Forward gossip messages which were verified asynchronously
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
22 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
23 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
24 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
25 use crate::ln::msgs;
26 use crate::routing::utxo::{self, UtxoLookup};
27 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
28 use crate::util::logger::{Logger, Level};
29 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
31 use crate::util::string::PrintableString;
32 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
33
34 use crate::io;
35 use crate::io_extras::{copy, sink};
36 use crate::prelude::*;
37 use core::{cmp, fmt};
38 use crate::sync::{RwLock, RwLockReadGuard};
39 #[cfg(feature = "std")]
40 use core::sync::atomic::{AtomicUsize, Ordering};
41 use crate::sync::Mutex;
42 use core::ops::{Bound, Deref};
43
44 #[cfg(feature = "std")]
45 use std::time::{SystemTime, UNIX_EPOCH};
46
47 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
48 /// suggestion.
49 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
50
51 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
52 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83 impl fmt::Display for NodeId {
84         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85                 write!(f, "{}", log_bytes!(self.0))
86         }
87 }
88
89 impl core::hash::Hash for NodeId {
90         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
91                 self.0.hash(hasher);
92         }
93 }
94
95 impl Eq for NodeId {}
96
97 impl PartialEq for NodeId {
98         fn eq(&self, other: &Self) -> bool {
99                 self.0[..] == other.0[..]
100         }
101 }
102
103 impl cmp::PartialOrd for NodeId {
104         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
105                 Some(self.cmp(other))
106         }
107 }
108
109 impl Ord for NodeId {
110         fn cmp(&self, other: &Self) -> cmp::Ordering {
111                 self.0[..].cmp(&other.0[..])
112         }
113 }
114
115 impl Writeable for NodeId {
116         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
117                 writer.write_all(&self.0)?;
118                 Ok(())
119         }
120 }
121
122 impl Readable for NodeId {
123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
124                 let mut buf = [0; PUBLIC_KEY_SIZE];
125                 reader.read_exact(&mut buf)?;
126                 Ok(Self(buf))
127         }
128 }
129
130 /// Represents the network as nodes and channels between them
131 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
132         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
133         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
134         genesis_hash: BlockHash,
135         logger: L,
136         // Lock order: channels -> nodes
137         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
138         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
139         // Lock order: removed_channels -> removed_nodes
140         //
141         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
142         // of `std::time::Instant`s for a few reasons:
143         //   * We want it to be possible to do tracking in no-std environments where we can compare
144         //     a provided current UNIX timestamp with the time at which we started tracking.
145         //   * In the future, if we decide to persist these maps, they will already be serializable.
146         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
147         //     environment should be practical over the time period we are considering (on the order of a
148         //     week).
149         //
150         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
151         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
152         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
153         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
154         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
155         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
156         /// that once some time passes, we can potentially resync it from gossip again.
157         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
158         /// Announcement messages which are awaiting an on-chain lookup to be processed.
159         pub(super) pending_checks: utxo::PendingChecks,
160 }
161
162 /// A read-only view of [`NetworkGraph`].
163 pub struct ReadOnlyNetworkGraph<'a> {
164         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
165         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
166 }
167
168 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
169 /// return packet by a node along the route. See [BOLT #4] for details.
170 ///
171 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
172 #[derive(Clone, Debug, PartialEq, Eq)]
173 pub enum NetworkUpdate {
174         /// An error indicating a `channel_update` messages should be applied via
175         /// [`NetworkGraph::update_channel`].
176         ChannelUpdateMessage {
177                 /// The update to apply via [`NetworkGraph::update_channel`].
178                 msg: ChannelUpdate,
179         },
180         /// An error indicating that a channel failed to route a payment, which should be applied via
181         /// [`NetworkGraph::channel_failed`].
182         ChannelFailure {
183                 /// The short channel id of the closed channel.
184                 short_channel_id: u64,
185                 /// Whether the channel should be permanently removed or temporarily disabled until a new
186                 /// `channel_update` message is received.
187                 is_permanent: bool,
188         },
189         /// An error indicating that a node failed to route a payment, which should be applied via
190         /// [`NetworkGraph::node_failed_permanent`] if permanent.
191         NodeFailure {
192                 /// The node id of the failed node.
193                 node_id: PublicKey,
194                 /// Whether the node should be permanently removed from consideration or can be restored
195                 /// when a new `channel_update` message is received.
196                 is_permanent: bool,
197         }
198 }
199
200 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
201         (0, ChannelUpdateMessage) => {
202                 (0, msg, required),
203         },
204         (2, ChannelFailure) => {
205                 (0, short_channel_id, required),
206                 (2, is_permanent, required),
207         },
208         (4, NodeFailure) => {
209                 (0, node_id, required),
210                 (2, is_permanent, required),
211         },
212 );
213
214 /// Receives and validates network updates from peers,
215 /// stores authentic and relevant data as a network graph.
216 /// This network graph is then used for routing payments.
217 /// Provides interface to help with initial routing sync by
218 /// serving historical announcements.
219 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
220 where U::Target: UtxoLookup, L::Target: Logger
221 {
222         network_graph: G,
223         utxo_lookup: Option<U>,
224         #[cfg(feature = "std")]
225         full_syncs_requested: AtomicUsize,
226         pending_events: Mutex<Vec<MessageSendEvent>>,
227         logger: L,
228 }
229
230 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
231 where U::Target: UtxoLookup, L::Target: Logger
232 {
233         /// Creates a new tracker of the actual state of the network of channels and nodes,
234         /// assuming an existing Network Graph.
235         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
236         /// correct, and the announcement is signed with channel owners' keys.
237         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
238                 P2PGossipSync {
239                         network_graph,
240                         #[cfg(feature = "std")]
241                         full_syncs_requested: AtomicUsize::new(0),
242                         utxo_lookup,
243                         pending_events: Mutex::new(vec![]),
244                         logger,
245                 }
246         }
247
248         /// Adds a provider used to check new announcements. Does not affect
249         /// existing announcements unless they are updated.
250         /// Add, update or remove the provider would replace the current one.
251         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
252                 self.utxo_lookup = utxo_lookup;
253         }
254
255         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
256         /// [`P2PGossipSync::new`].
257         ///
258         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
259         pub fn network_graph(&self) -> &G {
260                 &self.network_graph
261         }
262
263         #[cfg(feature = "std")]
264         /// Returns true when a full routing table sync should be performed with a peer.
265         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
266                 //TODO: Determine whether to request a full sync based on the network map.
267                 const FULL_SYNCS_TO_REQUEST: usize = 5;
268                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
269                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
270                         true
271                 } else {
272                         false
273                 }
274         }
275
276         /// Used to broadcast forward gossip messages which were validated async.
277         ///
278         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
279         /// data.
280         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
281                 match &mut ev {
282                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
283                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
284                                 if update_msg.as_ref()
285                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
286                                 {
287                                         *update_msg = None;
288                                 }
289                         },
290                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
291                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
292                         },
293                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
294                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
295                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
296                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
297                                 {
298                                         return;
299                                 }
300                         },
301                         _ => return,
302                 }
303                 self.pending_events.lock().unwrap().push(ev);
304         }
305 }
306
307 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
308         /// Handles any network updates originating from [`Event`]s.
309         ///
310         /// [`Event`]: crate::util::events::Event
311         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
312                 match *network_update {
313                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
314                                 let short_channel_id = msg.contents.short_channel_id;
315                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
316                                 let status = if is_enabled { "enabled" } else { "disabled" };
317                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
318                                 let _ = self.update_channel(msg);
319                         },
320                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
321                                 let action = if is_permanent { "Removing" } else { "Disabling" };
322                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
323                                 self.channel_failed(short_channel_id, is_permanent);
324                         },
325                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
326                                 if is_permanent {
327                                         log_debug!(self.logger,
328                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
329                                         self.node_failed_permanent(node_id);
330                                 };
331                         },
332                 }
333         }
334 }
335
336 macro_rules! secp_verify_sig {
337         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
338                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
339                         Ok(_) => {},
340                         Err(_) => {
341                                 return Err(LightningError {
342                                         err: format!("Invalid signature on {} message", $msg_type),
343                                         action: ErrorAction::SendWarningMessage {
344                                                 msg: msgs::WarningMessage {
345                                                         channel_id: [0; 32],
346                                                         data: format!("Invalid signature on {} message", $msg_type),
347                                                 },
348                                                 log_level: Level::Trace,
349                                         },
350                                 });
351                         },
352                 }
353         };
354 }
355
356 macro_rules! get_pubkey_from_node_id {
357         ( $node_id: expr, $msg_type: expr ) => {
358                 PublicKey::from_slice($node_id.as_slice())
359                         .map_err(|_| LightningError {
360                                 err: format!("Invalid public key on {} message", $msg_type),
361                                 action: ErrorAction::SendWarningMessage {
362                                         msg: msgs::WarningMessage {
363                                                 channel_id: [0; 32],
364                                                 data: format!("Invalid public key on {} message", $msg_type),
365                                         },
366                                         log_level: Level::Trace
367                                 }
368                         })?
369         }
370 }
371
372 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
373 where U::Target: UtxoLookup, L::Target: Logger
374 {
375         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
376                 self.network_graph.update_node_from_announcement(msg)?;
377                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
378                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
379                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
380         }
381
382         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
383                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
384                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
385                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
386         }
387
388         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
389                 self.network_graph.update_channel(msg)?;
390                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
391         }
392
393         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
394                 let channels = self.network_graph.channels.read().unwrap();
395                 for (_, ref chan) in channels.range(starting_point..) {
396                         if chan.announcement_message.is_some() {
397                                 let chan_announcement = chan.announcement_message.clone().unwrap();
398                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
399                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
400                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
401                                         one_to_two_announcement = one_to_two.last_update_message.clone();
402                                 }
403                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
404                                         two_to_one_announcement = two_to_one.last_update_message.clone();
405                                 }
406                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
407                         } else {
408                                 // TODO: We may end up sending un-announced channel_updates if we are sending
409                                 // initial sync data while receiving announce/updates for this channel.
410                         }
411                 }
412                 None
413         }
414
415         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
416                 let nodes = self.network_graph.nodes.read().unwrap();
417                 let iter = if let Some(node_id) = starting_point {
418                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
419                         } else {
420                                 nodes.range(..)
421                         };
422                 for (_, ref node) in iter {
423                         if let Some(node_info) = node.announcement_info.as_ref() {
424                                 if let Some(msg) = node_info.announcement_message.clone() {
425                                         return Some(msg);
426                                 }
427                         }
428                 }
429                 None
430         }
431
432         /// Initiates a stateless sync of routing gossip information with a peer
433         /// using gossip_queries. The default strategy used by this implementation
434         /// is to sync the full block range with several peers.
435         ///
436         /// We should expect one or more reply_channel_range messages in response
437         /// to our query_channel_range. Each reply will enqueue a query_scid message
438         /// to request gossip messages for each channel. The sync is considered complete
439         /// when the final reply_scids_end message is received, though we are not
440         /// tracking this directly.
441         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
442                 // We will only perform a sync with peers that support gossip_queries.
443                 if !init_msg.features.supports_gossip_queries() {
444                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
445                         // channels with peers even without being able to exchange gossip.
446                         return Ok(());
447                 }
448
449                 // The lightning network's gossip sync system is completely broken in numerous ways.
450                 //
451                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
452                 // to do a full sync from the first few peers we connect to, and then receive gossip
453                 // updates from all our peers normally.
454                 //
455                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
456                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
457                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
458                 // seen.
459                 //
460                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
461                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
462                 // channel data which you are missing. Except there was no way at all to identify which
463                 // `channel_update`s you were missing, so you still had to request everything, just in a
464                 // very complicated way with some queries instead of just getting the dump.
465                 //
466                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
467                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
468                 // relying on it useless.
469                 //
470                 // After gossip queries were introduced, support for receiving a full gossip table dump on
471                 // connection was removed from several nodes, making it impossible to get a full sync
472                 // without using the "gossip queries" messages.
473                 //
474                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
475                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
476                 // message, as the name implies, tells the peer to not forward any gossip messages with a
477                 // timestamp older than a given value (not the time the peer received the filter, but the
478                 // timestamp in the update message, which is often hours behind when the peer received the
479                 // message).
480                 //
481                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
482                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
483                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
484                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
485                 // will simply not forward any new updates they see to you which were generated some time
486                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
487                 // ago), you will always get the full routing graph from all your peers.
488                 //
489                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
490                 // propagated some time after it was generated, and, worse, often disable gossiping with
491                 // several peers after their first connection. The second behavior can cause gossip to not
492                 // propagate fully if there are cuts in the gossiping subgraph.
493                 //
494                 // In an attempt to cut a middle ground between always fetching the full graph from all of
495                 // our peers and never receiving gossip from peers at all, we send all of our peers a
496                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
497                 //
498                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
499                 #[allow(unused_mut, unused_assignments)]
500                 let mut gossip_start_time = 0;
501                 #[cfg(feature = "std")]
502                 {
503                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
504                         if self.should_request_full_sync(&their_node_id) {
505                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
506                         } else {
507                                 gossip_start_time -= 60 * 60; // an hour ago
508                         }
509                 }
510
511                 let mut pending_events = self.pending_events.lock().unwrap();
512                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
513                         node_id: their_node_id.clone(),
514                         msg: GossipTimestampFilter {
515                                 chain_hash: self.network_graph.genesis_hash,
516                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
517                                 timestamp_range: u32::max_value(),
518                         },
519                 });
520                 Ok(())
521         }
522
523         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
524                 // We don't make queries, so should never receive replies. If, in the future, the set
525                 // reconciliation extensions to gossip queries become broadly supported, we should revert
526                 // this code to its state pre-0.0.106.
527                 Ok(())
528         }
529
530         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
531                 // We don't make queries, so should never receive replies. If, in the future, the set
532                 // reconciliation extensions to gossip queries become broadly supported, we should revert
533                 // this code to its state pre-0.0.106.
534                 Ok(())
535         }
536
537         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
538         /// are in the specified block range. Due to message size limits, large range
539         /// queries may result in several reply messages. This implementation enqueues
540         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
541         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
542         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
543         /// memory constrained systems.
544         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
545                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
546
547                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
548
549                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
550                 // If so, we manually cap the ending block to avoid this overflow.
551                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
552
553                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
554                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
555                         let mut pending_events = self.pending_events.lock().unwrap();
556                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
557                                 node_id: their_node_id.clone(),
558                                 msg: ReplyChannelRange {
559                                         chain_hash: msg.chain_hash.clone(),
560                                         first_blocknum: msg.first_blocknum,
561                                         number_of_blocks: msg.number_of_blocks,
562                                         sync_complete: true,
563                                         short_channel_ids: vec![],
564                                 }
565                         });
566                         return Err(LightningError {
567                                 err: String::from("query_channel_range could not be processed"),
568                                 action: ErrorAction::IgnoreError,
569                         });
570                 }
571
572                 // Creates channel batches. We are not checking if the channel is routable
573                 // (has at least one update). A peer may still want to know the channel
574                 // exists even if its not yet routable.
575                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
576                 let channels = self.network_graph.channels.read().unwrap();
577                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
578                         if let Some(chan_announcement) = &chan.announcement_message {
579                                 // Construct a new batch if last one is full
580                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
581                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
582                                 }
583
584                                 let batch = batches.last_mut().unwrap();
585                                 batch.push(chan_announcement.contents.short_channel_id);
586                         }
587                 }
588                 drop(channels);
589
590                 let mut pending_events = self.pending_events.lock().unwrap();
591                 let batch_count = batches.len();
592                 let mut prev_batch_endblock = msg.first_blocknum;
593                 for (batch_index, batch) in batches.into_iter().enumerate() {
594                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
595                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
596                         //
597                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
598                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
599                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
600                         // significant diversion from the requirements set by the spec, and, in case of blocks
601                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
602                         // and *not* derive the first_blocknum from the actual first block of the reply.
603                         let first_blocknum = prev_batch_endblock;
604
605                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
606                         // fit in. Though there is no requirement that we use exactly the number of blocks its
607                         // contents are from, except for the bogus requirements c-lightning enforces, above.
608                         //
609                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
610                         // >= the query's end block. Thus, for the last reply, we calculate the difference
611                         // between the query's end block and the start of the reply.
612                         //
613                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
614                         // first_blocknum will be either msg.first_blocknum or a higher block height.
615                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
616                                 (true, msg.end_blocknum() - first_blocknum)
617                         }
618                         // Prior replies should use the number of blocks that fit into the reply. Overflow
619                         // safe since first_blocknum is always <= last SCID's block.
620                         else {
621                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
622                         };
623
624                         prev_batch_endblock = first_blocknum + number_of_blocks;
625
626                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
627                                 node_id: their_node_id.clone(),
628                                 msg: ReplyChannelRange {
629                                         chain_hash: msg.chain_hash.clone(),
630                                         first_blocknum,
631                                         number_of_blocks,
632                                         sync_complete,
633                                         short_channel_ids: batch,
634                                 }
635                         });
636                 }
637
638                 Ok(())
639         }
640
641         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
642                 // TODO
643                 Err(LightningError {
644                         err: String::from("Not implemented"),
645                         action: ErrorAction::IgnoreError,
646                 })
647         }
648
649         fn provided_node_features(&self) -> NodeFeatures {
650                 let mut features = NodeFeatures::empty();
651                 features.set_gossip_queries_optional();
652                 features
653         }
654
655         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
656                 let mut features = InitFeatures::empty();
657                 features.set_gossip_queries_optional();
658                 features
659         }
660 }
661
662 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
663 where
664         U::Target: UtxoLookup,
665         L::Target: Logger,
666 {
667         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
668                 let mut ret = Vec::new();
669                 let mut pending_events = self.pending_events.lock().unwrap();
670                 core::mem::swap(&mut ret, &mut pending_events);
671                 ret
672         }
673 }
674
675 #[derive(Clone, Debug, PartialEq, Eq)]
676 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
677 pub struct ChannelUpdateInfo {
678         /// When the last update to the channel direction was issued.
679         /// Value is opaque, as set in the announcement.
680         pub last_update: u32,
681         /// Whether the channel can be currently used for payments (in this one direction).
682         pub enabled: bool,
683         /// The difference in CLTV values that you must have when routing through this channel.
684         pub cltv_expiry_delta: u16,
685         /// The minimum value, which must be relayed to the next hop via the channel
686         pub htlc_minimum_msat: u64,
687         /// The maximum value which may be relayed to the next hop via the channel.
688         pub htlc_maximum_msat: u64,
689         /// Fees charged when the channel is used for routing
690         pub fees: RoutingFees,
691         /// Most recent update for the channel received from the network
692         /// Mostly redundant with the data we store in fields explicitly.
693         /// Everything else is useful only for sending out for initial routing sync.
694         /// Not stored if contains excess data to prevent DoS.
695         pub last_update_message: Option<ChannelUpdate>,
696 }
697
698 impl fmt::Display for ChannelUpdateInfo {
699         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
700                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
701                 Ok(())
702         }
703 }
704
705 impl Writeable for ChannelUpdateInfo {
706         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
707                 write_tlv_fields!(writer, {
708                         (0, self.last_update, required),
709                         (2, self.enabled, required),
710                         (4, self.cltv_expiry_delta, required),
711                         (6, self.htlc_minimum_msat, required),
712                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
713                         // compatibility with LDK versions prior to v0.0.110.
714                         (8, Some(self.htlc_maximum_msat), required),
715                         (10, self.fees, required),
716                         (12, self.last_update_message, required),
717                 });
718                 Ok(())
719         }
720 }
721
722 impl Readable for ChannelUpdateInfo {
723         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
724                 _init_tlv_field_var!(last_update, required);
725                 _init_tlv_field_var!(enabled, required);
726                 _init_tlv_field_var!(cltv_expiry_delta, required);
727                 _init_tlv_field_var!(htlc_minimum_msat, required);
728                 _init_tlv_field_var!(htlc_maximum_msat, option);
729                 _init_tlv_field_var!(fees, required);
730                 _init_tlv_field_var!(last_update_message, required);
731
732                 read_tlv_fields!(reader, {
733                         (0, last_update, required),
734                         (2, enabled, required),
735                         (4, cltv_expiry_delta, required),
736                         (6, htlc_minimum_msat, required),
737                         (8, htlc_maximum_msat, required),
738                         (10, fees, required),
739                         (12, last_update_message, required)
740                 });
741
742                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
743                         Ok(ChannelUpdateInfo {
744                                 last_update: _init_tlv_based_struct_field!(last_update, required),
745                                 enabled: _init_tlv_based_struct_field!(enabled, required),
746                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
747                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
748                                 htlc_maximum_msat,
749                                 fees: _init_tlv_based_struct_field!(fees, required),
750                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
751                         })
752                 } else {
753                         Err(DecodeError::InvalidValue)
754                 }
755         }
756 }
757
758 #[derive(Clone, Debug, PartialEq, Eq)]
759 /// Details about a channel (both directions).
760 /// Received within a channel announcement.
761 pub struct ChannelInfo {
762         /// Protocol features of a channel communicated during its announcement
763         pub features: ChannelFeatures,
764         /// Source node of the first direction of a channel
765         pub node_one: NodeId,
766         /// Details about the first direction of a channel
767         pub one_to_two: Option<ChannelUpdateInfo>,
768         /// Source node of the second direction of a channel
769         pub node_two: NodeId,
770         /// Details about the second direction of a channel
771         pub two_to_one: Option<ChannelUpdateInfo>,
772         /// The channel capacity as seen on-chain, if chain lookup is available.
773         pub capacity_sats: Option<u64>,
774         /// An initial announcement of the channel
775         /// Mostly redundant with the data we store in fields explicitly.
776         /// Everything else is useful only for sending out for initial routing sync.
777         /// Not stored if contains excess data to prevent DoS.
778         pub announcement_message: Option<ChannelAnnouncement>,
779         /// The timestamp when we received the announcement, if we are running with feature = "std"
780         /// (which we can probably assume we are - no-std environments probably won't have a full
781         /// network graph in memory!).
782         announcement_received_time: u64,
783 }
784
785 impl ChannelInfo {
786         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
787         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
788         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
789                 let (direction, source) = {
790                         if target == &self.node_one {
791                                 (self.two_to_one.as_ref(), &self.node_two)
792                         } else if target == &self.node_two {
793                                 (self.one_to_two.as_ref(), &self.node_one)
794                         } else {
795                                 return None;
796                         }
797                 };
798                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
799         }
800
801         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
802         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
803         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
804                 let (direction, target) = {
805                         if source == &self.node_one {
806                                 (self.one_to_two.as_ref(), &self.node_two)
807                         } else if source == &self.node_two {
808                                 (self.two_to_one.as_ref(), &self.node_one)
809                         } else {
810                                 return None;
811                         }
812                 };
813                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
814         }
815
816         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
817         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
818                 let direction = channel_flags & 1u8;
819                 if direction == 0 {
820                         self.one_to_two.as_ref()
821                 } else {
822                         self.two_to_one.as_ref()
823                 }
824         }
825 }
826
827 impl fmt::Display for ChannelInfo {
828         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
829                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
830                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
831                 Ok(())
832         }
833 }
834
835 impl Writeable for ChannelInfo {
836         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
837                 write_tlv_fields!(writer, {
838                         (0, self.features, required),
839                         (1, self.announcement_received_time, (default_value, 0)),
840                         (2, self.node_one, required),
841                         (4, self.one_to_two, required),
842                         (6, self.node_two, required),
843                         (8, self.two_to_one, required),
844                         (10, self.capacity_sats, required),
845                         (12, self.announcement_message, required),
846                 });
847                 Ok(())
848         }
849 }
850
851 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
852 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
853 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
854 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
855 // channel updates via the gossip network.
856 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
857
858 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
859         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
860                 match crate::util::ser::Readable::read(reader) {
861                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
862                         Err(DecodeError::ShortRead) => Ok(None),
863                         Err(DecodeError::InvalidValue) => Ok(None),
864                         Err(err) => Err(err),
865                 }
866         }
867 }
868
869 impl Readable for ChannelInfo {
870         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
871                 _init_tlv_field_var!(features, required);
872                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
873                 _init_tlv_field_var!(node_one, required);
874                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
875                 _init_tlv_field_var!(node_two, required);
876                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
877                 _init_tlv_field_var!(capacity_sats, required);
878                 _init_tlv_field_var!(announcement_message, required);
879                 read_tlv_fields!(reader, {
880                         (0, features, required),
881                         (1, announcement_received_time, (default_value, 0)),
882                         (2, node_one, required),
883                         (4, one_to_two_wrap, ignorable),
884                         (6, node_two, required),
885                         (8, two_to_one_wrap, ignorable),
886                         (10, capacity_sats, required),
887                         (12, announcement_message, required),
888                 });
889
890                 Ok(ChannelInfo {
891                         features: _init_tlv_based_struct_field!(features, required),
892                         node_one: _init_tlv_based_struct_field!(node_one, required),
893                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
894                         node_two: _init_tlv_based_struct_field!(node_two, required),
895                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
896                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
897                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
898                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
899                 })
900         }
901 }
902
903 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
904 /// source node to a target node.
905 #[derive(Clone)]
906 pub struct DirectedChannelInfo<'a> {
907         channel: &'a ChannelInfo,
908         direction: &'a ChannelUpdateInfo,
909         htlc_maximum_msat: u64,
910         effective_capacity: EffectiveCapacity,
911 }
912
913 impl<'a> DirectedChannelInfo<'a> {
914         #[inline]
915         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
916                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
917                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
918
919                 let effective_capacity = match capacity_msat {
920                         Some(capacity_msat) => {
921                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
922                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
923                         },
924                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
925                 };
926
927                 Self {
928                         channel, direction, htlc_maximum_msat, effective_capacity
929                 }
930         }
931
932         /// Returns information for the channel.
933         #[inline]
934         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
935
936         /// Returns the maximum HTLC amount allowed over the channel in the direction.
937         #[inline]
938         pub fn htlc_maximum_msat(&self) -> u64 {
939                 self.htlc_maximum_msat
940         }
941
942         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
943         ///
944         /// This is either the total capacity from the funding transaction, if known, or the
945         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
946         /// otherwise.
947         pub fn effective_capacity(&self) -> EffectiveCapacity {
948                 self.effective_capacity
949         }
950
951         /// Returns information for the direction.
952         #[inline]
953         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
954 }
955
956 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
957         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
958                 f.debug_struct("DirectedChannelInfo")
959                         .field("channel", &self.channel)
960                         .finish()
961         }
962 }
963
964 /// The effective capacity of a channel for routing purposes.
965 ///
966 /// While this may be smaller than the actual channel capacity, amounts greater than
967 /// [`Self::as_msat`] should not be routed through the channel.
968 #[derive(Clone, Copy, Debug)]
969 pub enum EffectiveCapacity {
970         /// The available liquidity in the channel known from being a channel counterparty, and thus a
971         /// direct hop.
972         ExactLiquidity {
973                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
974                 /// millisatoshi.
975                 liquidity_msat: u64,
976         },
977         /// The maximum HTLC amount in one direction as advertised on the gossip network.
978         MaximumHTLC {
979                 /// The maximum HTLC amount denominated in millisatoshi.
980                 amount_msat: u64,
981         },
982         /// The total capacity of the channel as determined by the funding transaction.
983         Total {
984                 /// The funding amount denominated in millisatoshi.
985                 capacity_msat: u64,
986                 /// The maximum HTLC amount denominated in millisatoshi.
987                 htlc_maximum_msat: u64
988         },
989         /// A capacity sufficient to route any payment, typically used for private channels provided by
990         /// an invoice.
991         Infinite,
992         /// A capacity that is unknown possibly because either the chain state is unavailable to know
993         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
994         Unknown,
995 }
996
997 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
998 /// use when making routing decisions.
999 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1000
1001 impl EffectiveCapacity {
1002         /// Returns the effective capacity denominated in millisatoshi.
1003         pub fn as_msat(&self) -> u64 {
1004                 match self {
1005                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1006                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1007                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1008                         EffectiveCapacity::Infinite => u64::max_value(),
1009                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1010                 }
1011         }
1012 }
1013
1014 /// Fees for routing via a given channel or a node
1015 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1016 pub struct RoutingFees {
1017         /// Flat routing fee in satoshis
1018         pub base_msat: u32,
1019         /// Liquidity-based routing fee in millionths of a routed amount.
1020         /// In other words, 10000 is 1%.
1021         pub proportional_millionths: u32,
1022 }
1023
1024 impl_writeable_tlv_based!(RoutingFees, {
1025         (0, base_msat, required),
1026         (2, proportional_millionths, required)
1027 });
1028
1029 #[derive(Clone, Debug, PartialEq, Eq)]
1030 /// Information received in the latest node_announcement from this node.
1031 pub struct NodeAnnouncementInfo {
1032         /// Protocol features the node announced support for
1033         pub features: NodeFeatures,
1034         /// When the last known update to the node state was issued.
1035         /// Value is opaque, as set in the announcement.
1036         pub last_update: u32,
1037         /// Color assigned to the node
1038         pub rgb: [u8; 3],
1039         /// Moniker assigned to the node.
1040         /// May be invalid or malicious (eg control chars),
1041         /// should not be exposed to the user.
1042         pub alias: NodeAlias,
1043         /// Internet-level addresses via which one can connect to the node
1044         pub addresses: Vec<NetAddress>,
1045         /// An initial announcement of the node
1046         /// Mostly redundant with the data we store in fields explicitly.
1047         /// Everything else is useful only for sending out for initial routing sync.
1048         /// Not stored if contains excess data to prevent DoS.
1049         pub announcement_message: Option<NodeAnnouncement>
1050 }
1051
1052 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1053         (0, features, required),
1054         (2, last_update, required),
1055         (4, rgb, required),
1056         (6, alias, required),
1057         (8, announcement_message, option),
1058         (10, addresses, vec_type),
1059 });
1060
1061 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1062 ///
1063 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1064 /// attacks. Care must be taken when processing.
1065 #[derive(Clone, Debug, PartialEq, Eq)]
1066 pub struct NodeAlias(pub [u8; 32]);
1067
1068 impl fmt::Display for NodeAlias {
1069         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1070                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1071                 let bytes = self.0.split_at(first_null).0;
1072                 match core::str::from_utf8(bytes) {
1073                         Ok(alias) => PrintableString(alias).fmt(f)?,
1074                         Err(_) => {
1075                                 use core::fmt::Write;
1076                                 for c in bytes.iter().map(|b| *b as char) {
1077                                         // Display printable ASCII characters
1078                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1079                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1080                                         f.write_char(c)?;
1081                                 }
1082                         },
1083                 };
1084                 Ok(())
1085         }
1086 }
1087
1088 impl Writeable for NodeAlias {
1089         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1090                 self.0.write(w)
1091         }
1092 }
1093
1094 impl Readable for NodeAlias {
1095         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1096                 Ok(NodeAlias(Readable::read(r)?))
1097         }
1098 }
1099
1100 #[derive(Clone, Debug, PartialEq, Eq)]
1101 /// Details about a node in the network, known from the network announcement.
1102 pub struct NodeInfo {
1103         /// All valid channels a node has announced
1104         pub channels: Vec<u64>,
1105         /// More information about a node from node_announcement.
1106         /// Optional because we store a Node entry after learning about it from
1107         /// a channel announcement, but before receiving a node announcement.
1108         pub announcement_info: Option<NodeAnnouncementInfo>
1109 }
1110
1111 impl fmt::Display for NodeInfo {
1112         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1113                 write!(f, " channels: {:?}, announcement_info: {:?}",
1114                         &self.channels[..], self.announcement_info)?;
1115                 Ok(())
1116         }
1117 }
1118
1119 impl Writeable for NodeInfo {
1120         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1121                 write_tlv_fields!(writer, {
1122                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1123                         (2, self.announcement_info, option),
1124                         (4, self.channels, vec_type),
1125                 });
1126                 Ok(())
1127         }
1128 }
1129
1130 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1131 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1132 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1133 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1134 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1135
1136 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1137         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1138                 match crate::util::ser::Readable::read(reader) {
1139                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1140                         Err(_) => {
1141                                 copy(reader, &mut sink()).unwrap();
1142                                 return Ok(None)
1143                         },
1144                 };
1145         }
1146 }
1147
1148 impl Readable for NodeInfo {
1149         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1150                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1151                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1152                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1153                 // requires additional complexity and lookups during routing, it ends up being a
1154                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1155                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1156                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1157                 _init_tlv_field_var!(channels, vec_type);
1158
1159                 read_tlv_fields!(reader, {
1160                         (0, _lowest_inbound_channel_fees, option),
1161                         (2, announcement_info_wrap, ignorable),
1162                         (4, channels, vec_type),
1163                 });
1164
1165                 Ok(NodeInfo {
1166                         announcement_info: announcement_info_wrap.map(|w| w.0),
1167                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1168                 })
1169         }
1170 }
1171
1172 const SERIALIZATION_VERSION: u8 = 1;
1173 const MIN_SERIALIZATION_VERSION: u8 = 1;
1174
1175 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1176         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1177                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1178
1179                 self.genesis_hash.write(writer)?;
1180                 let channels = self.channels.read().unwrap();
1181                 (channels.len() as u64).write(writer)?;
1182                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1183                         (*chan_id).write(writer)?;
1184                         chan_info.write(writer)?;
1185                 }
1186                 let nodes = self.nodes.read().unwrap();
1187                 (nodes.len() as u64).write(writer)?;
1188                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1189                         node_id.write(writer)?;
1190                         node_info.write(writer)?;
1191                 }
1192
1193                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1194                 write_tlv_fields!(writer, {
1195                         (1, last_rapid_gossip_sync_timestamp, option),
1196                 });
1197                 Ok(())
1198         }
1199 }
1200
1201 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1202         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1203                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1204
1205                 let genesis_hash: BlockHash = Readable::read(reader)?;
1206                 let channels_count: u64 = Readable::read(reader)?;
1207                 let mut channels = IndexedMap::new();
1208                 for _ in 0..channels_count {
1209                         let chan_id: u64 = Readable::read(reader)?;
1210                         let chan_info = Readable::read(reader)?;
1211                         channels.insert(chan_id, chan_info);
1212                 }
1213                 let nodes_count: u64 = Readable::read(reader)?;
1214                 let mut nodes = IndexedMap::new();
1215                 for _ in 0..nodes_count {
1216                         let node_id = Readable::read(reader)?;
1217                         let node_info = Readable::read(reader)?;
1218                         nodes.insert(node_id, node_info);
1219                 }
1220
1221                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1222                 read_tlv_fields!(reader, {
1223                         (1, last_rapid_gossip_sync_timestamp, option),
1224                 });
1225
1226                 Ok(NetworkGraph {
1227                         secp_ctx: Secp256k1::verification_only(),
1228                         genesis_hash,
1229                         logger,
1230                         channels: RwLock::new(channels),
1231                         nodes: RwLock::new(nodes),
1232                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1233                         removed_nodes: Mutex::new(HashMap::new()),
1234                         removed_channels: Mutex::new(HashMap::new()),
1235                         pending_checks: utxo::PendingChecks::new(),
1236                 })
1237         }
1238 }
1239
1240 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1241         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1242                 writeln!(f, "Network map\n[Channels]")?;
1243                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1244                         writeln!(f, " {}: {}", key, val)?;
1245                 }
1246                 writeln!(f, "[Nodes]")?;
1247                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1248                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1249                 }
1250                 Ok(())
1251         }
1252 }
1253
1254 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1255 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1256         fn eq(&self, other: &Self) -> bool {
1257                 self.genesis_hash == other.genesis_hash &&
1258                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1259                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1260         }
1261 }
1262
1263 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1264         /// Creates a new, empty, network graph.
1265         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1266                 Self {
1267                         secp_ctx: Secp256k1::verification_only(),
1268                         genesis_hash,
1269                         logger,
1270                         channels: RwLock::new(IndexedMap::new()),
1271                         nodes: RwLock::new(IndexedMap::new()),
1272                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1273                         removed_channels: Mutex::new(HashMap::new()),
1274                         removed_nodes: Mutex::new(HashMap::new()),
1275                         pending_checks: utxo::PendingChecks::new(),
1276                 }
1277         }
1278
1279         /// Returns a read-only view of the network graph.
1280         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1281                 let channels = self.channels.read().unwrap();
1282                 let nodes = self.nodes.read().unwrap();
1283                 ReadOnlyNetworkGraph {
1284                         channels,
1285                         nodes,
1286                 }
1287         }
1288
1289         /// The unix timestamp provided by the most recent rapid gossip sync.
1290         /// It will be set by the rapid sync process after every sync completion.
1291         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1292                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1293         }
1294
1295         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1296         /// This should be done automatically by the rapid sync process after every sync completion.
1297         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1298                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1299         }
1300
1301         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1302         /// purposes.
1303         #[cfg(test)]
1304         pub fn clear_nodes_announcement_info(&self) {
1305                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1306                         node.1.announcement_info = None;
1307                 }
1308         }
1309
1310         /// For an already known node (from channel announcements), update its stored properties from a
1311         /// given node announcement.
1312         ///
1313         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1314         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1315         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1316         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1317                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1318                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1319                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1320         }
1321
1322         /// For an already known node (from channel announcements), update its stored properties from a
1323         /// given node announcement without verifying the associated signatures. Because we aren't
1324         /// given the associated signatures here we cannot relay the node announcement to any of our
1325         /// peers.
1326         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1327                 self.update_node_from_announcement_intern(msg, None)
1328         }
1329
1330         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1331                 let mut nodes = self.nodes.write().unwrap();
1332                 match nodes.get_mut(&msg.node_id) {
1333                         None => {
1334                                 core::mem::drop(nodes);
1335                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1336                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1337                         },
1338                         Some(node) => {
1339                                 if let Some(node_info) = node.announcement_info.as_ref() {
1340                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1341                                         // updates to ensure you always have the latest one, only vaguely suggesting
1342                                         // that it be at least the current time.
1343                                         if node_info.last_update  > msg.timestamp {
1344                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1345                                         } else if node_info.last_update  == msg.timestamp {
1346                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1347                                         }
1348                                 }
1349
1350                                 let should_relay =
1351                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1352                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1353                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1354                                 node.announcement_info = Some(NodeAnnouncementInfo {
1355                                         features: msg.features.clone(),
1356                                         last_update: msg.timestamp,
1357                                         rgb: msg.rgb,
1358                                         alias: NodeAlias(msg.alias),
1359                                         addresses: msg.addresses.clone(),
1360                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1361                                 });
1362
1363                                 Ok(())
1364                         }
1365                 }
1366         }
1367
1368         /// Store or update channel info from a channel announcement.
1369         ///
1370         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1371         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1372         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1373         ///
1374         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1375         /// the corresponding UTXO exists on chain and is correctly-formatted.
1376         pub fn update_channel_from_announcement<U: Deref>(
1377                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1378         ) -> Result<(), LightningError>
1379         where
1380                 U::Target: UtxoLookup,
1381         {
1382                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1383                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1384                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1385                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1386                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1387                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1388         }
1389
1390         /// Store or update channel info from a channel announcement without verifying the associated
1391         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1392         /// channel announcement to any of our peers.
1393         ///
1394         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1395         /// the corresponding UTXO exists on chain and is correctly-formatted.
1396         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1397                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1398         ) -> Result<(), LightningError>
1399         where
1400                 U::Target: UtxoLookup,
1401         {
1402                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1403         }
1404
1405         /// Update channel from partial announcement data received via rapid gossip sync
1406         ///
1407         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1408         /// rapid gossip sync server)
1409         ///
1410         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1411         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1412                 if node_id_1 == node_id_2 {
1413                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1414                 };
1415
1416                 let node_1 = NodeId::from_pubkey(&node_id_1);
1417                 let node_2 = NodeId::from_pubkey(&node_id_2);
1418                 let channel_info = ChannelInfo {
1419                         features,
1420                         node_one: node_1.clone(),
1421                         one_to_two: None,
1422                         node_two: node_2.clone(),
1423                         two_to_one: None,
1424                         capacity_sats: None,
1425                         announcement_message: None,
1426                         announcement_received_time: timestamp,
1427                 };
1428
1429                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1430         }
1431
1432         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1433                 let mut channels = self.channels.write().unwrap();
1434                 let mut nodes = self.nodes.write().unwrap();
1435
1436                 let node_id_a = channel_info.node_one.clone();
1437                 let node_id_b = channel_info.node_two.clone();
1438
1439                 match channels.entry(short_channel_id) {
1440                         IndexedMapEntry::Occupied(mut entry) => {
1441                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1442                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1443                                 //exactly how...
1444                                 if utxo_value.is_some() {
1445                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1446                                         // only sometimes returns results. In any case remove the previous entry. Note
1447                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1448                                         // do that because
1449                                         // a) we don't *require* a UTXO provider that always returns results.
1450                                         // b) we don't track UTXOs of channels we know about and remove them if they
1451                                         //    get reorg'd out.
1452                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1453                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1454                                         *entry.get_mut() = channel_info;
1455                                 } else {
1456                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1457                                 }
1458                         },
1459                         IndexedMapEntry::Vacant(entry) => {
1460                                 entry.insert(channel_info);
1461                         }
1462                 };
1463
1464                 for current_node_id in [node_id_a, node_id_b].iter() {
1465                         match nodes.entry(current_node_id.clone()) {
1466                                 IndexedMapEntry::Occupied(node_entry) => {
1467                                         node_entry.into_mut().channels.push(short_channel_id);
1468                                 },
1469                                 IndexedMapEntry::Vacant(node_entry) => {
1470                                         node_entry.insert(NodeInfo {
1471                                                 channels: vec!(short_channel_id),
1472                                                 announcement_info: None,
1473                                         });
1474                                 }
1475                         };
1476                 };
1477
1478                 Ok(())
1479         }
1480
1481         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1482                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1483         ) -> Result<(), LightningError>
1484         where
1485                 U::Target: UtxoLookup,
1486         {
1487                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1488                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1489                 }
1490
1491                 {
1492                         let channels = self.channels.read().unwrap();
1493
1494                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1495                                 if chan.capacity_sats.is_some() {
1496                                         // If we'd previously looked up the channel on-chain and checked the script
1497                                         // against what appears on-chain, ignore the duplicate announcement.
1498                                         //
1499                                         // Because a reorg could replace one channel with another at the same SCID, if
1500                                         // the channel appears to be different, we re-validate. This doesn't expose us
1501                                         // to any more DoS risk than not, as a peer can always flood us with
1502                                         // randomly-generated SCID values anyway.
1503                                         //
1504                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1505                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1506                                         // if the peers on the channel changed anyway.
1507                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1508                                                 return Err(LightningError {
1509                                                         err: "Already have chain-validated channel".to_owned(),
1510                                                         action: ErrorAction::IgnoreDuplicateGossip
1511                                                 });
1512                                         }
1513                                 } else if utxo_lookup.is_none() {
1514                                         // Similarly, if we can't check the chain right now anyway, ignore the
1515                                         // duplicate announcement without bothering to take the channels write lock.
1516                                         return Err(LightningError {
1517                                                 err: "Already have non-chain-validated channel".to_owned(),
1518                                                 action: ErrorAction::IgnoreDuplicateGossip
1519                                         });
1520                                 }
1521                         }
1522                 }
1523
1524                 {
1525                         let removed_channels = self.removed_channels.lock().unwrap();
1526                         let removed_nodes = self.removed_nodes.lock().unwrap();
1527                         if removed_channels.contains_key(&msg.short_channel_id) ||
1528                                 removed_nodes.contains_key(&msg.node_id_1) ||
1529                                 removed_nodes.contains_key(&msg.node_id_2) {
1530                                 return Err(LightningError{
1531                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1532                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1533                         }
1534                 }
1535
1536                 let utxo_value = self.pending_checks.check_channel_announcement(
1537                         utxo_lookup, msg, full_msg)?;
1538
1539                 #[allow(unused_mut, unused_assignments)]
1540                 let mut announcement_received_time = 0;
1541                 #[cfg(feature = "std")]
1542                 {
1543                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1544                 }
1545
1546                 let chan_info = ChannelInfo {
1547                         features: msg.features.clone(),
1548                         node_one: msg.node_id_1,
1549                         one_to_two: None,
1550                         node_two: msg.node_id_2,
1551                         two_to_one: None,
1552                         capacity_sats: utxo_value,
1553                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1554                                 { full_msg.cloned() } else { None },
1555                         announcement_received_time,
1556                 };
1557
1558                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1559         }
1560
1561         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1562         /// If permanent, removes a channel from the local storage.
1563         /// May cause the removal of nodes too, if this was their last channel.
1564         /// If not permanent, makes channels unavailable for routing.
1565         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1566                 #[cfg(feature = "std")]
1567                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1568                 #[cfg(not(feature = "std"))]
1569                 let current_time_unix = None;
1570
1571                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1572         }
1573
1574         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1575         /// If permanent, removes a channel from the local storage.
1576         /// May cause the removal of nodes too, if this was their last channel.
1577         /// If not permanent, makes channels unavailable for routing.
1578         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1579                 let mut channels = self.channels.write().unwrap();
1580                 if is_permanent {
1581                         if let Some(chan) = channels.remove(&short_channel_id) {
1582                                 let mut nodes = self.nodes.write().unwrap();
1583                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1584                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1585                         }
1586                 } else {
1587                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1588                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1589                                         one_to_two.enabled = false;
1590                                 }
1591                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1592                                         two_to_one.enabled = false;
1593                                 }
1594                         }
1595                 }
1596         }
1597
1598         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1599         /// from local storage.
1600         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1601                 #[cfg(feature = "std")]
1602                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1603                 #[cfg(not(feature = "std"))]
1604                 let current_time_unix = None;
1605
1606                 let node_id = NodeId::from_pubkey(node_id);
1607                 let mut channels = self.channels.write().unwrap();
1608                 let mut nodes = self.nodes.write().unwrap();
1609                 let mut removed_channels = self.removed_channels.lock().unwrap();
1610                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1611
1612                 if let Some(node) = nodes.remove(&node_id) {
1613                         for scid in node.channels.iter() {
1614                                 if let Some(chan_info) = channels.remove(scid) {
1615                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1616                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1617                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1618                                                         *scid != *chan_id
1619                                                 });
1620                                                 if other_node_entry.get().channels.is_empty() {
1621                                                         other_node_entry.remove_entry();
1622                                                 }
1623                                         }
1624                                         removed_channels.insert(*scid, current_time_unix);
1625                                 }
1626                         }
1627                         removed_nodes.insert(node_id, current_time_unix);
1628                 }
1629         }
1630
1631         #[cfg(feature = "std")]
1632         /// Removes information about channels that we haven't heard any updates about in some time.
1633         /// This can be used regularly to prune the network graph of channels that likely no longer
1634         /// exist.
1635         ///
1636         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1637         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1638         /// pruning occur for updates which are at least two weeks old, which we implement here.
1639         ///
1640         /// Note that for users of the `lightning-background-processor` crate this method may be
1641         /// automatically called regularly for you.
1642         ///
1643         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1644         /// in the map for a while so that these can be resynced from gossip in the future.
1645         ///
1646         /// This method is only available with the `std` feature. See
1647         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1648         pub fn remove_stale_channels_and_tracking(&self) {
1649                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1650                 self.remove_stale_channels_and_tracking_with_time(time);
1651         }
1652
1653         /// Removes information about channels that we haven't heard any updates about in some time.
1654         /// This can be used regularly to prune the network graph of channels that likely no longer
1655         /// exist.
1656         ///
1657         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1658         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1659         /// pruning occur for updates which are at least two weeks old, which we implement here.
1660         ///
1661         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1662         /// in the map for a while so that these can be resynced from gossip in the future.
1663         ///
1664         /// This function takes the current unix time as an argument. For users with the `std` feature
1665         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1666         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1667                 let mut channels = self.channels.write().unwrap();
1668                 // Time out if we haven't received an update in at least 14 days.
1669                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1670                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1671                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1672                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1673                 // time.
1674                 let mut scids_to_remove = Vec::new();
1675                 for (scid, info) in channels.unordered_iter_mut() {
1676                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1677                                 info.one_to_two = None;
1678                         }
1679                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1680                                 info.two_to_one = None;
1681                         }
1682                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1683                                 // We check the announcement_received_time here to ensure we don't drop
1684                                 // announcements that we just received and are just waiting for our peer to send a
1685                                 // channel_update for.
1686                                 if info.announcement_received_time < min_time_unix as u64 {
1687                                         scids_to_remove.push(*scid);
1688                                 }
1689                         }
1690                 }
1691                 if !scids_to_remove.is_empty() {
1692                         let mut nodes = self.nodes.write().unwrap();
1693                         for scid in scids_to_remove {
1694                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1695                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1696                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1697                         }
1698                 }
1699
1700                 let should_keep_tracking = |time: &mut Option<u64>| {
1701                         if let Some(time) = time {
1702                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1703                         } else {
1704                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1705                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1706                                 // of this function.
1707                                 #[cfg(feature = "no-std")]
1708                                 {
1709                                         let mut tracked_time = Some(current_time_unix);
1710                                         core::mem::swap(time, &mut tracked_time);
1711                                         return true;
1712                                 }
1713                                 #[allow(unreachable_code)]
1714                                 false
1715                         }};
1716
1717                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1718                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1719         }
1720
1721         /// For an already known (from announcement) channel, update info about one of the directions
1722         /// of the channel.
1723         ///
1724         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1725         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1726         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1727         ///
1728         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1729         /// materially in the future will be rejected.
1730         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1731                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1732         }
1733
1734         /// For an already known (from announcement) channel, update info about one of the directions
1735         /// of the channel without verifying the associated signatures. Because we aren't given the
1736         /// associated signatures here we cannot relay the channel update to any of our peers.
1737         ///
1738         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1739         /// materially in the future will be rejected.
1740         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1741                 self.update_channel_intern(msg, None, None)
1742         }
1743
1744         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1745                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1746
1747                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1748                 {
1749                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1750                         // disable this check during tests!
1751                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1752                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1753                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1754                         }
1755                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1756                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1757                         }
1758                 }
1759
1760                 let mut channels = self.channels.write().unwrap();
1761                 match channels.get_mut(&msg.short_channel_id) {
1762                         None => {
1763                                 core::mem::drop(channels);
1764                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1765                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1766                         },
1767                         Some(channel) => {
1768                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1769                                         return Err(LightningError{err:
1770                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1771                                                 action: ErrorAction::IgnoreError});
1772                                 }
1773
1774                                 if let Some(capacity_sats) = channel.capacity_sats {
1775                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1776                                         // Don't query UTXO set here to reduce DoS risks.
1777                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1778                                                 return Err(LightningError{err:
1779                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1780                                                         action: ErrorAction::IgnoreError});
1781                                         }
1782                                 }
1783                                 macro_rules! check_update_latest {
1784                                         ($target: expr) => {
1785                                                 if let Some(existing_chan_info) = $target.as_ref() {
1786                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1787                                                         // order updates to ensure you always have the latest one, only
1788                                                         // suggesting  that it be at least the current time. For
1789                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1790                                                         // pruning based on the timestamp field being more than two weeks old,
1791                                                         // but only in the non-normative section.
1792                                                         if existing_chan_info.last_update > msg.timestamp {
1793                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1794                                                         } else if existing_chan_info.last_update == msg.timestamp {
1795                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1796                                                         }
1797                                                 }
1798                                         }
1799                                 }
1800
1801                                 macro_rules! get_new_channel_info {
1802                                         () => { {
1803                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1804                                                         { full_msg.cloned() } else { None };
1805
1806                                                 let updated_channel_update_info = ChannelUpdateInfo {
1807                                                         enabled: chan_enabled,
1808                                                         last_update: msg.timestamp,
1809                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1810                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1811                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1812                                                         fees: RoutingFees {
1813                                                                 base_msat: msg.fee_base_msat,
1814                                                                 proportional_millionths: msg.fee_proportional_millionths,
1815                                                         },
1816                                                         last_update_message
1817                                                 };
1818                                                 Some(updated_channel_update_info)
1819                                         } }
1820                                 }
1821
1822                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1823                                 if msg.flags & 1 == 1 {
1824                                         check_update_latest!(channel.two_to_one);
1825                                         if let Some(sig) = sig {
1826                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1827                                                         err: "Couldn't parse source node pubkey".to_owned(),
1828                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1829                                                 })?, "channel_update");
1830                                         }
1831                                         channel.two_to_one = get_new_channel_info!();
1832                                 } else {
1833                                         check_update_latest!(channel.one_to_two);
1834                                         if let Some(sig) = sig {
1835                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1836                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1837                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1838                                                 })?, "channel_update");
1839                                         }
1840                                         channel.one_to_two = get_new_channel_info!();
1841                                 }
1842                         }
1843                 }
1844
1845                 Ok(())
1846         }
1847
1848         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1849                 macro_rules! remove_from_node {
1850                         ($node_id: expr) => {
1851                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1852                                         entry.get_mut().channels.retain(|chan_id| {
1853                                                 short_channel_id != *chan_id
1854                                         });
1855                                         if entry.get().channels.is_empty() {
1856                                                 entry.remove_entry();
1857                                         }
1858                                 } else {
1859                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1860                                 }
1861                         }
1862                 }
1863
1864                 remove_from_node!(chan.node_one);
1865                 remove_from_node!(chan.node_two);
1866         }
1867 }
1868
1869 impl ReadOnlyNetworkGraph<'_> {
1870         /// Returns all known valid channels' short ids along with announced channel info.
1871         ///
1872         /// (C-not exported) because we don't want to return lifetime'd references
1873         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1874                 &*self.channels
1875         }
1876
1877         /// Returns information on a channel with the given id.
1878         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1879                 self.channels.get(&short_channel_id)
1880         }
1881
1882         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1883         /// Returns the list of channels in the graph
1884         pub fn list_channels(&self) -> Vec<u64> {
1885                 self.channels.unordered_keys().map(|c| *c).collect()
1886         }
1887
1888         /// Returns all known nodes' public keys along with announced node info.
1889         ///
1890         /// (C-not exported) because we don't want to return lifetime'd references
1891         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1892                 &*self.nodes
1893         }
1894
1895         /// Returns information on a node with the given id.
1896         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1897                 self.nodes.get(node_id)
1898         }
1899
1900         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1901         /// Returns the list of nodes in the graph
1902         pub fn list_nodes(&self) -> Vec<NodeId> {
1903                 self.nodes.unordered_keys().map(|n| *n).collect()
1904         }
1905
1906         /// Get network addresses by node id.
1907         /// Returns None if the requested node is completely unknown,
1908         /// or if node announcement for the node was never received.
1909         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1910                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1911                         if let Some(node_info) = node.announcement_info.as_ref() {
1912                                 return Some(node_info.addresses.clone())
1913                         }
1914                 }
1915                 None
1916         }
1917 }
1918
1919 #[cfg(test)]
1920 mod tests {
1921         use crate::ln::channelmanager;
1922         use crate::ln::chan_utils::make_funding_redeemscript;
1923         #[cfg(feature = "std")]
1924         use crate::ln::features::InitFeatures;
1925         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1926         use crate::routing::utxo::UtxoLookupError;
1927         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1928                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1929                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1930         use crate::util::config::UserConfig;
1931         use crate::util::test_utils;
1932         use crate::util::ser::{ReadableArgs, Writeable};
1933         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1934         use crate::util::scid_utils::scid_from_parts;
1935
1936         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1937         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1938
1939         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1940         use bitcoin::hashes::Hash;
1941         use bitcoin::network::constants::Network;
1942         use bitcoin::blockdata::constants::genesis_block;
1943         use bitcoin::blockdata::script::Script;
1944         use bitcoin::blockdata::transaction::TxOut;
1945
1946         use hex;
1947
1948         use bitcoin::secp256k1::{PublicKey, SecretKey};
1949         use bitcoin::secp256k1::{All, Secp256k1};
1950
1951         use crate::io;
1952         use bitcoin::secp256k1;
1953         use crate::prelude::*;
1954         use crate::sync::Arc;
1955
1956         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1957                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1958                 let logger = Arc::new(test_utils::TestLogger::new());
1959                 NetworkGraph::new(genesis_hash, logger)
1960         }
1961
1962         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1963                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1964                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1965         ) {
1966                 let secp_ctx = Secp256k1::new();
1967                 let logger = Arc::new(test_utils::TestLogger::new());
1968                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1969                 (secp_ctx, gossip_sync)
1970         }
1971
1972         #[test]
1973         #[cfg(feature = "std")]
1974         fn request_full_sync_finite_times() {
1975                 let network_graph = create_network_graph();
1976                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1977                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1978
1979                 assert!(gossip_sync.should_request_full_sync(&node_id));
1980                 assert!(gossip_sync.should_request_full_sync(&node_id));
1981                 assert!(gossip_sync.should_request_full_sync(&node_id));
1982                 assert!(gossip_sync.should_request_full_sync(&node_id));
1983                 assert!(gossip_sync.should_request_full_sync(&node_id));
1984                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1985         }
1986
1987         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1988                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1989                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1990                         features: channelmanager::provided_node_features(&UserConfig::default()),
1991                         timestamp: 100,
1992                         node_id,
1993                         rgb: [0; 3],
1994                         alias: [0; 32],
1995                         addresses: Vec::new(),
1996                         excess_address_data: Vec::new(),
1997                         excess_data: Vec::new(),
1998                 };
1999                 f(&mut unsigned_announcement);
2000                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2001                 NodeAnnouncement {
2002                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2003                         contents: unsigned_announcement
2004                 }
2005         }
2006
2007         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2008                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2009                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2010                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2011                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2012
2013                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2014                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2015                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2016                         short_channel_id: 0,
2017                         node_id_1: NodeId::from_pubkey(&node_id_1),
2018                         node_id_2: NodeId::from_pubkey(&node_id_2),
2019                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2020                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2021                         excess_data: Vec::new(),
2022                 };
2023                 f(&mut unsigned_announcement);
2024                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2025                 ChannelAnnouncement {
2026                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2027                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2028                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2029                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2030                         contents: unsigned_announcement,
2031                 }
2032         }
2033
2034         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2035                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2036                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2037                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2038                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2039         }
2040
2041         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2042                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2043                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2044                         short_channel_id: 0,
2045                         timestamp: 100,
2046                         flags: 0,
2047                         cltv_expiry_delta: 144,
2048                         htlc_minimum_msat: 1_000_000,
2049                         htlc_maximum_msat: 1_000_000,
2050                         fee_base_msat: 10_000,
2051                         fee_proportional_millionths: 20,
2052                         excess_data: Vec::new()
2053                 };
2054                 f(&mut unsigned_channel_update);
2055                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2056                 ChannelUpdate {
2057                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2058                         contents: unsigned_channel_update
2059                 }
2060         }
2061
2062         #[test]
2063         fn handling_node_announcements() {
2064                 let network_graph = create_network_graph();
2065                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2066
2067                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2068                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2069                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2070
2071                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2072                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2073                         Ok(_) => panic!(),
2074                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2075                 };
2076
2077                 {
2078                         // Announce a channel to add a corresponding node.
2079                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2080                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2081                                 Ok(res) => assert!(res),
2082                                 _ => panic!()
2083                         };
2084                 }
2085
2086                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2087                         Ok(res) => assert!(res),
2088                         Err(_) => panic!()
2089                 };
2090
2091                 let fake_msghash = hash_to_message!(&zero_hash);
2092                 match gossip_sync.handle_node_announcement(
2093                         &NodeAnnouncement {
2094                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2095                                 contents: valid_announcement.contents.clone()
2096                 }) {
2097                         Ok(_) => panic!(),
2098                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2099                 };
2100
2101                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2102                         unsigned_announcement.timestamp += 1000;
2103                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2104                 }, node_1_privkey, &secp_ctx);
2105                 // Return false because contains excess data.
2106                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2107                         Ok(res) => assert!(!res),
2108                         Err(_) => panic!()
2109                 };
2110
2111                 // Even though previous announcement was not relayed further, we still accepted it,
2112                 // so we now won't accept announcements before the previous one.
2113                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2114                         unsigned_announcement.timestamp += 1000 - 10;
2115                 }, node_1_privkey, &secp_ctx);
2116                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2117                         Ok(_) => panic!(),
2118                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2119                 };
2120         }
2121
2122         #[test]
2123         fn handling_channel_announcements() {
2124                 let secp_ctx = Secp256k1::new();
2125                 let logger = test_utils::TestLogger::new();
2126
2127                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2128                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2129
2130                 let good_script = get_channel_script(&secp_ctx);
2131                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2132
2133                 // Test if the UTXO lookups were not supported
2134                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2135                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2136                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2137                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2138                         Ok(res) => assert!(res),
2139                         _ => panic!()
2140                 };
2141
2142                 {
2143                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2144                                 None => panic!(),
2145                                 Some(_) => ()
2146                         };
2147                 }
2148
2149                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2150                 // drop new one on the floor, since we can't see any changes.
2151                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2152                         Ok(_) => panic!(),
2153                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2154                 };
2155
2156                 // Test if an associated transaction were not on-chain (or not confirmed).
2157                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2158                 *chain_source.utxo_ret.lock().unwrap() = Err(UtxoLookupError::UnknownTx);
2159                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2160                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2161
2162                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2163                         unsigned_announcement.short_channel_id += 1;
2164                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2165                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2166                         Ok(_) => panic!(),
2167                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2168                 };
2169
2170                 // Now test if the transaction is found in the UTXO set and the script is correct.
2171                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2172                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2173                         unsigned_announcement.short_channel_id += 2;
2174                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2175                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2176                         Ok(res) => assert!(res),
2177                         _ => panic!()
2178                 };
2179
2180                 {
2181                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2182                                 None => panic!(),
2183                                 Some(_) => ()
2184                         };
2185                 }
2186
2187                 // If we receive announcement for the same channel, once we've validated it against the
2188                 // chain, we simply ignore all new (duplicate) announcements.
2189                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2190                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2191                         Ok(_) => panic!(),
2192                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2193                 };
2194
2195                 #[cfg(feature = "std")]
2196                 {
2197                         use std::time::{SystemTime, UNIX_EPOCH};
2198
2199                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2200                         // Mark a node as permanently failed so it's tracked as removed.
2201                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2202
2203                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2204                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2205                                 unsigned_announcement.short_channel_id += 3;
2206                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2207                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2208                                 Ok(_) => panic!(),
2209                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2210                         }
2211
2212                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2213
2214                         // The above channel announcement should be handled as per normal now.
2215                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2216                                 Ok(res) => assert!(res),
2217                                 _ => panic!()
2218                         }
2219                 }
2220
2221                 // Don't relay valid channels with excess data
2222                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2223                         unsigned_announcement.short_channel_id += 4;
2224                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2225                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2226                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2227                         Ok(res) => assert!(!res),
2228                         _ => panic!()
2229                 };
2230
2231                 let mut invalid_sig_announcement = valid_announcement.clone();
2232                 invalid_sig_announcement.contents.excess_data = Vec::new();
2233                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2234                         Ok(_) => panic!(),
2235                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2236                 };
2237
2238                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2239                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2240                         Ok(_) => panic!(),
2241                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2242                 };
2243         }
2244
2245         #[test]
2246         fn handling_channel_update() {
2247                 let secp_ctx = Secp256k1::new();
2248                 let logger = test_utils::TestLogger::new();
2249                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2250                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2251                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2252                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2253
2254                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2255                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2256
2257                 let amount_sats = 1000_000;
2258                 let short_channel_id;
2259
2260                 {
2261                         // Announce a channel we will update
2262                         let good_script = get_channel_script(&secp_ctx);
2263                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2264
2265                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2266                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2267                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2268                                 Ok(_) => (),
2269                                 Err(_) => panic!()
2270                         };
2271
2272                 }
2273
2274                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2275                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2276                         Ok(res) => assert!(res),
2277                         _ => panic!(),
2278                 };
2279
2280                 {
2281                         match network_graph.read_only().channels().get(&short_channel_id) {
2282                                 None => panic!(),
2283                                 Some(channel_info) => {
2284                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2285                                         assert!(channel_info.two_to_one.is_none());
2286                                 }
2287                         };
2288                 }
2289
2290                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2291                         unsigned_channel_update.timestamp += 100;
2292                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2293                 }, node_1_privkey, &secp_ctx);
2294                 // Return false because contains excess data
2295                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2296                         Ok(res) => assert!(!res),
2297                         _ => panic!()
2298                 };
2299
2300                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2301                         unsigned_channel_update.timestamp += 110;
2302                         unsigned_channel_update.short_channel_id += 1;
2303                 }, node_1_privkey, &secp_ctx);
2304                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2305                         Ok(_) => panic!(),
2306                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2307                 };
2308
2309                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2310                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2311                         unsigned_channel_update.timestamp += 110;
2312                 }, node_1_privkey, &secp_ctx);
2313                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2314                         Ok(_) => panic!(),
2315                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2316                 };
2317
2318                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2319                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2320                         unsigned_channel_update.timestamp += 110;
2321                 }, node_1_privkey, &secp_ctx);
2322                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2323                         Ok(_) => panic!(),
2324                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2325                 };
2326
2327                 // Even though previous update was not relayed further, we still accepted it,
2328                 // so we now won't accept update before the previous one.
2329                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2330                         unsigned_channel_update.timestamp += 100;
2331                 }, node_1_privkey, &secp_ctx);
2332                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2333                         Ok(_) => panic!(),
2334                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2335                 };
2336
2337                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2338                         unsigned_channel_update.timestamp += 500;
2339                 }, node_1_privkey, &secp_ctx);
2340                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2341                 let fake_msghash = hash_to_message!(&zero_hash);
2342                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2343                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2344                         Ok(_) => panic!(),
2345                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2346                 };
2347         }
2348
2349         #[test]
2350         fn handling_network_update() {
2351                 let logger = test_utils::TestLogger::new();
2352                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2353                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2354                 let secp_ctx = Secp256k1::new();
2355
2356                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2357                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2358                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2359
2360                 {
2361                         // There is no nodes in the table at the beginning.
2362                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2363                 }
2364
2365                 let short_channel_id;
2366                 {
2367                         // Announce a channel we will update
2368                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2369                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2370                         let chain_source: Option<&test_utils::TestChainSource> = None;
2371                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2372                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2373
2374                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2375                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2376
2377                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2378                                 msg: valid_channel_update,
2379                         });
2380
2381                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2382                 }
2383
2384                 // Non-permanent closing just disables a channel
2385                 {
2386                         match network_graph.read_only().channels().get(&short_channel_id) {
2387                                 None => panic!(),
2388                                 Some(channel_info) => {
2389                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2390                                 }
2391                         };
2392
2393                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2394                                 short_channel_id,
2395                                 is_permanent: false,
2396                         });
2397
2398                         match network_graph.read_only().channels().get(&short_channel_id) {
2399                                 None => panic!(),
2400                                 Some(channel_info) => {
2401                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2402                                 }
2403                         };
2404                 }
2405
2406                 // Permanent closing deletes a channel
2407                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2408                         short_channel_id,
2409                         is_permanent: true,
2410                 });
2411
2412                 assert_eq!(network_graph.read_only().channels().len(), 0);
2413                 // Nodes are also deleted because there are no associated channels anymore
2414                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2415
2416                 {
2417                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2418                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2419
2420                         // Announce a channel to test permanent node failure
2421                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2422                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2423                         let chain_source: Option<&test_utils::TestChainSource> = None;
2424                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2425                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2426
2427                         // Non-permanent node failure does not delete any nodes or channels
2428                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2429                                 node_id: node_2_id,
2430                                 is_permanent: false,
2431                         });
2432
2433                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2434                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2435
2436                         // Permanent node failure deletes node and its channels
2437                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2438                                 node_id: node_2_id,
2439                                 is_permanent: true,
2440                         });
2441
2442                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2443                         // Channels are also deleted because the associated node has been deleted
2444                         assert_eq!(network_graph.read_only().channels().len(), 0);
2445                 }
2446         }
2447
2448         #[test]
2449         fn test_channel_timeouts() {
2450                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2451                 let logger = test_utils::TestLogger::new();
2452                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2453                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2454                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2455                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2456                 let secp_ctx = Secp256k1::new();
2457
2458                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2459                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2460
2461                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2462                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2463                 let chain_source: Option<&test_utils::TestChainSource> = None;
2464                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2465                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2466
2467                 // Submit two channel updates for each channel direction (update.flags bit).
2468                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2469                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2470                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2471
2472                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2473                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2474                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2475
2476                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2477                 assert_eq!(network_graph.read_only().channels().len(), 1);
2478                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2479
2480                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2481                 #[cfg(not(feature = "std"))] {
2482                         // Make sure removed channels are tracked.
2483                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2484                 }
2485                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2486                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2487
2488                 #[cfg(feature = "std")]
2489                 {
2490                         // In std mode, a further check is performed before fully removing the channel -
2491                         // the channel_announcement must have been received at least two weeks ago. We
2492                         // fudge that here by indicating the time has jumped two weeks.
2493                         assert_eq!(network_graph.read_only().channels().len(), 1);
2494                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2495
2496                         // Note that the directional channel information will have been removed already..
2497                         // We want to check that this will work even if *one* of the channel updates is recent,
2498                         // so we should add it with a recent timestamp.
2499                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2500                         use std::time::{SystemTime, UNIX_EPOCH};
2501                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2502                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2503                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2504                         }, node_1_privkey, &secp_ctx);
2505                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2506                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2507                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2508                         // Make sure removed channels are tracked.
2509                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2510                         // Provide a later time so that sufficient time has passed
2511                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2512                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2513                 }
2514
2515                 assert_eq!(network_graph.read_only().channels().len(), 0);
2516                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2517                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2518
2519                 #[cfg(feature = "std")]
2520                 {
2521                         use std::time::{SystemTime, UNIX_EPOCH};
2522
2523                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2524
2525                         // Clear tracked nodes and channels for clean slate
2526                         network_graph.removed_channels.lock().unwrap().clear();
2527                         network_graph.removed_nodes.lock().unwrap().clear();
2528
2529                         // Add a channel and nodes from channel announcement. So our network graph will
2530                         // now only consist of two nodes and one channel between them.
2531                         assert!(network_graph.update_channel_from_announcement(
2532                                 &valid_channel_announcement, &chain_source).is_ok());
2533
2534                         // Mark the channel as permanently failed. This will also remove the two nodes
2535                         // and all of the entries will be tracked as removed.
2536                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2537
2538                         // Should not remove from tracking if insufficient time has passed
2539                         network_graph.remove_stale_channels_and_tracking_with_time(
2540                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2541                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2542
2543                         // Provide a later time so that sufficient time has passed
2544                         network_graph.remove_stale_channels_and_tracking_with_time(
2545                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2546                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2547                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2548                 }
2549
2550                 #[cfg(not(feature = "std"))]
2551                 {
2552                         // When we don't have access to the system clock, the time we started tracking removal will only
2553                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2554                         // only if sufficient time has passed after that first call, will the next call remove it from
2555                         // tracking.
2556                         let removal_time = 1664619654;
2557
2558                         // Clear removed nodes and channels for clean slate
2559                         network_graph.removed_channels.lock().unwrap().clear();
2560                         network_graph.removed_nodes.lock().unwrap().clear();
2561
2562                         // Add a channel and nodes from channel announcement. So our network graph will
2563                         // now only consist of two nodes and one channel between them.
2564                         assert!(network_graph.update_channel_from_announcement(
2565                                 &valid_channel_announcement, &chain_source).is_ok());
2566
2567                         // Mark the channel as permanently failed. This will also remove the two nodes
2568                         // and all of the entries will be tracked as removed.
2569                         network_graph.channel_failed(short_channel_id, true);
2570
2571                         // The first time we call the following, the channel will have a removal time assigned.
2572                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2573                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2574
2575                         // Provide a later time so that sufficient time has passed
2576                         network_graph.remove_stale_channels_and_tracking_with_time(
2577                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2578                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2579                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2580                 }
2581         }
2582
2583         #[test]
2584         fn getting_next_channel_announcements() {
2585                 let network_graph = create_network_graph();
2586                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2587                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2588                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2589
2590                 // Channels were not announced yet.
2591                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2592                 assert!(channels_with_announcements.is_none());
2593
2594                 let short_channel_id;
2595                 {
2596                         // Announce a channel we will update
2597                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2598                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2599                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2600                                 Ok(_) => (),
2601                                 Err(_) => panic!()
2602                         };
2603                 }
2604
2605                 // Contains initial channel announcement now.
2606                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2607                 if let Some(channel_announcements) = channels_with_announcements {
2608                         let (_, ref update_1, ref update_2) = channel_announcements;
2609                         assert_eq!(update_1, &None);
2610                         assert_eq!(update_2, &None);
2611                 } else {
2612                         panic!();
2613                 }
2614
2615                 {
2616                         // Valid channel update
2617                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2618                                 unsigned_channel_update.timestamp = 101;
2619                         }, node_1_privkey, &secp_ctx);
2620                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2621                                 Ok(_) => (),
2622                                 Err(_) => panic!()
2623                         };
2624                 }
2625
2626                 // Now contains an initial announcement and an update.
2627                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2628                 if let Some(channel_announcements) = channels_with_announcements {
2629                         let (_, ref update_1, ref update_2) = channel_announcements;
2630                         assert_ne!(update_1, &None);
2631                         assert_eq!(update_2, &None);
2632                 } else {
2633                         panic!();
2634                 }
2635
2636                 {
2637                         // Channel update with excess data.
2638                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2639                                 unsigned_channel_update.timestamp = 102;
2640                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2641                         }, node_1_privkey, &secp_ctx);
2642                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2643                                 Ok(_) => (),
2644                                 Err(_) => panic!()
2645                         };
2646                 }
2647
2648                 // Test that announcements with excess data won't be returned
2649                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2650                 if let Some(channel_announcements) = channels_with_announcements {
2651                         let (_, ref update_1, ref update_2) = channel_announcements;
2652                         assert_eq!(update_1, &None);
2653                         assert_eq!(update_2, &None);
2654                 } else {
2655                         panic!();
2656                 }
2657
2658                 // Further starting point have no channels after it
2659                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2660                 assert!(channels_with_announcements.is_none());
2661         }
2662
2663         #[test]
2664         fn getting_next_node_announcements() {
2665                 let network_graph = create_network_graph();
2666                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2667                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2668                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2669                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2670
2671                 // No nodes yet.
2672                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2673                 assert!(next_announcements.is_none());
2674
2675                 {
2676                         // Announce a channel to add 2 nodes
2677                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2678                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2679                                 Ok(_) => (),
2680                                 Err(_) => panic!()
2681                         };
2682                 }
2683
2684                 // Nodes were never announced
2685                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2686                 assert!(next_announcements.is_none());
2687
2688                 {
2689                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2690                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2691                                 Ok(_) => (),
2692                                 Err(_) => panic!()
2693                         };
2694
2695                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2696                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2697                                 Ok(_) => (),
2698                                 Err(_) => panic!()
2699                         };
2700                 }
2701
2702                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2703                 assert!(next_announcements.is_some());
2704
2705                 // Skip the first node.
2706                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2707                 assert!(next_announcements.is_some());
2708
2709                 {
2710                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2711                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2712                                 unsigned_announcement.timestamp += 10;
2713                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2714                         }, node_2_privkey, &secp_ctx);
2715                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2716                                 Ok(res) => assert!(!res),
2717                                 Err(_) => panic!()
2718                         };
2719                 }
2720
2721                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2722                 assert!(next_announcements.is_none());
2723         }
2724
2725         #[test]
2726         fn network_graph_serialization() {
2727                 let network_graph = create_network_graph();
2728                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2729
2730                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2731                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2732
2733                 // Announce a channel to add a corresponding node.
2734                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2735                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2736                         Ok(res) => assert!(res),
2737                         _ => panic!()
2738                 };
2739
2740                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2741                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2742                         Ok(_) => (),
2743                         Err(_) => panic!()
2744                 };
2745
2746                 let mut w = test_utils::TestVecWriter(Vec::new());
2747                 assert!(!network_graph.read_only().nodes().is_empty());
2748                 assert!(!network_graph.read_only().channels().is_empty());
2749                 network_graph.write(&mut w).unwrap();
2750
2751                 let logger = Arc::new(test_utils::TestLogger::new());
2752                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2753         }
2754
2755         #[test]
2756         fn network_graph_tlv_serialization() {
2757                 let network_graph = create_network_graph();
2758                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2759
2760                 let mut w = test_utils::TestVecWriter(Vec::new());
2761                 network_graph.write(&mut w).unwrap();
2762
2763                 let logger = Arc::new(test_utils::TestLogger::new());
2764                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2765                 assert!(reassembled_network_graph == network_graph);
2766                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2767         }
2768
2769         #[test]
2770         #[cfg(feature = "std")]
2771         fn calling_sync_routing_table() {
2772                 use std::time::{SystemTime, UNIX_EPOCH};
2773                 use crate::ln::msgs::Init;
2774
2775                 let network_graph = create_network_graph();
2776                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2777                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2778                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2779
2780                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2781
2782                 // It should ignore if gossip_queries feature is not enabled
2783                 {
2784                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2785                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2786                         let events = gossip_sync.get_and_clear_pending_msg_events();
2787                         assert_eq!(events.len(), 0);
2788                 }
2789
2790                 // It should send a gossip_timestamp_filter with the correct information
2791                 {
2792                         let mut features = InitFeatures::empty();
2793                         features.set_gossip_queries_optional();
2794                         let init_msg = Init { features, remote_network_address: None };
2795                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2796                         let events = gossip_sync.get_and_clear_pending_msg_events();
2797                         assert_eq!(events.len(), 1);
2798                         match &events[0] {
2799                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2800                                         assert_eq!(node_id, &node_id_1);
2801                                         assert_eq!(msg.chain_hash, chain_hash);
2802                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2803                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2804                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2805                                         assert_eq!(msg.timestamp_range, u32::max_value());
2806                                 },
2807                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2808                         };
2809                 }
2810         }
2811
2812         #[test]
2813         fn handling_query_channel_range() {
2814                 let network_graph = create_network_graph();
2815                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2816
2817                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2818                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2819                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2820                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2821
2822                 let mut scids: Vec<u64> = vec![
2823                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2824                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2825                 ];
2826
2827                 // used for testing multipart reply across blocks
2828                 for block in 100000..=108001 {
2829                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2830                 }
2831
2832                 // used for testing resumption on same block
2833                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2834
2835                 for scid in scids {
2836                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2837                                 unsigned_announcement.short_channel_id = scid;
2838                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2839                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2840                                 Ok(_) => (),
2841                                 _ => panic!()
2842                         };
2843                 }
2844
2845                 // Error when number_of_blocks=0
2846                 do_handling_query_channel_range(
2847                         &gossip_sync,
2848                         &node_id_2,
2849                         QueryChannelRange {
2850                                 chain_hash: chain_hash.clone(),
2851                                 first_blocknum: 0,
2852                                 number_of_blocks: 0,
2853                         },
2854                         false,
2855                         vec![ReplyChannelRange {
2856                                 chain_hash: chain_hash.clone(),
2857                                 first_blocknum: 0,
2858                                 number_of_blocks: 0,
2859                                 sync_complete: true,
2860                                 short_channel_ids: vec![]
2861                         }]
2862                 );
2863
2864                 // Error when wrong chain
2865                 do_handling_query_channel_range(
2866                         &gossip_sync,
2867                         &node_id_2,
2868                         QueryChannelRange {
2869                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2870                                 first_blocknum: 0,
2871                                 number_of_blocks: 0xffff_ffff,
2872                         },
2873                         false,
2874                         vec![ReplyChannelRange {
2875                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2876                                 first_blocknum: 0,
2877                                 number_of_blocks: 0xffff_ffff,
2878                                 sync_complete: true,
2879                                 short_channel_ids: vec![],
2880                         }]
2881                 );
2882
2883                 // Error when first_blocknum > 0xffffff
2884                 do_handling_query_channel_range(
2885                         &gossip_sync,
2886                         &node_id_2,
2887                         QueryChannelRange {
2888                                 chain_hash: chain_hash.clone(),
2889                                 first_blocknum: 0x01000000,
2890                                 number_of_blocks: 0xffff_ffff,
2891                         },
2892                         false,
2893                         vec![ReplyChannelRange {
2894                                 chain_hash: chain_hash.clone(),
2895                                 first_blocknum: 0x01000000,
2896                                 number_of_blocks: 0xffff_ffff,
2897                                 sync_complete: true,
2898                                 short_channel_ids: vec![]
2899                         }]
2900                 );
2901
2902                 // Empty reply when max valid SCID block num
2903                 do_handling_query_channel_range(
2904                         &gossip_sync,
2905                         &node_id_2,
2906                         QueryChannelRange {
2907                                 chain_hash: chain_hash.clone(),
2908                                 first_blocknum: 0xffffff,
2909                                 number_of_blocks: 1,
2910                         },
2911                         true,
2912                         vec![
2913                                 ReplyChannelRange {
2914                                         chain_hash: chain_hash.clone(),
2915                                         first_blocknum: 0xffffff,
2916                                         number_of_blocks: 1,
2917                                         sync_complete: true,
2918                                         short_channel_ids: vec![]
2919                                 },
2920                         ]
2921                 );
2922
2923                 // No results in valid query range
2924                 do_handling_query_channel_range(
2925                         &gossip_sync,
2926                         &node_id_2,
2927                         QueryChannelRange {
2928                                 chain_hash: chain_hash.clone(),
2929                                 first_blocknum: 1000,
2930                                 number_of_blocks: 1000,
2931                         },
2932                         true,
2933                         vec![
2934                                 ReplyChannelRange {
2935                                         chain_hash: chain_hash.clone(),
2936                                         first_blocknum: 1000,
2937                                         number_of_blocks: 1000,
2938                                         sync_complete: true,
2939                                         short_channel_ids: vec![],
2940                                 }
2941                         ]
2942                 );
2943
2944                 // Overflow first_blocknum + number_of_blocks
2945                 do_handling_query_channel_range(
2946                         &gossip_sync,
2947                         &node_id_2,
2948                         QueryChannelRange {
2949                                 chain_hash: chain_hash.clone(),
2950                                 first_blocknum: 0xfe0000,
2951                                 number_of_blocks: 0xffffffff,
2952                         },
2953                         true,
2954                         vec![
2955                                 ReplyChannelRange {
2956                                         chain_hash: chain_hash.clone(),
2957                                         first_blocknum: 0xfe0000,
2958                                         number_of_blocks: 0xffffffff - 0xfe0000,
2959                                         sync_complete: true,
2960                                         short_channel_ids: vec![
2961                                                 0xfffffe_ffffff_ffff, // max
2962                                         ]
2963                                 }
2964                         ]
2965                 );
2966
2967                 // Single block exactly full
2968                 do_handling_query_channel_range(
2969                         &gossip_sync,
2970                         &node_id_2,
2971                         QueryChannelRange {
2972                                 chain_hash: chain_hash.clone(),
2973                                 first_blocknum: 100000,
2974                                 number_of_blocks: 8000,
2975                         },
2976                         true,
2977                         vec![
2978                                 ReplyChannelRange {
2979                                         chain_hash: chain_hash.clone(),
2980                                         first_blocknum: 100000,
2981                                         number_of_blocks: 8000,
2982                                         sync_complete: true,
2983                                         short_channel_ids: (100000..=107999)
2984                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2985                                                 .collect(),
2986                                 },
2987                         ]
2988                 );
2989
2990                 // Multiple split on new block
2991                 do_handling_query_channel_range(
2992                         &gossip_sync,
2993                         &node_id_2,
2994                         QueryChannelRange {
2995                                 chain_hash: chain_hash.clone(),
2996                                 first_blocknum: 100000,
2997                                 number_of_blocks: 8001,
2998                         },
2999                         true,
3000                         vec![
3001                                 ReplyChannelRange {
3002                                         chain_hash: chain_hash.clone(),
3003                                         first_blocknum: 100000,
3004                                         number_of_blocks: 7999,
3005                                         sync_complete: false,
3006                                         short_channel_ids: (100000..=107999)
3007                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3008                                                 .collect(),
3009                                 },
3010                                 ReplyChannelRange {
3011                                         chain_hash: chain_hash.clone(),
3012                                         first_blocknum: 107999,
3013                                         number_of_blocks: 2,
3014                                         sync_complete: true,
3015                                         short_channel_ids: vec![
3016                                                 scid_from_parts(108000, 0, 0).unwrap(),
3017                                         ],
3018                                 }
3019                         ]
3020                 );
3021
3022                 // Multiple split on same block
3023                 do_handling_query_channel_range(
3024                         &gossip_sync,
3025                         &node_id_2,
3026                         QueryChannelRange {
3027                                 chain_hash: chain_hash.clone(),
3028                                 first_blocknum: 100002,
3029                                 number_of_blocks: 8000,
3030                         },
3031                         true,
3032                         vec![
3033                                 ReplyChannelRange {
3034                                         chain_hash: chain_hash.clone(),
3035                                         first_blocknum: 100002,
3036                                         number_of_blocks: 7999,
3037                                         sync_complete: false,
3038                                         short_channel_ids: (100002..=108001)
3039                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3040                                                 .collect(),
3041                                 },
3042                                 ReplyChannelRange {
3043                                         chain_hash: chain_hash.clone(),
3044                                         first_blocknum: 108001,
3045                                         number_of_blocks: 1,
3046                                         sync_complete: true,
3047                                         short_channel_ids: vec![
3048                                                 scid_from_parts(108001, 1, 0).unwrap(),
3049                                         ],
3050                                 }
3051                         ]
3052                 );
3053         }
3054
3055         fn do_handling_query_channel_range(
3056                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3057                 test_node_id: &PublicKey,
3058                 msg: QueryChannelRange,
3059                 expected_ok: bool,
3060                 expected_replies: Vec<ReplyChannelRange>
3061         ) {
3062                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3063                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3064                 let query_end_blocknum = msg.end_blocknum();
3065                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3066
3067                 if expected_ok {
3068                         assert!(result.is_ok());
3069                 } else {
3070                         assert!(result.is_err());
3071                 }
3072
3073                 let events = gossip_sync.get_and_clear_pending_msg_events();
3074                 assert_eq!(events.len(), expected_replies.len());
3075
3076                 for i in 0..events.len() {
3077                         let expected_reply = &expected_replies[i];
3078                         match &events[i] {
3079                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3080                                         assert_eq!(node_id, test_node_id);
3081                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3082                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3083                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3084                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3085                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3086
3087                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3088                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3089                                         assert!(msg.first_blocknum >= max_firstblocknum);
3090                                         max_firstblocknum = msg.first_blocknum;
3091                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3092
3093                                         // Check that the last block count is >= the query's end_blocknum
3094                                         if i == events.len() - 1 {
3095                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3096                                         }
3097                                 },
3098                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3099                         }
3100                 }
3101         }
3102
3103         #[test]
3104         fn handling_query_short_channel_ids() {
3105                 let network_graph = create_network_graph();
3106                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3107                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3108                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3109
3110                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3111
3112                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3113                         chain_hash,
3114                         short_channel_ids: vec![0x0003e8_000000_0000],
3115                 });
3116                 assert!(result.is_err());
3117         }
3118
3119         #[test]
3120         fn displays_node_alias() {
3121                 let format_str_alias = |alias: &str| {
3122                         let mut bytes = [0u8; 32];
3123                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3124                         format!("{}", NodeAlias(bytes))
3125                 };
3126
3127                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3128                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3129                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3130
3131                 let format_bytes_alias = |alias: &[u8]| {
3132                         let mut bytes = [0u8; 32];
3133                         bytes[..alias.len()].copy_from_slice(alias);
3134                         format!("{}", NodeAlias(bytes))
3135                 };
3136
3137                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3138                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3139                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3140         }
3141
3142         #[test]
3143         fn channel_info_is_readable() {
3144                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3145                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3146                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3147                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3148                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3149
3150                 // 1. Test encoding/decoding of ChannelUpdateInfo
3151                 let chan_update_info = ChannelUpdateInfo {
3152                         last_update: 23,
3153                         enabled: true,
3154                         cltv_expiry_delta: 42,
3155                         htlc_minimum_msat: 1234,
3156                         htlc_maximum_msat: 5678,
3157                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3158                         last_update_message: None,
3159                 };
3160
3161                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3162                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3163
3164                 // First make sure we can read ChannelUpdateInfos we just wrote
3165                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3166                 assert_eq!(chan_update_info, read_chan_update_info);
3167
3168                 // Check the serialization hasn't changed.
3169                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3170                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3171
3172                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3173                 // or the ChannelUpdate enclosed with `last_update_message`.
3174                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3175                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3176                 assert!(read_chan_update_info_res.is_err());
3177
3178                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3179                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3180                 assert!(read_chan_update_info_res.is_err());
3181
3182                 // 2. Test encoding/decoding of ChannelInfo
3183                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3184                 let chan_info_none_updates = ChannelInfo {
3185                         features: channelmanager::provided_channel_features(&config),
3186                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3187                         one_to_two: None,
3188                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3189                         two_to_one: None,
3190                         capacity_sats: None,
3191                         announcement_message: None,
3192                         announcement_received_time: 87654,
3193                 };
3194
3195                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3196                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3197
3198                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3199                 assert_eq!(chan_info_none_updates, read_chan_info);
3200
3201                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3202                 let chan_info_some_updates = ChannelInfo {
3203                         features: channelmanager::provided_channel_features(&config),
3204                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3205                         one_to_two: Some(chan_update_info.clone()),
3206                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3207                         two_to_one: Some(chan_update_info.clone()),
3208                         capacity_sats: None,
3209                         announcement_message: None,
3210                         announcement_received_time: 87654,
3211                 };
3212
3213                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3214                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3215
3216                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3217                 assert_eq!(chan_info_some_updates, read_chan_info);
3218
3219                 // Check the serialization hasn't changed.
3220                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3221                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3222
3223                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3224                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3225                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3226                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3227                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3228                 assert_eq!(read_chan_info.one_to_two, None);
3229                 assert_eq!(read_chan_info.two_to_one, None);
3230
3231                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3232                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3233                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3234                 assert_eq!(read_chan_info.one_to_two, None);
3235                 assert_eq!(read_chan_info.two_to_one, None);
3236         }
3237
3238         #[test]
3239         fn node_info_is_readable() {
3240                 use std::convert::TryFrom;
3241
3242                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3243                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3244                 let valid_node_ann_info = NodeAnnouncementInfo {
3245                         features: channelmanager::provided_node_features(&UserConfig::default()),
3246                         last_update: 0,
3247                         rgb: [0u8; 3],
3248                         alias: NodeAlias([0u8; 32]),
3249                         addresses: vec![valid_netaddr],
3250                         announcement_message: None,
3251                 };
3252
3253                 let mut encoded_valid_node_ann_info = Vec::new();
3254                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3255                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3256                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3257
3258                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3259                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3260                 assert!(read_invalid_node_ann_info_res.is_err());
3261
3262                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3263                 let valid_node_info = NodeInfo {
3264                         channels: Vec::new(),
3265                         announcement_info: Some(valid_node_ann_info),
3266                 };
3267
3268                 let mut encoded_valid_node_info = Vec::new();
3269                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3270                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3271                 assert_eq!(read_valid_node_info, valid_node_info);
3272
3273                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3274                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3275                 assert_eq!(read_invalid_node_info.announcement_info, None);
3276         }
3277 }
3278
3279 #[cfg(all(test, feature = "_bench_unstable"))]
3280 mod benches {
3281         use super::*;
3282
3283         use test::Bencher;
3284         use std::io::Read;
3285
3286         #[bench]
3287         fn read_network_graph(bench: &mut Bencher) {
3288                 let logger = crate::util::test_utils::TestLogger::new();
3289                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3290                 let mut v = Vec::new();
3291                 d.read_to_end(&mut v).unwrap();
3292                 bench.iter(|| {
3293                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3294                 });
3295         }
3296
3297         #[bench]
3298         fn write_network_graph(bench: &mut Bencher) {
3299                 let logger = crate::util::test_utils::TestLogger::new();
3300                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3301                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3302                 bench.iter(|| {
3303                         let _ = net_graph.encode();
3304                 });
3305         }
3306 }