                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2394                                 }
2395                         };
2396
2397                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2398                                 short_channel_id,
2399                                 is_permanent: false,
2400                         });
2401
2402                         match network_graph.read_only().channels().get(&short_channel_id) {
2403                                 None => panic!(),
2404                                 Some(channel_info) => {
2405                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2406                                 }
2407                         };
2408                 }
2409
2410                 // Permanent closing deletes a channel
2411                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2412                         short_channel_id,
2413                         is_permanent: true,
2414                 });
2415
2416                 assert_eq!(network_graph.read_only().channels().len(), 0);
2417                 // Nodes are also deleted because there are no associated channels anymore
2418                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2419
2420                 {
2421                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2422                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2423
2424                         // Announce a channel to test permanent node failure
2425                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2426                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2427                         let chain_source: Option<&test_utils::TestChainSource> = None;
2428                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2429                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2430
2431                         // Non-permanent node failure does not delete any nodes or channels
2432                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2433                                 node_id: node_2_id,
2434                                 is_permanent: false,
2435                         });
2436
2437                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2438                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2439
2440                         // Permanent node failure deletes node and its channels
2441                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2442                                 node_id: node_2_id,
2443                                 is_permanent: true,
2444                         });
2445
2446                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2447                         // Channels are also deleted because the associated node has been deleted
2448                         assert_eq!(network_graph.read_only().channels().len(), 0);
2449                 }
2450         }
2451
2452         #[test]
2453         fn test_channel_timeouts() {
2454                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2455                 let logger = test_utils::TestLogger::new();
2456                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2457                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2458                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2459                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2460                 let secp_ctx = Secp256k1::new();
2461
2462                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2463                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2464
2465                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2466                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2467                 let chain_source: Option<&test_utils::TestChainSource> = None;
2468                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2469                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2470
2471                 // Submit two channel updates for each channel direction (update.flags bit).
2472                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2473                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2474                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2475
2476                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2477                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2478                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2479
2480                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2481                 assert_eq!(network_graph.read_only().channels().len(), 1);
2482                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2483
2484                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2485                 #[cfg(not(feature = "std"))] {
2486                         // Make sure removed channels are tracked.
2487                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2488                 }
2489                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2490                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2491
2492                 #[cfg(feature = "std")]
2493                 {
2494                         // In std mode, a further check is performed before fully removing the channel -
2495                         // the channel_announcement must have been received at least two weeks ago. We
2496                         // fudge that here by indicating the time has jumped two weeks.
2497                         assert_eq!(network_graph.read_only().channels().len(), 1);
2498                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2499
2500                         // Note that the directional channel information will have been removed already..
2501                         // We want to check that this will work even if *one* of the channel updates is recent,
2502                         // so we should add it with a recent timestamp.
2503                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2504                         use std::time::{SystemTime, UNIX_EPOCH};
2505                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2506                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2507                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2508                         }, node_1_privkey, &secp_ctx);
2509                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2510                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2511                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2512                         // Make sure removed channels are tracked.
2513                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2514                         // Provide a later time so that sufficient time has passed
2515                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2516                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2517                 }
2518
2519                 assert_eq!(network_graph.read_only().channels().len(), 0);
2520                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2521                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2522
2523                 #[cfg(feature = "std")]
2524                 {
2525                         use std::time::{SystemTime, UNIX_EPOCH};
2526
2527                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2528
2529                         // Clear tracked nodes and channels for clean slate
2530                         network_graph.removed_channels.lock().unwrap().clear();
2531                         network_graph.removed_nodes.lock().unwrap().clear();
2532
2533                         // Add a channel and nodes from channel announcement. So our network graph will
2534                         // now only consist of two nodes and one channel between them.
2535                         assert!(network_graph.update_channel_from_announcement(
2536                                 &valid_channel_announcement, &chain_source).is_ok());
2537
2538                         // Mark the channel as permanently failed. This will also remove the two nodes
2539                         // and all of the entries will be tracked as removed.
2540                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2541
2542                         // Should not remove from tracking if insufficient time has passed
2543                         network_graph.remove_stale_channels_and_tracking_with_time(
2544                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2545                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2546
2547                         // Provide a later time so that sufficient time has passed
2548                         network_graph.remove_stale_channels_and_tracking_with_time(
2549                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2550                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2551                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2552                 }
2553
2554                 #[cfg(not(feature = "std"))]
2555                 {
2556                         // When we don't have access to the system clock, the time we started tracking removal will only
2557                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2558                         // only if sufficient time has passed after that first call, will the next call remove it from
2559                         // tracking.
2560                         let removal_time = 1664619654;
2561
2562                         // Clear removed nodes and channels for clean slate
2563                         network_graph.removed_channels.lock().unwrap().clear();
2564                         network_graph.removed_nodes.lock().unwrap().clear();
2565
2566                         // Add a channel and nodes from channel announcement. So our network graph will
2567                         // now only consist of two nodes and one channel between them.
2568                         assert!(network_graph.update_channel_from_announcement(
2569                                 &valid_channel_announcement, &chain_source).is_ok());
2570
2571                         // Mark the channel as permanently failed. This will also remove the two nodes
2572                         // and all of the entries will be tracked as removed.
2573                         network_graph.channel_failed(short_channel_id, true);
2574
2575                         // The first time we call the following, the channel will have a removal time assigned.
2576                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2577                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2578
2579                         // Provide a later time so that sufficient time has passed
2580                         network_graph.remove_stale_channels_and_tracking_with_time(
2581                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2582                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2583                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2584                 }
2585         }
2586
2587         #[test]
2588         fn getting_next_channel_announcements() {
2589                 let network_graph = create_network_graph();
2590                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2591                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2592                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2593
2594                 // Channels were not announced yet.
2595                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2596                 assert!(channels_with_announcements.is_none());
2597
2598                 let short_channel_id;
2599                 {
2600                         // Announce a channel we will update
2601                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2602                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2603                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2604                                 Ok(_) => (),
2605                                 Err(_) => panic!()
2606                         };
2607                 }
2608
2609                 // Contains initial channel announcement now.
2610                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2611                 if let Some(channel_announcements) = channels_with_announcements {
2612                         let (_, ref update_1, ref update_2) = channel_announcements;
2613                         assert_eq!(update_1, &None);
2614                         assert_eq!(update_2, &None);
2615                 } else {
2616                         panic!();
2617                 }
2618
2619                 {
2620                         // Valid channel update
2621                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2622                                 unsigned_channel_update.timestamp = 101;
2623                         }, node_1_privkey, &secp_ctx);
2624                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2625                                 Ok(_) => (),
2626                                 Err(_) => panic!()
2627                         };
2628                 }
2629
2630                 // Now contains an initial announcement and an update.
2631                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2632                 if let Some(channel_announcements) = channels_with_announcements {
2633                         let (_, ref update_1, ref update_2) = channel_announcements;
2634                         assert_ne!(update_1, &None);
2635                         assert_eq!(update_2, &None);
2636                 } else {
2637                         panic!();
2638                 }
2639
2640                 {
2641                         // Channel update with excess data.
2642                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2643                                 unsigned_channel_update.timestamp = 102;
2644                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2645                         }, node_1_privkey, &secp_ctx);
2646                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2647                                 Ok(_) => (),
2648                                 Err(_) => panic!()
2649                         };
2650                 }
2651
2652                 // Test that announcements with excess data won't be returned
2653                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2654                 if let Some(channel_announcements) = channels_with_announcements {
2655                         let (_, ref update_1, ref update_2) = channel_announcements;
2656                         assert_eq!(update_1, &None);
2657                         assert_eq!(update_2, &None);
2658                 } else {
2659                         panic!();
2660                 }
2661
2662                 // Further starting point have no channels after it
2663                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2664                 assert!(channels_with_announcements.is_none());
2665         }
2666
2667         #[test]
2668         fn getting_next_node_announcements() {
2669                 let network_graph = create_network_graph();
2670                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2671                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2672                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2673                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2674
2675                 // No nodes yet.
2676                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2677                 assert!(next_announcements.is_none());
2678
2679                 {
2680                         // Announce a channel to add 2 nodes
2681                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2682                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2683                                 Ok(_) => (),
2684                                 Err(_) => panic!()
2685                         };
2686                 }
2687
2688                 // Nodes were never announced
2689                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2690                 assert!(next_announcements.is_none());
2691
2692                 {
2693                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2694                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2695                                 Ok(_) => (),
2696                                 Err(_) => panic!()
2697                         };
2698
2699                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2700                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2701                                 Ok(_) => (),
2702                                 Err(_) => panic!()
2703                         };
2704                 }
2705
2706                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2707                 assert!(next_announcements.is_some());
2708
2709                 // Skip the first node.
2710                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2711                 assert!(next_announcements.is_some());
2712
2713                 {
2714                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2715                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2716                                 unsigned_announcement.timestamp += 10;
2717                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2718                         }, node_2_privkey, &secp_ctx);
2719                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2720                                 Ok(res) => assert!(!res),
2721                                 Err(_) => panic!()
2722                         };
2723                 }
2724
2725                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2726                 assert!(next_announcements.is_none());
2727         }
2728
2729         #[test]
2730         fn network_graph_serialization() {
2731                 let network_graph = create_network_graph();
2732                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2733
2734                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2735                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2736
2737                 // Announce a channel to add a corresponding node.
2738                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2739                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2740                         Ok(res) => assert!(res),
2741                         _ => panic!()
2742                 };
2743
2744                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2745                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2746                         Ok(_) => (),
2747                         Err(_) => panic!()
2748                 };
2749
2750                 let mut w = test_utils::TestVecWriter(Vec::new());
2751                 assert!(!network_graph.read_only().nodes().is_empty());
2752                 assert!(!network_graph.read_only().channels().is_empty());
2753                 network_graph.write(&mut w).unwrap();
2754
2755                 let logger = Arc::new(test_utils::TestLogger::new());
2756                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2757         }
2758
2759         #[test]
2760         fn network_graph_tlv_serialization() {
2761                 let network_graph = create_network_graph();
2762                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2763
2764                 let mut w = test_utils::TestVecWriter(Vec::new());
2765                 network_graph.write(&mut w).unwrap();
2766
2767                 let logger = Arc::new(test_utils::TestLogger::new());
2768                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2769                 assert!(reassembled_network_graph == network_graph);
2770                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2771         }
2772
2773         #[test]
2774         #[cfg(feature = "std")]
2775         fn calling_sync_routing_table() {
2776                 use std::time::{SystemTime, UNIX_EPOCH};
2777                 use crate::ln::msgs::Init;
2778
2779                 let network_graph = create_network_graph();
2780                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2781                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2782                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2783
2784                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2785
2786                 // It should ignore if gossip_queries feature is not enabled
2787                 {
2788                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2789                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2790                         let events = gossip_sync.get_and_clear_pending_msg_events();
2791                         assert_eq!(events.len(), 0);
2792                 }
2793
2794                 // It should send a gossip_timestamp_filter with the correct information
2795                 {
2796                         let mut features = InitFeatures::empty();
2797                         features.set_gossip_queries_optional();
2798                         let init_msg = Init { features, remote_network_address: None };
2799                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2800                         let events = gossip_sync.get_and_clear_pending_msg_events();
2801                         assert_eq!(events.len(), 1);
2802                         match &events[0] {
2803                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2804                                         assert_eq!(node_id, &node_id_1);
2805                                         assert_eq!(msg.chain_hash, chain_hash);
2806                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2807                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2808                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2809                                         assert_eq!(msg.timestamp_range, u32::max_value());
2810                                 },
2811                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2812                         };
2813                 }
2814         }
2815
2816         #[test]
2817         fn handling_query_channel_range() {
2818                 let network_graph = create_network_graph();
2819                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2820
2821                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2822                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2823                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2824                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2825
2826                 let mut scids: Vec<u64> = vec![
2827                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2828                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2829                 ];
2830
2831                 // used for testing multipart reply across blocks
2832                 for block in 100000..=108001 {
2833                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2834                 }
2835
2836                 // used for testing resumption on same block
2837                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2838
2839                 for scid in scids {
2840                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2841                                 unsigned_announcement.short_channel_id = scid;
2842                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2843                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2844                                 Ok(_) => (),
2845                                 _ => panic!()
2846                         };
2847                 }
2848
2849                 // Error when number_of_blocks=0
2850                 do_handling_query_channel_range(
2851                         &gossip_sync,
2852                         &node_id_2,
2853                         QueryChannelRange {
2854                                 chain_hash: chain_hash.clone(),
2855                                 first_blocknum: 0,
2856                                 number_of_blocks: 0,
2857                         },
2858                         false,
2859                         vec![ReplyChannelRange {
2860                                 chain_hash: chain_hash.clone(),
2861                                 first_blocknum: 0,
2862                                 number_of_blocks: 0,
2863                                 sync_complete: true,
2864                                 short_channel_ids: vec![]
2865                         }]
2866                 );
2867
2868                 // Error when wrong chain
2869                 do_handling_query_channel_range(
2870                         &gossip_sync,
2871                         &node_id_2,
2872                         QueryChannelRange {
2873                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2874                                 first_blocknum: 0,
2875                                 number_of_blocks: 0xffff_ffff,
2876                         },
2877                         false,
2878                         vec![ReplyChannelRange {
2879                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2880                                 first_blocknum: 0,
2881                                 number_of_blocks: 0xffff_ffff,
2882                                 sync_complete: true,
2883                                 short_channel_ids: vec![],
2884                         }]
2885                 );
2886
2887                 // Error when first_blocknum > 0xffffff
2888                 do_handling_query_channel_range(
2889                         &gossip_sync,
2890                         &node_id_2,
2891                         QueryChannelRange {
2892                                 chain_hash: chain_hash.clone(),
2893                                 first_blocknum: 0x01000000,
2894                                 number_of_blocks: 0xffff_ffff,
2895                         },
2896                         false,
2897                         vec![ReplyChannelRange {
2898                                 chain_hash: chain_hash.clone(),
2899                                 first_blocknum: 0x01000000,
2900                                 number_of_blocks: 0xffff_ffff,
2901                                 sync_complete: true,
2902                                 short_channel_ids: vec![]
2903                         }]
2904                 );
2905
2906                 // Empty reply when max valid SCID block num
2907                 do_handling_query_channel_range(
2908                         &gossip_sync,
2909                         &node_id_2,
2910                         QueryChannelRange {
2911                                 chain_hash: chain_hash.clone(),
2912                                 first_blocknum: 0xffffff,
2913                                 number_of_blocks: 1,
2914                         },
2915                         true,
2916                         vec![
2917                                 ReplyChannelRange {
2918                                         chain_hash: chain_hash.clone(),
2919                                         first_blocknum: 0xffffff,
2920                                         number_of_blocks: 1,
2921                                         sync_complete: true,
2922                                         short_channel_ids: vec![]
2923                                 },
2924                         ]
2925                 );
2926
2927                 // No results in valid query range
2928                 do_handling_query_channel_range(
2929                         &gossip_sync,
2930                         &node_id_2,
2931                         QueryChannelRange {
2932                                 chain_hash: chain_hash.clone(),
2933                                 first_blocknum: 1000,
2934                                 number_of_blocks: 1000,
2935                         },
2936                         true,
2937                         vec![
2938                                 ReplyChannelRange {
2939                                         chain_hash: chain_hash.clone(),
2940                                         first_blocknum: 1000,
2941                                         number_of_blocks: 1000,
2942                                         sync_complete: true,
2943                                         short_channel_ids: vec![],
2944                                 }
2945                         ]
2946                 );
2947
2948                 // Overflow first_blocknum + number_of_blocks
2949                 do_handling_query_channel_range(
2950                         &gossip_sync,
2951                         &node_id_2,
2952                         QueryChannelRange {
2953                                 chain_hash: chain_hash.clone(),
2954                                 first_blocknum: 0xfe0000,
2955                                 number_of_blocks: 0xffffffff,
2956                         },
2957                         true,
2958                         vec![
2959                                 ReplyChannelRange {
2960                                         chain_hash: chain_hash.clone(),
2961                                         first_blocknum: 0xfe0000,
2962                                         number_of_blocks: 0xffffffff - 0xfe0000,
2963                                         sync_complete: true,
2964                                         short_channel_ids: vec![
2965                                                 0xfffffe_ffffff_ffff, // max
2966                                         ]
2967                                 }
2968                         ]
2969                 );
2970
2971                 // Single block exactly full
2972                 do_handling_query_channel_range(
2973                         &gossip_sync,
2974                         &node_id_2,
2975                         QueryChannelRange {
2976                                 chain_hash: chain_hash.clone(),
2977                                 first_blocknum: 100000,
2978                                 number_of_blocks: 8000,
2979                         },
2980                         true,
2981                         vec![
2982                                 ReplyChannelRange {
2983                                         chain_hash: chain_hash.clone(),
2984                                         first_blocknum: 100000,
2985                                         number_of_blocks: 8000,
2986                                         sync_complete: true,
2987                                         short_channel_ids: (100000..=107999)
2988                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2989                                                 .collect(),
2990                                 },
2991                         ]
2992                 );
2993
2994                 // Multiple split on new block
2995                 do_handling_query_channel_range(
2996                         &gossip_sync,
2997                         &node_id_2,
2998                         QueryChannelRange {
2999                                 chain_hash: chain_hash.clone(),
3000                                 first_blocknum: 100000,
3001                                 number_of_blocks: 8001,
3002                         },
3003                         true,
3004                         vec![
3005                                 ReplyChannelRange {
3006                                         chain_hash: chain_hash.clone(),
3007                                         first_blocknum: 100000,
3008                                         number_of_blocks: 7999,
3009                                         sync_complete: false,
3010                                         short_channel_ids: (100000..=107999)
3011                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3012                                                 .collect(),
3013                                 },
3014                                 ReplyChannelRange {
3015                                         chain_hash: chain_hash.clone(),
3016                                         first_blocknum: 107999,
3017                                         number_of_blocks: 2,
3018                                         sync_complete: true,
3019                                         short_channel_ids: vec![
3020                                                 scid_from_parts(108000, 0, 0).unwrap(),
3021                                         ],
3022                                 }
3023                         ]
3024                 );
3025
3026                 // Multiple split on same block
3027                 do_handling_query_channel_range(
3028                         &gossip_sync,
3029                         &node_id_2,
3030                         QueryChannelRange {
3031                                 chain_hash: chain_hash.clone(),
3032                                 first_blocknum: 100002,
3033                                 number_of_blocks: 8000,
3034                         },
3035                         true,
3036                         vec![
3037                                 ReplyChannelRange {
3038                                         chain_hash: chain_hash.clone(),
3039                                         first_blocknum: 100002,
3040                                         number_of_blocks: 7999,
3041                                         sync_complete: false,
3042                                         short_channel_ids: (100002..=108001)
3043                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3044                                                 .collect(),
3045                                 },
3046                                 ReplyChannelRange {
3047                                         chain_hash: chain_hash.clone(),
3048                                         first_blocknum: 108001,
3049                                         number_of_blocks: 1,
3050                                         sync_complete: true,
3051                                         short_channel_ids: vec![
3052                                                 scid_from_parts(108001, 1, 0).unwrap(),
3053                                         ],
3054                                 }
3055                         ]
3056                 );
3057         }
3058
3059         fn do_handling_query_channel_range(
3060                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3061                 test_node_id: &PublicKey,
3062                 msg: QueryChannelRange,
3063                 expected_ok: bool,
3064                 expected_replies: Vec<ReplyChannelRange>
3065         ) {
3066                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3067                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3068                 let query_end_blocknum = msg.end_blocknum();
3069                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3070
3071                 if expected_ok {
3072                         assert!(result.is_ok());
3073                 } else {
3074                         assert!(result.is_err());
3075                 }
3076
3077                 let events = gossip_sync.get_and_clear_pending_msg_events();
3078                 assert_eq!(events.len(), expected_replies.len());
3079
3080                 for i in 0..events.len() {
3081                         let expected_reply = &expected_replies[i];
3082                         match &events[i] {
3083                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3084                                         assert_eq!(node_id, test_node_id);
3085                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3086                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3087                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3088                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3089                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3090
3091                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3092                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3093                                         assert!(msg.first_blocknum >= max_firstblocknum);
3094                                         max_firstblocknum = msg.first_blocknum;
3095                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3096
3097                                         // Check that the last block count is >= the query's end_blocknum
3098                                         if i == events.len() - 1 {
3099                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3100                                         }
3101                                 },
3102                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3103                         }
3104                 }
3105         }
3106
3107         #[test]
3108         fn handling_query_short_channel_ids() {
3109                 let network_graph = create_network_graph();
3110                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3111                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3112                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3113
3114                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3115
3116                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3117                         chain_hash,
3118                         short_channel_ids: vec![0x0003e8_000000_0000],
3119                 });
3120                 assert!(result.is_err());
3121         }
3122
3123         #[test]
3124         fn displays_node_alias() {
3125                 let format_str_alias = |alias: &str| {
3126                         let mut bytes = [0u8; 32];
3127                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3128                         format!("{}", NodeAlias(bytes))
3129                 };
3130
3131                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3132                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3133                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3134
3135                 let format_bytes_alias = |alias: &[u8]| {
3136                         let mut bytes = [0u8; 32];
3137                         bytes[..alias.len()].copy_from_slice(alias);
3138                         format!("{}", NodeAlias(bytes))
3139                 };
3140
3141                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3142                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3143                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3144         }
3145
3146         #[test]
3147         fn channel_info_is_readable() {
3148                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3149                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3150                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3151                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3152                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3153
3154                 // 1. Test encoding/decoding of ChannelUpdateInfo
3155                 let chan_update_info = ChannelUpdateInfo {
3156                         last_update: 23,
3157                         enabled: true,
3158                         cltv_expiry_delta: 42,
3159                         htlc_minimum_msat: 1234,
3160                         htlc_maximum_msat: 5678,
3161                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3162                         last_update_message: None,
3163                 };
3164
3165                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3166                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3167
3168                 // First make sure we can read ChannelUpdateInfos we just wrote
3169                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3170                 assert_eq!(chan_update_info, read_chan_update_info);
3171
3172                 // Check the serialization hasn't changed.
3173                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3174                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3175
3176                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3177                 // or the ChannelUpdate enclosed with `last_update_message`.
3178                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3179                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3180                 assert!(read_chan_update_info_res.is_err());
3181
3182                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3183                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3184                 assert!(read_chan_update_info_res.is_err());
3185
3186                 // 2. Test encoding/decoding of ChannelInfo
3187                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3188                 let chan_info_none_updates = ChannelInfo {
3189                         features: channelmanager::provided_channel_features(&config),
3190                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3191                         one_to_two: None,
3192                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3193                         two_to_one: None,
3194                         capacity_sats: None,
3195                         announcement_message: None,
3196                         announcement_received_time: 87654,
3197                 };
3198
3199                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3200                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3201
3202                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3203                 assert_eq!(chan_info_none_updates, read_chan_info);
3204
3205                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3206                 let chan_info_some_updates = ChannelInfo {
3207                         features: channelmanager::provided_channel_features(&config),
3208                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3209                         one_to_two: Some(chan_update_info.clone()),
3210                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3211                         two_to_one: Some(chan_update_info.clone()),
3212                         capacity_sats: None,
3213                         announcement_message: None,
3214                         announcement_received_time: 87654,
3215                 };
3216
3217                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3218                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3219
3220                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3221                 assert_eq!(chan_info_some_updates, read_chan_info);
3222
3223                 // Check the serialization hasn't changed.
3224                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3225                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3226
3227                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3228                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3229                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3230                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3231                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3232                 assert_eq!(read_chan_info.one_to_two, None);
3233                 assert_eq!(read_chan_info.two_to_one, None);
3234
3235                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3236                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3237                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3238                 assert_eq!(read_chan_info.one_to_two, None);
3239                 assert_eq!(read_chan_info.two_to_one, None);
3240         }
3241
3242         #[test]
3243         fn node_info_is_readable() {
3244                 use std::convert::TryFrom;
3245
3246                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3247                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3248                 let valid_node_ann_info = NodeAnnouncementInfo {
3249                         features: channelmanager::provided_node_features(&UserConfig::default()),
3250                         last_update: 0,
3251                         rgb: [0u8; 3],
3252                         alias: NodeAlias([0u8; 32]),
3253                         addresses: vec![valid_netaddr],
3254                         announcement_message: None,
3255                 };
3256
3257                 let mut encoded_valid_node_ann_info = Vec::new();
3258                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3259                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3260                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3261
3262                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3263                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3264                 assert!(read_invalid_node_ann_info_res.is_err());
3265
3266                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3267                 let valid_node_info = NodeInfo {
3268                         channels: Vec::new(),
3269                         announcement_info: Some(valid_node_ann_info),
3270                 };
3271
3272                 let mut encoded_valid_node_info = Vec::new();
3273                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3274                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3275                 assert_eq!(read_valid_node_info, valid_node_info);
3276
3277                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3278                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3279                 assert_eq!(read_invalid_node_info.announcement_info, None);
3280         }
3281 }
3282
3283 #[cfg(all(test, feature = "_bench_unstable"))]
3284 mod benches {
3285         use super::*;
3286
3287         use test::Bencher;
3288         use std::io::Read;
3289
3290         #[bench]
3291         fn read_network_graph(bench: &mut Bencher) {
3292                 let logger = crate::util::test_utils::TestLogger::new();
3293                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3294                 let mut v = Vec::new();
3295                 d.read_to_end(&mut v).unwrap();
3296                 bench.iter(|| {
3297                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3298                 });
3299         }
3300
3301         #[bench]
3302         fn write_network_graph(bench: &mut Bencher) {
3303                 let logger = crate::util::test_utils::TestLogger::new();
3304                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3305                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3306                 bench.iter(|| {
3307                         let _ = net_graph.encode();
3308                 });
3309         }
3310 }