1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hashes::hex::FromHex;
20 use bitcoin::hash_types::BlockHash;
22 use bitcoin::network::constants::Network;
23 use bitcoin::blockdata::constants::genesis_block;
25 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
26 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
27 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
31 use crate::routing::utxo::{self, UtxoLookup};
32 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
33 use crate::util::logger::{Logger, Level};
34 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35 use crate::util::string::PrintableString;
36 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
39 use crate::io_extras::{copy, sink};
40 use crate::prelude::*;
42 use core::convert::TryFrom;
43 use crate::sync::{RwLock, RwLockReadGuard};
44 #[cfg(feature = "std")]
45 use core::sync::atomic::{AtomicUsize, Ordering};
46 use crate::sync::Mutex;
47 use core::ops::{Bound, Deref};
48 use core::str::FromStr;
50 #[cfg(feature = "std")]
51 use std::time::{SystemTime, UNIX_EPOCH};
53 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
55 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
57 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
58 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
60 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
61 /// refuse to relay the message.
62 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
64 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
65 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
66 const MAX_SCIDS_PER_REPLY: usize = 8000;
68 /// Represents the compressed public key of a node
69 #[derive(Clone, Copy)]
70 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
73 /// Create a new NodeId from a public key
74 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
75 NodeId(pubkey.serialize())
78 /// Get the public key slice from this NodeId
79 pub fn as_slice(&self) -> &[u8] {
83 /// Get the public key from this NodeId
84 pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
85 PublicKey::from_slice(&self.0)
89 impl fmt::Debug for NodeId {
90 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
91 write!(f, "NodeId({})", log_bytes!(self.0))
94 impl fmt::Display for NodeId {
95 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
96 write!(f, "{}", log_bytes!(self.0))
100 impl core::hash::Hash for NodeId {
101 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
106 impl Eq for NodeId {}
108 impl PartialEq for NodeId {
109 fn eq(&self, other: &Self) -> bool {
110 self.0[..] == other.0[..]
114 impl cmp::PartialOrd for NodeId {
115 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
116 Some(self.cmp(other))
120 impl Ord for NodeId {
121 fn cmp(&self, other: &Self) -> cmp::Ordering {
122 self.0[..].cmp(&other.0[..])
126 impl Writeable for NodeId {
127 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
128 writer.write_all(&self.0)?;
133 impl Readable for NodeId {
134 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
135 let mut buf = [0; PUBLIC_KEY_SIZE];
136 reader.read_exact(&mut buf)?;
141 impl From<PublicKey> for NodeId {
142 fn from(pubkey: PublicKey) -> Self {
143 Self::from_pubkey(&pubkey)
147 impl TryFrom<NodeId> for PublicKey {
148 type Error = secp256k1::Error;
150 fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
155 impl FromStr for NodeId {
156 type Err = bitcoin::hashes::hex::Error;
158 fn from_str(s: &str) -> Result<Self, Self::Err> {
159 let data: [u8; PUBLIC_KEY_SIZE] = FromHex::from_hex(s)?;
164 /// Represents the network as nodes and channels between them
165 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
166 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
167 last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
168 genesis_hash: BlockHash,
170 // Lock order: channels -> nodes
171 channels: RwLock<IndexedMap<u64, ChannelInfo>>,
172 nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
173 // Lock order: removed_channels -> removed_nodes
175 // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
176 // of `std::time::Instant`s for a few reasons:
177 // * We want it to be possible to do tracking in no-std environments where we can compare
178 // a provided current UNIX timestamp with the time at which we started tracking.
179 // * In the future, if we decide to persist these maps, they will already be serializable.
180 // * Although we lose out on the platform's monotonic clock, the system clock in a std
181 // environment should be practical over the time period we are considering (on the order of a
184 /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
185 /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
186 /// it was removed so that once some time passes, we can potentially resync it from gossip again.
187 removed_channels: Mutex<HashMap<u64, Option<u64>>>,
188 /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
189 /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
190 /// that once some time passes, we can potentially resync it from gossip again.
191 removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
192 /// Announcement messages which are awaiting an on-chain lookup to be processed.
193 pub(super) pending_checks: utxo::PendingChecks,
196 /// A read-only view of [`NetworkGraph`].
197 pub struct ReadOnlyNetworkGraph<'a> {
198 channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
199 nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
202 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
203 /// return packet by a node along the route. See [BOLT #4] for details.
205 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
206 #[derive(Clone, Debug, PartialEq, Eq)]
207 pub enum NetworkUpdate {
208 /// An error indicating a `channel_update` messages should be applied via
209 /// [`NetworkGraph::update_channel`].
210 ChannelUpdateMessage {
211 /// The update to apply via [`NetworkGraph::update_channel`].
214 /// An error indicating that a channel failed to route a payment, which should be applied via
215 /// [`NetworkGraph::channel_failed_permanent`] if permanent.
217 /// The short channel id of the closed channel.
218 short_channel_id: u64,
219 /// Whether the channel should be permanently removed or temporarily disabled until a new
220 /// `channel_update` message is received.
223 /// An error indicating that a node failed to route a payment, which should be applied via
224 /// [`NetworkGraph::node_failed_permanent`] if permanent.
226 /// The node id of the failed node.
228 /// Whether the node should be permanently removed from consideration or can be restored
229 /// when a new `channel_update` message is received.
234 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
235 (0, ChannelUpdateMessage) => {
238 (2, ChannelFailure) => {
239 (0, short_channel_id, required),
240 (2, is_permanent, required),
242 (4, NodeFailure) => {
243 (0, node_id, required),
244 (2, is_permanent, required),
248 /// Receives and validates network updates from peers,
249 /// stores authentic and relevant data as a network graph.
250 /// This network graph is then used for routing payments.
251 /// Provides interface to help with initial routing sync by
252 /// serving historical announcements.
253 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
254 where U::Target: UtxoLookup, L::Target: Logger
257 utxo_lookup: Option<U>,
258 #[cfg(feature = "std")]
259 full_syncs_requested: AtomicUsize,
260 pending_events: Mutex<Vec<MessageSendEvent>>,
264 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
265 where U::Target: UtxoLookup, L::Target: Logger
267 /// Creates a new tracker of the actual state of the network of channels and nodes,
268 /// assuming an existing [`NetworkGraph`].
269 /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
270 /// correct, and the announcement is signed with channel owners' keys.
271 pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
274 #[cfg(feature = "std")]
275 full_syncs_requested: AtomicUsize::new(0),
277 pending_events: Mutex::new(vec![]),
282 /// Adds a provider used to check new announcements. Does not affect
283 /// existing announcements unless they are updated.
284 /// Add, update or remove the provider would replace the current one.
285 pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
286 self.utxo_lookup = utxo_lookup;
289 /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
290 /// [`P2PGossipSync::new`].
292 /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
293 pub fn network_graph(&self) -> &G {
297 #[cfg(feature = "std")]
298 /// Returns true when a full routing table sync should be performed with a peer.
299 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
300 //TODO: Determine whether to request a full sync based on the network map.
301 const FULL_SYNCS_TO_REQUEST: usize = 5;
302 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
303 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
310 /// Used to broadcast forward gossip messages which were validated async.
312 /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
314 pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
316 MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
317 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
318 if update_msg.as_ref()
319 .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
324 MessageSendEvent::BroadcastChannelUpdate { msg } => {
325 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
327 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
328 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
329 msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
330 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
337 self.pending_events.lock().unwrap().push(ev);
341 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
342 /// Handles any network updates originating from [`Event`]s.
344 /// [`Event`]: crate::events::Event
345 pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
346 match *network_update {
347 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
348 let short_channel_id = msg.contents.short_channel_id;
349 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
350 let status = if is_enabled { "enabled" } else { "disabled" };
351 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
352 let _ = self.update_channel(msg);
354 NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
356 log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
357 self.channel_failed_permanent(short_channel_id);
360 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
362 log_debug!(self.logger,
363 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
364 self.node_failed_permanent(node_id);
371 macro_rules! secp_verify_sig {
372 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
373 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
376 return Err(LightningError {
377 err: format!("Invalid signature on {} message", $msg_type),
378 action: ErrorAction::SendWarningMessage {
379 msg: msgs::WarningMessage {
381 data: format!("Invalid signature on {} message", $msg_type),
383 log_level: Level::Trace,
391 macro_rules! get_pubkey_from_node_id {
392 ( $node_id: expr, $msg_type: expr ) => {
393 PublicKey::from_slice($node_id.as_slice())
394 .map_err(|_| LightningError {
395 err: format!("Invalid public key on {} message", $msg_type),
396 action: ErrorAction::SendWarningMessage {
397 msg: msgs::WarningMessage {
399 data: format!("Invalid public key on {} message", $msg_type),
401 log_level: Level::Trace
407 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
408 where U::Target: UtxoLookup, L::Target: Logger
410 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
411 self.network_graph.update_node_from_announcement(msg)?;
412 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
413 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
414 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
417 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
418 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
419 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
422 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
423 self.network_graph.update_channel(msg)?;
424 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
427 fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
428 let mut channels = self.network_graph.channels.write().unwrap();
429 for (_, ref chan) in channels.range(starting_point..) {
430 if chan.announcement_message.is_some() {
431 let chan_announcement = chan.announcement_message.clone().unwrap();
432 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
433 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
434 if let Some(one_to_two) = chan.one_to_two.as_ref() {
435 one_to_two_announcement = one_to_two.last_update_message.clone();
437 if let Some(two_to_one) = chan.two_to_one.as_ref() {
438 two_to_one_announcement = two_to_one.last_update_message.clone();
440 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
442 // TODO: We may end up sending un-announced channel_updates if we are sending
443 // initial sync data while receiving announce/updates for this channel.
449 fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
450 let mut nodes = self.network_graph.nodes.write().unwrap();
451 let iter = if let Some(node_id) = starting_point {
452 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
456 for (_, ref node) in iter {
457 if let Some(node_info) = node.announcement_info.as_ref() {
458 if let Some(msg) = node_info.announcement_message.clone() {
466 /// Initiates a stateless sync of routing gossip information with a peer
467 /// using [`gossip_queries`]. The default strategy used by this implementation
468 /// is to sync the full block range with several peers.
470 /// We should expect one or more [`reply_channel_range`] messages in response
471 /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
472 /// to request gossip messages for each channel. The sync is considered complete
473 /// when the final [`reply_scids_end`] message is received, though we are not
474 /// tracking this directly.
476 /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
477 /// [`reply_channel_range`]: msgs::ReplyChannelRange
478 /// [`query_channel_range`]: msgs::QueryChannelRange
479 /// [`query_scid`]: msgs::QueryShortChannelIds
480 /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
481 fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
482 // We will only perform a sync with peers that support gossip_queries.
483 if !init_msg.features.supports_gossip_queries() {
484 // Don't disconnect peers for not supporting gossip queries. We may wish to have
485 // channels with peers even without being able to exchange gossip.
489 // The lightning network's gossip sync system is completely broken in numerous ways.
491 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
492 // to do a full sync from the first few peers we connect to, and then receive gossip
493 // updates from all our peers normally.
495 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
496 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
497 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
500 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
501 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
502 // channel data which you are missing. Except there was no way at all to identify which
503 // `channel_update`s you were missing, so you still had to request everything, just in a
504 // very complicated way with some queries instead of just getting the dump.
506 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
507 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
508 // relying on it useless.
510 // After gossip queries were introduced, support for receiving a full gossip table dump on
511 // connection was removed from several nodes, making it impossible to get a full sync
512 // without using the "gossip queries" messages.
514 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
515 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
516 // message, as the name implies, tells the peer to not forward any gossip messages with a
517 // timestamp older than a given value (not the time the peer received the filter, but the
518 // timestamp in the update message, which is often hours behind when the peer received the
521 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
522 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
523 // tell a peer to send you any updates as it sees them, you have to also ask for the full
524 // routing graph to be synced. If you set a timestamp filter near the current time, peers
525 // will simply not forward any new updates they see to you which were generated some time
526 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
527 // ago), you will always get the full routing graph from all your peers.
529 // Most lightning nodes today opt to simply turn off receiving gossip data which only
530 // propagated some time after it was generated, and, worse, often disable gossiping with
531 // several peers after their first connection. The second behavior can cause gossip to not
532 // propagate fully if there are cuts in the gossiping subgraph.
534 // In an attempt to cut a middle ground between always fetching the full graph from all of
535 // our peers and never receiving gossip from peers at all, we send all of our peers a
536 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
538 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
539 #[allow(unused_mut, unused_assignments)]
540 let mut gossip_start_time = 0;
541 #[cfg(feature = "std")]
543 gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
544 if self.should_request_full_sync(&their_node_id) {
545 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
547 gossip_start_time -= 60 * 60; // an hour ago
551 let mut pending_events = self.pending_events.lock().unwrap();
552 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
553 node_id: their_node_id.clone(),
554 msg: GossipTimestampFilter {
555 chain_hash: self.network_graph.genesis_hash,
556 first_timestamp: gossip_start_time as u32, // 2106 issue!
557 timestamp_range: u32::max_value(),
563 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
564 // We don't make queries, so should never receive replies. If, in the future, the set
565 // reconciliation extensions to gossip queries become broadly supported, we should revert
566 // this code to its state pre-0.0.106.
570 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
571 // We don't make queries, so should never receive replies. If, in the future, the set
572 // reconciliation extensions to gossip queries become broadly supported, we should revert
573 // this code to its state pre-0.0.106.
577 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
578 /// are in the specified block range. Due to message size limits, large range
579 /// queries may result in several reply messages. This implementation enqueues
580 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
581 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
582 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
583 /// memory constrained systems.
584 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
585 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
587 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
589 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
590 // If so, we manually cap the ending block to avoid this overflow.
591 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
593 // Per spec, we must reply to a query. Send an empty message when things are invalid.
594 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
595 let mut pending_events = self.pending_events.lock().unwrap();
596 pending_events.push(MessageSendEvent::SendReplyChannelRange {
597 node_id: their_node_id.clone(),
598 msg: ReplyChannelRange {
599 chain_hash: msg.chain_hash.clone(),
600 first_blocknum: msg.first_blocknum,
601 number_of_blocks: msg.number_of_blocks,
603 short_channel_ids: vec![],
606 return Err(LightningError {
607 err: String::from("query_channel_range could not be processed"),
608 action: ErrorAction::IgnoreError,
612 // Creates channel batches. We are not checking if the channel is routable
613 // (has at least one update). A peer may still want to know the channel
614 // exists even if its not yet routable.
615 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
616 let mut channels = self.network_graph.channels.write().unwrap();
617 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
618 if let Some(chan_announcement) = &chan.announcement_message {
619 // Construct a new batch if last one is full
620 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
621 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
624 let batch = batches.last_mut().unwrap();
625 batch.push(chan_announcement.contents.short_channel_id);
630 let mut pending_events = self.pending_events.lock().unwrap();
631 let batch_count = batches.len();
632 let mut prev_batch_endblock = msg.first_blocknum;
633 for (batch_index, batch) in batches.into_iter().enumerate() {
634 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
635 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
637 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
638 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
639 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
640 // significant diversion from the requirements set by the spec, and, in case of blocks
641 // with no channel opens (e.g. empty blocks), requires that we use the previous value
642 // and *not* derive the first_blocknum from the actual first block of the reply.
643 let first_blocknum = prev_batch_endblock;
645 // Each message carries the number of blocks (from the `first_blocknum`) its contents
646 // fit in. Though there is no requirement that we use exactly the number of blocks its
647 // contents are from, except for the bogus requirements c-lightning enforces, above.
649 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
650 // >= the query's end block. Thus, for the last reply, we calculate the difference
651 // between the query's end block and the start of the reply.
653 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
654 // first_blocknum will be either msg.first_blocknum or a higher block height.
655 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
656 (true, msg.end_blocknum() - first_blocknum)
658 // Prior replies should use the number of blocks that fit into the reply. Overflow
659 // safe since first_blocknum is always <= last SCID's block.
661 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
664 prev_batch_endblock = first_blocknum + number_of_blocks;
666 pending_events.push(MessageSendEvent::SendReplyChannelRange {
667 node_id: their_node_id.clone(),
668 msg: ReplyChannelRange {
669 chain_hash: msg.chain_hash.clone(),
673 short_channel_ids: batch,
681 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
684 err: String::from("Not implemented"),
685 action: ErrorAction::IgnoreError,
689 fn provided_node_features(&self) -> NodeFeatures {
690 let mut features = NodeFeatures::empty();
691 features.set_gossip_queries_optional();
695 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
696 let mut features = InitFeatures::empty();
697 features.set_gossip_queries_optional();
701 fn processing_queue_high(&self) -> bool {
702 self.network_graph.pending_checks.too_many_checks_pending()
706 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
708 U::Target: UtxoLookup,
711 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
712 let mut ret = Vec::new();
713 let mut pending_events = self.pending_events.lock().unwrap();
714 core::mem::swap(&mut ret, &mut pending_events);
719 #[derive(Clone, Debug, PartialEq, Eq)]
720 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
721 pub struct ChannelUpdateInfo {
722 /// When the last update to the channel direction was issued.
723 /// Value is opaque, as set in the announcement.
724 pub last_update: u32,
725 /// Whether the channel can be currently used for payments (in this one direction).
727 /// The difference in CLTV values that you must have when routing through this channel.
728 pub cltv_expiry_delta: u16,
729 /// The minimum value, which must be relayed to the next hop via the channel
730 pub htlc_minimum_msat: u64,
731 /// The maximum value which may be relayed to the next hop via the channel.
732 pub htlc_maximum_msat: u64,
733 /// Fees charged when the channel is used for routing
734 pub fees: RoutingFees,
735 /// Most recent update for the channel received from the network
736 /// Mostly redundant with the data we store in fields explicitly.
737 /// Everything else is useful only for sending out for initial routing sync.
738 /// Not stored if contains excess data to prevent DoS.
739 pub last_update_message: Option<ChannelUpdate>,
742 impl fmt::Display for ChannelUpdateInfo {
743 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
744 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
749 impl Writeable for ChannelUpdateInfo {
750 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
751 write_tlv_fields!(writer, {
752 (0, self.last_update, required),
753 (2, self.enabled, required),
754 (4, self.cltv_expiry_delta, required),
755 (6, self.htlc_minimum_msat, required),
756 // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
757 // compatibility with LDK versions prior to v0.0.110.
758 (8, Some(self.htlc_maximum_msat), required),
759 (10, self.fees, required),
760 (12, self.last_update_message, required),
766 impl Readable for ChannelUpdateInfo {
767 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
768 _init_tlv_field_var!(last_update, required);
769 _init_tlv_field_var!(enabled, required);
770 _init_tlv_field_var!(cltv_expiry_delta, required);
771 _init_tlv_field_var!(htlc_minimum_msat, required);
772 _init_tlv_field_var!(htlc_maximum_msat, option);
773 _init_tlv_field_var!(fees, required);
774 _init_tlv_field_var!(last_update_message, required);
776 read_tlv_fields!(reader, {
777 (0, last_update, required),
778 (2, enabled, required),
779 (4, cltv_expiry_delta, required),
780 (6, htlc_minimum_msat, required),
781 (8, htlc_maximum_msat, required),
782 (10, fees, required),
783 (12, last_update_message, required)
786 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
787 Ok(ChannelUpdateInfo {
788 last_update: _init_tlv_based_struct_field!(last_update, required),
789 enabled: _init_tlv_based_struct_field!(enabled, required),
790 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
791 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
793 fees: _init_tlv_based_struct_field!(fees, required),
794 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
797 Err(DecodeError::InvalidValue)
802 #[derive(Clone, Debug, PartialEq, Eq)]
803 /// Details about a channel (both directions).
804 /// Received within a channel announcement.
805 pub struct ChannelInfo {
806 /// Protocol features of a channel communicated during its announcement
807 pub features: ChannelFeatures,
808 /// Source node of the first direction of a channel
809 pub node_one: NodeId,
810 /// Details about the first direction of a channel
811 pub one_to_two: Option<ChannelUpdateInfo>,
812 /// Source node of the second direction of a channel
813 pub node_two: NodeId,
814 /// Details about the second direction of a channel
815 pub two_to_one: Option<ChannelUpdateInfo>,
816 /// The channel capacity as seen on-chain, if chain lookup is available.
817 pub capacity_sats: Option<u64>,
818 /// An initial announcement of the channel
819 /// Mostly redundant with the data we store in fields explicitly.
820 /// Everything else is useful only for sending out for initial routing sync.
821 /// Not stored if contains excess data to prevent DoS.
822 pub announcement_message: Option<ChannelAnnouncement>,
823 /// The timestamp when we received the announcement, if we are running with feature = "std"
824 /// (which we can probably assume we are - no-std environments probably won't have a full
825 /// network graph in memory!).
826 announcement_received_time: u64,
830 /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
831 /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
832 pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
833 let (direction, source) = {
834 if target == &self.node_one {
835 (self.two_to_one.as_ref(), &self.node_two)
836 } else if target == &self.node_two {
837 (self.one_to_two.as_ref(), &self.node_one)
842 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
845 /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
846 /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
847 pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
848 let (direction, target) = {
849 if source == &self.node_one {
850 (self.one_to_two.as_ref(), &self.node_two)
851 } else if source == &self.node_two {
852 (self.two_to_one.as_ref(), &self.node_one)
857 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
860 /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
861 pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
862 let direction = channel_flags & 1u8;
864 self.one_to_two.as_ref()
866 self.two_to_one.as_ref()
871 impl fmt::Display for ChannelInfo {
872 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
873 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
874 log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
879 impl Writeable for ChannelInfo {
880 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
881 write_tlv_fields!(writer, {
882 (0, self.features, required),
883 (1, self.announcement_received_time, (default_value, 0)),
884 (2, self.node_one, required),
885 (4, self.one_to_two, required),
886 (6, self.node_two, required),
887 (8, self.two_to_one, required),
888 (10, self.capacity_sats, required),
889 (12, self.announcement_message, required),
895 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
896 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
897 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
898 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
899 // channel updates via the gossip network.
900 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
902 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
903 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
904 match crate::util::ser::Readable::read(reader) {
905 Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
906 Err(DecodeError::ShortRead) => Ok(None),
907 Err(DecodeError::InvalidValue) => Ok(None),
908 Err(err) => Err(err),
913 impl Readable for ChannelInfo {
914 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
915 _init_tlv_field_var!(features, required);
916 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
917 _init_tlv_field_var!(node_one, required);
918 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
919 _init_tlv_field_var!(node_two, required);
920 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
921 _init_tlv_field_var!(capacity_sats, required);
922 _init_tlv_field_var!(announcement_message, required);
923 read_tlv_fields!(reader, {
924 (0, features, required),
925 (1, announcement_received_time, (default_value, 0)),
926 (2, node_one, required),
927 (4, one_to_two_wrap, upgradable_option),
928 (6, node_two, required),
929 (8, two_to_one_wrap, upgradable_option),
930 (10, capacity_sats, required),
931 (12, announcement_message, required),
935 features: _init_tlv_based_struct_field!(features, required),
936 node_one: _init_tlv_based_struct_field!(node_one, required),
937 one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
938 node_two: _init_tlv_based_struct_field!(node_two, required),
939 two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
940 capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
941 announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
942 announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
947 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
948 /// source node to a target node.
950 pub struct DirectedChannelInfo<'a> {
951 channel: &'a ChannelInfo,
952 direction: &'a ChannelUpdateInfo,
953 htlc_maximum_msat: u64,
954 effective_capacity: EffectiveCapacity,
957 impl<'a> DirectedChannelInfo<'a> {
959 fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
960 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
961 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
963 let effective_capacity = match capacity_msat {
964 Some(capacity_msat) => {
965 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
966 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
968 None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
972 channel, direction, htlc_maximum_msat, effective_capacity
976 /// Returns information for the channel.
978 pub fn channel(&self) -> &'a ChannelInfo { self.channel }
980 /// Returns the maximum HTLC amount allowed over the channel in the direction.
982 pub fn htlc_maximum_msat(&self) -> u64 {
983 self.htlc_maximum_msat
986 /// Returns the [`EffectiveCapacity`] of the channel in the direction.
988 /// This is either the total capacity from the funding transaction, if known, or the
989 /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
991 pub fn effective_capacity(&self) -> EffectiveCapacity {
992 self.effective_capacity
995 /// Returns information for the direction.
997 pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1000 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1001 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1002 f.debug_struct("DirectedChannelInfo")
1003 .field("channel", &self.channel)
1008 /// The effective capacity of a channel for routing purposes.
1010 /// While this may be smaller than the actual channel capacity, amounts greater than
1011 /// [`Self::as_msat`] should not be routed through the channel.
1012 #[derive(Clone, Copy, Debug, PartialEq)]
1013 pub enum EffectiveCapacity {
1014 /// The available liquidity in the channel known from being a channel counterparty, and thus a
1017 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1019 liquidity_msat: u64,
1021 /// The maximum HTLC amount in one direction as advertised on the gossip network.
1023 /// The maximum HTLC amount denominated in millisatoshi.
1026 /// The total capacity of the channel as determined by the funding transaction.
1028 /// The funding amount denominated in millisatoshi.
1030 /// The maximum HTLC amount denominated in millisatoshi.
1031 htlc_maximum_msat: u64
1033 /// A capacity sufficient to route any payment, typically used for private channels provided by
1036 /// A capacity that is unknown possibly because either the chain state is unavailable to know
1037 /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1041 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1042 /// use when making routing decisions.
1043 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1045 impl EffectiveCapacity {
1046 /// Returns the effective capacity denominated in millisatoshi.
1047 pub fn as_msat(&self) -> u64 {
1049 EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1050 EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1051 EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1052 EffectiveCapacity::Infinite => u64::max_value(),
1053 EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1058 /// Fees for routing via a given channel or a node
1059 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1060 pub struct RoutingFees {
1061 /// Flat routing fee in millisatoshis.
1063 /// Liquidity-based routing fee in millionths of a routed amount.
1064 /// In other words, 10000 is 1%.
1065 pub proportional_millionths: u32,
1068 impl_writeable_tlv_based!(RoutingFees, {
1069 (0, base_msat, required),
1070 (2, proportional_millionths, required)
1073 #[derive(Clone, Debug, PartialEq, Eq)]
1074 /// Information received in the latest node_announcement from this node.
1075 pub struct NodeAnnouncementInfo {
1076 /// Protocol features the node announced support for
1077 pub features: NodeFeatures,
1078 /// When the last known update to the node state was issued.
1079 /// Value is opaque, as set in the announcement.
1080 pub last_update: u32,
1081 /// Color assigned to the node
1083 /// Moniker assigned to the node.
1084 /// May be invalid or malicious (eg control chars),
1085 /// should not be exposed to the user.
1086 pub alias: NodeAlias,
1087 /// An initial announcement of the node
1088 /// Mostly redundant with the data we store in fields explicitly.
1089 /// Everything else is useful only for sending out for initial routing sync.
1090 /// Not stored if contains excess data to prevent DoS.
1091 pub announcement_message: Option<NodeAnnouncement>
1094 impl NodeAnnouncementInfo {
1095 /// Internet-level addresses via which one can connect to the node
1096 pub fn addresses(&self) -> &[NetAddress] {
1097 self.announcement_message.as_ref()
1098 .map(|msg| msg.contents.addresses.as_slice())
1099 .unwrap_or_default()
1103 impl Writeable for NodeAnnouncementInfo {
1104 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1105 let empty_addresses = Vec::<NetAddress>::new();
1106 write_tlv_fields!(writer, {
1107 (0, self.features, required),
1108 (2, self.last_update, required),
1109 (4, self.rgb, required),
1110 (6, self.alias, required),
1111 (8, self.announcement_message, option),
1112 (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1118 impl Readable for NodeAnnouncementInfo {
1119 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1120 _init_and_read_tlv_fields!(reader, {
1121 (0, features, required),
1122 (2, last_update, required),
1124 (6, alias, required),
1125 (8, announcement_message, option),
1126 (10, _addresses, vec_type), // deprecated, not used anymore
1128 let _: Option<Vec<NetAddress>> = _addresses;
1129 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1130 alias: alias.0.unwrap(), announcement_message })
1134 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1136 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1137 /// attacks. Care must be taken when processing.
1138 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1139 pub struct NodeAlias(pub [u8; 32]);
1141 impl fmt::Display for NodeAlias {
1142 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1143 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1144 let bytes = self.0.split_at(first_null).0;
1145 match core::str::from_utf8(bytes) {
1146 Ok(alias) => PrintableString(alias).fmt(f)?,
1148 use core::fmt::Write;
1149 for c in bytes.iter().map(|b| *b as char) {
1150 // Display printable ASCII characters
1151 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1152 let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1161 impl Writeable for NodeAlias {
1162 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1167 impl Readable for NodeAlias {
1168 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1169 Ok(NodeAlias(Readable::read(r)?))
1173 #[derive(Clone, Debug, PartialEq, Eq)]
1174 /// Details about a node in the network, known from the network announcement.
1175 pub struct NodeInfo {
1176 /// All valid channels a node has announced
1177 pub channels: Vec<u64>,
1178 /// More information about a node from node_announcement.
1179 /// Optional because we store a Node entry after learning about it from
1180 /// a channel announcement, but before receiving a node announcement.
1181 pub announcement_info: Option<NodeAnnouncementInfo>
1184 impl fmt::Display for NodeInfo {
1185 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1186 write!(f, " channels: {:?}, announcement_info: {:?}",
1187 &self.channels[..], self.announcement_info)?;
1192 impl Writeable for NodeInfo {
1193 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1194 write_tlv_fields!(writer, {
1195 // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1196 (2, self.announcement_info, option),
1197 (4, self.channels, vec_type),
1203 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1204 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1205 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1206 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1207 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1209 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1210 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1211 match crate::util::ser::Readable::read(reader) {
1212 Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1214 copy(reader, &mut sink()).unwrap();
1221 impl Readable for NodeInfo {
1222 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1223 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1224 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1225 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1226 // requires additional complexity and lookups during routing, it ends up being a
1227 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1228 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1229 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1230 _init_tlv_field_var!(channels, vec_type);
1232 read_tlv_fields!(reader, {
1233 (0, _lowest_inbound_channel_fees, option),
1234 (2, announcement_info_wrap, upgradable_option),
1235 (4, channels, vec_type),
1239 announcement_info: announcement_info_wrap.map(|w| w.0),
1240 channels: _init_tlv_based_struct_field!(channels, vec_type),
1245 const SERIALIZATION_VERSION: u8 = 1;
1246 const MIN_SERIALIZATION_VERSION: u8 = 1;
1248 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1249 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1250 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1252 self.genesis_hash.write(writer)?;
1253 let channels = self.channels.read().unwrap();
1254 (channels.len() as u64).write(writer)?;
1255 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1256 (*chan_id).write(writer)?;
1257 chan_info.write(writer)?;
1259 let nodes = self.nodes.read().unwrap();
1260 (nodes.len() as u64).write(writer)?;
1261 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1262 node_id.write(writer)?;
1263 node_info.write(writer)?;
1266 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1267 write_tlv_fields!(writer, {
1268 (1, last_rapid_gossip_sync_timestamp, option),
1274 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1275 fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1276 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1278 let genesis_hash: BlockHash = Readable::read(reader)?;
1279 let channels_count: u64 = Readable::read(reader)?;
1280 let mut channels = IndexedMap::new();
1281 for _ in 0..channels_count {
1282 let chan_id: u64 = Readable::read(reader)?;
1283 let chan_info = Readable::read(reader)?;
1284 channels.insert(chan_id, chan_info);
1286 let nodes_count: u64 = Readable::read(reader)?;
1287 let mut nodes = IndexedMap::new();
1288 for _ in 0..nodes_count {
1289 let node_id = Readable::read(reader)?;
1290 let node_info = Readable::read(reader)?;
1291 nodes.insert(node_id, node_info);
1294 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1295 read_tlv_fields!(reader, {
1296 (1, last_rapid_gossip_sync_timestamp, option),
1300 secp_ctx: Secp256k1::verification_only(),
1303 channels: RwLock::new(channels),
1304 nodes: RwLock::new(nodes),
1305 last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1306 removed_nodes: Mutex::new(HashMap::new()),
1307 removed_channels: Mutex::new(HashMap::new()),
1308 pending_checks: utxo::PendingChecks::new(),
1313 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1314 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1315 writeln!(f, "Network map\n[Channels]")?;
1316 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1317 writeln!(f, " {}: {}", key, val)?;
1319 writeln!(f, "[Nodes]")?;
1320 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1321 writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1327 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1328 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1329 fn eq(&self, other: &Self) -> bool {
1330 self.genesis_hash == other.genesis_hash &&
1331 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1332 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1336 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1337 /// Creates a new, empty, network graph.
1338 pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1340 secp_ctx: Secp256k1::verification_only(),
1341 genesis_hash: genesis_block(network).header.block_hash(),
1343 channels: RwLock::new(IndexedMap::new()),
1344 nodes: RwLock::new(IndexedMap::new()),
1345 last_rapid_gossip_sync_timestamp: Mutex::new(None),
1346 removed_channels: Mutex::new(HashMap::new()),
1347 removed_nodes: Mutex::new(HashMap::new()),
1348 pending_checks: utxo::PendingChecks::new(),
1352 /// Returns a read-only view of the network graph.
1353 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1354 let channels = self.channels.read().unwrap();
1355 let nodes = self.nodes.read().unwrap();
1356 ReadOnlyNetworkGraph {
1362 /// The unix timestamp provided by the most recent rapid gossip sync.
1363 /// It will be set by the rapid sync process after every sync completion.
1364 pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1365 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1368 /// Update the unix timestamp provided by the most recent rapid gossip sync.
1369 /// This should be done automatically by the rapid sync process after every sync completion.
1370 pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1371 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1374 /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1377 pub fn clear_nodes_announcement_info(&self) {
1378 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1379 node.1.announcement_info = None;
1383 /// For an already known node (from channel announcements), update its stored properties from a
1384 /// given node announcement.
1386 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1387 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1388 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1389 pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1390 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1391 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1392 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1395 /// For an already known node (from channel announcements), update its stored properties from a
1396 /// given node announcement without verifying the associated signatures. Because we aren't
1397 /// given the associated signatures here we cannot relay the node announcement to any of our
1399 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1400 self.update_node_from_announcement_intern(msg, None)
1403 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1404 let mut nodes = self.nodes.write().unwrap();
1405 match nodes.get_mut(&msg.node_id) {
1407 core::mem::drop(nodes);
1408 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1409 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1412 if let Some(node_info) = node.announcement_info.as_ref() {
1413 // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1414 // updates to ensure you always have the latest one, only vaguely suggesting
1415 // that it be at least the current time.
1416 if node_info.last_update > msg.timestamp {
1417 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1418 } else if node_info.last_update == msg.timestamp {
1419 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1424 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1425 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1426 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1427 node.announcement_info = Some(NodeAnnouncementInfo {
1428 features: msg.features.clone(),
1429 last_update: msg.timestamp,
1432 announcement_message: if should_relay { full_msg.cloned() } else { None },
1440 /// Store or update channel info from a channel announcement.
1442 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1443 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1444 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1446 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1447 /// the corresponding UTXO exists on chain and is correctly-formatted.
1448 pub fn update_channel_from_announcement<U: Deref>(
1449 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1450 ) -> Result<(), LightningError>
1452 U::Target: UtxoLookup,
1454 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1455 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1456 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1457 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1458 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1459 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1462 /// Store or update channel info from a channel announcement without verifying the associated
1463 /// signatures. Because we aren't given the associated signatures here we cannot relay the
1464 /// channel announcement to any of our peers.
1466 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1467 /// the corresponding UTXO exists on chain and is correctly-formatted.
1468 pub fn update_channel_from_unsigned_announcement<U: Deref>(
1469 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1470 ) -> Result<(), LightningError>
1472 U::Target: UtxoLookup,
1474 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1477 /// Update channel from partial announcement data received via rapid gossip sync
1479 /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1480 /// rapid gossip sync server)
1482 /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1483 pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1484 if node_id_1 == node_id_2 {
1485 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1488 let node_1 = NodeId::from_pubkey(&node_id_1);
1489 let node_2 = NodeId::from_pubkey(&node_id_2);
1490 let channel_info = ChannelInfo {
1492 node_one: node_1.clone(),
1494 node_two: node_2.clone(),
1496 capacity_sats: None,
1497 announcement_message: None,
1498 announcement_received_time: timestamp,
1501 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1504 fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1505 let mut channels = self.channels.write().unwrap();
1506 let mut nodes = self.nodes.write().unwrap();
1508 let node_id_a = channel_info.node_one.clone();
1509 let node_id_b = channel_info.node_two.clone();
1511 match channels.entry(short_channel_id) {
1512 IndexedMapEntry::Occupied(mut entry) => {
1513 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1514 //in the blockchain API, we need to handle it smartly here, though it's unclear
1516 if utxo_value.is_some() {
1517 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1518 // only sometimes returns results. In any case remove the previous entry. Note
1519 // that the spec expects us to "blacklist" the node_ids involved, but we can't
1521 // a) we don't *require* a UTXO provider that always returns results.
1522 // b) we don't track UTXOs of channels we know about and remove them if they
1524 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1525 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1526 *entry.get_mut() = channel_info;
1528 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1531 IndexedMapEntry::Vacant(entry) => {
1532 entry.insert(channel_info);
1536 for current_node_id in [node_id_a, node_id_b].iter() {
1537 match nodes.entry(current_node_id.clone()) {
1538 IndexedMapEntry::Occupied(node_entry) => {
1539 node_entry.into_mut().channels.push(short_channel_id);
1541 IndexedMapEntry::Vacant(node_entry) => {
1542 node_entry.insert(NodeInfo {
1543 channels: vec!(short_channel_id),
1544 announcement_info: None,
1553 fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1554 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1555 ) -> Result<(), LightningError>
1557 U::Target: UtxoLookup,
1559 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1560 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1564 let channels = self.channels.read().unwrap();
1566 if let Some(chan) = channels.get(&msg.short_channel_id) {
1567 if chan.capacity_sats.is_some() {
1568 // If we'd previously looked up the channel on-chain and checked the script
1569 // against what appears on-chain, ignore the duplicate announcement.
1571 // Because a reorg could replace one channel with another at the same SCID, if
1572 // the channel appears to be different, we re-validate. This doesn't expose us
1573 // to any more DoS risk than not, as a peer can always flood us with
1574 // randomly-generated SCID values anyway.
1576 // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1577 // as we didn't (necessarily) store the bitcoin keys, and we only really care
1578 // if the peers on the channel changed anyway.
1579 if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1580 return Err(LightningError {
1581 err: "Already have chain-validated channel".to_owned(),
1582 action: ErrorAction::IgnoreDuplicateGossip
1585 } else if utxo_lookup.is_none() {
1586 // Similarly, if we can't check the chain right now anyway, ignore the
1587 // duplicate announcement without bothering to take the channels write lock.
1588 return Err(LightningError {
1589 err: "Already have non-chain-validated channel".to_owned(),
1590 action: ErrorAction::IgnoreDuplicateGossip
1597 let removed_channels = self.removed_channels.lock().unwrap();
1598 let removed_nodes = self.removed_nodes.lock().unwrap();
1599 if removed_channels.contains_key(&msg.short_channel_id) ||
1600 removed_nodes.contains_key(&msg.node_id_1) ||
1601 removed_nodes.contains_key(&msg.node_id_2) {
1602 return Err(LightningError{
1603 err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1604 action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1608 let utxo_value = self.pending_checks.check_channel_announcement(
1609 utxo_lookup, msg, full_msg)?;
1611 #[allow(unused_mut, unused_assignments)]
1612 let mut announcement_received_time = 0;
1613 #[cfg(feature = "std")]
1615 announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1618 let chan_info = ChannelInfo {
1619 features: msg.features.clone(),
1620 node_one: msg.node_id_1,
1622 node_two: msg.node_id_2,
1624 capacity_sats: utxo_value,
1625 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1626 { full_msg.cloned() } else { None },
1627 announcement_received_time,
1630 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1632 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1636 /// Marks a channel in the graph as failed permanently.
1638 /// The channel and any node for which this was their last channel are removed from the graph.
1639 pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1640 #[cfg(feature = "std")]
1641 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1642 #[cfg(not(feature = "std"))]
1643 let current_time_unix = None;
1645 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1648 /// Marks a channel in the graph as failed permanently.
1650 /// The channel and any node for which this was their last channel are removed from the graph.
1651 fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1652 let mut channels = self.channels.write().unwrap();
1653 if let Some(chan) = channels.remove(&short_channel_id) {
1654 let mut nodes = self.nodes.write().unwrap();
1655 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1656 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1660 /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1661 /// from local storage.
1662 pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1663 #[cfg(feature = "std")]
1664 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1665 #[cfg(not(feature = "std"))]
1666 let current_time_unix = None;
1668 let node_id = NodeId::from_pubkey(node_id);
1669 let mut channels = self.channels.write().unwrap();
1670 let mut nodes = self.nodes.write().unwrap();
1671 let mut removed_channels = self.removed_channels.lock().unwrap();
1672 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1674 if let Some(node) = nodes.remove(&node_id) {
1675 for scid in node.channels.iter() {
1676 if let Some(chan_info) = channels.remove(scid) {
1677 let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1678 if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1679 other_node_entry.get_mut().channels.retain(|chan_id| {
1682 if other_node_entry.get().channels.is_empty() {
1683 other_node_entry.remove_entry();
1686 removed_channels.insert(*scid, current_time_unix);
1689 removed_nodes.insert(node_id, current_time_unix);
1693 #[cfg(feature = "std")]
1694 /// Removes information about channels that we haven't heard any updates about in some time.
1695 /// This can be used regularly to prune the network graph of channels that likely no longer
1698 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1699 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1700 /// pruning occur for updates which are at least two weeks old, which we implement here.
1702 /// Note that for users of the `lightning-background-processor` crate this method may be
1703 /// automatically called regularly for you.
1705 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1706 /// in the map for a while so that these can be resynced from gossip in the future.
1708 /// This method is only available with the `std` feature. See
1709 /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1710 pub fn remove_stale_channels_and_tracking(&self) {
1711 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1712 self.remove_stale_channels_and_tracking_with_time(time);
1715 /// Removes information about channels that we haven't heard any updates about in some time.
1716 /// This can be used regularly to prune the network graph of channels that likely no longer
1719 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1720 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1721 /// pruning occur for updates which are at least two weeks old, which we implement here.
1723 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1724 /// in the map for a while so that these can be resynced from gossip in the future.
1726 /// This function takes the current unix time as an argument. For users with the `std` feature
1727 /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1728 pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1729 let mut channels = self.channels.write().unwrap();
1730 // Time out if we haven't received an update in at least 14 days.
1731 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1732 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1733 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1734 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1736 let mut scids_to_remove = Vec::new();
1737 for (scid, info) in channels.unordered_iter_mut() {
1738 if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1739 info.one_to_two = None;
1741 if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1742 info.two_to_one = None;
1744 if info.one_to_two.is_none() || info.two_to_one.is_none() {
1745 // We check the announcement_received_time here to ensure we don't drop
1746 // announcements that we just received and are just waiting for our peer to send a
1747 // channel_update for.
1748 if info.announcement_received_time < min_time_unix as u64 {
1749 scids_to_remove.push(*scid);
1753 if !scids_to_remove.is_empty() {
1754 let mut nodes = self.nodes.write().unwrap();
1755 for scid in scids_to_remove {
1756 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1757 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1758 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1762 let should_keep_tracking = |time: &mut Option<u64>| {
1763 if let Some(time) = time {
1764 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1766 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1767 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1768 // of this function.
1769 #[cfg(feature = "no-std")]
1771 let mut tracked_time = Some(current_time_unix);
1772 core::mem::swap(time, &mut tracked_time);
1775 #[allow(unreachable_code)]
1779 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1780 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1783 /// For an already known (from announcement) channel, update info about one of the directions
1786 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1787 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1788 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1790 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1791 /// materially in the future will be rejected.
1792 pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1793 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1796 /// For an already known (from announcement) channel, update info about one of the directions
1797 /// of the channel without verifying the associated signatures. Because we aren't given the
1798 /// associated signatures here we cannot relay the channel update to any of our peers.
1800 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1801 /// materially in the future will be rejected.
1802 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1803 self.update_channel_intern(msg, None, None)
1806 fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1807 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1809 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1811 // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1812 // disable this check during tests!
1813 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1814 if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1815 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1817 if msg.timestamp as u64 > time + 60 * 60 * 24 {
1818 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1822 let mut channels = self.channels.write().unwrap();
1823 match channels.get_mut(&msg.short_channel_id) {
1825 core::mem::drop(channels);
1826 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1827 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1830 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1831 return Err(LightningError{err:
1832 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1833 action: ErrorAction::IgnoreError});
1836 if let Some(capacity_sats) = channel.capacity_sats {
1837 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1838 // Don't query UTXO set here to reduce DoS risks.
1839 if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1840 return Err(LightningError{err:
1841 "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1842 action: ErrorAction::IgnoreError});
1845 macro_rules! check_update_latest {
1846 ($target: expr) => {
1847 if let Some(existing_chan_info) = $target.as_ref() {
1848 // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1849 // order updates to ensure you always have the latest one, only
1850 // suggesting that it be at least the current time. For
1851 // channel_updates specifically, the BOLTs discuss the possibility of
1852 // pruning based on the timestamp field being more than two weeks old,
1853 // but only in the non-normative section.
1854 if existing_chan_info.last_update > msg.timestamp {
1855 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1856 } else if existing_chan_info.last_update == msg.timestamp {
1857 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1863 macro_rules! get_new_channel_info {
1865 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1866 { full_msg.cloned() } else { None };
1868 let updated_channel_update_info = ChannelUpdateInfo {
1869 enabled: chan_enabled,
1870 last_update: msg.timestamp,
1871 cltv_expiry_delta: msg.cltv_expiry_delta,
1872 htlc_minimum_msat: msg.htlc_minimum_msat,
1873 htlc_maximum_msat: msg.htlc_maximum_msat,
1875 base_msat: msg.fee_base_msat,
1876 proportional_millionths: msg.fee_proportional_millionths,
1880 Some(updated_channel_update_info)
1884 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1885 if msg.flags & 1 == 1 {
1886 check_update_latest!(channel.two_to_one);
1887 if let Some(sig) = sig {
1888 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1889 err: "Couldn't parse source node pubkey".to_owned(),
1890 action: ErrorAction::IgnoreAndLog(Level::Debug)
1891 })?, "channel_update");
1893 channel.two_to_one = get_new_channel_info!();
1895 check_update_latest!(channel.one_to_two);
1896 if let Some(sig) = sig {
1897 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1898 err: "Couldn't parse destination node pubkey".to_owned(),
1899 action: ErrorAction::IgnoreAndLog(Level::Debug)
1900 })?, "channel_update");
1902 channel.one_to_two = get_new_channel_info!();
1910 fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1911 macro_rules! remove_from_node {
1912 ($node_id: expr) => {
1913 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1914 entry.get_mut().channels.retain(|chan_id| {
1915 short_channel_id != *chan_id
1917 if entry.get().channels.is_empty() {
1918 entry.remove_entry();
1921 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1926 remove_from_node!(chan.node_one);
1927 remove_from_node!(chan.node_two);
1931 impl ReadOnlyNetworkGraph<'_> {
1932 /// Returns all known valid channels' short ids along with announced channel info.
1934 /// This is not exported to bindings users because we don't want to return lifetime'd references
1935 pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1939 /// Returns information on a channel with the given id.
1940 pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1941 self.channels.get(&short_channel_id)
1944 #[cfg(c_bindings)] // Non-bindings users should use `channels`
1945 /// Returns the list of channels in the graph
1946 pub fn list_channels(&self) -> Vec<u64> {
1947 self.channels.unordered_keys().map(|c| *c).collect()
1950 /// Returns all known nodes' public keys along with announced node info.
1952 /// This is not exported to bindings users because we don't want to return lifetime'd references
1953 pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1957 /// Returns information on a node with the given id.
1958 pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1959 self.nodes.get(node_id)
1962 #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1963 /// Returns the list of nodes in the graph
1964 pub fn list_nodes(&self) -> Vec<NodeId> {
1965 self.nodes.unordered_keys().map(|n| *n).collect()
1968 /// Get network addresses by node id.
1969 /// Returns None if the requested node is completely unknown,
1970 /// or if node announcement for the node was never received.
1971 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1972 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1973 .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1978 pub(crate) mod tests {
1979 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
1980 use crate::ln::channelmanager;
1981 use crate::ln::chan_utils::make_funding_redeemscript;
1982 #[cfg(feature = "std")]
1983 use crate::ln::features::InitFeatures;
1984 use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1985 use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1986 use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1987 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1988 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1989 use crate::util::config::UserConfig;
1990 use crate::util::test_utils;
1991 use crate::util::ser::{ReadableArgs, Readable, Writeable};
1992 use crate::util::scid_utils::scid_from_parts;
1994 use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1995 use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1997 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1998 use bitcoin::hashes::Hash;
1999 use bitcoin::network::constants::Network;
2000 use bitcoin::blockdata::constants::genesis_block;
2001 use bitcoin::blockdata::script::Script;
2002 use bitcoin::blockdata::transaction::TxOut;
2006 use bitcoin::secp256k1::{PublicKey, SecretKey};
2007 use bitcoin::secp256k1::{All, Secp256k1};
2010 use bitcoin::secp256k1;
2011 use crate::prelude::*;
2012 use crate::sync::Arc;
2014 fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2015 let logger = Arc::new(test_utils::TestLogger::new());
2016 NetworkGraph::new(Network::Testnet, logger)
2019 fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2020 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2021 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2023 let secp_ctx = Secp256k1::new();
2024 let logger = Arc::new(test_utils::TestLogger::new());
2025 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2026 (secp_ctx, gossip_sync)
2030 #[cfg(feature = "std")]
2031 fn request_full_sync_finite_times() {
2032 let network_graph = create_network_graph();
2033 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2034 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2036 assert!(gossip_sync.should_request_full_sync(&node_id));
2037 assert!(gossip_sync.should_request_full_sync(&node_id));
2038 assert!(gossip_sync.should_request_full_sync(&node_id));
2039 assert!(gossip_sync.should_request_full_sync(&node_id));
2040 assert!(gossip_sync.should_request_full_sync(&node_id));
2041 assert!(!gossip_sync.should_request_full_sync(&node_id));
2044 pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2045 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2046 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2047 features: channelmanager::provided_node_features(&UserConfig::default()),
2051 alias: NodeAlias([0; 32]),
2052 addresses: Vec::new(),
2053 excess_address_data: Vec::new(),
2054 excess_data: Vec::new(),
2056 f(&mut unsigned_announcement);
2057 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2059 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2060 contents: unsigned_announcement
2064 pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2065 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2066 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2067 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2068 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2070 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2071 features: channelmanager::provided_channel_features(&UserConfig::default()),
2072 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2073 short_channel_id: 0,
2074 node_id_1: NodeId::from_pubkey(&node_id_1),
2075 node_id_2: NodeId::from_pubkey(&node_id_2),
2076 bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2077 bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2078 excess_data: Vec::new(),
2080 f(&mut unsigned_announcement);
2081 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2082 ChannelAnnouncement {
2083 node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2084 node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2085 bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2086 bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2087 contents: unsigned_announcement,
2091 pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2092 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2093 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2094 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2095 &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2098 pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2099 let mut unsigned_channel_update = UnsignedChannelUpdate {
2100 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2101 short_channel_id: 0,
2104 cltv_expiry_delta: 144,
2105 htlc_minimum_msat: 1_000_000,
2106 htlc_maximum_msat: 1_000_000,
2107 fee_base_msat: 10_000,
2108 fee_proportional_millionths: 20,
2109 excess_data: Vec::new()
2111 f(&mut unsigned_channel_update);
2112 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2114 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2115 contents: unsigned_channel_update
2120 fn handling_node_announcements() {
2121 let network_graph = create_network_graph();
2122 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2124 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2125 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2126 let zero_hash = Sha256dHash::hash(&[0; 32]);
2128 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2129 match gossip_sync.handle_node_announcement(&valid_announcement) {
2131 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2135 // Announce a channel to add a corresponding node.
2136 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2137 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2138 Ok(res) => assert!(res),
2143 match gossip_sync.handle_node_announcement(&valid_announcement) {
2144 Ok(res) => assert!(res),
2148 let fake_msghash = hash_to_message!(&zero_hash);
2149 match gossip_sync.handle_node_announcement(
2151 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2152 contents: valid_announcement.contents.clone()
2155 Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2158 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2159 unsigned_announcement.timestamp += 1000;
2160 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2161 }, node_1_privkey, &secp_ctx);
2162 // Return false because contains excess data.
2163 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2164 Ok(res) => assert!(!res),
2168 // Even though previous announcement was not relayed further, we still accepted it,
2169 // so we now won't accept announcements before the previous one.
2170 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2171 unsigned_announcement.timestamp += 1000 - 10;
2172 }, node_1_privkey, &secp_ctx);
2173 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2175 Err(e) => assert_eq!(e.err, "Update older than last processed update")
2180 fn handling_channel_announcements() {
2181 let secp_ctx = Secp256k1::new();
2182 let logger = test_utils::TestLogger::new();
2184 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2185 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2187 let good_script = get_channel_script(&secp_ctx);
2188 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2190 // Test if the UTXO lookups were not supported
2191 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2192 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2193 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2194 Ok(res) => assert!(res),
2199 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2205 // If we receive announcement for the same channel (with UTXO lookups disabled),
2206 // drop new one on the floor, since we can't see any changes.
2207 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2209 Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2212 // Test if an associated transaction were not on-chain (or not confirmed).
2213 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2214 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2215 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2216 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2218 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2219 unsigned_announcement.short_channel_id += 1;
2220 }, node_1_privkey, node_2_privkey, &secp_ctx);
2221 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2223 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2226 // Now test if the transaction is found in the UTXO set and the script is correct.
2227 *chain_source.utxo_ret.lock().unwrap() =
2228 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2229 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2230 unsigned_announcement.short_channel_id += 2;
2231 }, node_1_privkey, node_2_privkey, &secp_ctx);
2232 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2233 Ok(res) => assert!(res),
2238 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2244 // If we receive announcement for the same channel, once we've validated it against the
2245 // chain, we simply ignore all new (duplicate) announcements.
2246 *chain_source.utxo_ret.lock().unwrap() =
2247 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2248 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2250 Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2253 #[cfg(feature = "std")]
2255 use std::time::{SystemTime, UNIX_EPOCH};
2257 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2258 // Mark a node as permanently failed so it's tracked as removed.
2259 gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2261 // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2262 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2263 unsigned_announcement.short_channel_id += 3;
2264 }, node_1_privkey, node_2_privkey, &secp_ctx);
2265 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2267 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2270 gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2272 // The above channel announcement should be handled as per normal now.
2273 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2274 Ok(res) => assert!(res),
2279 // Don't relay valid channels with excess data
2280 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2281 unsigned_announcement.short_channel_id += 4;
2282 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2283 }, node_1_privkey, node_2_privkey, &secp_ctx);
2284 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2285 Ok(res) => assert!(!res),
2289 let mut invalid_sig_announcement = valid_announcement.clone();
2290 invalid_sig_announcement.contents.excess_data = Vec::new();
2291 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2293 Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2296 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2297 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2299 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2304 fn handling_channel_update() {
2305 let secp_ctx = Secp256k1::new();
2306 let logger = test_utils::TestLogger::new();
2307 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2308 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2309 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2311 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2312 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2314 let amount_sats = 1000_000;
2315 let short_channel_id;
2318 // Announce a channel we will update
2319 let good_script = get_channel_script(&secp_ctx);
2320 *chain_source.utxo_ret.lock().unwrap() =
2321 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2323 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2324 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2325 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2332 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2333 match gossip_sync.handle_channel_update(&valid_channel_update) {
2334 Ok(res) => assert!(res),
2339 match network_graph.read_only().channels().get(&short_channel_id) {
2341 Some(channel_info) => {
2342 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2343 assert!(channel_info.two_to_one.is_none());
2348 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2349 unsigned_channel_update.timestamp += 100;
2350 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2351 }, node_1_privkey, &secp_ctx);
2352 // Return false because contains excess data
2353 match gossip_sync.handle_channel_update(&valid_channel_update) {
2354 Ok(res) => assert!(!res),
2358 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2359 unsigned_channel_update.timestamp += 110;
2360 unsigned_channel_update.short_channel_id += 1;
2361 }, node_1_privkey, &secp_ctx);
2362 match gossip_sync.handle_channel_update(&valid_channel_update) {
2364 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2367 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2368 unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2369 unsigned_channel_update.timestamp += 110;
2370 }, node_1_privkey, &secp_ctx);
2371 match gossip_sync.handle_channel_update(&valid_channel_update) {
2373 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2376 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2377 unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2378 unsigned_channel_update.timestamp += 110;
2379 }, node_1_privkey, &secp_ctx);
2380 match gossip_sync.handle_channel_update(&valid_channel_update) {
2382 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2385 // Even though previous update was not relayed further, we still accepted it,
2386 // so we now won't accept update before the previous one.
2387 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2388 unsigned_channel_update.timestamp += 100;
2389 }, node_1_privkey, &secp_ctx);
2390 match gossip_sync.handle_channel_update(&valid_channel_update) {
2392 Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2395 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2396 unsigned_channel_update.timestamp += 500;
2397 }, node_1_privkey, &secp_ctx);
2398 let zero_hash = Sha256dHash::hash(&[0; 32]);
2399 let fake_msghash = hash_to_message!(&zero_hash);
2400 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2401 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2403 Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2408 fn handling_network_update() {
2409 let logger = test_utils::TestLogger::new();
2410 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2411 let secp_ctx = Secp256k1::new();
2413 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2414 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2415 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2418 // There is no nodes in the table at the beginning.
2419 assert_eq!(network_graph.read_only().nodes().len(), 0);
2422 let short_channel_id;
2424 // Announce a channel we will update
2425 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2426 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2427 let chain_source: Option<&test_utils::TestChainSource> = None;
2428 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2429 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2431 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2432 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2434 network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2435 msg: valid_channel_update,
2438 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2441 // Non-permanent failure doesn't touch the channel at all
2443 match network_graph.read_only().channels().get(&short_channel_id) {
2445 Some(channel_info) => {
2446 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2450 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2452 is_permanent: false,
2455 match network_graph.read_only().channels().get(&short_channel_id) {
2457 Some(channel_info) => {
2458 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2463 // Permanent closing deletes a channel
2464 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2469 assert_eq!(network_graph.read_only().channels().len(), 0);
2470 // Nodes are also deleted because there are no associated channels anymore
2471 assert_eq!(network_graph.read_only().nodes().len(), 0);
2474 // Get a new network graph since we don't want to track removed nodes in this test with "std"
2475 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2477 // Announce a channel to test permanent node failure
2478 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2479 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2480 let chain_source: Option<&test_utils::TestChainSource> = None;
2481 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2482 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2484 // Non-permanent node failure does not delete any nodes or channels
2485 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2487 is_permanent: false,
2490 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2491 assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2493 // Permanent node failure deletes node and its channels
2494 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2499 assert_eq!(network_graph.read_only().nodes().len(), 0);
2500 // Channels are also deleted because the associated node has been deleted
2501 assert_eq!(network_graph.read_only().channels().len(), 0);
2506 fn test_channel_timeouts() {
2507 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2508 let logger = test_utils::TestLogger::new();
2509 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2510 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2511 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2512 let secp_ctx = Secp256k1::new();
2514 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2515 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2517 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2518 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2519 let chain_source: Option<&test_utils::TestChainSource> = None;
2520 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2521 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2523 // Submit two channel updates for each channel direction (update.flags bit).
2524 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2525 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2526 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2528 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2529 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2530 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2532 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2533 assert_eq!(network_graph.read_only().channels().len(), 1);
2534 assert_eq!(network_graph.read_only().nodes().len(), 2);
2536 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2537 #[cfg(not(feature = "std"))] {
2538 // Make sure removed channels are tracked.
2539 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2541 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2542 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2544 #[cfg(feature = "std")]
2546 // In std mode, a further check is performed before fully removing the channel -
2547 // the channel_announcement must have been received at least two weeks ago. We
2548 // fudge that here by indicating the time has jumped two weeks.
2549 assert_eq!(network_graph.read_only().channels().len(), 1);
2550 assert_eq!(network_graph.read_only().nodes().len(), 2);
2552 // Note that the directional channel information will have been removed already..
2553 // We want to check that this will work even if *one* of the channel updates is recent,
2554 // so we should add it with a recent timestamp.
2555 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2556 use std::time::{SystemTime, UNIX_EPOCH};
2557 let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2558 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2559 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2560 }, node_1_privkey, &secp_ctx);
2561 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2562 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2563 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2564 // Make sure removed channels are tracked.
2565 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2566 // Provide a later time so that sufficient time has passed
2567 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2568 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2571 assert_eq!(network_graph.read_only().channels().len(), 0);
2572 assert_eq!(network_graph.read_only().nodes().len(), 0);
2573 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2575 #[cfg(feature = "std")]
2577 use std::time::{SystemTime, UNIX_EPOCH};
2579 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2581 // Clear tracked nodes and channels for clean slate
2582 network_graph.removed_channels.lock().unwrap().clear();
2583 network_graph.removed_nodes.lock().unwrap().clear();
2585 // Add a channel and nodes from channel announcement. So our network graph will
2586 // now only consist of two nodes and one channel between them.
2587 assert!(network_graph.update_channel_from_announcement(
2588 &valid_channel_announcement, &chain_source).is_ok());
2590 // Mark the channel as permanently failed. This will also remove the two nodes
2591 // and all of the entries will be tracked as removed.
2592 network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2594 // Should not remove from tracking if insufficient time has passed
2595 network_graph.remove_stale_channels_and_tracking_with_time(
2596 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2597 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count ≠1 with tracking_time {}", tracking_time);
2599 // Provide a later time so that sufficient time has passed
2600 network_graph.remove_stale_channels_and_tracking_with_time(
2601 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2602 assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2603 assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2606 #[cfg(not(feature = "std"))]
2608 // When we don't have access to the system clock, the time we started tracking removal will only
2609 // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2610 // only if sufficient time has passed after that first call, will the next call remove it from
2612 let removal_time = 1664619654;
2614 // Clear removed nodes and channels for clean slate
2615 network_graph.removed_channels.lock().unwrap().clear();
2616 network_graph.removed_nodes.lock().unwrap().clear();
2618 // Add a channel and nodes from channel announcement. So our network graph will
2619 // now only consist of two nodes and one channel between them.
2620 assert!(network_graph.update_channel_from_announcement(
2621 &valid_channel_announcement, &chain_source).is_ok());
2623 // Mark the channel as permanently failed. This will also remove the two nodes
2624 // and all of the entries will be tracked as removed.
2625 network_graph.channel_failed_permanent(short_channel_id);
2627 // The first time we call the following, the channel will have a removal time assigned.
2628 network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2629 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2631 // Provide a later time so that sufficient time has passed
2632 network_graph.remove_stale_channels_and_tracking_with_time(
2633 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2634 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2635 assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2640 fn getting_next_channel_announcements() {
2641 let network_graph = create_network_graph();
2642 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2643 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2644 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2646 // Channels were not announced yet.
2647 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2648 assert!(channels_with_announcements.is_none());
2650 let short_channel_id;
2652 // Announce a channel we will update
2653 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2654 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2655 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2661 // Contains initial channel announcement now.
2662 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2663 if let Some(channel_announcements) = channels_with_announcements {
2664 let (_, ref update_1, ref update_2) = channel_announcements;
2665 assert_eq!(update_1, &None);
2666 assert_eq!(update_2, &None);
2672 // Valid channel update
2673 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2674 unsigned_channel_update.timestamp = 101;
2675 }, node_1_privkey, &secp_ctx);
2676 match gossip_sync.handle_channel_update(&valid_channel_update) {
2682 // Now contains an initial announcement and an update.
2683 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2684 if let Some(channel_announcements) = channels_with_announcements {
2685 let (_, ref update_1, ref update_2) = channel_announcements;
2686 assert_ne!(update_1, &None);
2687 assert_eq!(update_2, &None);
2693 // Channel update with excess data.
2694 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2695 unsigned_channel_update.timestamp = 102;
2696 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2697 }, node_1_privkey, &secp_ctx);
2698 match gossip_sync.handle_channel_update(&valid_channel_update) {
2704 // Test that announcements with excess data won't be returned
2705 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2706 if let Some(channel_announcements) = channels_with_announcements {
2707 let (_, ref update_1, ref update_2) = channel_announcements;
2708 assert_eq!(update_1, &None);
2709 assert_eq!(update_2, &None);
2714 // Further starting point have no channels after it
2715 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2716 assert!(channels_with_announcements.is_none());
2720 fn getting_next_node_announcements() {
2721 let network_graph = create_network_graph();
2722 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2723 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2724 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2725 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2728 let next_announcements = gossip_sync.get_next_node_announcement(None);
2729 assert!(next_announcements.is_none());
2732 // Announce a channel to add 2 nodes
2733 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2734 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2740 // Nodes were never announced
2741 let next_announcements = gossip_sync.get_next_node_announcement(None);
2742 assert!(next_announcements.is_none());
2745 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2746 match gossip_sync.handle_node_announcement(&valid_announcement) {
2751 let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2752 match gossip_sync.handle_node_announcement(&valid_announcement) {
2758 let next_announcements = gossip_sync.get_next_node_announcement(None);
2759 assert!(next_announcements.is_some());
2761 // Skip the first node.
2762 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2763 assert!(next_announcements.is_some());
2766 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2767 let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2768 unsigned_announcement.timestamp += 10;
2769 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2770 }, node_2_privkey, &secp_ctx);
2771 match gossip_sync.handle_node_announcement(&valid_announcement) {
2772 Ok(res) => assert!(!res),
2777 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2778 assert!(next_announcements.is_none());
2782 fn network_graph_serialization() {
2783 let network_graph = create_network_graph();
2784 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2786 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2787 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2789 // Announce a channel to add a corresponding node.
2790 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2791 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2792 Ok(res) => assert!(res),
2796 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2797 match gossip_sync.handle_node_announcement(&valid_announcement) {
2802 let mut w = test_utils::TestVecWriter(Vec::new());
2803 assert!(!network_graph.read_only().nodes().is_empty());
2804 assert!(!network_graph.read_only().channels().is_empty());
2805 network_graph.write(&mut w).unwrap();
2807 let logger = Arc::new(test_utils::TestLogger::new());
2808 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2812 fn network_graph_tlv_serialization() {
2813 let network_graph = create_network_graph();
2814 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2816 let mut w = test_utils::TestVecWriter(Vec::new());
2817 network_graph.write(&mut w).unwrap();
2819 let logger = Arc::new(test_utils::TestLogger::new());
2820 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2821 assert!(reassembled_network_graph == network_graph);
2822 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2826 #[cfg(feature = "std")]
2827 fn calling_sync_routing_table() {
2828 use std::time::{SystemTime, UNIX_EPOCH};
2829 use crate::ln::msgs::Init;
2831 let network_graph = create_network_graph();
2832 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2833 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2834 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2836 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2838 // It should ignore if gossip_queries feature is not enabled
2840 let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2841 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2842 let events = gossip_sync.get_and_clear_pending_msg_events();
2843 assert_eq!(events.len(), 0);
2846 // It should send a gossip_timestamp_filter with the correct information
2848 let mut features = InitFeatures::empty();
2849 features.set_gossip_queries_optional();
2850 let init_msg = Init { features, remote_network_address: None };
2851 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2852 let events = gossip_sync.get_and_clear_pending_msg_events();
2853 assert_eq!(events.len(), 1);
2855 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2856 assert_eq!(node_id, &node_id_1);
2857 assert_eq!(msg.chain_hash, chain_hash);
2858 let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2859 assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2860 assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2861 assert_eq!(msg.timestamp_range, u32::max_value());
2863 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2869 fn handling_query_channel_range() {
2870 let network_graph = create_network_graph();
2871 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2873 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2874 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2875 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2876 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2878 let mut scids: Vec<u64> = vec![
2879 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2880 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2883 // used for testing multipart reply across blocks
2884 for block in 100000..=108001 {
2885 scids.push(scid_from_parts(block, 0, 0).unwrap());
2888 // used for testing resumption on same block
2889 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2892 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2893 unsigned_announcement.short_channel_id = scid;
2894 }, node_1_privkey, node_2_privkey, &secp_ctx);
2895 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2901 // Error when number_of_blocks=0
2902 do_handling_query_channel_range(
2906 chain_hash: chain_hash.clone(),
2908 number_of_blocks: 0,
2911 vec![ReplyChannelRange {
2912 chain_hash: chain_hash.clone(),
2914 number_of_blocks: 0,
2915 sync_complete: true,
2916 short_channel_ids: vec![]
2920 // Error when wrong chain
2921 do_handling_query_channel_range(
2925 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2927 number_of_blocks: 0xffff_ffff,
2930 vec![ReplyChannelRange {
2931 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2933 number_of_blocks: 0xffff_ffff,
2934 sync_complete: true,
2935 short_channel_ids: vec![],
2939 // Error when first_blocknum > 0xffffff
2940 do_handling_query_channel_range(
2944 chain_hash: chain_hash.clone(),
2945 first_blocknum: 0x01000000,
2946 number_of_blocks: 0xffff_ffff,
2949 vec![ReplyChannelRange {
2950 chain_hash: chain_hash.clone(),
2951 first_blocknum: 0x01000000,
2952 number_of_blocks: 0xffff_ffff,
2953 sync_complete: true,
2954 short_channel_ids: vec![]
2958 // Empty reply when max valid SCID block num
2959 do_handling_query_channel_range(
2963 chain_hash: chain_hash.clone(),
2964 first_blocknum: 0xffffff,
2965 number_of_blocks: 1,
2970 chain_hash: chain_hash.clone(),
2971 first_blocknum: 0xffffff,
2972 number_of_blocks: 1,
2973 sync_complete: true,
2974 short_channel_ids: vec![]
2979 // No results in valid query range
2980 do_handling_query_channel_range(
2984 chain_hash: chain_hash.clone(),
2985 first_blocknum: 1000,
2986 number_of_blocks: 1000,
2991 chain_hash: chain_hash.clone(),
2992 first_blocknum: 1000,
2993 number_of_blocks: 1000,
2994 sync_complete: true,
2995 short_channel_ids: vec![],
3000 // Overflow first_blocknum + number_of_blocks
3001 do_handling_query_channel_range(
3005 chain_hash: chain_hash.clone(),
3006 first_blocknum: 0xfe0000,
3007 number_of_blocks: 0xffffffff,
3012 chain_hash: chain_hash.clone(),
3013 first_blocknum: 0xfe0000,
3014 number_of_blocks: 0xffffffff - 0xfe0000,
3015 sync_complete: true,
3016 short_channel_ids: vec![
3017 0xfffffe_ffffff_ffff, // max
3023 // Single block exactly full
3024 do_handling_query_channel_range(
3028 chain_hash: chain_hash.clone(),
3029 first_blocknum: 100000,
3030 number_of_blocks: 8000,
3035 chain_hash: chain_hash.clone(),
3036 first_blocknum: 100000,
3037 number_of_blocks: 8000,
3038 sync_complete: true,
3039 short_channel_ids: (100000..=107999)
3040 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3046 // Multiple split on new block
3047 do_handling_query_channel_range(
3051 chain_hash: chain_hash.clone(),
3052 first_blocknum: 100000,
3053 number_of_blocks: 8001,
3058 chain_hash: chain_hash.clone(),
3059 first_blocknum: 100000,
3060 number_of_blocks: 7999,
3061 sync_complete: false,
3062 short_channel_ids: (100000..=107999)
3063 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3067 chain_hash: chain_hash.clone(),
3068 first_blocknum: 107999,
3069 number_of_blocks: 2,
3070 sync_complete: true,
3071 short_channel_ids: vec![
3072 scid_from_parts(108000, 0, 0).unwrap(),
3078 // Multiple split on same block
3079 do_handling_query_channel_range(
3083 chain_hash: chain_hash.clone(),
3084 first_blocknum: 100002,
3085 number_of_blocks: 8000,
3090 chain_hash: chain_hash.clone(),
3091 first_blocknum: 100002,
3092 number_of_blocks: 7999,
3093 sync_complete: false,
3094 short_channel_ids: (100002..=108001)
3095 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3099 chain_hash: chain_hash.clone(),
3100 first_blocknum: 108001,
3101 number_of_blocks: 1,
3102 sync_complete: true,
3103 short_channel_ids: vec![
3104 scid_from_parts(108001, 1, 0).unwrap(),
3111 fn do_handling_query_channel_range(
3112 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3113 test_node_id: &PublicKey,
3114 msg: QueryChannelRange,
3116 expected_replies: Vec<ReplyChannelRange>
3118 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3119 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3120 let query_end_blocknum = msg.end_blocknum();
3121 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3124 assert!(result.is_ok());
3126 assert!(result.is_err());
3129 let events = gossip_sync.get_and_clear_pending_msg_events();
3130 assert_eq!(events.len(), expected_replies.len());
3132 for i in 0..events.len() {
3133 let expected_reply = &expected_replies[i];
3135 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3136 assert_eq!(node_id, test_node_id);
3137 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3138 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3139 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3140 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3141 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3143 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3144 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3145 assert!(msg.first_blocknum >= max_firstblocknum);
3146 max_firstblocknum = msg.first_blocknum;
3147 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3149 // Check that the last block count is >= the query's end_blocknum
3150 if i == events.len() - 1 {
3151 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3154 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3160 fn handling_query_short_channel_ids() {
3161 let network_graph = create_network_graph();
3162 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3163 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3164 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3166 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3168 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3170 short_channel_ids: vec![0x0003e8_000000_0000],
3172 assert!(result.is_err());
3176 fn displays_node_alias() {
3177 let format_str_alias = |alias: &str| {
3178 let mut bytes = [0u8; 32];
3179 bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3180 format!("{}", NodeAlias(bytes))
3183 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3184 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3185 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3187 let format_bytes_alias = |alias: &[u8]| {
3188 let mut bytes = [0u8; 32];
3189 bytes[..alias.len()].copy_from_slice(alias);
3190 format!("{}", NodeAlias(bytes))
3193 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3194 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3195 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3199 fn channel_info_is_readable() {
3200 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3201 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3202 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3203 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3204 let config = crate::ln::functional_test_utils::test_default_channel_config();
3206 // 1. Test encoding/decoding of ChannelUpdateInfo
3207 let chan_update_info = ChannelUpdateInfo {
3210 cltv_expiry_delta: 42,
3211 htlc_minimum_msat: 1234,
3212 htlc_maximum_msat: 5678,
3213 fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3214 last_update_message: None,
3217 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3218 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3220 // First make sure we can read ChannelUpdateInfos we just wrote
3221 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3222 assert_eq!(chan_update_info, read_chan_update_info);
3224 // Check the serialization hasn't changed.
3225 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3226 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3228 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3229 // or the ChannelUpdate enclosed with `last_update_message`.
3230 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3231 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3232 assert!(read_chan_update_info_res.is_err());
3234 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3235 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3236 assert!(read_chan_update_info_res.is_err());
3238 // 2. Test encoding/decoding of ChannelInfo
3239 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3240 let chan_info_none_updates = ChannelInfo {
3241 features: channelmanager::provided_channel_features(&config),
3242 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3244 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3246 capacity_sats: None,
3247 announcement_message: None,
3248 announcement_received_time: 87654,
3251 let mut encoded_chan_info: Vec<u8> = Vec::new();
3252 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3254 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3255 assert_eq!(chan_info_none_updates, read_chan_info);
3257 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3258 let chan_info_some_updates = ChannelInfo {
3259 features: channelmanager::provided_channel_features(&config),
3260 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3261 one_to_two: Some(chan_update_info.clone()),
3262 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3263 two_to_one: Some(chan_update_info.clone()),
3264 capacity_sats: None,
3265 announcement_message: None,
3266 announcement_received_time: 87654,
3269 let mut encoded_chan_info: Vec<u8> = Vec::new();
3270 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3272 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3273 assert_eq!(chan_info_some_updates, read_chan_info);
3275 // Check the serialization hasn't changed.
3276 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3277 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3279 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3280 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3281 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3282 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3283 assert_eq!(read_chan_info.announcement_received_time, 87654);
3284 assert_eq!(read_chan_info.one_to_two, None);
3285 assert_eq!(read_chan_info.two_to_one, None);
3287 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3288 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3289 assert_eq!(read_chan_info.announcement_received_time, 87654);
3290 assert_eq!(read_chan_info.one_to_two, None);
3291 assert_eq!(read_chan_info.two_to_one, None);
3295 fn node_info_is_readable() {
3296 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3297 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3298 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3299 let valid_node_ann_info = NodeAnnouncementInfo {
3300 features: channelmanager::provided_node_features(&UserConfig::default()),
3303 alias: NodeAlias([0u8; 32]),
3304 announcement_message: Some(announcement_message)
3307 let mut encoded_valid_node_ann_info = Vec::new();
3308 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3309 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3310 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3311 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3313 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3314 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3315 assert!(read_invalid_node_ann_info_res.is_err());
3317 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3318 let valid_node_info = NodeInfo {
3319 channels: Vec::new(),
3320 announcement_info: Some(valid_node_ann_info),
3323 let mut encoded_valid_node_info = Vec::new();
3324 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3325 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3326 assert_eq!(read_valid_node_info, valid_node_info);
3328 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3329 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3330 assert_eq!(read_invalid_node_info.announcement_info, None);
3334 fn test_node_info_keeps_compatibility() {
3335 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3336 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3337 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3338 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3339 assert!(ann_info_with_addresses.addresses().is_empty());
3343 #[cfg(all(test, feature = "_bench_unstable"))]
3351 fn read_network_graph(bench: &mut Bencher) {
3352 let logger = crate::util::test_utils::TestLogger::new();
3353 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3354 let mut v = Vec::new();
3355 d.read_to_end(&mut v).unwrap();
3357 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3362 fn write_network_graph(bench: &mut Bencher) {
3363 let logger = crate::util::test_utils::TestLogger::new();
3364 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3365 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3367 let _ = net_graph.encode();