]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/routing/gossip.rs
Persist scorer upon update based on event handling
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hashes::hex::FromHex;
20 use bitcoin::hash_types::BlockHash;
21
22 use bitcoin::network::constants::Network;
23 use bitcoin::blockdata::constants::genesis_block;
24
25 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
26 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
27 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use crate::ln::msgs;
31 use crate::routing::utxo::{self, UtxoLookup};
32 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
33 use crate::util::logger::{Logger, Level};
34 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35 use crate::util::string::PrintableString;
36 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
37
38 use crate::io;
39 use crate::io_extras::{copy, sink};
40 use crate::prelude::*;
41 use core::{cmp, fmt};
42 use core::convert::TryFrom;
43 use crate::sync::{RwLock, RwLockReadGuard};
44 #[cfg(feature = "std")]
45 use core::sync::atomic::{AtomicUsize, Ordering};
46 use crate::sync::Mutex;
47 use core::ops::{Bound, Deref};
48 use core::str::FromStr;
49
50 #[cfg(feature = "std")]
51 use std::time::{SystemTime, UNIX_EPOCH};
52
53 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
54 /// suggestion.
55 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
56
57 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
58 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
59
60 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
61 /// refuse to relay the message.
62 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
63
64 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
65 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
66 const MAX_SCIDS_PER_REPLY: usize = 8000;
67
68 /// Represents the compressed public key of a node
69 #[derive(Clone, Copy)]
70 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
71
72 impl NodeId {
73         /// Create a new NodeId from a public key
74         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
75                 NodeId(pubkey.serialize())
76         }
77
78         /// Get the public key slice from this NodeId
79         pub fn as_slice(&self) -> &[u8] {
80                 &self.0
81         }
82
83         /// Get the public key from this NodeId
84         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
85                 PublicKey::from_slice(&self.0)
86         }
87 }
88
89 impl fmt::Debug for NodeId {
90         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
91                 write!(f, "NodeId({})", log_bytes!(self.0))
92         }
93 }
94 impl fmt::Display for NodeId {
95         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
96                 write!(f, "{}", log_bytes!(self.0))
97         }
98 }
99
100 impl core::hash::Hash for NodeId {
101         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
102                 self.0.hash(hasher);
103         }
104 }
105
106 impl Eq for NodeId {}
107
108 impl PartialEq for NodeId {
109         fn eq(&self, other: &Self) -> bool {
110                 self.0[..] == other.0[..]
111         }
112 }
113
114 impl cmp::PartialOrd for NodeId {
115         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
116                 Some(self.cmp(other))
117         }
118 }
119
120 impl Ord for NodeId {
121         fn cmp(&self, other: &Self) -> cmp::Ordering {
122                 self.0[..].cmp(&other.0[..])
123         }
124 }
125
126 impl Writeable for NodeId {
127         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
128                 writer.write_all(&self.0)?;
129                 Ok(())
130         }
131 }
132
133 impl Readable for NodeId {
134         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
135                 let mut buf = [0; PUBLIC_KEY_SIZE];
136                 reader.read_exact(&mut buf)?;
137                 Ok(Self(buf))
138         }
139 }
140
141 impl From<PublicKey> for NodeId {
142         fn from(pubkey: PublicKey) -> Self {
143                 Self::from_pubkey(&pubkey)
144         }
145 }
146
147 impl TryFrom<NodeId> for PublicKey {
148         type Error = secp256k1::Error;
149
150         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
151                 node_id.as_pubkey()
152         }
153 }
154
155 impl FromStr for NodeId {
156         type Err = bitcoin::hashes::hex::Error;
157
158         fn from_str(s: &str) -> Result<Self, Self::Err> {
159                 let data: [u8; PUBLIC_KEY_SIZE] = FromHex::from_hex(s)?;
160                 Ok(NodeId(data))
161         }
162 }
163
164 /// Represents the network as nodes and channels between them
165 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
166         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
167         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
168         genesis_hash: BlockHash,
169         logger: L,
170         // Lock order: channels -> nodes
171         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
172         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
173         // Lock order: removed_channels -> removed_nodes
174         //
175         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
176         // of `std::time::Instant`s for a few reasons:
177         //   * We want it to be possible to do tracking in no-std environments where we can compare
178         //     a provided current UNIX timestamp with the time at which we started tracking.
179         //   * In the future, if we decide to persist these maps, they will already be serializable.
180         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
181         //     environment should be practical over the time period we are considering (on the order of a
182         //     week).
183         //
184         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
185         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
186         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
187         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
188         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
189         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
190         /// that once some time passes, we can potentially resync it from gossip again.
191         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
192         /// Announcement messages which are awaiting an on-chain lookup to be processed.
193         pub(super) pending_checks: utxo::PendingChecks,
194 }
195
196 /// A read-only view of [`NetworkGraph`].
197 pub struct ReadOnlyNetworkGraph<'a> {
198         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
199         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
200 }
201
202 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
203 /// return packet by a node along the route. See [BOLT #4] for details.
204 ///
205 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
206 #[derive(Clone, Debug, PartialEq, Eq)]
207 pub enum NetworkUpdate {
208         /// An error indicating a `channel_update` messages should be applied via
209         /// [`NetworkGraph::update_channel`].
210         ChannelUpdateMessage {
211                 /// The update to apply via [`NetworkGraph::update_channel`].
212                 msg: ChannelUpdate,
213         },
214         /// An error indicating that a channel failed to route a payment, which should be applied via
215         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
216         ChannelFailure {
217                 /// The short channel id of the closed channel.
218                 short_channel_id: u64,
219                 /// Whether the channel should be permanently removed or temporarily disabled until a new
220                 /// `channel_update` message is received.
221                 is_permanent: bool,
222         },
223         /// An error indicating that a node failed to route a payment, which should be applied via
224         /// [`NetworkGraph::node_failed_permanent`] if permanent.
225         NodeFailure {
226                 /// The node id of the failed node.
227                 node_id: PublicKey,
228                 /// Whether the node should be permanently removed from consideration or can be restored
229                 /// when a new `channel_update` message is received.
230                 is_permanent: bool,
231         }
232 }
233
234 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
235         (0, ChannelUpdateMessage) => {
236                 (0, msg, required),
237         },
238         (2, ChannelFailure) => {
239                 (0, short_channel_id, required),
240                 (2, is_permanent, required),
241         },
242         (4, NodeFailure) => {
243                 (0, node_id, required),
244                 (2, is_permanent, required),
245         },
246 );
247
248 /// Receives and validates network updates from peers,
249 /// stores authentic and relevant data as a network graph.
250 /// This network graph is then used for routing payments.
251 /// Provides interface to help with initial routing sync by
252 /// serving historical announcements.
253 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
254 where U::Target: UtxoLookup, L::Target: Logger
255 {
256         network_graph: G,
257         utxo_lookup: Option<U>,
258         #[cfg(feature = "std")]
259         full_syncs_requested: AtomicUsize,
260         pending_events: Mutex<Vec<MessageSendEvent>>,
261         logger: L,
262 }
263
264 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
265 where U::Target: UtxoLookup, L::Target: Logger
266 {
267         /// Creates a new tracker of the actual state of the network of channels and nodes,
268         /// assuming an existing [`NetworkGraph`].
269         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
270         /// correct, and the announcement is signed with channel owners' keys.
271         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
272                 P2PGossipSync {
273                         network_graph,
274                         #[cfg(feature = "std")]
275                         full_syncs_requested: AtomicUsize::new(0),
276                         utxo_lookup,
277                         pending_events: Mutex::new(vec![]),
278                         logger,
279                 }
280         }
281
282         /// Adds a provider used to check new announcements. Does not affect
283         /// existing announcements unless they are updated.
284         /// Add, update or remove the provider would replace the current one.
285         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
286                 self.utxo_lookup = utxo_lookup;
287         }
288
289         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
290         /// [`P2PGossipSync::new`].
291         ///
292         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
293         pub fn network_graph(&self) -> &G {
294                 &self.network_graph
295         }
296
297         #[cfg(feature = "std")]
298         /// Returns true when a full routing table sync should be performed with a peer.
299         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
300                 //TODO: Determine whether to request a full sync based on the network map.
301                 const FULL_SYNCS_TO_REQUEST: usize = 5;
302                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
303                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
304                         true
305                 } else {
306                         false
307                 }
308         }
309
310         /// Used to broadcast forward gossip messages which were validated async.
311         ///
312         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
313         /// data.
314         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
315                 match &mut ev {
316                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
317                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
318                                 if update_msg.as_ref()
319                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
320                                 {
321                                         *update_msg = None;
322                                 }
323                         },
324                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
325                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
326                         },
327                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
328                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
329                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
330                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
331                                 {
332                                         return;
333                                 }
334                         },
335                         _ => return,
336                 }
337                 self.pending_events.lock().unwrap().push(ev);
338         }
339 }
340
341 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
342         /// Handles any network updates originating from [`Event`]s.
343         ///
344         /// [`Event`]: crate::events::Event
345         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
346                 match *network_update {
347                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
348                                 let short_channel_id = msg.contents.short_channel_id;
349                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
350                                 let status = if is_enabled { "enabled" } else { "disabled" };
351                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
352                                 let _ = self.update_channel(msg);
353                         },
354                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
355                                 if is_permanent {
356                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
357                                         self.channel_failed_permanent(short_channel_id);
358                                 }
359                         },
360                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
361                                 if is_permanent {
362                                         log_debug!(self.logger,
363                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
364                                         self.node_failed_permanent(node_id);
365                                 };
366                         },
367                 }
368         }
369 }
370
371 macro_rules! secp_verify_sig {
372         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
373                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
374                         Ok(_) => {},
375                         Err(_) => {
376                                 return Err(LightningError {
377                                         err: format!("Invalid signature on {} message", $msg_type),
378                                         action: ErrorAction::SendWarningMessage {
379                                                 msg: msgs::WarningMessage {
380                                                         channel_id: [0; 32],
381                                                         data: format!("Invalid signature on {} message", $msg_type),
382                                                 },
383                                                 log_level: Level::Trace,
384                                         },
385                                 });
386                         },
387                 }
388         };
389 }
390
391 macro_rules! get_pubkey_from_node_id {
392         ( $node_id: expr, $msg_type: expr ) => {
393                 PublicKey::from_slice($node_id.as_slice())
394                         .map_err(|_| LightningError {
395                                 err: format!("Invalid public key on {} message", $msg_type),
396                                 action: ErrorAction::SendWarningMessage {
397                                         msg: msgs::WarningMessage {
398                                                 channel_id: [0; 32],
399                                                 data: format!("Invalid public key on {} message", $msg_type),
400                                         },
401                                         log_level: Level::Trace
402                                 }
403                         })?
404         }
405 }
406
407 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
408 where U::Target: UtxoLookup, L::Target: Logger
409 {
410         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
411                 self.network_graph.update_node_from_announcement(msg)?;
412                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
413                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
414                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
415         }
416
417         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
418                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
419                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
420         }
421
422         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
423                 self.network_graph.update_channel(msg)?;
424                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
425         }
426
427         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
428                 let mut channels = self.network_graph.channels.write().unwrap();
429                 for (_, ref chan) in channels.range(starting_point..) {
430                         if chan.announcement_message.is_some() {
431                                 let chan_announcement = chan.announcement_message.clone().unwrap();
432                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
433                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
434                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
435                                         one_to_two_announcement = one_to_two.last_update_message.clone();
436                                 }
437                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
438                                         two_to_one_announcement = two_to_one.last_update_message.clone();
439                                 }
440                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
441                         } else {
442                                 // TODO: We may end up sending un-announced channel_updates if we are sending
443                                 // initial sync data while receiving announce/updates for this channel.
444                         }
445                 }
446                 None
447         }
448
449         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
450                 let mut nodes = self.network_graph.nodes.write().unwrap();
451                 let iter = if let Some(node_id) = starting_point {
452                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
453                         } else {
454                                 nodes.range(..)
455                         };
456                 for (_, ref node) in iter {
457                         if let Some(node_info) = node.announcement_info.as_ref() {
458                                 if let Some(msg) = node_info.announcement_message.clone() {
459                                         return Some(msg);
460                                 }
461                         }
462                 }
463                 None
464         }
465
466         /// Initiates a stateless sync of routing gossip information with a peer
467         /// using [`gossip_queries`]. The default strategy used by this implementation
468         /// is to sync the full block range with several peers.
469         ///
470         /// We should expect one or more [`reply_channel_range`] messages in response
471         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
472         /// to request gossip messages for each channel. The sync is considered complete
473         /// when the final [`reply_scids_end`] message is received, though we are not
474         /// tracking this directly.
475         ///
476         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
477         /// [`reply_channel_range`]: msgs::ReplyChannelRange
478         /// [`query_channel_range`]: msgs::QueryChannelRange
479         /// [`query_scid`]: msgs::QueryShortChannelIds
480         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
481         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
482                 // We will only perform a sync with peers that support gossip_queries.
483                 if !init_msg.features.supports_gossip_queries() {
484                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
485                         // channels with peers even without being able to exchange gossip.
486                         return Ok(());
487                 }
488
489                 // The lightning network's gossip sync system is completely broken in numerous ways.
490                 //
491                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
492                 // to do a full sync from the first few peers we connect to, and then receive gossip
493                 // updates from all our peers normally.
494                 //
495                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
496                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
497                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
498                 // seen.
499                 //
500                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
501                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
502                 // channel data which you are missing. Except there was no way at all to identify which
503                 // `channel_update`s you were missing, so you still had to request everything, just in a
504                 // very complicated way with some queries instead of just getting the dump.
505                 //
506                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
507                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
508                 // relying on it useless.
509                 //
510                 // After gossip queries were introduced, support for receiving a full gossip table dump on
511                 // connection was removed from several nodes, making it impossible to get a full sync
512                 // without using the "gossip queries" messages.
513                 //
514                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
515                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
516                 // message, as the name implies, tells the peer to not forward any gossip messages with a
517                 // timestamp older than a given value (not the time the peer received the filter, but the
518                 // timestamp in the update message, which is often hours behind when the peer received the
519                 // message).
520                 //
521                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
522                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
523                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
524                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
525                 // will simply not forward any new updates they see to you which were generated some time
526                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
527                 // ago), you will always get the full routing graph from all your peers.
528                 //
529                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
530                 // propagated some time after it was generated, and, worse, often disable gossiping with
531                 // several peers after their first connection. The second behavior can cause gossip to not
532                 // propagate fully if there are cuts in the gossiping subgraph.
533                 //
534                 // In an attempt to cut a middle ground between always fetching the full graph from all of
535                 // our peers and never receiving gossip from peers at all, we send all of our peers a
536                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
537                 //
538                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
539                 #[allow(unused_mut, unused_assignments)]
540                 let mut gossip_start_time = 0;
541                 #[cfg(feature = "std")]
542                 {
543                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
544                         if self.should_request_full_sync(&their_node_id) {
545                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
546                         } else {
547                                 gossip_start_time -= 60 * 60; // an hour ago
548                         }
549                 }
550
551                 let mut pending_events = self.pending_events.lock().unwrap();
552                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
553                         node_id: their_node_id.clone(),
554                         msg: GossipTimestampFilter {
555                                 chain_hash: self.network_graph.genesis_hash,
556                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
557                                 timestamp_range: u32::max_value(),
558                         },
559                 });
560                 Ok(())
561         }
562
563         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
564                 // We don't make queries, so should never receive replies. If, in the future, the set
565                 // reconciliation extensions to gossip queries become broadly supported, we should revert
566                 // this code to its state pre-0.0.106.
567                 Ok(())
568         }
569
570         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
571                 // We don't make queries, so should never receive replies. If, in the future, the set
572                 // reconciliation extensions to gossip queries become broadly supported, we should revert
573                 // this code to its state pre-0.0.106.
574                 Ok(())
575         }
576
577         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
578         /// are in the specified block range. Due to message size limits, large range
579         /// queries may result in several reply messages. This implementation enqueues
580         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
581         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
582         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
583         /// memory constrained systems.
584         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
585                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
586
587                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
588
589                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
590                 // If so, we manually cap the ending block to avoid this overflow.
591                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
592
593                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
594                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
595                         let mut pending_events = self.pending_events.lock().unwrap();
596                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
597                                 node_id: their_node_id.clone(),
598                                 msg: ReplyChannelRange {
599                                         chain_hash: msg.chain_hash.clone(),
600                                         first_blocknum: msg.first_blocknum,
601                                         number_of_blocks: msg.number_of_blocks,
602                                         sync_complete: true,
603                                         short_channel_ids: vec![],
604                                 }
605                         });
606                         return Err(LightningError {
607                                 err: String::from("query_channel_range could not be processed"),
608                                 action: ErrorAction::IgnoreError,
609                         });
610                 }
611
612                 // Creates channel batches. We are not checking if the channel is routable
613                 // (has at least one update). A peer may still want to know the channel
614                 // exists even if its not yet routable.
615                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
616                 let mut channels = self.network_graph.channels.write().unwrap();
617                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
618                         if let Some(chan_announcement) = &chan.announcement_message {
619                                 // Construct a new batch if last one is full
620                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
621                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
622                                 }
623
624                                 let batch = batches.last_mut().unwrap();
625                                 batch.push(chan_announcement.contents.short_channel_id);
626                         }
627                 }
628                 drop(channels);
629
630                 let mut pending_events = self.pending_events.lock().unwrap();
631                 let batch_count = batches.len();
632                 let mut prev_batch_endblock = msg.first_blocknum;
633                 for (batch_index, batch) in batches.into_iter().enumerate() {
634                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
635                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
636                         //
637                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
638                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
639                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
640                         // significant diversion from the requirements set by the spec, and, in case of blocks
641                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
642                         // and *not* derive the first_blocknum from the actual first block of the reply.
643                         let first_blocknum = prev_batch_endblock;
644
645                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
646                         // fit in. Though there is no requirement that we use exactly the number of blocks its
647                         // contents are from, except for the bogus requirements c-lightning enforces, above.
648                         //
649                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
650                         // >= the query's end block. Thus, for the last reply, we calculate the difference
651                         // between the query's end block and the start of the reply.
652                         //
653                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
654                         // first_blocknum will be either msg.first_blocknum or a higher block height.
655                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
656                                 (true, msg.end_blocknum() - first_blocknum)
657                         }
658                         // Prior replies should use the number of blocks that fit into the reply. Overflow
659                         // safe since first_blocknum is always <= last SCID's block.
660                         else {
661                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
662                         };
663
664                         prev_batch_endblock = first_blocknum + number_of_blocks;
665
666                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
667                                 node_id: their_node_id.clone(),
668                                 msg: ReplyChannelRange {
669                                         chain_hash: msg.chain_hash.clone(),
670                                         first_blocknum,
671                                         number_of_blocks,
672                                         sync_complete,
673                                         short_channel_ids: batch,
674                                 }
675                         });
676                 }
677
678                 Ok(())
679         }
680
681         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
682                 // TODO
683                 Err(LightningError {
684                         err: String::from("Not implemented"),
685                         action: ErrorAction::IgnoreError,
686                 })
687         }
688
689         fn provided_node_features(&self) -> NodeFeatures {
690                 let mut features = NodeFeatures::empty();
691                 features.set_gossip_queries_optional();
692                 features
693         }
694
695         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
696                 let mut features = InitFeatures::empty();
697                 features.set_gossip_queries_optional();
698                 features
699         }
700
701         fn processing_queue_high(&self) -> bool {
702                 self.network_graph.pending_checks.too_many_checks_pending()
703         }
704 }
705
706 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
707 where
708         U::Target: UtxoLookup,
709         L::Target: Logger,
710 {
711         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
712                 let mut ret = Vec::new();
713                 let mut pending_events = self.pending_events.lock().unwrap();
714                 core::mem::swap(&mut ret, &mut pending_events);
715                 ret
716         }
717 }
718
719 #[derive(Clone, Debug, PartialEq, Eq)]
720 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
721 pub struct ChannelUpdateInfo {
722         /// When the last update to the channel direction was issued.
723         /// Value is opaque, as set in the announcement.
724         pub last_update: u32,
725         /// Whether the channel can be currently used for payments (in this one direction).
726         pub enabled: bool,
727         /// The difference in CLTV values that you must have when routing through this channel.
728         pub cltv_expiry_delta: u16,
729         /// The minimum value, which must be relayed to the next hop via the channel
730         pub htlc_minimum_msat: u64,
731         /// The maximum value which may be relayed to the next hop via the channel.
732         pub htlc_maximum_msat: u64,
733         /// Fees charged when the channel is used for routing
734         pub fees: RoutingFees,
735         /// Most recent update for the channel received from the network
736         /// Mostly redundant with the data we store in fields explicitly.
737         /// Everything else is useful only for sending out for initial routing sync.
738         /// Not stored if contains excess data to prevent DoS.
739         pub last_update_message: Option<ChannelUpdate>,
740 }
741
742 impl fmt::Display for ChannelUpdateInfo {
743         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
744                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
745                 Ok(())
746         }
747 }
748
749 impl Writeable for ChannelUpdateInfo {
750         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
751                 write_tlv_fields!(writer, {
752                         (0, self.last_update, required),
753                         (2, self.enabled, required),
754                         (4, self.cltv_expiry_delta, required),
755                         (6, self.htlc_minimum_msat, required),
756                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
757                         // compatibility with LDK versions prior to v0.0.110.
758                         (8, Some(self.htlc_maximum_msat), required),
759                         (10, self.fees, required),
760                         (12, self.last_update_message, required),
761                 });
762                 Ok(())
763         }
764 }
765
766 impl Readable for ChannelUpdateInfo {
767         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
768                 _init_tlv_field_var!(last_update, required);
769                 _init_tlv_field_var!(enabled, required);
770                 _init_tlv_field_var!(cltv_expiry_delta, required);
771                 _init_tlv_field_var!(htlc_minimum_msat, required);
772                 _init_tlv_field_var!(htlc_maximum_msat, option);
773                 _init_tlv_field_var!(fees, required);
774                 _init_tlv_field_var!(last_update_message, required);
775
776                 read_tlv_fields!(reader, {
777                         (0, last_update, required),
778                         (2, enabled, required),
779                         (4, cltv_expiry_delta, required),
780                         (6, htlc_minimum_msat, required),
781                         (8, htlc_maximum_msat, required),
782                         (10, fees, required),
783                         (12, last_update_message, required)
784                 });
785
786                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
787                         Ok(ChannelUpdateInfo {
788                                 last_update: _init_tlv_based_struct_field!(last_update, required),
789                                 enabled: _init_tlv_based_struct_field!(enabled, required),
790                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
791                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
792                                 htlc_maximum_msat,
793                                 fees: _init_tlv_based_struct_field!(fees, required),
794                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
795                         })
796                 } else {
797                         Err(DecodeError::InvalidValue)
798                 }
799         }
800 }
801
802 #[derive(Clone, Debug, PartialEq, Eq)]
803 /// Details about a channel (both directions).
804 /// Received within a channel announcement.
805 pub struct ChannelInfo {
806         /// Protocol features of a channel communicated during its announcement
807         pub features: ChannelFeatures,
808         /// Source node of the first direction of a channel
809         pub node_one: NodeId,
810         /// Details about the first direction of a channel
811         pub one_to_two: Option<ChannelUpdateInfo>,
812         /// Source node of the second direction of a channel
813         pub node_two: NodeId,
814         /// Details about the second direction of a channel
815         pub two_to_one: Option<ChannelUpdateInfo>,
816         /// The channel capacity as seen on-chain, if chain lookup is available.
817         pub capacity_sats: Option<u64>,
818         /// An initial announcement of the channel
819         /// Mostly redundant with the data we store in fields explicitly.
820         /// Everything else is useful only for sending out for initial routing sync.
821         /// Not stored if contains excess data to prevent DoS.
822         pub announcement_message: Option<ChannelAnnouncement>,
823         /// The timestamp when we received the announcement, if we are running with feature = "std"
824         /// (which we can probably assume we are - no-std environments probably won't have a full
825         /// network graph in memory!).
826         announcement_received_time: u64,
827 }
828
829 impl ChannelInfo {
830         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
831         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
832         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
833                 let (direction, source) = {
834                         if target == &self.node_one {
835                                 (self.two_to_one.as_ref(), &self.node_two)
836                         } else if target == &self.node_two {
837                                 (self.one_to_two.as_ref(), &self.node_one)
838                         } else {
839                                 return None;
840                         }
841                 };
842                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
843         }
844
845         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
846         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
847         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
848                 let (direction, target) = {
849                         if source == &self.node_one {
850                                 (self.one_to_two.as_ref(), &self.node_two)
851                         } else if source == &self.node_two {
852                                 (self.two_to_one.as_ref(), &self.node_one)
853                         } else {
854                                 return None;
855                         }
856                 };
857                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
858         }
859
860         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
861         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
862                 let direction = channel_flags & 1u8;
863                 if direction == 0 {
864                         self.one_to_two.as_ref()
865                 } else {
866                         self.two_to_one.as_ref()
867                 }
868         }
869 }
870
871 impl fmt::Display for ChannelInfo {
872         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
873                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
874                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
875                 Ok(())
876         }
877 }
878
879 impl Writeable for ChannelInfo {
880         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
881                 write_tlv_fields!(writer, {
882                         (0, self.features, required),
883                         (1, self.announcement_received_time, (default_value, 0)),
884                         (2, self.node_one, required),
885                         (4, self.one_to_two, required),
886                         (6, self.node_two, required),
887                         (8, self.two_to_one, required),
888                         (10, self.capacity_sats, required),
889                         (12, self.announcement_message, required),
890                 });
891                 Ok(())
892         }
893 }
894
895 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
896 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
897 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
898 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
899 // channel updates via the gossip network.
900 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
901
902 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
903         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
904                 match crate::util::ser::Readable::read(reader) {
905                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
906                         Err(DecodeError::ShortRead) => Ok(None),
907                         Err(DecodeError::InvalidValue) => Ok(None),
908                         Err(err) => Err(err),
909                 }
910         }
911 }
912
913 impl Readable for ChannelInfo {
914         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
915                 _init_tlv_field_var!(features, required);
916                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
917                 _init_tlv_field_var!(node_one, required);
918                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
919                 _init_tlv_field_var!(node_two, required);
920                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
921                 _init_tlv_field_var!(capacity_sats, required);
922                 _init_tlv_field_var!(announcement_message, required);
923                 read_tlv_fields!(reader, {
924                         (0, features, required),
925                         (1, announcement_received_time, (default_value, 0)),
926                         (2, node_one, required),
927                         (4, one_to_two_wrap, upgradable_option),
928                         (6, node_two, required),
929                         (8, two_to_one_wrap, upgradable_option),
930                         (10, capacity_sats, required),
931                         (12, announcement_message, required),
932                 });
933
934                 Ok(ChannelInfo {
935                         features: _init_tlv_based_struct_field!(features, required),
936                         node_one: _init_tlv_based_struct_field!(node_one, required),
937                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
938                         node_two: _init_tlv_based_struct_field!(node_two, required),
939                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
940                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
941                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
942                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
943                 })
944         }
945 }
946
947 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
948 /// source node to a target node.
949 #[derive(Clone)]
950 pub struct DirectedChannelInfo<'a> {
951         channel: &'a ChannelInfo,
952         direction: &'a ChannelUpdateInfo,
953         htlc_maximum_msat: u64,
954         effective_capacity: EffectiveCapacity,
955 }
956
957 impl<'a> DirectedChannelInfo<'a> {
958         #[inline]
959         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
960                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
961                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
962
963                 let effective_capacity = match capacity_msat {
964                         Some(capacity_msat) => {
965                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
966                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
967                         },
968                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
969                 };
970
971                 Self {
972                         channel, direction, htlc_maximum_msat, effective_capacity
973                 }
974         }
975
976         /// Returns information for the channel.
977         #[inline]
978         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
979
980         /// Returns the maximum HTLC amount allowed over the channel in the direction.
981         #[inline]
982         pub fn htlc_maximum_msat(&self) -> u64 {
983                 self.htlc_maximum_msat
984         }
985
986         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
987         ///
988         /// This is either the total capacity from the funding transaction, if known, or the
989         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
990         /// otherwise.
991         pub fn effective_capacity(&self) -> EffectiveCapacity {
992                 self.effective_capacity
993         }
994
995         /// Returns information for the direction.
996         #[inline]
997         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
998 }
999
1000 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1001         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1002                 f.debug_struct("DirectedChannelInfo")
1003                         .field("channel", &self.channel)
1004                         .finish()
1005         }
1006 }
1007
1008 /// The effective capacity of a channel for routing purposes.
1009 ///
1010 /// While this may be smaller than the actual channel capacity, amounts greater than
1011 /// [`Self::as_msat`] should not be routed through the channel.
1012 #[derive(Clone, Copy, Debug, PartialEq)]
1013 pub enum EffectiveCapacity {
1014         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1015         /// direct hop.
1016         ExactLiquidity {
1017                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1018                 /// millisatoshi.
1019                 liquidity_msat: u64,
1020         },
1021         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1022         MaximumHTLC {
1023                 /// The maximum HTLC amount denominated in millisatoshi.
1024                 amount_msat: u64,
1025         },
1026         /// The total capacity of the channel as determined by the funding transaction.
1027         Total {
1028                 /// The funding amount denominated in millisatoshi.
1029                 capacity_msat: u64,
1030                 /// The maximum HTLC amount denominated in millisatoshi.
1031                 htlc_maximum_msat: u64
1032         },
1033         /// A capacity sufficient to route any payment, typically used for private channels provided by
1034         /// an invoice.
1035         Infinite,
1036         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1037         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1038         Unknown,
1039 }
1040
1041 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1042 /// use when making routing decisions.
1043 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1044
1045 impl EffectiveCapacity {
1046         /// Returns the effective capacity denominated in millisatoshi.
1047         pub fn as_msat(&self) -> u64 {
1048                 match self {
1049                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1050                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1051                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1052                         EffectiveCapacity::Infinite => u64::max_value(),
1053                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1054                 }
1055         }
1056 }
1057
1058 /// Fees for routing via a given channel or a node
1059 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1060 pub struct RoutingFees {
1061         /// Flat routing fee in millisatoshis.
1062         pub base_msat: u32,
1063         /// Liquidity-based routing fee in millionths of a routed amount.
1064         /// In other words, 10000 is 1%.
1065         pub proportional_millionths: u32,
1066 }
1067
1068 impl_writeable_tlv_based!(RoutingFees, {
1069         (0, base_msat, required),
1070         (2, proportional_millionths, required)
1071 });
1072
1073 #[derive(Clone, Debug, PartialEq, Eq)]
1074 /// Information received in the latest node_announcement from this node.
1075 pub struct NodeAnnouncementInfo {
1076         /// Protocol features the node announced support for
1077         pub features: NodeFeatures,
1078         /// When the last known update to the node state was issued.
1079         /// Value is opaque, as set in the announcement.
1080         pub last_update: u32,
1081         /// Color assigned to the node
1082         pub rgb: [u8; 3],
1083         /// Moniker assigned to the node.
1084         /// May be invalid or malicious (eg control chars),
1085         /// should not be exposed to the user.
1086         pub alias: NodeAlias,
1087         /// An initial announcement of the node
1088         /// Mostly redundant with the data we store in fields explicitly.
1089         /// Everything else is useful only for sending out for initial routing sync.
1090         /// Not stored if contains excess data to prevent DoS.
1091         pub announcement_message: Option<NodeAnnouncement>
1092 }
1093
1094 impl NodeAnnouncementInfo {
1095         /// Internet-level addresses via which one can connect to the node
1096         pub fn addresses(&self) -> &[NetAddress] {
1097                 self.announcement_message.as_ref()
1098                         .map(|msg| msg.contents.addresses.as_slice())
1099                         .unwrap_or_default()
1100         }
1101 }
1102
1103 impl Writeable for NodeAnnouncementInfo {
1104         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1105                 let empty_addresses = Vec::<NetAddress>::new();
1106                 write_tlv_fields!(writer, {
1107                         (0, self.features, required),
1108                         (2, self.last_update, required),
1109                         (4, self.rgb, required),
1110                         (6, self.alias, required),
1111                         (8, self.announcement_message, option),
1112                         (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1113                 });
1114                 Ok(())
1115         }
1116 }
1117
1118 impl Readable for NodeAnnouncementInfo {
1119     fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1120                 _init_and_read_tlv_fields!(reader, {
1121                         (0, features, required),
1122                         (2, last_update, required),
1123                         (4, rgb, required),
1124                         (6, alias, required),
1125                         (8, announcement_message, option),
1126                         (10, _addresses, vec_type), // deprecated, not used anymore
1127                 });
1128                 let _: Option<Vec<NetAddress>> = _addresses;
1129                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1130                         alias: alias.0.unwrap(), announcement_message })
1131     }
1132 }
1133
1134 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1135 ///
1136 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1137 /// attacks. Care must be taken when processing.
1138 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1139 pub struct NodeAlias(pub [u8; 32]);
1140
1141 impl fmt::Display for NodeAlias {
1142         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1143                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1144                 let bytes = self.0.split_at(first_null).0;
1145                 match core::str::from_utf8(bytes) {
1146                         Ok(alias) => PrintableString(alias).fmt(f)?,
1147                         Err(_) => {
1148                                 use core::fmt::Write;
1149                                 for c in bytes.iter().map(|b| *b as char) {
1150                                         // Display printable ASCII characters
1151                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1152                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1153                                         f.write_char(c)?;
1154                                 }
1155                         },
1156                 };
1157                 Ok(())
1158         }
1159 }
1160
1161 impl Writeable for NodeAlias {
1162         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1163                 self.0.write(w)
1164         }
1165 }
1166
1167 impl Readable for NodeAlias {
1168         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1169                 Ok(NodeAlias(Readable::read(r)?))
1170         }
1171 }
1172
1173 #[derive(Clone, Debug, PartialEq, Eq)]
1174 /// Details about a node in the network, known from the network announcement.
1175 pub struct NodeInfo {
1176         /// All valid channels a node has announced
1177         pub channels: Vec<u64>,
1178         /// More information about a node from node_announcement.
1179         /// Optional because we store a Node entry after learning about it from
1180         /// a channel announcement, but before receiving a node announcement.
1181         pub announcement_info: Option<NodeAnnouncementInfo>
1182 }
1183
1184 impl fmt::Display for NodeInfo {
1185         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1186                 write!(f, " channels: {:?}, announcement_info: {:?}",
1187                         &self.channels[..], self.announcement_info)?;
1188                 Ok(())
1189         }
1190 }
1191
1192 impl Writeable for NodeInfo {
1193         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1194                 write_tlv_fields!(writer, {
1195                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1196                         (2, self.announcement_info, option),
1197                         (4, self.channels, vec_type),
1198                 });
1199                 Ok(())
1200         }
1201 }
1202
1203 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1204 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1205 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1206 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1207 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1208
1209 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1210         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1211                 match crate::util::ser::Readable::read(reader) {
1212                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1213                         Err(_) => {
1214                                 copy(reader, &mut sink()).unwrap();
1215                                 return Ok(None)
1216                         },
1217                 };
1218         }
1219 }
1220
1221 impl Readable for NodeInfo {
1222         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1223                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1224                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1225                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1226                 // requires additional complexity and lookups during routing, it ends up being a
1227                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1228                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1229                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1230                 _init_tlv_field_var!(channels, vec_type);
1231
1232                 read_tlv_fields!(reader, {
1233                         (0, _lowest_inbound_channel_fees, option),
1234                         (2, announcement_info_wrap, upgradable_option),
1235                         (4, channels, vec_type),
1236                 });
1237
1238                 Ok(NodeInfo {
1239                         announcement_info: announcement_info_wrap.map(|w| w.0),
1240                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1241                 })
1242         }
1243 }
1244
1245 const SERIALIZATION_VERSION: u8 = 1;
1246 const MIN_SERIALIZATION_VERSION: u8 = 1;
1247
1248 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1249         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1250                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1251
1252                 self.genesis_hash.write(writer)?;
1253                 let channels = self.channels.read().unwrap();
1254                 (channels.len() as u64).write(writer)?;
1255                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1256                         (*chan_id).write(writer)?;
1257                         chan_info.write(writer)?;
1258                 }
1259                 let nodes = self.nodes.read().unwrap();
1260                 (nodes.len() as u64).write(writer)?;
1261                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1262                         node_id.write(writer)?;
1263                         node_info.write(writer)?;
1264                 }
1265
1266                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1267                 write_tlv_fields!(writer, {
1268                         (1, last_rapid_gossip_sync_timestamp, option),
1269                 });
1270                 Ok(())
1271         }
1272 }
1273
1274 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1275         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1276                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1277
1278                 let genesis_hash: BlockHash = Readable::read(reader)?;
1279                 let channels_count: u64 = Readable::read(reader)?;
1280                 let mut channels = IndexedMap::new();
1281                 for _ in 0..channels_count {
1282                         let chan_id: u64 = Readable::read(reader)?;
1283                         let chan_info = Readable::read(reader)?;
1284                         channels.insert(chan_id, chan_info);
1285                 }
1286                 let nodes_count: u64 = Readable::read(reader)?;
1287                 let mut nodes = IndexedMap::new();
1288                 for _ in 0..nodes_count {
1289                         let node_id = Readable::read(reader)?;
1290                         let node_info = Readable::read(reader)?;
1291                         nodes.insert(node_id, node_info);
1292                 }
1293
1294                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1295                 read_tlv_fields!(reader, {
1296                         (1, last_rapid_gossip_sync_timestamp, option),
1297                 });
1298
1299                 Ok(NetworkGraph {
1300                         secp_ctx: Secp256k1::verification_only(),
1301                         genesis_hash,
1302                         logger,
1303                         channels: RwLock::new(channels),
1304                         nodes: RwLock::new(nodes),
1305                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1306                         removed_nodes: Mutex::new(HashMap::new()),
1307                         removed_channels: Mutex::new(HashMap::new()),
1308                         pending_checks: utxo::PendingChecks::new(),
1309                 })
1310         }
1311 }
1312
1313 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1314         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1315                 writeln!(f, "Network map\n[Channels]")?;
1316                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1317                         writeln!(f, " {}: {}", key, val)?;
1318                 }
1319                 writeln!(f, "[Nodes]")?;
1320                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1321                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1322                 }
1323                 Ok(())
1324         }
1325 }
1326
1327 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1328 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1329         fn eq(&self, other: &Self) -> bool {
1330                 self.genesis_hash == other.genesis_hash &&
1331                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1332                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1333         }
1334 }
1335
1336 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1337         /// Creates a new, empty, network graph.
1338         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1339                 Self {
1340                         secp_ctx: Secp256k1::verification_only(),
1341                         genesis_hash: genesis_block(network).header.block_hash(),
1342                         logger,
1343                         channels: RwLock::new(IndexedMap::new()),
1344                         nodes: RwLock::new(IndexedMap::new()),
1345                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1346                         removed_channels: Mutex::new(HashMap::new()),
1347                         removed_nodes: Mutex::new(HashMap::new()),
1348                         pending_checks: utxo::PendingChecks::new(),
1349                 }
1350         }
1351
1352         /// Returns a read-only view of the network graph.
1353         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1354                 let channels = self.channels.read().unwrap();
1355                 let nodes = self.nodes.read().unwrap();
1356                 ReadOnlyNetworkGraph {
1357                         channels,
1358                         nodes,
1359                 }
1360         }
1361
1362         /// The unix timestamp provided by the most recent rapid gossip sync.
1363         /// It will be set by the rapid sync process after every sync completion.
1364         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1365                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1366         }
1367
1368         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1369         /// This should be done automatically by the rapid sync process after every sync completion.
1370         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1371                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1372         }
1373
1374         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1375         /// purposes.
1376         #[cfg(test)]
1377         pub fn clear_nodes_announcement_info(&self) {
1378                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1379                         node.1.announcement_info = None;
1380                 }
1381         }
1382
1383         /// For an already known node (from channel announcements), update its stored properties from a
1384         /// given node announcement.
1385         ///
1386         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1387         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1388         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1389         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1390                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1391                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1392                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1393         }
1394
1395         /// For an already known node (from channel announcements), update its stored properties from a
1396         /// given node announcement without verifying the associated signatures. Because we aren't
1397         /// given the associated signatures here we cannot relay the node announcement to any of our
1398         /// peers.
1399         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1400                 self.update_node_from_announcement_intern(msg, None)
1401         }
1402
1403         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1404                 let mut nodes = self.nodes.write().unwrap();
1405                 match nodes.get_mut(&msg.node_id) {
1406                         None => {
1407                                 core::mem::drop(nodes);
1408                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1409                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1410                         },
1411                         Some(node) => {
1412                                 if let Some(node_info) = node.announcement_info.as_ref() {
1413                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1414                                         // updates to ensure you always have the latest one, only vaguely suggesting
1415                                         // that it be at least the current time.
1416                                         if node_info.last_update  > msg.timestamp {
1417                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1418                                         } else if node_info.last_update  == msg.timestamp {
1419                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1420                                         }
1421                                 }
1422
1423                                 let should_relay =
1424                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1425                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1426                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1427                                 node.announcement_info = Some(NodeAnnouncementInfo {
1428                                         features: msg.features.clone(),
1429                                         last_update: msg.timestamp,
1430                                         rgb: msg.rgb,
1431                                         alias: msg.alias,
1432                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1433                                 });
1434
1435                                 Ok(())
1436                         }
1437                 }
1438         }
1439
1440         /// Store or update channel info from a channel announcement.
1441         ///
1442         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1443         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1444         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1445         ///
1446         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1447         /// the corresponding UTXO exists on chain and is correctly-formatted.
1448         pub fn update_channel_from_announcement<U: Deref>(
1449                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1450         ) -> Result<(), LightningError>
1451         where
1452                 U::Target: UtxoLookup,
1453         {
1454                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1455                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1456                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1457                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1458                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1459                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1460         }
1461
1462         /// Store or update channel info from a channel announcement without verifying the associated
1463         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1464         /// channel announcement to any of our peers.
1465         ///
1466         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1467         /// the corresponding UTXO exists on chain and is correctly-formatted.
1468         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1469                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1470         ) -> Result<(), LightningError>
1471         where
1472                 U::Target: UtxoLookup,
1473         {
1474                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1475         }
1476
1477         /// Update channel from partial announcement data received via rapid gossip sync
1478         ///
1479         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1480         /// rapid gossip sync server)
1481         ///
1482         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1483         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1484                 if node_id_1 == node_id_2 {
1485                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1486                 };
1487
1488                 let node_1 = NodeId::from_pubkey(&node_id_1);
1489                 let node_2 = NodeId::from_pubkey(&node_id_2);
1490                 let channel_info = ChannelInfo {
1491                         features,
1492                         node_one: node_1.clone(),
1493                         one_to_two: None,
1494                         node_two: node_2.clone(),
1495                         two_to_one: None,
1496                         capacity_sats: None,
1497                         announcement_message: None,
1498                         announcement_received_time: timestamp,
1499                 };
1500
1501                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1502         }
1503
1504         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1505                 let mut channels = self.channels.write().unwrap();
1506                 let mut nodes = self.nodes.write().unwrap();
1507
1508                 let node_id_a = channel_info.node_one.clone();
1509                 let node_id_b = channel_info.node_two.clone();
1510
1511                 match channels.entry(short_channel_id) {
1512                         IndexedMapEntry::Occupied(mut entry) => {
1513                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1514                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1515                                 //exactly how...
1516                                 if utxo_value.is_some() {
1517                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1518                                         // only sometimes returns results. In any case remove the previous entry. Note
1519                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1520                                         // do that because
1521                                         // a) we don't *require* a UTXO provider that always returns results.
1522                                         // b) we don't track UTXOs of channels we know about and remove them if they
1523                                         //    get reorg'd out.
1524                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1525                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1526                                         *entry.get_mut() = channel_info;
1527                                 } else {
1528                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1529                                 }
1530                         },
1531                         IndexedMapEntry::Vacant(entry) => {
1532                                 entry.insert(channel_info);
1533                         }
1534                 };
1535
1536                 for current_node_id in [node_id_a, node_id_b].iter() {
1537                         match nodes.entry(current_node_id.clone()) {
1538                                 IndexedMapEntry::Occupied(node_entry) => {
1539                                         node_entry.into_mut().channels.push(short_channel_id);
1540                                 },
1541                                 IndexedMapEntry::Vacant(node_entry) => {
1542                                         node_entry.insert(NodeInfo {
1543                                                 channels: vec!(short_channel_id),
1544                                                 announcement_info: None,
1545                                         });
1546                                 }
1547                         };
1548                 };
1549
1550                 Ok(())
1551         }
1552
1553         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1554                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1555         ) -> Result<(), LightningError>
1556         where
1557                 U::Target: UtxoLookup,
1558         {
1559                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1560                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1561                 }
1562
1563                 {
1564                         let channels = self.channels.read().unwrap();
1565
1566                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1567                                 if chan.capacity_sats.is_some() {
1568                                         // If we'd previously looked up the channel on-chain and checked the script
1569                                         // against what appears on-chain, ignore the duplicate announcement.
1570                                         //
1571                                         // Because a reorg could replace one channel with another at the same SCID, if
1572                                         // the channel appears to be different, we re-validate. This doesn't expose us
1573                                         // to any more DoS risk than not, as a peer can always flood us with
1574                                         // randomly-generated SCID values anyway.
1575                                         //
1576                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1577                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1578                                         // if the peers on the channel changed anyway.
1579                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1580                                                 return Err(LightningError {
1581                                                         err: "Already have chain-validated channel".to_owned(),
1582                                                         action: ErrorAction::IgnoreDuplicateGossip
1583                                                 });
1584                                         }
1585                                 } else if utxo_lookup.is_none() {
1586                                         // Similarly, if we can't check the chain right now anyway, ignore the
1587                                         // duplicate announcement without bothering to take the channels write lock.
1588                                         return Err(LightningError {
1589                                                 err: "Already have non-chain-validated channel".to_owned(),
1590                                                 action: ErrorAction::IgnoreDuplicateGossip
1591                                         });
1592                                 }
1593                         }
1594                 }
1595
1596                 {
1597                         let removed_channels = self.removed_channels.lock().unwrap();
1598                         let removed_nodes = self.removed_nodes.lock().unwrap();
1599                         if removed_channels.contains_key(&msg.short_channel_id) ||
1600                                 removed_nodes.contains_key(&msg.node_id_1) ||
1601                                 removed_nodes.contains_key(&msg.node_id_2) {
1602                                 return Err(LightningError{
1603                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1604                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1605                         }
1606                 }
1607
1608                 let utxo_value = self.pending_checks.check_channel_announcement(
1609                         utxo_lookup, msg, full_msg)?;
1610
1611                 #[allow(unused_mut, unused_assignments)]
1612                 let mut announcement_received_time = 0;
1613                 #[cfg(feature = "std")]
1614                 {
1615                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1616                 }
1617
1618                 let chan_info = ChannelInfo {
1619                         features: msg.features.clone(),
1620                         node_one: msg.node_id_1,
1621                         one_to_two: None,
1622                         node_two: msg.node_id_2,
1623                         two_to_one: None,
1624                         capacity_sats: utxo_value,
1625                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1626                                 { full_msg.cloned() } else { None },
1627                         announcement_received_time,
1628                 };
1629
1630                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1631
1632                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1633                 Ok(())
1634         }
1635
1636         /// Marks a channel in the graph as failed permanently.
1637         ///
1638         /// The channel and any node for which this was their last channel are removed from the graph.
1639         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1640                 #[cfg(feature = "std")]
1641                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1642                 #[cfg(not(feature = "std"))]
1643                 let current_time_unix = None;
1644
1645                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1646         }
1647
1648         /// Marks a channel in the graph as failed permanently.
1649         ///
1650         /// The channel and any node for which this was their last channel are removed from the graph.
1651         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1652                 let mut channels = self.channels.write().unwrap();
1653                 if let Some(chan) = channels.remove(&short_channel_id) {
1654                         let mut nodes = self.nodes.write().unwrap();
1655                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1656                         Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1657                 }
1658         }
1659
1660         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1661         /// from local storage.
1662         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1663                 #[cfg(feature = "std")]
1664                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1665                 #[cfg(not(feature = "std"))]
1666                 let current_time_unix = None;
1667
1668                 let node_id = NodeId::from_pubkey(node_id);
1669                 let mut channels = self.channels.write().unwrap();
1670                 let mut nodes = self.nodes.write().unwrap();
1671                 let mut removed_channels = self.removed_channels.lock().unwrap();
1672                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1673
1674                 if let Some(node) = nodes.remove(&node_id) {
1675                         for scid in node.channels.iter() {
1676                                 if let Some(chan_info) = channels.remove(scid) {
1677                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1678                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1679                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1680                                                         *scid != *chan_id
1681                                                 });
1682                                                 if other_node_entry.get().channels.is_empty() {
1683                                                         other_node_entry.remove_entry();
1684                                                 }
1685                                         }
1686                                         removed_channels.insert(*scid, current_time_unix);
1687                                 }
1688                         }
1689                         removed_nodes.insert(node_id, current_time_unix);
1690                 }
1691         }
1692
1693         #[cfg(feature = "std")]
1694         /// Removes information about channels that we haven't heard any updates about in some time.
1695         /// This can be used regularly to prune the network graph of channels that likely no longer
1696         /// exist.
1697         ///
1698         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1699         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1700         /// pruning occur for updates which are at least two weeks old, which we implement here.
1701         ///
1702         /// Note that for users of the `lightning-background-processor` crate this method may be
1703         /// automatically called regularly for you.
1704         ///
1705         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1706         /// in the map for a while so that these can be resynced from gossip in the future.
1707         ///
1708         /// This method is only available with the `std` feature. See
1709         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1710         pub fn remove_stale_channels_and_tracking(&self) {
1711                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1712                 self.remove_stale_channels_and_tracking_with_time(time);
1713         }
1714
1715         /// Removes information about channels that we haven't heard any updates about in some time.
1716         /// This can be used regularly to prune the network graph of channels that likely no longer
1717         /// exist.
1718         ///
1719         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1720         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1721         /// pruning occur for updates which are at least two weeks old, which we implement here.
1722         ///
1723         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1724         /// in the map for a while so that these can be resynced from gossip in the future.
1725         ///
1726         /// This function takes the current unix time as an argument. For users with the `std` feature
1727         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1728         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1729                 let mut channels = self.channels.write().unwrap();
1730                 // Time out if we haven't received an update in at least 14 days.
1731                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1732                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1733                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1734                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1735                 // time.
1736                 let mut scids_to_remove = Vec::new();
1737                 for (scid, info) in channels.unordered_iter_mut() {
1738                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1739                                 info.one_to_two = None;
1740                         }
1741                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1742                                 info.two_to_one = None;
1743                         }
1744                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1745                                 // We check the announcement_received_time here to ensure we don't drop
1746                                 // announcements that we just received and are just waiting for our peer to send a
1747                                 // channel_update for.
1748                                 if info.announcement_received_time < min_time_unix as u64 {
1749                                         scids_to_remove.push(*scid);
1750                                 }
1751                         }
1752                 }
1753                 if !scids_to_remove.is_empty() {
1754                         let mut nodes = self.nodes.write().unwrap();
1755                         for scid in scids_to_remove {
1756                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1757                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1758                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1759                         }
1760                 }
1761
1762                 let should_keep_tracking = |time: &mut Option<u64>| {
1763                         if let Some(time) = time {
1764                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1765                         } else {
1766                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1767                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1768                                 // of this function.
1769                                 #[cfg(feature = "no-std")]
1770                                 {
1771                                         let mut tracked_time = Some(current_time_unix);
1772                                         core::mem::swap(time, &mut tracked_time);
1773                                         return true;
1774                                 }
1775                                 #[allow(unreachable_code)]
1776                                 false
1777                         }};
1778
1779                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1780                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1781         }
1782
1783         /// For an already known (from announcement) channel, update info about one of the directions
1784         /// of the channel.
1785         ///
1786         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1787         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1788         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1789         ///
1790         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1791         /// materially in the future will be rejected.
1792         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1793                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1794         }
1795
1796         /// For an already known (from announcement) channel, update info about one of the directions
1797         /// of the channel without verifying the associated signatures. Because we aren't given the
1798         /// associated signatures here we cannot relay the channel update to any of our peers.
1799         ///
1800         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1801         /// materially in the future will be rejected.
1802         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1803                 self.update_channel_intern(msg, None, None)
1804         }
1805
1806         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1807                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1808
1809                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1810                 {
1811                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1812                         // disable this check during tests!
1813                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1814                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1815                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1816                         }
1817                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1818                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1819                         }
1820                 }
1821
1822                 let mut channels = self.channels.write().unwrap();
1823                 match channels.get_mut(&msg.short_channel_id) {
1824                         None => {
1825                                 core::mem::drop(channels);
1826                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1827                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1828                         },
1829                         Some(channel) => {
1830                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1831                                         return Err(LightningError{err:
1832                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1833                                                 action: ErrorAction::IgnoreError});
1834                                 }
1835
1836                                 if let Some(capacity_sats) = channel.capacity_sats {
1837                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1838                                         // Don't query UTXO set here to reduce DoS risks.
1839                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1840                                                 return Err(LightningError{err:
1841                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1842                                                         action: ErrorAction::IgnoreError});
1843                                         }
1844                                 }
1845                                 macro_rules! check_update_latest {
1846                                         ($target: expr) => {
1847                                                 if let Some(existing_chan_info) = $target.as_ref() {
1848                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1849                                                         // order updates to ensure you always have the latest one, only
1850                                                         // suggesting  that it be at least the current time. For
1851                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1852                                                         // pruning based on the timestamp field being more than two weeks old,
1853                                                         // but only in the non-normative section.
1854                                                         if existing_chan_info.last_update > msg.timestamp {
1855                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1856                                                         } else if existing_chan_info.last_update == msg.timestamp {
1857                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1858                                                         }
1859                                                 }
1860                                         }
1861                                 }
1862
1863                                 macro_rules! get_new_channel_info {
1864                                         () => { {
1865                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1866                                                         { full_msg.cloned() } else { None };
1867
1868                                                 let updated_channel_update_info = ChannelUpdateInfo {
1869                                                         enabled: chan_enabled,
1870                                                         last_update: msg.timestamp,
1871                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1872                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1873                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1874                                                         fees: RoutingFees {
1875                                                                 base_msat: msg.fee_base_msat,
1876                                                                 proportional_millionths: msg.fee_proportional_millionths,
1877                                                         },
1878                                                         last_update_message
1879                                                 };
1880                                                 Some(updated_channel_update_info)
1881                                         } }
1882                                 }
1883
1884                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1885                                 if msg.flags & 1 == 1 {
1886                                         check_update_latest!(channel.two_to_one);
1887                                         if let Some(sig) = sig {
1888                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1889                                                         err: "Couldn't parse source node pubkey".to_owned(),
1890                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1891                                                 })?, "channel_update");
1892                                         }
1893                                         channel.two_to_one = get_new_channel_info!();
1894                                 } else {
1895                                         check_update_latest!(channel.one_to_two);
1896                                         if let Some(sig) = sig {
1897                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1898                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1899                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1900                                                 })?, "channel_update");
1901                                         }
1902                                         channel.one_to_two = get_new_channel_info!();
1903                                 }
1904                         }
1905                 }
1906
1907                 Ok(())
1908         }
1909
1910         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1911                 macro_rules! remove_from_node {
1912                         ($node_id: expr) => {
1913                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1914                                         entry.get_mut().channels.retain(|chan_id| {
1915                                                 short_channel_id != *chan_id
1916                                         });
1917                                         if entry.get().channels.is_empty() {
1918                                                 entry.remove_entry();
1919                                         }
1920                                 } else {
1921                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1922                                 }
1923                         }
1924                 }
1925
1926                 remove_from_node!(chan.node_one);
1927                 remove_from_node!(chan.node_two);
1928         }
1929 }
1930
1931 impl ReadOnlyNetworkGraph<'_> {
1932         /// Returns all known valid channels' short ids along with announced channel info.
1933         ///
1934         /// This is not exported to bindings users because we don't want to return lifetime'd references
1935         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1936                 &*self.channels
1937         }
1938
1939         /// Returns information on a channel with the given id.
1940         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1941                 self.channels.get(&short_channel_id)
1942         }
1943
1944         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1945         /// Returns the list of channels in the graph
1946         pub fn list_channels(&self) -> Vec<u64> {
1947                 self.channels.unordered_keys().map(|c| *c).collect()
1948         }
1949
1950         /// Returns all known nodes' public keys along with announced node info.
1951         ///
1952         /// This is not exported to bindings users because we don't want to return lifetime'd references
1953         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1954                 &*self.nodes
1955         }
1956
1957         /// Returns information on a node with the given id.
1958         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1959                 self.nodes.get(node_id)
1960         }
1961
1962         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1963         /// Returns the list of nodes in the graph
1964         pub fn list_nodes(&self) -> Vec<NodeId> {
1965                 self.nodes.unordered_keys().map(|n| *n).collect()
1966         }
1967
1968         /// Get network addresses by node id.
1969         /// Returns None if the requested node is completely unknown,
1970         /// or if node announcement for the node was never received.
1971         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1972                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1973                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1974         }
1975 }
1976
1977 #[cfg(test)]
1978 pub(crate) mod tests {
1979         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
1980         use crate::ln::channelmanager;
1981         use crate::ln::chan_utils::make_funding_redeemscript;
1982         #[cfg(feature = "std")]
1983         use crate::ln::features::InitFeatures;
1984         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1985         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1986         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1987                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1988                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1989         use crate::util::config::UserConfig;
1990         use crate::util::test_utils;
1991         use crate::util::ser::{ReadableArgs, Readable, Writeable};
1992         use crate::util::scid_utils::scid_from_parts;
1993
1994         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1995         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1996
1997         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1998         use bitcoin::hashes::Hash;
1999         use bitcoin::network::constants::Network;
2000         use bitcoin::blockdata::constants::genesis_block;
2001         use bitcoin::blockdata::script::Script;
2002         use bitcoin::blockdata::transaction::TxOut;
2003
2004         use hex;
2005
2006         use bitcoin::secp256k1::{PublicKey, SecretKey};
2007         use bitcoin::secp256k1::{All, Secp256k1};
2008
2009         use crate::io;
2010         use bitcoin::secp256k1;
2011         use crate::prelude::*;
2012         use crate::sync::Arc;
2013
2014         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2015                 let logger = Arc::new(test_utils::TestLogger::new());
2016                 NetworkGraph::new(Network::Testnet, logger)
2017         }
2018
2019         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2020                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2021                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2022         ) {
2023                 let secp_ctx = Secp256k1::new();
2024                 let logger = Arc::new(test_utils::TestLogger::new());
2025                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2026                 (secp_ctx, gossip_sync)
2027         }
2028
2029         #[test]
2030         #[cfg(feature = "std")]
2031         fn request_full_sync_finite_times() {
2032                 let network_graph = create_network_graph();
2033                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2034                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2035
2036                 assert!(gossip_sync.should_request_full_sync(&node_id));
2037                 assert!(gossip_sync.should_request_full_sync(&node_id));
2038                 assert!(gossip_sync.should_request_full_sync(&node_id));
2039                 assert!(gossip_sync.should_request_full_sync(&node_id));
2040                 assert!(gossip_sync.should_request_full_sync(&node_id));
2041                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2042         }
2043
2044         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2045                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2046                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2047                         features: channelmanager::provided_node_features(&UserConfig::default()),
2048                         timestamp: 100,
2049                         node_id,
2050                         rgb: [0; 3],
2051                         alias: NodeAlias([0; 32]),
2052                         addresses: Vec::new(),
2053                         excess_address_data: Vec::new(),
2054                         excess_data: Vec::new(),
2055                 };
2056                 f(&mut unsigned_announcement);
2057                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2058                 NodeAnnouncement {
2059                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2060                         contents: unsigned_announcement
2061                 }
2062         }
2063
2064         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2065                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2066                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2067                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2068                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2069
2070                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2071                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2072                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2073                         short_channel_id: 0,
2074                         node_id_1: NodeId::from_pubkey(&node_id_1),
2075                         node_id_2: NodeId::from_pubkey(&node_id_2),
2076                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2077                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2078                         excess_data: Vec::new(),
2079                 };
2080                 f(&mut unsigned_announcement);
2081                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2082                 ChannelAnnouncement {
2083                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2084                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2085                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2086                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2087                         contents: unsigned_announcement,
2088                 }
2089         }
2090
2091         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2092                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2093                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2094                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2095                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2096         }
2097
2098         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2099                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2100                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2101                         short_channel_id: 0,
2102                         timestamp: 100,
2103                         flags: 0,
2104                         cltv_expiry_delta: 144,
2105                         htlc_minimum_msat: 1_000_000,
2106                         htlc_maximum_msat: 1_000_000,
2107                         fee_base_msat: 10_000,
2108                         fee_proportional_millionths: 20,
2109                         excess_data: Vec::new()
2110                 };
2111                 f(&mut unsigned_channel_update);
2112                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2113                 ChannelUpdate {
2114                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2115                         contents: unsigned_channel_update
2116                 }
2117         }
2118
2119         #[test]
2120         fn handling_node_announcements() {
2121                 let network_graph = create_network_graph();
2122                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2123
2124                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2125                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2126                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2127
2128                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2129                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2130                         Ok(_) => panic!(),
2131                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2132                 };
2133
2134                 {
2135                         // Announce a channel to add a corresponding node.
2136                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2137                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2138                                 Ok(res) => assert!(res),
2139                                 _ => panic!()
2140                         };
2141                 }
2142
2143                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2144                         Ok(res) => assert!(res),
2145                         Err(_) => panic!()
2146                 };
2147
2148                 let fake_msghash = hash_to_message!(&zero_hash);
2149                 match gossip_sync.handle_node_announcement(
2150                         &NodeAnnouncement {
2151                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2152                                 contents: valid_announcement.contents.clone()
2153                 }) {
2154                         Ok(_) => panic!(),
2155                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2156                 };
2157
2158                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2159                         unsigned_announcement.timestamp += 1000;
2160                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2161                 }, node_1_privkey, &secp_ctx);
2162                 // Return false because contains excess data.
2163                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2164                         Ok(res) => assert!(!res),
2165                         Err(_) => panic!()
2166                 };
2167
2168                 // Even though previous announcement was not relayed further, we still accepted it,
2169                 // so we now won't accept announcements before the previous one.
2170                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2171                         unsigned_announcement.timestamp += 1000 - 10;
2172                 }, node_1_privkey, &secp_ctx);
2173                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2174                         Ok(_) => panic!(),
2175                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2176                 };
2177         }
2178
2179         #[test]
2180         fn handling_channel_announcements() {
2181                 let secp_ctx = Secp256k1::new();
2182                 let logger = test_utils::TestLogger::new();
2183
2184                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2185                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2186
2187                 let good_script = get_channel_script(&secp_ctx);
2188                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2189
2190                 // Test if the UTXO lookups were not supported
2191                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2192                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2193                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2194                         Ok(res) => assert!(res),
2195                         _ => panic!()
2196                 };
2197
2198                 {
2199                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2200                                 None => panic!(),
2201                                 Some(_) => ()
2202                         };
2203                 }
2204
2205                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2206                 // drop new one on the floor, since we can't see any changes.
2207                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2208                         Ok(_) => panic!(),
2209                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2210                 };
2211
2212                 // Test if an associated transaction were not on-chain (or not confirmed).
2213                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2214                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2215                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2216                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2217
2218                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2219                         unsigned_announcement.short_channel_id += 1;
2220                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2221                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2222                         Ok(_) => panic!(),
2223                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2224                 };
2225
2226                 // Now test if the transaction is found in the UTXO set and the script is correct.
2227                 *chain_source.utxo_ret.lock().unwrap() =
2228                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2229                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2230                         unsigned_announcement.short_channel_id += 2;
2231                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2232                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2233                         Ok(res) => assert!(res),
2234                         _ => panic!()
2235                 };
2236
2237                 {
2238                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2239                                 None => panic!(),
2240                                 Some(_) => ()
2241                         };
2242                 }
2243
2244                 // If we receive announcement for the same channel, once we've validated it against the
2245                 // chain, we simply ignore all new (duplicate) announcements.
2246                 *chain_source.utxo_ret.lock().unwrap() =
2247                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2248                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2249                         Ok(_) => panic!(),
2250                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2251                 };
2252
2253                 #[cfg(feature = "std")]
2254                 {
2255                         use std::time::{SystemTime, UNIX_EPOCH};
2256
2257                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2258                         // Mark a node as permanently failed so it's tracked as removed.
2259                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2260
2261                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2262                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2263                                 unsigned_announcement.short_channel_id += 3;
2264                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2265                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2266                                 Ok(_) => panic!(),
2267                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2268                         }
2269
2270                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2271
2272                         // The above channel announcement should be handled as per normal now.
2273                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2274                                 Ok(res) => assert!(res),
2275                                 _ => panic!()
2276                         }
2277                 }
2278
2279                 // Don't relay valid channels with excess data
2280                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2281                         unsigned_announcement.short_channel_id += 4;
2282                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2283                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2284                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2285                         Ok(res) => assert!(!res),
2286                         _ => panic!()
2287                 };
2288
2289                 let mut invalid_sig_announcement = valid_announcement.clone();
2290                 invalid_sig_announcement.contents.excess_data = Vec::new();
2291                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2292                         Ok(_) => panic!(),
2293                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2294                 };
2295
2296                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2297                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2298                         Ok(_) => panic!(),
2299                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2300                 };
2301         }
2302
2303         #[test]
2304         fn handling_channel_update() {
2305                 let secp_ctx = Secp256k1::new();
2306                 let logger = test_utils::TestLogger::new();
2307                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2308                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2309                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2310
2311                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2312                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2313
2314                 let amount_sats = 1000_000;
2315                 let short_channel_id;
2316
2317                 {
2318                         // Announce a channel we will update
2319                         let good_script = get_channel_script(&secp_ctx);
2320                         *chain_source.utxo_ret.lock().unwrap() =
2321                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2322
2323                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2324                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2325                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2326                                 Ok(_) => (),
2327                                 Err(_) => panic!()
2328                         };
2329
2330                 }
2331
2332                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2333                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2334                         Ok(res) => assert!(res),
2335                         _ => panic!(),
2336                 };
2337
2338                 {
2339                         match network_graph.read_only().channels().get(&short_channel_id) {
2340                                 None => panic!(),
2341                                 Some(channel_info) => {
2342                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2343                                         assert!(channel_info.two_to_one.is_none());
2344                                 }
2345                         };
2346                 }
2347
2348                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2349                         unsigned_channel_update.timestamp += 100;
2350                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2351                 }, node_1_privkey, &secp_ctx);
2352                 // Return false because contains excess data
2353                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2354                         Ok(res) => assert!(!res),
2355                         _ => panic!()
2356                 };
2357
2358                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2359                         unsigned_channel_update.timestamp += 110;
2360                         unsigned_channel_update.short_channel_id += 1;
2361                 }, node_1_privkey, &secp_ctx);
2362                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2363                         Ok(_) => panic!(),
2364                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2365                 };
2366
2367                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2368                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2369                         unsigned_channel_update.timestamp += 110;
2370                 }, node_1_privkey, &secp_ctx);
2371                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2372                         Ok(_) => panic!(),
2373                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2374                 };
2375
2376                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2377                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2378                         unsigned_channel_update.timestamp += 110;
2379                 }, node_1_privkey, &secp_ctx);
2380                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2381                         Ok(_) => panic!(),
2382                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2383                 };
2384
2385                 // Even though previous update was not relayed further, we still accepted it,
2386                 // so we now won't accept update before the previous one.
2387                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2388                         unsigned_channel_update.timestamp += 100;
2389                 }, node_1_privkey, &secp_ctx);
2390                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2391                         Ok(_) => panic!(),
2392                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2393                 };
2394
2395                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2396                         unsigned_channel_update.timestamp += 500;
2397                 }, node_1_privkey, &secp_ctx);
2398                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2399                 let fake_msghash = hash_to_message!(&zero_hash);
2400                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2401                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2402                         Ok(_) => panic!(),
2403                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2404                 };
2405         }
2406
2407         #[test]
2408         fn handling_network_update() {
2409                 let logger = test_utils::TestLogger::new();
2410                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2411                 let secp_ctx = Secp256k1::new();
2412
2413                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2414                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2415                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2416
2417                 {
2418                         // There is no nodes in the table at the beginning.
2419                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2420                 }
2421
2422                 let short_channel_id;
2423                 {
2424                         // Announce a channel we will update
2425                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2426                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2427                         let chain_source: Option<&test_utils::TestChainSource> = None;
2428                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2429                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2430
2431                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2432                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2433
2434                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2435                                 msg: valid_channel_update,
2436                         });
2437
2438                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2439                 }
2440
2441                 // Non-permanent failure doesn't touch the channel at all
2442                 {
2443                         match network_graph.read_only().channels().get(&short_channel_id) {
2444                                 None => panic!(),
2445                                 Some(channel_info) => {
2446                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2447                                 }
2448                         };
2449
2450                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2451                                 short_channel_id,
2452                                 is_permanent: false,
2453                         });
2454
2455                         match network_graph.read_only().channels().get(&short_channel_id) {
2456                                 None => panic!(),
2457                                 Some(channel_info) => {
2458                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2459                                 }
2460                         };
2461                 }
2462
2463                 // Permanent closing deletes a channel
2464                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2465                         short_channel_id,
2466                         is_permanent: true,
2467                 });
2468
2469                 assert_eq!(network_graph.read_only().channels().len(), 0);
2470                 // Nodes are also deleted because there are no associated channels anymore
2471                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2472
2473                 {
2474                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2475                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2476
2477                         // Announce a channel to test permanent node failure
2478                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2479                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2480                         let chain_source: Option<&test_utils::TestChainSource> = None;
2481                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2482                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2483
2484                         // Non-permanent node failure does not delete any nodes or channels
2485                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2486                                 node_id: node_2_id,
2487                                 is_permanent: false,
2488                         });
2489
2490                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2491                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2492
2493                         // Permanent node failure deletes node and its channels
2494                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2495                                 node_id: node_2_id,
2496                                 is_permanent: true,
2497                         });
2498
2499                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2500                         // Channels are also deleted because the associated node has been deleted
2501                         assert_eq!(network_graph.read_only().channels().len(), 0);
2502                 }
2503         }
2504
2505         #[test]
2506         fn test_channel_timeouts() {
2507                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2508                 let logger = test_utils::TestLogger::new();
2509                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2510                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2511                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2512                 let secp_ctx = Secp256k1::new();
2513
2514                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2515                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2516
2517                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2518                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2519                 let chain_source: Option<&test_utils::TestChainSource> = None;
2520                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2521                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2522
2523                 // Submit two channel updates for each channel direction (update.flags bit).
2524                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2525                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2526                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2527
2528                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2529                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2530                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2531
2532                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2533                 assert_eq!(network_graph.read_only().channels().len(), 1);
2534                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2535
2536                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2537                 #[cfg(not(feature = "std"))] {
2538                         // Make sure removed channels are tracked.
2539                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2540                 }
2541                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2542                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2543
2544                 #[cfg(feature = "std")]
2545                 {
2546                         // In std mode, a further check is performed before fully removing the channel -
2547                         // the channel_announcement must have been received at least two weeks ago. We
2548                         // fudge that here by indicating the time has jumped two weeks.
2549                         assert_eq!(network_graph.read_only().channels().len(), 1);
2550                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2551
2552                         // Note that the directional channel information will have been removed already..
2553                         // We want to check that this will work even if *one* of the channel updates is recent,
2554                         // so we should add it with a recent timestamp.
2555                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2556                         use std::time::{SystemTime, UNIX_EPOCH};
2557                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2558                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2559                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2560                         }, node_1_privkey, &secp_ctx);
2561                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2562                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2563                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2564                         // Make sure removed channels are tracked.
2565                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2566                         // Provide a later time so that sufficient time has passed
2567                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2568                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2569                 }
2570
2571                 assert_eq!(network_graph.read_only().channels().len(), 0);
2572                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2573                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2574
2575                 #[cfg(feature = "std")]
2576                 {
2577                         use std::time::{SystemTime, UNIX_EPOCH};
2578
2579                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2580
2581                         // Clear tracked nodes and channels for clean slate
2582                         network_graph.removed_channels.lock().unwrap().clear();
2583                         network_graph.removed_nodes.lock().unwrap().clear();
2584
2585                         // Add a channel and nodes from channel announcement. So our network graph will
2586                         // now only consist of two nodes and one channel between them.
2587                         assert!(network_graph.update_channel_from_announcement(
2588                                 &valid_channel_announcement, &chain_source).is_ok());
2589
2590                         // Mark the channel as permanently failed. This will also remove the two nodes
2591                         // and all of the entries will be tracked as removed.
2592                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2593
2594                         // Should not remove from tracking if insufficient time has passed
2595                         network_graph.remove_stale_channels_and_tracking_with_time(
2596                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2597                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2598
2599                         // Provide a later time so that sufficient time has passed
2600                         network_graph.remove_stale_channels_and_tracking_with_time(
2601                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2602                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2603                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2604                 }
2605
2606                 #[cfg(not(feature = "std"))]
2607                 {
2608                         // When we don't have access to the system clock, the time we started tracking removal will only
2609                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2610                         // only if sufficient time has passed after that first call, will the next call remove it from
2611                         // tracking.
2612                         let removal_time = 1664619654;
2613
2614                         // Clear removed nodes and channels for clean slate
2615                         network_graph.removed_channels.lock().unwrap().clear();
2616                         network_graph.removed_nodes.lock().unwrap().clear();
2617
2618                         // Add a channel and nodes from channel announcement. So our network graph will
2619                         // now only consist of two nodes and one channel between them.
2620                         assert!(network_graph.update_channel_from_announcement(
2621                                 &valid_channel_announcement, &chain_source).is_ok());
2622
2623                         // Mark the channel as permanently failed. This will also remove the two nodes
2624                         // and all of the entries will be tracked as removed.
2625                         network_graph.channel_failed_permanent(short_channel_id);
2626
2627                         // The first time we call the following, the channel will have a removal time assigned.
2628                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2629                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2630
2631                         // Provide a later time so that sufficient time has passed
2632                         network_graph.remove_stale_channels_and_tracking_with_time(
2633                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2634                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2635                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2636                 }
2637         }
2638
2639         #[test]
2640         fn getting_next_channel_announcements() {
2641                 let network_graph = create_network_graph();
2642                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2643                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2644                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2645
2646                 // Channels were not announced yet.
2647                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2648                 assert!(channels_with_announcements.is_none());
2649
2650                 let short_channel_id;
2651                 {
2652                         // Announce a channel we will update
2653                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2654                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2655                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2656                                 Ok(_) => (),
2657                                 Err(_) => panic!()
2658                         };
2659                 }
2660
2661                 // Contains initial channel announcement now.
2662                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2663                 if let Some(channel_announcements) = channels_with_announcements {
2664                         let (_, ref update_1, ref update_2) = channel_announcements;
2665                         assert_eq!(update_1, &None);
2666                         assert_eq!(update_2, &None);
2667                 } else {
2668                         panic!();
2669                 }
2670
2671                 {
2672                         // Valid channel update
2673                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2674                                 unsigned_channel_update.timestamp = 101;
2675                         }, node_1_privkey, &secp_ctx);
2676                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2677                                 Ok(_) => (),
2678                                 Err(_) => panic!()
2679                         };
2680                 }
2681
2682                 // Now contains an initial announcement and an update.
2683                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2684                 if let Some(channel_announcements) = channels_with_announcements {
2685                         let (_, ref update_1, ref update_2) = channel_announcements;
2686                         assert_ne!(update_1, &None);
2687                         assert_eq!(update_2, &None);
2688                 } else {
2689                         panic!();
2690                 }
2691
2692                 {
2693                         // Channel update with excess data.
2694                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2695                                 unsigned_channel_update.timestamp = 102;
2696                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2697                         }, node_1_privkey, &secp_ctx);
2698                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2699                                 Ok(_) => (),
2700                                 Err(_) => panic!()
2701                         };
2702                 }
2703
2704                 // Test that announcements with excess data won't be returned
2705                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2706                 if let Some(channel_announcements) = channels_with_announcements {
2707                         let (_, ref update_1, ref update_2) = channel_announcements;
2708                         assert_eq!(update_1, &None);
2709                         assert_eq!(update_2, &None);
2710                 } else {
2711                         panic!();
2712                 }
2713
2714                 // Further starting point have no channels after it
2715                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2716                 assert!(channels_with_announcements.is_none());
2717         }
2718
2719         #[test]
2720         fn getting_next_node_announcements() {
2721                 let network_graph = create_network_graph();
2722                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2723                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2724                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2725                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2726
2727                 // No nodes yet.
2728                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2729                 assert!(next_announcements.is_none());
2730
2731                 {
2732                         // Announce a channel to add 2 nodes
2733                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2734                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2735                                 Ok(_) => (),
2736                                 Err(_) => panic!()
2737                         };
2738                 }
2739
2740                 // Nodes were never announced
2741                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2742                 assert!(next_announcements.is_none());
2743
2744                 {
2745                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2746                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2747                                 Ok(_) => (),
2748                                 Err(_) => panic!()
2749                         };
2750
2751                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2752                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2753                                 Ok(_) => (),
2754                                 Err(_) => panic!()
2755                         };
2756                 }
2757
2758                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2759                 assert!(next_announcements.is_some());
2760
2761                 // Skip the first node.
2762                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2763                 assert!(next_announcements.is_some());
2764
2765                 {
2766                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2767                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2768                                 unsigned_announcement.timestamp += 10;
2769                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2770                         }, node_2_privkey, &secp_ctx);
2771                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2772                                 Ok(res) => assert!(!res),
2773                                 Err(_) => panic!()
2774                         };
2775                 }
2776
2777                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2778                 assert!(next_announcements.is_none());
2779         }
2780
2781         #[test]
2782         fn network_graph_serialization() {
2783                 let network_graph = create_network_graph();
2784                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2785
2786                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2787                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2788
2789                 // Announce a channel to add a corresponding node.
2790                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2791                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2792                         Ok(res) => assert!(res),
2793                         _ => panic!()
2794                 };
2795
2796                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2797                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2798                         Ok(_) => (),
2799                         Err(_) => panic!()
2800                 };
2801
2802                 let mut w = test_utils::TestVecWriter(Vec::new());
2803                 assert!(!network_graph.read_only().nodes().is_empty());
2804                 assert!(!network_graph.read_only().channels().is_empty());
2805                 network_graph.write(&mut w).unwrap();
2806
2807                 let logger = Arc::new(test_utils::TestLogger::new());
2808                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2809         }
2810
2811         #[test]
2812         fn network_graph_tlv_serialization() {
2813                 let network_graph = create_network_graph();
2814                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2815
2816                 let mut w = test_utils::TestVecWriter(Vec::new());
2817                 network_graph.write(&mut w).unwrap();
2818
2819                 let logger = Arc::new(test_utils::TestLogger::new());
2820                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2821                 assert!(reassembled_network_graph == network_graph);
2822                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2823         }
2824
2825         #[test]
2826         #[cfg(feature = "std")]
2827         fn calling_sync_routing_table() {
2828                 use std::time::{SystemTime, UNIX_EPOCH};
2829                 use crate::ln::msgs::Init;
2830
2831                 let network_graph = create_network_graph();
2832                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2833                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2834                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2835
2836                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2837
2838                 // It should ignore if gossip_queries feature is not enabled
2839                 {
2840                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2841                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2842                         let events = gossip_sync.get_and_clear_pending_msg_events();
2843                         assert_eq!(events.len(), 0);
2844                 }
2845
2846                 // It should send a gossip_timestamp_filter with the correct information
2847                 {
2848                         let mut features = InitFeatures::empty();
2849                         features.set_gossip_queries_optional();
2850                         let init_msg = Init { features, remote_network_address: None };
2851                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2852                         let events = gossip_sync.get_and_clear_pending_msg_events();
2853                         assert_eq!(events.len(), 1);
2854                         match &events[0] {
2855                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2856                                         assert_eq!(node_id, &node_id_1);
2857                                         assert_eq!(msg.chain_hash, chain_hash);
2858                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2859                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2860                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2861                                         assert_eq!(msg.timestamp_range, u32::max_value());
2862                                 },
2863                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2864                         };
2865                 }
2866         }
2867
2868         #[test]
2869         fn handling_query_channel_range() {
2870                 let network_graph = create_network_graph();
2871                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2872
2873                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2874                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2875                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2876                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2877
2878                 let mut scids: Vec<u64> = vec![
2879                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2880                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2881                 ];
2882
2883                 // used for testing multipart reply across blocks
2884                 for block in 100000..=108001 {
2885                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2886                 }
2887
2888                 // used for testing resumption on same block
2889                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2890
2891                 for scid in scids {
2892                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2893                                 unsigned_announcement.short_channel_id = scid;
2894                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2895                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2896                                 Ok(_) => (),
2897                                 _ => panic!()
2898                         };
2899                 }
2900
2901                 // Error when number_of_blocks=0
2902                 do_handling_query_channel_range(
2903                         &gossip_sync,
2904                         &node_id_2,
2905                         QueryChannelRange {
2906                                 chain_hash: chain_hash.clone(),
2907                                 first_blocknum: 0,
2908                                 number_of_blocks: 0,
2909                         },
2910                         false,
2911                         vec![ReplyChannelRange {
2912                                 chain_hash: chain_hash.clone(),
2913                                 first_blocknum: 0,
2914                                 number_of_blocks: 0,
2915                                 sync_complete: true,
2916                                 short_channel_ids: vec![]
2917                         }]
2918                 );
2919
2920                 // Error when wrong chain
2921                 do_handling_query_channel_range(
2922                         &gossip_sync,
2923                         &node_id_2,
2924                         QueryChannelRange {
2925                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2926                                 first_blocknum: 0,
2927                                 number_of_blocks: 0xffff_ffff,
2928                         },
2929                         false,
2930                         vec![ReplyChannelRange {
2931                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2932                                 first_blocknum: 0,
2933                                 number_of_blocks: 0xffff_ffff,
2934                                 sync_complete: true,
2935                                 short_channel_ids: vec![],
2936                         }]
2937                 );
2938
2939                 // Error when first_blocknum > 0xffffff
2940                 do_handling_query_channel_range(
2941                         &gossip_sync,
2942                         &node_id_2,
2943                         QueryChannelRange {
2944                                 chain_hash: chain_hash.clone(),
2945                                 first_blocknum: 0x01000000,
2946                                 number_of_blocks: 0xffff_ffff,
2947                         },
2948                         false,
2949                         vec![ReplyChannelRange {
2950                                 chain_hash: chain_hash.clone(),
2951                                 first_blocknum: 0x01000000,
2952                                 number_of_blocks: 0xffff_ffff,
2953                                 sync_complete: true,
2954                                 short_channel_ids: vec![]
2955                         }]
2956                 );
2957
2958                 // Empty reply when max valid SCID block num
2959                 do_handling_query_channel_range(
2960                         &gossip_sync,
2961                         &node_id_2,
2962                         QueryChannelRange {
2963                                 chain_hash: chain_hash.clone(),
2964                                 first_blocknum: 0xffffff,
2965                                 number_of_blocks: 1,
2966                         },
2967                         true,
2968                         vec![
2969                                 ReplyChannelRange {
2970                                         chain_hash: chain_hash.clone(),
2971                                         first_blocknum: 0xffffff,
2972                                         number_of_blocks: 1,
2973                                         sync_complete: true,
2974                                         short_channel_ids: vec![]
2975                                 },
2976                         ]
2977                 );
2978
2979                 // No results in valid query range
2980                 do_handling_query_channel_range(
2981                         &gossip_sync,
2982                         &node_id_2,
2983                         QueryChannelRange {
2984                                 chain_hash: chain_hash.clone(),
2985                                 first_blocknum: 1000,
2986                                 number_of_blocks: 1000,
2987                         },
2988                         true,
2989                         vec![
2990                                 ReplyChannelRange {
2991                                         chain_hash: chain_hash.clone(),
2992                                         first_blocknum: 1000,
2993                                         number_of_blocks: 1000,
2994                                         sync_complete: true,
2995                                         short_channel_ids: vec![],
2996                                 }
2997                         ]
2998                 );
2999
3000                 // Overflow first_blocknum + number_of_blocks
3001                 do_handling_query_channel_range(
3002                         &gossip_sync,
3003                         &node_id_2,
3004                         QueryChannelRange {
3005                                 chain_hash: chain_hash.clone(),
3006                                 first_blocknum: 0xfe0000,
3007                                 number_of_blocks: 0xffffffff,
3008                         },
3009                         true,
3010                         vec![
3011                                 ReplyChannelRange {
3012                                         chain_hash: chain_hash.clone(),
3013                                         first_blocknum: 0xfe0000,
3014                                         number_of_blocks: 0xffffffff - 0xfe0000,
3015                                         sync_complete: true,
3016                                         short_channel_ids: vec![
3017                                                 0xfffffe_ffffff_ffff, // max
3018                                         ]
3019                                 }
3020                         ]
3021                 );
3022
3023                 // Single block exactly full
3024                 do_handling_query_channel_range(
3025                         &gossip_sync,
3026                         &node_id_2,
3027                         QueryChannelRange {
3028                                 chain_hash: chain_hash.clone(),
3029                                 first_blocknum: 100000,
3030                                 number_of_blocks: 8000,
3031                         },
3032                         true,
3033                         vec![
3034                                 ReplyChannelRange {
3035                                         chain_hash: chain_hash.clone(),
3036                                         first_blocknum: 100000,
3037                                         number_of_blocks: 8000,
3038                                         sync_complete: true,
3039                                         short_channel_ids: (100000..=107999)
3040                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3041                                                 .collect(),
3042                                 },
3043                         ]
3044                 );
3045
3046                 // Multiple split on new block
3047                 do_handling_query_channel_range(
3048                         &gossip_sync,
3049                         &node_id_2,
3050                         QueryChannelRange {
3051                                 chain_hash: chain_hash.clone(),
3052                                 first_blocknum: 100000,
3053                                 number_of_blocks: 8001,
3054                         },
3055                         true,
3056                         vec![
3057                                 ReplyChannelRange {
3058                                         chain_hash: chain_hash.clone(),
3059                                         first_blocknum: 100000,
3060                                         number_of_blocks: 7999,
3061                                         sync_complete: false,
3062                                         short_channel_ids: (100000..=107999)
3063                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3064                                                 .collect(),
3065                                 },
3066                                 ReplyChannelRange {
3067                                         chain_hash: chain_hash.clone(),
3068                                         first_blocknum: 107999,
3069                                         number_of_blocks: 2,
3070                                         sync_complete: true,
3071                                         short_channel_ids: vec![
3072                                                 scid_from_parts(108000, 0, 0).unwrap(),
3073                                         ],
3074                                 }
3075                         ]
3076                 );
3077
3078                 // Multiple split on same block
3079                 do_handling_query_channel_range(
3080                         &gossip_sync,
3081                         &node_id_2,
3082                         QueryChannelRange {
3083                                 chain_hash: chain_hash.clone(),
3084                                 first_blocknum: 100002,
3085                                 number_of_blocks: 8000,
3086                         },
3087                         true,
3088                         vec![
3089                                 ReplyChannelRange {
3090                                         chain_hash: chain_hash.clone(),
3091                                         first_blocknum: 100002,
3092                                         number_of_blocks: 7999,
3093                                         sync_complete: false,
3094                                         short_channel_ids: (100002..=108001)
3095                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3096                                                 .collect(),
3097                                 },
3098                                 ReplyChannelRange {
3099                                         chain_hash: chain_hash.clone(),
3100                                         first_blocknum: 108001,
3101                                         number_of_blocks: 1,
3102                                         sync_complete: true,
3103                                         short_channel_ids: vec![
3104                                                 scid_from_parts(108001, 1, 0).unwrap(),
3105                                         ],
3106                                 }
3107                         ]
3108                 );
3109         }
3110
3111         fn do_handling_query_channel_range(
3112                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3113                 test_node_id: &PublicKey,
3114                 msg: QueryChannelRange,
3115                 expected_ok: bool,
3116                 expected_replies: Vec<ReplyChannelRange>
3117         ) {
3118                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3119                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3120                 let query_end_blocknum = msg.end_blocknum();
3121                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3122
3123                 if expected_ok {
3124                         assert!(result.is_ok());
3125                 } else {
3126                         assert!(result.is_err());
3127                 }
3128
3129                 let events = gossip_sync.get_and_clear_pending_msg_events();
3130                 assert_eq!(events.len(), expected_replies.len());
3131
3132                 for i in 0..events.len() {
3133                         let expected_reply = &expected_replies[i];
3134                         match &events[i] {
3135                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3136                                         assert_eq!(node_id, test_node_id);
3137                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3138                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3139                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3140                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3141                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3142
3143                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3144                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3145                                         assert!(msg.first_blocknum >= max_firstblocknum);
3146                                         max_firstblocknum = msg.first_blocknum;
3147                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3148
3149                                         // Check that the last block count is >= the query's end_blocknum
3150                                         if i == events.len() - 1 {
3151                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3152                                         }
3153                                 },
3154                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3155                         }
3156                 }
3157         }
3158
3159         #[test]
3160         fn handling_query_short_channel_ids() {
3161                 let network_graph = create_network_graph();
3162                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3163                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3164                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3165
3166                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3167
3168                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3169                         chain_hash,
3170                         short_channel_ids: vec![0x0003e8_000000_0000],
3171                 });
3172                 assert!(result.is_err());
3173         }
3174
3175         #[test]
3176         fn displays_node_alias() {
3177                 let format_str_alias = |alias: &str| {
3178                         let mut bytes = [0u8; 32];
3179                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3180                         format!("{}", NodeAlias(bytes))
3181                 };
3182
3183                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3184                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3185                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3186
3187                 let format_bytes_alias = |alias: &[u8]| {
3188                         let mut bytes = [0u8; 32];
3189                         bytes[..alias.len()].copy_from_slice(alias);
3190                         format!("{}", NodeAlias(bytes))
3191                 };
3192
3193                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3194                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3195                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3196         }
3197
3198         #[test]
3199         fn channel_info_is_readable() {
3200                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3201                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3202                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3203                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3204                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3205
3206                 // 1. Test encoding/decoding of ChannelUpdateInfo
3207                 let chan_update_info = ChannelUpdateInfo {
3208                         last_update: 23,
3209                         enabled: true,
3210                         cltv_expiry_delta: 42,
3211                         htlc_minimum_msat: 1234,
3212                         htlc_maximum_msat: 5678,
3213                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3214                         last_update_message: None,
3215                 };
3216
3217                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3218                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3219
3220                 // First make sure we can read ChannelUpdateInfos we just wrote
3221                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3222                 assert_eq!(chan_update_info, read_chan_update_info);
3223
3224                 // Check the serialization hasn't changed.
3225                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3226                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3227
3228                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3229                 // or the ChannelUpdate enclosed with `last_update_message`.
3230                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3231                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3232                 assert!(read_chan_update_info_res.is_err());
3233
3234                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3235                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3236                 assert!(read_chan_update_info_res.is_err());
3237
3238                 // 2. Test encoding/decoding of ChannelInfo
3239                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3240                 let chan_info_none_updates = ChannelInfo {
3241                         features: channelmanager::provided_channel_features(&config),
3242                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3243                         one_to_two: None,
3244                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3245                         two_to_one: None,
3246                         capacity_sats: None,
3247                         announcement_message: None,
3248                         announcement_received_time: 87654,
3249                 };
3250
3251                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3252                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3253
3254                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3255                 assert_eq!(chan_info_none_updates, read_chan_info);
3256
3257                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3258                 let chan_info_some_updates = ChannelInfo {
3259                         features: channelmanager::provided_channel_features(&config),
3260                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3261                         one_to_two: Some(chan_update_info.clone()),
3262                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3263                         two_to_one: Some(chan_update_info.clone()),
3264                         capacity_sats: None,
3265                         announcement_message: None,
3266                         announcement_received_time: 87654,
3267                 };
3268
3269                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3270                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3271
3272                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3273                 assert_eq!(chan_info_some_updates, read_chan_info);
3274
3275                 // Check the serialization hasn't changed.
3276                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3277                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3278
3279                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3280                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3281                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3282                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3283                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3284                 assert_eq!(read_chan_info.one_to_two, None);
3285                 assert_eq!(read_chan_info.two_to_one, None);
3286
3287                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3288                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3289                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3290                 assert_eq!(read_chan_info.one_to_two, None);
3291                 assert_eq!(read_chan_info.two_to_one, None);
3292         }
3293
3294         #[test]
3295         fn node_info_is_readable() {
3296                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3297                 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3298                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3299                 let valid_node_ann_info = NodeAnnouncementInfo {
3300                         features: channelmanager::provided_node_features(&UserConfig::default()),
3301                         last_update: 0,
3302                         rgb: [0u8; 3],
3303                         alias: NodeAlias([0u8; 32]),
3304                         announcement_message: Some(announcement_message)
3305                 };
3306
3307                 let mut encoded_valid_node_ann_info = Vec::new();
3308                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3309                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3310                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3311                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3312
3313                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3314                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3315                 assert!(read_invalid_node_ann_info_res.is_err());
3316
3317                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3318                 let valid_node_info = NodeInfo {
3319                         channels: Vec::new(),
3320                         announcement_info: Some(valid_node_ann_info),
3321                 };
3322
3323                 let mut encoded_valid_node_info = Vec::new();
3324                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3325                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3326                 assert_eq!(read_valid_node_info, valid_node_info);
3327
3328                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3329                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3330                 assert_eq!(read_invalid_node_info.announcement_info, None);
3331         }
3332
3333         #[test]
3334         fn test_node_info_keeps_compatibility() {
3335                 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3336                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3337                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3338                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3339                 assert!(ann_info_with_addresses.addresses().is_empty());
3340         }
3341 }
3342
3343 #[cfg(all(test, feature = "_bench_unstable"))]
3344 mod benches {
3345         use super::*;
3346
3347         use test::Bencher;
3348         use std::io::Read;
3349
3350         #[bench]
3351         fn read_network_graph(bench: &mut Bencher) {
3352                 let logger = crate::util::test_utils::TestLogger::new();
3353                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3354                 let mut v = Vec::new();
3355                 d.read_to_end(&mut v).unwrap();
3356                 bench.iter(|| {
3357                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3358                 });
3359         }
3360
3361         #[bench]
3362         fn write_network_graph(bench: &mut Bencher) {
3363                 let logger = crate::util::test_utils::TestLogger::new();
3364                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3365                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3366                 bench.iter(|| {
3367                         let _ = net_graph.encode();
3368                 });
3369         }
3370 }