1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
21 use bitcoin::network::constants::Network;
22 use bitcoin::blockdata::constants::genesis_block;
24 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use crate::routing::utxo::{self, UtxoLookup};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
55 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
58 /// refuse to relay the message.
59 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
62 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
63 const MAX_SCIDS_PER_REPLY: usize = 8000;
65 /// Represents the compressed public key of a node
66 #[derive(Clone, Copy)]
67 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
70 /// Create a new NodeId from a public key
71 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
72 NodeId(pubkey.serialize())
75 /// Get the public key slice from this NodeId
76 pub fn as_slice(&self) -> &[u8] {
81 impl fmt::Debug for NodeId {
82 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83 write!(f, "NodeId({})", log_bytes!(self.0))
86 impl fmt::Display for NodeId {
87 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
88 write!(f, "{}", log_bytes!(self.0))
92 impl core::hash::Hash for NodeId {
93 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
100 impl PartialEq for NodeId {
101 fn eq(&self, other: &Self) -> bool {
102 self.0[..] == other.0[..]
106 impl cmp::PartialOrd for NodeId {
107 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
108 Some(self.cmp(other))
112 impl Ord for NodeId {
113 fn cmp(&self, other: &Self) -> cmp::Ordering {
114 self.0[..].cmp(&other.0[..])
118 impl Writeable for NodeId {
119 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
120 writer.write_all(&self.0)?;
125 impl Readable for NodeId {
126 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
127 let mut buf = [0; PUBLIC_KEY_SIZE];
128 reader.read_exact(&mut buf)?;
133 /// Represents the network as nodes and channels between them
134 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
135 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
136 last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
137 genesis_hash: BlockHash,
139 // Lock order: channels -> nodes
140 channels: RwLock<IndexedMap<u64, ChannelInfo>>,
141 nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
142 // Lock order: removed_channels -> removed_nodes
144 // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
145 // of `std::time::Instant`s for a few reasons:
146 // * We want it to be possible to do tracking in no-std environments where we can compare
147 // a provided current UNIX timestamp with the time at which we started tracking.
148 // * In the future, if we decide to persist these maps, they will already be serializable.
149 // * Although we lose out on the platform's monotonic clock, the system clock in a std
150 // environment should be practical over the time period we are considering (on the order of a
153 /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
154 /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
155 /// it was removed so that once some time passes, we can potentially resync it from gossip again.
156 removed_channels: Mutex<HashMap<u64, Option<u64>>>,
157 /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
158 /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
159 /// that once some time passes, we can potentially resync it from gossip again.
160 removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
161 /// Announcement messages which are awaiting an on-chain lookup to be processed.
162 pub(super) pending_checks: utxo::PendingChecks,
165 /// A read-only view of [`NetworkGraph`].
166 pub struct ReadOnlyNetworkGraph<'a> {
167 channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
168 nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
171 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
172 /// return packet by a node along the route. See [BOLT #4] for details.
174 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
175 #[derive(Clone, Debug, PartialEq, Eq)]
176 pub enum NetworkUpdate {
177 /// An error indicating a `channel_update` messages should be applied via
178 /// [`NetworkGraph::update_channel`].
179 ChannelUpdateMessage {
180 /// The update to apply via [`NetworkGraph::update_channel`].
183 /// An error indicating that a channel failed to route a payment, which should be applied via
184 /// [`NetworkGraph::channel_failed`].
186 /// The short channel id of the closed channel.
187 short_channel_id: u64,
188 /// Whether the channel should be permanently removed or temporarily disabled until a new
189 /// `channel_update` message is received.
192 /// An error indicating that a node failed to route a payment, which should be applied via
193 /// [`NetworkGraph::node_failed_permanent`] if permanent.
195 /// The node id of the failed node.
197 /// Whether the node should be permanently removed from consideration or can be restored
198 /// when a new `channel_update` message is received.
203 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
204 (0, ChannelUpdateMessage) => {
207 (2, ChannelFailure) => {
208 (0, short_channel_id, required),
209 (2, is_permanent, required),
211 (4, NodeFailure) => {
212 (0, node_id, required),
213 (2, is_permanent, required),
217 /// Receives and validates network updates from peers,
218 /// stores authentic and relevant data as a network graph.
219 /// This network graph is then used for routing payments.
220 /// Provides interface to help with initial routing sync by
221 /// serving historical announcements.
222 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
223 where U::Target: UtxoLookup, L::Target: Logger
226 utxo_lookup: Option<U>,
227 #[cfg(feature = "std")]
228 full_syncs_requested: AtomicUsize,
229 pending_events: Mutex<Vec<MessageSendEvent>>,
233 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
234 where U::Target: UtxoLookup, L::Target: Logger
236 /// Creates a new tracker of the actual state of the network of channels and nodes,
237 /// assuming an existing [`NetworkGraph`].
238 /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
239 /// correct, and the announcement is signed with channel owners' keys.
240 pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
243 #[cfg(feature = "std")]
244 full_syncs_requested: AtomicUsize::new(0),
246 pending_events: Mutex::new(vec![]),
251 /// Adds a provider used to check new announcements. Does not affect
252 /// existing announcements unless they are updated.
253 /// Add, update or remove the provider would replace the current one.
254 pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
255 self.utxo_lookup = utxo_lookup;
258 /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
259 /// [`P2PGossipSync::new`].
261 /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
262 pub fn network_graph(&self) -> &G {
266 #[cfg(feature = "std")]
267 /// Returns true when a full routing table sync should be performed with a peer.
268 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
269 //TODO: Determine whether to request a full sync based on the network map.
270 const FULL_SYNCS_TO_REQUEST: usize = 5;
271 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
272 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
279 /// Used to broadcast forward gossip messages which were validated async.
281 /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
283 pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
285 MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
286 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
287 if update_msg.as_ref()
288 .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
293 MessageSendEvent::BroadcastChannelUpdate { msg } => {
294 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
296 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
297 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
298 msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
299 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
306 self.pending_events.lock().unwrap().push(ev);
310 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
311 /// Handles any network updates originating from [`Event`]s.
313 /// [`Event`]: crate::events::Event
314 pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
315 match *network_update {
316 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
317 let short_channel_id = msg.contents.short_channel_id;
318 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
319 let status = if is_enabled { "enabled" } else { "disabled" };
320 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
321 let _ = self.update_channel(msg);
323 NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
324 let action = if is_permanent { "Removing" } else { "Disabling" };
325 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
326 self.channel_failed(short_channel_id, is_permanent);
328 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
330 log_debug!(self.logger,
331 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
332 self.node_failed_permanent(node_id);
339 macro_rules! secp_verify_sig {
340 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
341 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
344 return Err(LightningError {
345 err: format!("Invalid signature on {} message", $msg_type),
346 action: ErrorAction::SendWarningMessage {
347 msg: msgs::WarningMessage {
349 data: format!("Invalid signature on {} message", $msg_type),
351 log_level: Level::Trace,
359 macro_rules! get_pubkey_from_node_id {
360 ( $node_id: expr, $msg_type: expr ) => {
361 PublicKey::from_slice($node_id.as_slice())
362 .map_err(|_| LightningError {
363 err: format!("Invalid public key on {} message", $msg_type),
364 action: ErrorAction::SendWarningMessage {
365 msg: msgs::WarningMessage {
367 data: format!("Invalid public key on {} message", $msg_type),
369 log_level: Level::Trace
375 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
376 where U::Target: UtxoLookup, L::Target: Logger
378 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
379 self.network_graph.update_node_from_announcement(msg)?;
380 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
381 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
382 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
385 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
386 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
387 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
390 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
391 self.network_graph.update_channel(msg)?;
392 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
395 fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
396 let mut channels = self.network_graph.channels.write().unwrap();
397 for (_, ref chan) in channels.range(starting_point..) {
398 if chan.announcement_message.is_some() {
399 let chan_announcement = chan.announcement_message.clone().unwrap();
400 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
401 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
402 if let Some(one_to_two) = chan.one_to_two.as_ref() {
403 one_to_two_announcement = one_to_two.last_update_message.clone();
405 if let Some(two_to_one) = chan.two_to_one.as_ref() {
406 two_to_one_announcement = two_to_one.last_update_message.clone();
408 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
410 // TODO: We may end up sending un-announced channel_updates if we are sending
411 // initial sync data while receiving announce/updates for this channel.
417 fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
418 let mut nodes = self.network_graph.nodes.write().unwrap();
419 let iter = if let Some(node_id) = starting_point {
420 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
424 for (_, ref node) in iter {
425 if let Some(node_info) = node.announcement_info.as_ref() {
426 if let Some(msg) = node_info.announcement_message.clone() {
434 /// Initiates a stateless sync of routing gossip information with a peer
435 /// using [`gossip_queries`]. The default strategy used by this implementation
436 /// is to sync the full block range with several peers.
438 /// We should expect one or more [`reply_channel_range`] messages in response
439 /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
440 /// to request gossip messages for each channel. The sync is considered complete
441 /// when the final [`reply_scids_end`] message is received, though we are not
442 /// tracking this directly.
444 /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
445 /// [`reply_channel_range`]: msgs::ReplyChannelRange
446 /// [`query_channel_range`]: msgs::QueryChannelRange
447 /// [`query_scid`]: msgs::QueryShortChannelIds
448 /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
449 fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
450 // We will only perform a sync with peers that support gossip_queries.
451 if !init_msg.features.supports_gossip_queries() {
452 // Don't disconnect peers for not supporting gossip queries. We may wish to have
453 // channels with peers even without being able to exchange gossip.
457 // The lightning network's gossip sync system is completely broken in numerous ways.
459 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
460 // to do a full sync from the first few peers we connect to, and then receive gossip
461 // updates from all our peers normally.
463 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
464 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
465 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
468 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
469 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
470 // channel data which you are missing. Except there was no way at all to identify which
471 // `channel_update`s you were missing, so you still had to request everything, just in a
472 // very complicated way with some queries instead of just getting the dump.
474 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
475 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
476 // relying on it useless.
478 // After gossip queries were introduced, support for receiving a full gossip table dump on
479 // connection was removed from several nodes, making it impossible to get a full sync
480 // without using the "gossip queries" messages.
482 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
483 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
484 // message, as the name implies, tells the peer to not forward any gossip messages with a
485 // timestamp older than a given value (not the time the peer received the filter, but the
486 // timestamp in the update message, which is often hours behind when the peer received the
489 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
490 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
491 // tell a peer to send you any updates as it sees them, you have to also ask for the full
492 // routing graph to be synced. If you set a timestamp filter near the current time, peers
493 // will simply not forward any new updates they see to you which were generated some time
494 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
495 // ago), you will always get the full routing graph from all your peers.
497 // Most lightning nodes today opt to simply turn off receiving gossip data which only
498 // propagated some time after it was generated, and, worse, often disable gossiping with
499 // several peers after their first connection. The second behavior can cause gossip to not
500 // propagate fully if there are cuts in the gossiping subgraph.
502 // In an attempt to cut a middle ground between always fetching the full graph from all of
503 // our peers and never receiving gossip from peers at all, we send all of our peers a
504 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
506 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
507 #[allow(unused_mut, unused_assignments)]
508 let mut gossip_start_time = 0;
509 #[cfg(feature = "std")]
511 gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
512 if self.should_request_full_sync(&their_node_id) {
513 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
515 gossip_start_time -= 60 * 60; // an hour ago
519 let mut pending_events = self.pending_events.lock().unwrap();
520 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
521 node_id: their_node_id.clone(),
522 msg: GossipTimestampFilter {
523 chain_hash: self.network_graph.genesis_hash,
524 first_timestamp: gossip_start_time as u32, // 2106 issue!
525 timestamp_range: u32::max_value(),
531 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
532 // We don't make queries, so should never receive replies. If, in the future, the set
533 // reconciliation extensions to gossip queries become broadly supported, we should revert
534 // this code to its state pre-0.0.106.
538 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
539 // We don't make queries, so should never receive replies. If, in the future, the set
540 // reconciliation extensions to gossip queries become broadly supported, we should revert
541 // this code to its state pre-0.0.106.
545 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
546 /// are in the specified block range. Due to message size limits, large range
547 /// queries may result in several reply messages. This implementation enqueues
548 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
549 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
550 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
551 /// memory constrained systems.
552 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
553 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
555 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
557 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
558 // If so, we manually cap the ending block to avoid this overflow.
559 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
561 // Per spec, we must reply to a query. Send an empty message when things are invalid.
562 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
563 let mut pending_events = self.pending_events.lock().unwrap();
564 pending_events.push(MessageSendEvent::SendReplyChannelRange {
565 node_id: their_node_id.clone(),
566 msg: ReplyChannelRange {
567 chain_hash: msg.chain_hash.clone(),
568 first_blocknum: msg.first_blocknum,
569 number_of_blocks: msg.number_of_blocks,
571 short_channel_ids: vec![],
574 return Err(LightningError {
575 err: String::from("query_channel_range could not be processed"),
576 action: ErrorAction::IgnoreError,
580 // Creates channel batches. We are not checking if the channel is routable
581 // (has at least one update). A peer may still want to know the channel
582 // exists even if its not yet routable.
583 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
584 let mut channels = self.network_graph.channels.write().unwrap();
585 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
586 if let Some(chan_announcement) = &chan.announcement_message {
587 // Construct a new batch if last one is full
588 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
589 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
592 let batch = batches.last_mut().unwrap();
593 batch.push(chan_announcement.contents.short_channel_id);
598 let mut pending_events = self.pending_events.lock().unwrap();
599 let batch_count = batches.len();
600 let mut prev_batch_endblock = msg.first_blocknum;
601 for (batch_index, batch) in batches.into_iter().enumerate() {
602 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
603 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
605 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
606 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
607 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
608 // significant diversion from the requirements set by the spec, and, in case of blocks
609 // with no channel opens (e.g. empty blocks), requires that we use the previous value
610 // and *not* derive the first_blocknum from the actual first block of the reply.
611 let first_blocknum = prev_batch_endblock;
613 // Each message carries the number of blocks (from the `first_blocknum`) its contents
614 // fit in. Though there is no requirement that we use exactly the number of blocks its
615 // contents are from, except for the bogus requirements c-lightning enforces, above.
617 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
618 // >= the query's end block. Thus, for the last reply, we calculate the difference
619 // between the query's end block and the start of the reply.
621 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
622 // first_blocknum will be either msg.first_blocknum or a higher block height.
623 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
624 (true, msg.end_blocknum() - first_blocknum)
626 // Prior replies should use the number of blocks that fit into the reply. Overflow
627 // safe since first_blocknum is always <= last SCID's block.
629 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
632 prev_batch_endblock = first_blocknum + number_of_blocks;
634 pending_events.push(MessageSendEvent::SendReplyChannelRange {
635 node_id: their_node_id.clone(),
636 msg: ReplyChannelRange {
637 chain_hash: msg.chain_hash.clone(),
641 short_channel_ids: batch,
649 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
652 err: String::from("Not implemented"),
653 action: ErrorAction::IgnoreError,
657 fn provided_node_features(&self) -> NodeFeatures {
658 let mut features = NodeFeatures::empty();
659 features.set_gossip_queries_optional();
663 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
664 let mut features = InitFeatures::empty();
665 features.set_gossip_queries_optional();
669 fn processing_queue_high(&self) -> bool {
670 self.network_graph.pending_checks.too_many_checks_pending()
674 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
676 U::Target: UtxoLookup,
679 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
680 let mut ret = Vec::new();
681 let mut pending_events = self.pending_events.lock().unwrap();
682 core::mem::swap(&mut ret, &mut pending_events);
687 #[derive(Clone, Debug, PartialEq, Eq)]
688 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
689 pub struct ChannelUpdateInfo {
690 /// When the last update to the channel direction was issued.
691 /// Value is opaque, as set in the announcement.
692 pub last_update: u32,
693 /// Whether the channel can be currently used for payments (in this one direction).
695 /// The difference in CLTV values that you must have when routing through this channel.
696 pub cltv_expiry_delta: u16,
697 /// The minimum value, which must be relayed to the next hop via the channel
698 pub htlc_minimum_msat: u64,
699 /// The maximum value which may be relayed to the next hop via the channel.
700 pub htlc_maximum_msat: u64,
701 /// Fees charged when the channel is used for routing
702 pub fees: RoutingFees,
703 /// Most recent update for the channel received from the network
704 /// Mostly redundant with the data we store in fields explicitly.
705 /// Everything else is useful only for sending out for initial routing sync.
706 /// Not stored if contains excess data to prevent DoS.
707 pub last_update_message: Option<ChannelUpdate>,
710 impl fmt::Display for ChannelUpdateInfo {
711 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
712 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
717 impl Writeable for ChannelUpdateInfo {
718 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
719 write_tlv_fields!(writer, {
720 (0, self.last_update, required),
721 (2, self.enabled, required),
722 (4, self.cltv_expiry_delta, required),
723 (6, self.htlc_minimum_msat, required),
724 // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
725 // compatibility with LDK versions prior to v0.0.110.
726 (8, Some(self.htlc_maximum_msat), required),
727 (10, self.fees, required),
728 (12, self.last_update_message, required),
734 impl Readable for ChannelUpdateInfo {
735 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
736 _init_tlv_field_var!(last_update, required);
737 _init_tlv_field_var!(enabled, required);
738 _init_tlv_field_var!(cltv_expiry_delta, required);
739 _init_tlv_field_var!(htlc_minimum_msat, required);
740 _init_tlv_field_var!(htlc_maximum_msat, option);
741 _init_tlv_field_var!(fees, required);
742 _init_tlv_field_var!(last_update_message, required);
744 read_tlv_fields!(reader, {
745 (0, last_update, required),
746 (2, enabled, required),
747 (4, cltv_expiry_delta, required),
748 (6, htlc_minimum_msat, required),
749 (8, htlc_maximum_msat, required),
750 (10, fees, required),
751 (12, last_update_message, required)
754 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
755 Ok(ChannelUpdateInfo {
756 last_update: _init_tlv_based_struct_field!(last_update, required),
757 enabled: _init_tlv_based_struct_field!(enabled, required),
758 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
759 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
761 fees: _init_tlv_based_struct_field!(fees, required),
762 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
765 Err(DecodeError::InvalidValue)
770 #[derive(Clone, Debug, PartialEq, Eq)]
771 /// Details about a channel (both directions).
772 /// Received within a channel announcement.
773 pub struct ChannelInfo {
774 /// Protocol features of a channel communicated during its announcement
775 pub features: ChannelFeatures,
776 /// Source node of the first direction of a channel
777 pub node_one: NodeId,
778 /// Details about the first direction of a channel
779 pub one_to_two: Option<ChannelUpdateInfo>,
780 /// Source node of the second direction of a channel
781 pub node_two: NodeId,
782 /// Details about the second direction of a channel
783 pub two_to_one: Option<ChannelUpdateInfo>,
784 /// The channel capacity as seen on-chain, if chain lookup is available.
785 pub capacity_sats: Option<u64>,
786 /// An initial announcement of the channel
787 /// Mostly redundant with the data we store in fields explicitly.
788 /// Everything else is useful only for sending out for initial routing sync.
789 /// Not stored if contains excess data to prevent DoS.
790 pub announcement_message: Option<ChannelAnnouncement>,
791 /// The timestamp when we received the announcement, if we are running with feature = "std"
792 /// (which we can probably assume we are - no-std environments probably won't have a full
793 /// network graph in memory!).
794 announcement_received_time: u64,
798 /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
799 /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
800 pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
801 let (direction, source) = {
802 if target == &self.node_one {
803 (self.two_to_one.as_ref(), &self.node_two)
804 } else if target == &self.node_two {
805 (self.one_to_two.as_ref(), &self.node_one)
810 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
813 /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
814 /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
815 pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
816 let (direction, target) = {
817 if source == &self.node_one {
818 (self.one_to_two.as_ref(), &self.node_two)
819 } else if source == &self.node_two {
820 (self.two_to_one.as_ref(), &self.node_one)
825 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
828 /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
829 pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
830 let direction = channel_flags & 1u8;
832 self.one_to_two.as_ref()
834 self.two_to_one.as_ref()
839 impl fmt::Display for ChannelInfo {
840 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
841 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
842 log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
847 impl Writeable for ChannelInfo {
848 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
849 write_tlv_fields!(writer, {
850 (0, self.features, required),
851 (1, self.announcement_received_time, (default_value, 0)),
852 (2, self.node_one, required),
853 (4, self.one_to_two, required),
854 (6, self.node_two, required),
855 (8, self.two_to_one, required),
856 (10, self.capacity_sats, required),
857 (12, self.announcement_message, required),
863 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
864 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
865 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
866 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
867 // channel updates via the gossip network.
868 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
870 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
871 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
872 match crate::util::ser::Readable::read(reader) {
873 Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
874 Err(DecodeError::ShortRead) => Ok(None),
875 Err(DecodeError::InvalidValue) => Ok(None),
876 Err(err) => Err(err),
881 impl Readable for ChannelInfo {
882 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
883 _init_tlv_field_var!(features, required);
884 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
885 _init_tlv_field_var!(node_one, required);
886 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
887 _init_tlv_field_var!(node_two, required);
888 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
889 _init_tlv_field_var!(capacity_sats, required);
890 _init_tlv_field_var!(announcement_message, required);
891 read_tlv_fields!(reader, {
892 (0, features, required),
893 (1, announcement_received_time, (default_value, 0)),
894 (2, node_one, required),
895 (4, one_to_two_wrap, upgradable_option),
896 (6, node_two, required),
897 (8, two_to_one_wrap, upgradable_option),
898 (10, capacity_sats, required),
899 (12, announcement_message, required),
903 features: _init_tlv_based_struct_field!(features, required),
904 node_one: _init_tlv_based_struct_field!(node_one, required),
905 one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
906 node_two: _init_tlv_based_struct_field!(node_two, required),
907 two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
908 capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
909 announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
910 announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
915 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
916 /// source node to a target node.
918 pub struct DirectedChannelInfo<'a> {
919 channel: &'a ChannelInfo,
920 direction: &'a ChannelUpdateInfo,
921 htlc_maximum_msat: u64,
922 effective_capacity: EffectiveCapacity,
925 impl<'a> DirectedChannelInfo<'a> {
927 fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
928 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
929 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
931 let effective_capacity = match capacity_msat {
932 Some(capacity_msat) => {
933 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
934 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
936 None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
940 channel, direction, htlc_maximum_msat, effective_capacity
944 /// Returns information for the channel.
946 pub fn channel(&self) -> &'a ChannelInfo { self.channel }
948 /// Returns the maximum HTLC amount allowed over the channel in the direction.
950 pub fn htlc_maximum_msat(&self) -> u64 {
951 self.htlc_maximum_msat
954 /// Returns the [`EffectiveCapacity`] of the channel in the direction.
956 /// This is either the total capacity from the funding transaction, if known, or the
957 /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
959 pub fn effective_capacity(&self) -> EffectiveCapacity {
960 self.effective_capacity
963 /// Returns information for the direction.
965 pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
968 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
969 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
970 f.debug_struct("DirectedChannelInfo")
971 .field("channel", &self.channel)
976 /// The effective capacity of a channel for routing purposes.
978 /// While this may be smaller than the actual channel capacity, amounts greater than
979 /// [`Self::as_msat`] should not be routed through the channel.
980 #[derive(Clone, Copy, Debug, PartialEq)]
981 pub enum EffectiveCapacity {
982 /// The available liquidity in the channel known from being a channel counterparty, and thus a
985 /// Either the inbound or outbound liquidity depending on the direction, denominated in
989 /// The maximum HTLC amount in one direction as advertised on the gossip network.
991 /// The maximum HTLC amount denominated in millisatoshi.
994 /// The total capacity of the channel as determined by the funding transaction.
996 /// The funding amount denominated in millisatoshi.
998 /// The maximum HTLC amount denominated in millisatoshi.
999 htlc_maximum_msat: u64
1001 /// A capacity sufficient to route any payment, typically used for private channels provided by
1004 /// A capacity that is unknown possibly because either the chain state is unavailable to know
1005 /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1009 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1010 /// use when making routing decisions.
1011 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1013 impl EffectiveCapacity {
1014 /// Returns the effective capacity denominated in millisatoshi.
1015 pub fn as_msat(&self) -> u64 {
1017 EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1018 EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1019 EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1020 EffectiveCapacity::Infinite => u64::max_value(),
1021 EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1026 /// Fees for routing via a given channel or a node
1027 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1028 pub struct RoutingFees {
1029 /// Flat routing fee in millisatoshis.
1031 /// Liquidity-based routing fee in millionths of a routed amount.
1032 /// In other words, 10000 is 1%.
1033 pub proportional_millionths: u32,
1036 impl_writeable_tlv_based!(RoutingFees, {
1037 (0, base_msat, required),
1038 (2, proportional_millionths, required)
1041 #[derive(Clone, Debug, PartialEq, Eq)]
1042 /// Information received in the latest node_announcement from this node.
1043 pub struct NodeAnnouncementInfo {
1044 /// Protocol features the node announced support for
1045 pub features: NodeFeatures,
1046 /// When the last known update to the node state was issued.
1047 /// Value is opaque, as set in the announcement.
1048 pub last_update: u32,
1049 /// Color assigned to the node
1051 /// Moniker assigned to the node.
1052 /// May be invalid or malicious (eg control chars),
1053 /// should not be exposed to the user.
1054 pub alias: NodeAlias,
1055 /// An initial announcement of the node
1056 /// Mostly redundant with the data we store in fields explicitly.
1057 /// Everything else is useful only for sending out for initial routing sync.
1058 /// Not stored if contains excess data to prevent DoS.
1059 pub announcement_message: Option<NodeAnnouncement>
1062 impl NodeAnnouncementInfo {
1063 /// Internet-level addresses via which one can connect to the node
1064 pub fn addresses(&self) -> &[NetAddress] {
1065 self.announcement_message.as_ref()
1066 .map(|msg| msg.contents.addresses.as_slice())
1067 .unwrap_or_default()
1071 impl Writeable for NodeAnnouncementInfo {
1072 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1073 let empty_addresses = Vec::<NetAddress>::new();
1074 write_tlv_fields!(writer, {
1075 (0, self.features, required),
1076 (2, self.last_update, required),
1077 (4, self.rgb, required),
1078 (6, self.alias, required),
1079 (8, self.announcement_message, option),
1080 (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1086 impl Readable for NodeAnnouncementInfo {
1087 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1088 _init_and_read_tlv_fields!(reader, {
1089 (0, features, required),
1090 (2, last_update, required),
1092 (6, alias, required),
1093 (8, announcement_message, option),
1094 (10, _addresses, vec_type), // deprecated, not used anymore
1096 let _: Option<Vec<NetAddress>> = _addresses;
1097 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1098 alias: alias.0.unwrap(), announcement_message })
1102 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1104 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1105 /// attacks. Care must be taken when processing.
1106 #[derive(Clone, Debug, PartialEq, Eq)]
1107 pub struct NodeAlias(pub [u8; 32]);
1109 impl fmt::Display for NodeAlias {
1110 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1111 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1112 let bytes = self.0.split_at(first_null).0;
1113 match core::str::from_utf8(bytes) {
1114 Ok(alias) => PrintableString(alias).fmt(f)?,
1116 use core::fmt::Write;
1117 for c in bytes.iter().map(|b| *b as char) {
1118 // Display printable ASCII characters
1119 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1120 let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1129 impl Writeable for NodeAlias {
1130 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1135 impl Readable for NodeAlias {
1136 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1137 Ok(NodeAlias(Readable::read(r)?))
1141 #[derive(Clone, Debug, PartialEq, Eq)]
1142 /// Details about a node in the network, known from the network announcement.
1143 pub struct NodeInfo {
1144 /// All valid channels a node has announced
1145 pub channels: Vec<u64>,
1146 /// More information about a node from node_announcement.
1147 /// Optional because we store a Node entry after learning about it from
1148 /// a channel announcement, but before receiving a node announcement.
1149 pub announcement_info: Option<NodeAnnouncementInfo>
1152 impl fmt::Display for NodeInfo {
1153 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1154 write!(f, " channels: {:?}, announcement_info: {:?}",
1155 &self.channels[..], self.announcement_info)?;
1160 impl Writeable for NodeInfo {
1161 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1162 write_tlv_fields!(writer, {
1163 // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1164 (2, self.announcement_info, option),
1165 (4, self.channels, vec_type),
1171 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1172 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1173 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1174 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1175 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1177 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1178 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1179 match crate::util::ser::Readable::read(reader) {
1180 Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1182 copy(reader, &mut sink()).unwrap();
1189 impl Readable for NodeInfo {
1190 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1191 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1192 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1193 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1194 // requires additional complexity and lookups during routing, it ends up being a
1195 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1196 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1197 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1198 _init_tlv_field_var!(channels, vec_type);
1200 read_tlv_fields!(reader, {
1201 (0, _lowest_inbound_channel_fees, option),
1202 (2, announcement_info_wrap, upgradable_option),
1203 (4, channels, vec_type),
1207 announcement_info: announcement_info_wrap.map(|w| w.0),
1208 channels: _init_tlv_based_struct_field!(channels, vec_type),
1213 const SERIALIZATION_VERSION: u8 = 1;
1214 const MIN_SERIALIZATION_VERSION: u8 = 1;
1216 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1217 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1218 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1220 self.genesis_hash.write(writer)?;
1221 let channels = self.channels.read().unwrap();
1222 (channels.len() as u64).write(writer)?;
1223 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1224 (*chan_id).write(writer)?;
1225 chan_info.write(writer)?;
1227 let nodes = self.nodes.read().unwrap();
1228 (nodes.len() as u64).write(writer)?;
1229 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1230 node_id.write(writer)?;
1231 node_info.write(writer)?;
1234 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1235 write_tlv_fields!(writer, {
1236 (1, last_rapid_gossip_sync_timestamp, option),
1242 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1243 fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1244 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1246 let genesis_hash: BlockHash = Readable::read(reader)?;
1247 let channels_count: u64 = Readable::read(reader)?;
1248 let mut channels = IndexedMap::new();
1249 for _ in 0..channels_count {
1250 let chan_id: u64 = Readable::read(reader)?;
1251 let chan_info = Readable::read(reader)?;
1252 channels.insert(chan_id, chan_info);
1254 let nodes_count: u64 = Readable::read(reader)?;
1255 let mut nodes = IndexedMap::new();
1256 for _ in 0..nodes_count {
1257 let node_id = Readable::read(reader)?;
1258 let node_info = Readable::read(reader)?;
1259 nodes.insert(node_id, node_info);
1262 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1263 read_tlv_fields!(reader, {
1264 (1, last_rapid_gossip_sync_timestamp, option),
1268 secp_ctx: Secp256k1::verification_only(),
1271 channels: RwLock::new(channels),
1272 nodes: RwLock::new(nodes),
1273 last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1274 removed_nodes: Mutex::new(HashMap::new()),
1275 removed_channels: Mutex::new(HashMap::new()),
1276 pending_checks: utxo::PendingChecks::new(),
1281 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1282 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1283 writeln!(f, "Network map\n[Channels]")?;
1284 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1285 writeln!(f, " {}: {}", key, val)?;
1287 writeln!(f, "[Nodes]")?;
1288 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1289 writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1295 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1296 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1297 fn eq(&self, other: &Self) -> bool {
1298 self.genesis_hash == other.genesis_hash &&
1299 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1300 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1304 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1305 /// Creates a new, empty, network graph.
1306 pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1308 secp_ctx: Secp256k1::verification_only(),
1309 genesis_hash: genesis_block(network).header.block_hash(),
1311 channels: RwLock::new(IndexedMap::new()),
1312 nodes: RwLock::new(IndexedMap::new()),
1313 last_rapid_gossip_sync_timestamp: Mutex::new(None),
1314 removed_channels: Mutex::new(HashMap::new()),
1315 removed_nodes: Mutex::new(HashMap::new()),
1316 pending_checks: utxo::PendingChecks::new(),
1320 /// Returns a read-only view of the network graph.
1321 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1322 let channels = self.channels.read().unwrap();
1323 let nodes = self.nodes.read().unwrap();
1324 ReadOnlyNetworkGraph {
1330 /// The unix timestamp provided by the most recent rapid gossip sync.
1331 /// It will be set by the rapid sync process after every sync completion.
1332 pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1333 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1336 /// Update the unix timestamp provided by the most recent rapid gossip sync.
1337 /// This should be done automatically by the rapid sync process after every sync completion.
1338 pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1339 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1342 /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1345 pub fn clear_nodes_announcement_info(&self) {
1346 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1347 node.1.announcement_info = None;
1351 /// For an already known node (from channel announcements), update its stored properties from a
1352 /// given node announcement.
1354 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1355 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1356 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1357 pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1358 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1359 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1360 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1363 /// For an already known node (from channel announcements), update its stored properties from a
1364 /// given node announcement without verifying the associated signatures. Because we aren't
1365 /// given the associated signatures here we cannot relay the node announcement to any of our
1367 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1368 self.update_node_from_announcement_intern(msg, None)
1371 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1372 let mut nodes = self.nodes.write().unwrap();
1373 match nodes.get_mut(&msg.node_id) {
1375 core::mem::drop(nodes);
1376 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1377 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1380 if let Some(node_info) = node.announcement_info.as_ref() {
1381 // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1382 // updates to ensure you always have the latest one, only vaguely suggesting
1383 // that it be at least the current time.
1384 if node_info.last_update > msg.timestamp {
1385 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1386 } else if node_info.last_update == msg.timestamp {
1387 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1392 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1393 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1394 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1395 node.announcement_info = Some(NodeAnnouncementInfo {
1396 features: msg.features.clone(),
1397 last_update: msg.timestamp,
1399 alias: NodeAlias(msg.alias),
1400 announcement_message: if should_relay { full_msg.cloned() } else { None },
1408 /// Store or update channel info from a channel announcement.
1410 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1411 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1412 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1414 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1415 /// the corresponding UTXO exists on chain and is correctly-formatted.
1416 pub fn update_channel_from_announcement<U: Deref>(
1417 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1418 ) -> Result<(), LightningError>
1420 U::Target: UtxoLookup,
1422 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1423 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1424 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1425 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1426 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1427 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1430 /// Store or update channel info from a channel announcement without verifying the associated
1431 /// signatures. Because we aren't given the associated signatures here we cannot relay the
1432 /// channel announcement to any of our peers.
1434 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1435 /// the corresponding UTXO exists on chain and is correctly-formatted.
1436 pub fn update_channel_from_unsigned_announcement<U: Deref>(
1437 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1438 ) -> Result<(), LightningError>
1440 U::Target: UtxoLookup,
1442 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1445 /// Update channel from partial announcement data received via rapid gossip sync
1447 /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1448 /// rapid gossip sync server)
1450 /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1451 pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1452 if node_id_1 == node_id_2 {
1453 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1456 let node_1 = NodeId::from_pubkey(&node_id_1);
1457 let node_2 = NodeId::from_pubkey(&node_id_2);
1458 let channel_info = ChannelInfo {
1460 node_one: node_1.clone(),
1462 node_two: node_2.clone(),
1464 capacity_sats: None,
1465 announcement_message: None,
1466 announcement_received_time: timestamp,
1469 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1472 fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1473 let mut channels = self.channels.write().unwrap();
1474 let mut nodes = self.nodes.write().unwrap();
1476 let node_id_a = channel_info.node_one.clone();
1477 let node_id_b = channel_info.node_two.clone();
1479 match channels.entry(short_channel_id) {
1480 IndexedMapEntry::Occupied(mut entry) => {
1481 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1482 //in the blockchain API, we need to handle it smartly here, though it's unclear
1484 if utxo_value.is_some() {
1485 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1486 // only sometimes returns results. In any case remove the previous entry. Note
1487 // that the spec expects us to "blacklist" the node_ids involved, but we can't
1489 // a) we don't *require* a UTXO provider that always returns results.
1490 // b) we don't track UTXOs of channels we know about and remove them if they
1492 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1493 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1494 *entry.get_mut() = channel_info;
1496 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1499 IndexedMapEntry::Vacant(entry) => {
1500 entry.insert(channel_info);
1504 for current_node_id in [node_id_a, node_id_b].iter() {
1505 match nodes.entry(current_node_id.clone()) {
1506 IndexedMapEntry::Occupied(node_entry) => {
1507 node_entry.into_mut().channels.push(short_channel_id);
1509 IndexedMapEntry::Vacant(node_entry) => {
1510 node_entry.insert(NodeInfo {
1511 channels: vec!(short_channel_id),
1512 announcement_info: None,
1521 fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1522 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1523 ) -> Result<(), LightningError>
1525 U::Target: UtxoLookup,
1527 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1528 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1532 let channels = self.channels.read().unwrap();
1534 if let Some(chan) = channels.get(&msg.short_channel_id) {
1535 if chan.capacity_sats.is_some() {
1536 // If we'd previously looked up the channel on-chain and checked the script
1537 // against what appears on-chain, ignore the duplicate announcement.
1539 // Because a reorg could replace one channel with another at the same SCID, if
1540 // the channel appears to be different, we re-validate. This doesn't expose us
1541 // to any more DoS risk than not, as a peer can always flood us with
1542 // randomly-generated SCID values anyway.
1544 // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1545 // as we didn't (necessarily) store the bitcoin keys, and we only really care
1546 // if the peers on the channel changed anyway.
1547 if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1548 return Err(LightningError {
1549 err: "Already have chain-validated channel".to_owned(),
1550 action: ErrorAction::IgnoreDuplicateGossip
1553 } else if utxo_lookup.is_none() {
1554 // Similarly, if we can't check the chain right now anyway, ignore the
1555 // duplicate announcement without bothering to take the channels write lock.
1556 return Err(LightningError {
1557 err: "Already have non-chain-validated channel".to_owned(),
1558 action: ErrorAction::IgnoreDuplicateGossip
1565 let removed_channels = self.removed_channels.lock().unwrap();
1566 let removed_nodes = self.removed_nodes.lock().unwrap();
1567 if removed_channels.contains_key(&msg.short_channel_id) ||
1568 removed_nodes.contains_key(&msg.node_id_1) ||
1569 removed_nodes.contains_key(&msg.node_id_2) {
1570 return Err(LightningError{
1571 err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1572 action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1576 let utxo_value = self.pending_checks.check_channel_announcement(
1577 utxo_lookup, msg, full_msg)?;
1579 #[allow(unused_mut, unused_assignments)]
1580 let mut announcement_received_time = 0;
1581 #[cfg(feature = "std")]
1583 announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1586 let chan_info = ChannelInfo {
1587 features: msg.features.clone(),
1588 node_one: msg.node_id_1,
1590 node_two: msg.node_id_2,
1592 capacity_sats: utxo_value,
1593 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1594 { full_msg.cloned() } else { None },
1595 announcement_received_time,
1598 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1600 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1604 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1605 /// If permanent, removes a channel from the local storage.
1606 /// May cause the removal of nodes too, if this was their last channel.
1607 /// If not permanent, makes channels unavailable for routing.
1608 pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1609 #[cfg(feature = "std")]
1610 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1611 #[cfg(not(feature = "std"))]
1612 let current_time_unix = None;
1614 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1617 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1618 /// If permanent, removes a channel from the local storage.
1619 /// May cause the removal of nodes too, if this was their last channel.
1620 /// If not permanent, makes channels unavailable for routing.
1621 fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1622 let mut channels = self.channels.write().unwrap();
1624 if let Some(chan) = channels.remove(&short_channel_id) {
1625 let mut nodes = self.nodes.write().unwrap();
1626 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1627 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1630 if let Some(chan) = channels.get_mut(&short_channel_id) {
1631 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1632 one_to_two.enabled = false;
1634 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1635 two_to_one.enabled = false;
1641 /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1642 /// from local storage.
1643 pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1644 #[cfg(feature = "std")]
1645 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1646 #[cfg(not(feature = "std"))]
1647 let current_time_unix = None;
1649 let node_id = NodeId::from_pubkey(node_id);
1650 let mut channels = self.channels.write().unwrap();
1651 let mut nodes = self.nodes.write().unwrap();
1652 let mut removed_channels = self.removed_channels.lock().unwrap();
1653 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1655 if let Some(node) = nodes.remove(&node_id) {
1656 for scid in node.channels.iter() {
1657 if let Some(chan_info) = channels.remove(scid) {
1658 let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1659 if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1660 other_node_entry.get_mut().channels.retain(|chan_id| {
1663 if other_node_entry.get().channels.is_empty() {
1664 other_node_entry.remove_entry();
1667 removed_channels.insert(*scid, current_time_unix);
1670 removed_nodes.insert(node_id, current_time_unix);
1674 #[cfg(feature = "std")]
1675 /// Removes information about channels that we haven't heard any updates about in some time.
1676 /// This can be used regularly to prune the network graph of channels that likely no longer
1679 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1680 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1681 /// pruning occur for updates which are at least two weeks old, which we implement here.
1683 /// Note that for users of the `lightning-background-processor` crate this method may be
1684 /// automatically called regularly for you.
1686 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1687 /// in the map for a while so that these can be resynced from gossip in the future.
1689 /// This method is only available with the `std` feature. See
1690 /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1691 pub fn remove_stale_channels_and_tracking(&self) {
1692 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1693 self.remove_stale_channels_and_tracking_with_time(time);
1696 /// Removes information about channels that we haven't heard any updates about in some time.
1697 /// This can be used regularly to prune the network graph of channels that likely no longer
1700 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1701 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1702 /// pruning occur for updates which are at least two weeks old, which we implement here.
1704 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1705 /// in the map for a while so that these can be resynced from gossip in the future.
1707 /// This function takes the current unix time as an argument. For users with the `std` feature
1708 /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1709 pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1710 let mut channels = self.channels.write().unwrap();
1711 // Time out if we haven't received an update in at least 14 days.
1712 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1713 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1714 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1715 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1717 let mut scids_to_remove = Vec::new();
1718 for (scid, info) in channels.unordered_iter_mut() {
1719 if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1720 info.one_to_two = None;
1722 if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1723 info.two_to_one = None;
1725 if info.one_to_two.is_none() || info.two_to_one.is_none() {
1726 // We check the announcement_received_time here to ensure we don't drop
1727 // announcements that we just received and are just waiting for our peer to send a
1728 // channel_update for.
1729 if info.announcement_received_time < min_time_unix as u64 {
1730 scids_to_remove.push(*scid);
1734 if !scids_to_remove.is_empty() {
1735 let mut nodes = self.nodes.write().unwrap();
1736 for scid in scids_to_remove {
1737 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1738 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1739 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1743 let should_keep_tracking = |time: &mut Option<u64>| {
1744 if let Some(time) = time {
1745 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1747 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1748 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1749 // of this function.
1750 #[cfg(feature = "no-std")]
1752 let mut tracked_time = Some(current_time_unix);
1753 core::mem::swap(time, &mut tracked_time);
1756 #[allow(unreachable_code)]
1760 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1761 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1764 /// For an already known (from announcement) channel, update info about one of the directions
1767 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1768 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1769 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1771 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1772 /// materially in the future will be rejected.
1773 pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1774 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1777 /// For an already known (from announcement) channel, update info about one of the directions
1778 /// of the channel without verifying the associated signatures. Because we aren't given the
1779 /// associated signatures here we cannot relay the channel update to any of our peers.
1781 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1782 /// materially in the future will be rejected.
1783 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1784 self.update_channel_intern(msg, None, None)
1787 fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1788 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1790 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1792 // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1793 // disable this check during tests!
1794 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1795 if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1796 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1798 if msg.timestamp as u64 > time + 60 * 60 * 24 {
1799 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1803 let mut channels = self.channels.write().unwrap();
1804 match channels.get_mut(&msg.short_channel_id) {
1806 core::mem::drop(channels);
1807 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1808 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1811 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1812 return Err(LightningError{err:
1813 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1814 action: ErrorAction::IgnoreError});
1817 if let Some(capacity_sats) = channel.capacity_sats {
1818 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1819 // Don't query UTXO set here to reduce DoS risks.
1820 if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1821 return Err(LightningError{err:
1822 "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1823 action: ErrorAction::IgnoreError});
1826 macro_rules! check_update_latest {
1827 ($target: expr) => {
1828 if let Some(existing_chan_info) = $target.as_ref() {
1829 // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1830 // order updates to ensure you always have the latest one, only
1831 // suggesting that it be at least the current time. For
1832 // channel_updates specifically, the BOLTs discuss the possibility of
1833 // pruning based on the timestamp field being more than two weeks old,
1834 // but only in the non-normative section.
1835 if existing_chan_info.last_update > msg.timestamp {
1836 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1837 } else if existing_chan_info.last_update == msg.timestamp {
1838 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1844 macro_rules! get_new_channel_info {
1846 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1847 { full_msg.cloned() } else { None };
1849 let updated_channel_update_info = ChannelUpdateInfo {
1850 enabled: chan_enabled,
1851 last_update: msg.timestamp,
1852 cltv_expiry_delta: msg.cltv_expiry_delta,
1853 htlc_minimum_msat: msg.htlc_minimum_msat,
1854 htlc_maximum_msat: msg.htlc_maximum_msat,
1856 base_msat: msg.fee_base_msat,
1857 proportional_millionths: msg.fee_proportional_millionths,
1861 Some(updated_channel_update_info)
1865 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1866 if msg.flags & 1 == 1 {
1867 check_update_latest!(channel.two_to_one);
1868 if let Some(sig) = sig {
1869 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1870 err: "Couldn't parse source node pubkey".to_owned(),
1871 action: ErrorAction::IgnoreAndLog(Level::Debug)
1872 })?, "channel_update");
1874 channel.two_to_one = get_new_channel_info!();
1876 check_update_latest!(channel.one_to_two);
1877 if let Some(sig) = sig {
1878 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1879 err: "Couldn't parse destination node pubkey".to_owned(),
1880 action: ErrorAction::IgnoreAndLog(Level::Debug)
1881 })?, "channel_update");
1883 channel.one_to_two = get_new_channel_info!();
1891 fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1892 macro_rules! remove_from_node {
1893 ($node_id: expr) => {
1894 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1895 entry.get_mut().channels.retain(|chan_id| {
1896 short_channel_id != *chan_id
1898 if entry.get().channels.is_empty() {
1899 entry.remove_entry();
1902 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1907 remove_from_node!(chan.node_one);
1908 remove_from_node!(chan.node_two);
1912 impl ReadOnlyNetworkGraph<'_> {
1913 /// Returns all known valid channels' short ids along with announced channel info.
1915 /// This is not exported to bindings users because we don't want to return lifetime'd references
1916 pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1920 /// Returns information on a channel with the given id.
1921 pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1922 self.channels.get(&short_channel_id)
1925 #[cfg(c_bindings)] // Non-bindings users should use `channels`
1926 /// Returns the list of channels in the graph
1927 pub fn list_channels(&self) -> Vec<u64> {
1928 self.channels.unordered_keys().map(|c| *c).collect()
1931 /// Returns all known nodes' public keys along with announced node info.
1933 /// This is not exported to bindings users because we don't want to return lifetime'd references
1934 pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1938 /// Returns information on a node with the given id.
1939 pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1940 self.nodes.get(node_id)
1943 #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1944 /// Returns the list of nodes in the graph
1945 pub fn list_nodes(&self) -> Vec<NodeId> {
1946 self.nodes.unordered_keys().map(|n| *n).collect()
1949 /// Get network addresses by node id.
1950 /// Returns None if the requested node is completely unknown,
1951 /// or if node announcement for the node was never received.
1952 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1953 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1954 .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1959 pub(crate) mod tests {
1960 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
1961 use crate::ln::channelmanager;
1962 use crate::ln::chan_utils::make_funding_redeemscript;
1963 #[cfg(feature = "std")]
1964 use crate::ln::features::InitFeatures;
1965 use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1966 use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1967 use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1968 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1969 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1970 use crate::util::config::UserConfig;
1971 use crate::util::test_utils;
1972 use crate::util::ser::{ReadableArgs, Readable, Writeable};
1973 use crate::util::scid_utils::scid_from_parts;
1975 use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1976 use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1978 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1979 use bitcoin::hashes::Hash;
1980 use bitcoin::network::constants::Network;
1981 use bitcoin::blockdata::constants::genesis_block;
1982 use bitcoin::blockdata::script::Script;
1983 use bitcoin::blockdata::transaction::TxOut;
1987 use bitcoin::secp256k1::{PublicKey, SecretKey};
1988 use bitcoin::secp256k1::{All, Secp256k1};
1991 use bitcoin::secp256k1;
1992 use crate::prelude::*;
1993 use crate::sync::Arc;
1995 fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1996 let logger = Arc::new(test_utils::TestLogger::new());
1997 NetworkGraph::new(Network::Testnet, logger)
2000 fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2001 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2002 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2004 let secp_ctx = Secp256k1::new();
2005 let logger = Arc::new(test_utils::TestLogger::new());
2006 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2007 (secp_ctx, gossip_sync)
2011 #[cfg(feature = "std")]
2012 fn request_full_sync_finite_times() {
2013 let network_graph = create_network_graph();
2014 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2015 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2017 assert!(gossip_sync.should_request_full_sync(&node_id));
2018 assert!(gossip_sync.should_request_full_sync(&node_id));
2019 assert!(gossip_sync.should_request_full_sync(&node_id));
2020 assert!(gossip_sync.should_request_full_sync(&node_id));
2021 assert!(gossip_sync.should_request_full_sync(&node_id));
2022 assert!(!gossip_sync.should_request_full_sync(&node_id));
2025 pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2026 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2027 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2028 features: channelmanager::provided_node_features(&UserConfig::default()),
2033 addresses: Vec::new(),
2034 excess_address_data: Vec::new(),
2035 excess_data: Vec::new(),
2037 f(&mut unsigned_announcement);
2038 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2040 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2041 contents: unsigned_announcement
2045 pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2046 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2047 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2048 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2049 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2051 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2052 features: channelmanager::provided_channel_features(&UserConfig::default()),
2053 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2054 short_channel_id: 0,
2055 node_id_1: NodeId::from_pubkey(&node_id_1),
2056 node_id_2: NodeId::from_pubkey(&node_id_2),
2057 bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2058 bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2059 excess_data: Vec::new(),
2061 f(&mut unsigned_announcement);
2062 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2063 ChannelAnnouncement {
2064 node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2065 node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2066 bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2067 bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2068 contents: unsigned_announcement,
2072 pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2073 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2074 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2075 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2076 &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2079 pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2080 let mut unsigned_channel_update = UnsignedChannelUpdate {
2081 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2082 short_channel_id: 0,
2085 cltv_expiry_delta: 144,
2086 htlc_minimum_msat: 1_000_000,
2087 htlc_maximum_msat: 1_000_000,
2088 fee_base_msat: 10_000,
2089 fee_proportional_millionths: 20,
2090 excess_data: Vec::new()
2092 f(&mut unsigned_channel_update);
2093 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2095 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2096 contents: unsigned_channel_update
2101 fn handling_node_announcements() {
2102 let network_graph = create_network_graph();
2103 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2105 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2106 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2107 let zero_hash = Sha256dHash::hash(&[0; 32]);
2109 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2110 match gossip_sync.handle_node_announcement(&valid_announcement) {
2112 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2116 // Announce a channel to add a corresponding node.
2117 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2118 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2119 Ok(res) => assert!(res),
2124 match gossip_sync.handle_node_announcement(&valid_announcement) {
2125 Ok(res) => assert!(res),
2129 let fake_msghash = hash_to_message!(&zero_hash);
2130 match gossip_sync.handle_node_announcement(
2132 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2133 contents: valid_announcement.contents.clone()
2136 Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2139 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2140 unsigned_announcement.timestamp += 1000;
2141 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2142 }, node_1_privkey, &secp_ctx);
2143 // Return false because contains excess data.
2144 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2145 Ok(res) => assert!(!res),
2149 // Even though previous announcement was not relayed further, we still accepted it,
2150 // so we now won't accept announcements before the previous one.
2151 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2152 unsigned_announcement.timestamp += 1000 - 10;
2153 }, node_1_privkey, &secp_ctx);
2154 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2156 Err(e) => assert_eq!(e.err, "Update older than last processed update")
2161 fn handling_channel_announcements() {
2162 let secp_ctx = Secp256k1::new();
2163 let logger = test_utils::TestLogger::new();
2165 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2166 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2168 let good_script = get_channel_script(&secp_ctx);
2169 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2171 // Test if the UTXO lookups were not supported
2172 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2173 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2174 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2175 Ok(res) => assert!(res),
2180 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2186 // If we receive announcement for the same channel (with UTXO lookups disabled),
2187 // drop new one on the floor, since we can't see any changes.
2188 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2190 Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2193 // Test if an associated transaction were not on-chain (or not confirmed).
2194 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2195 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2196 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2197 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2199 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2200 unsigned_announcement.short_channel_id += 1;
2201 }, node_1_privkey, node_2_privkey, &secp_ctx);
2202 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2204 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2207 // Now test if the transaction is found in the UTXO set and the script is correct.
2208 *chain_source.utxo_ret.lock().unwrap() =
2209 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2210 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2211 unsigned_announcement.short_channel_id += 2;
2212 }, node_1_privkey, node_2_privkey, &secp_ctx);
2213 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2214 Ok(res) => assert!(res),
2219 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2225 // If we receive announcement for the same channel, once we've validated it against the
2226 // chain, we simply ignore all new (duplicate) announcements.
2227 *chain_source.utxo_ret.lock().unwrap() =
2228 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2229 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2231 Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2234 #[cfg(feature = "std")]
2236 use std::time::{SystemTime, UNIX_EPOCH};
2238 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2239 // Mark a node as permanently failed so it's tracked as removed.
2240 gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2242 // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2243 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2244 unsigned_announcement.short_channel_id += 3;
2245 }, node_1_privkey, node_2_privkey, &secp_ctx);
2246 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2248 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2251 gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2253 // The above channel announcement should be handled as per normal now.
2254 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2255 Ok(res) => assert!(res),
2260 // Don't relay valid channels with excess data
2261 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2262 unsigned_announcement.short_channel_id += 4;
2263 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2264 }, node_1_privkey, node_2_privkey, &secp_ctx);
2265 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2266 Ok(res) => assert!(!res),
2270 let mut invalid_sig_announcement = valid_announcement.clone();
2271 invalid_sig_announcement.contents.excess_data = Vec::new();
2272 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2274 Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2277 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2278 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2280 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2285 fn handling_channel_update() {
2286 let secp_ctx = Secp256k1::new();
2287 let logger = test_utils::TestLogger::new();
2288 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2289 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2290 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2292 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2293 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2295 let amount_sats = 1000_000;
2296 let short_channel_id;
2299 // Announce a channel we will update
2300 let good_script = get_channel_script(&secp_ctx);
2301 *chain_source.utxo_ret.lock().unwrap() =
2302 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2304 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2305 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2306 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2313 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2314 match gossip_sync.handle_channel_update(&valid_channel_update) {
2315 Ok(res) => assert!(res),
2320 match network_graph.read_only().channels().get(&short_channel_id) {
2322 Some(channel_info) => {
2323 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2324 assert!(channel_info.two_to_one.is_none());
2329 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2330 unsigned_channel_update.timestamp += 100;
2331 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2332 }, node_1_privkey, &secp_ctx);
2333 // Return false because contains excess data
2334 match gossip_sync.handle_channel_update(&valid_channel_update) {
2335 Ok(res) => assert!(!res),
2339 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2340 unsigned_channel_update.timestamp += 110;
2341 unsigned_channel_update.short_channel_id += 1;
2342 }, node_1_privkey, &secp_ctx);
2343 match gossip_sync.handle_channel_update(&valid_channel_update) {
2345 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2348 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2349 unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2350 unsigned_channel_update.timestamp += 110;
2351 }, node_1_privkey, &secp_ctx);
2352 match gossip_sync.handle_channel_update(&valid_channel_update) {
2354 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2357 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2358 unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2359 unsigned_channel_update.timestamp += 110;
2360 }, node_1_privkey, &secp_ctx);
2361 match gossip_sync.handle_channel_update(&valid_channel_update) {
2363 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2366 // Even though previous update was not relayed further, we still accepted it,
2367 // so we now won't accept update before the previous one.
2368 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2369 unsigned_channel_update.timestamp += 100;
2370 }, node_1_privkey, &secp_ctx);
2371 match gossip_sync.handle_channel_update(&valid_channel_update) {
2373 Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2376 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2377 unsigned_channel_update.timestamp += 500;
2378 }, node_1_privkey, &secp_ctx);
2379 let zero_hash = Sha256dHash::hash(&[0; 32]);
2380 let fake_msghash = hash_to_message!(&zero_hash);
2381 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2382 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2384 Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2389 fn handling_network_update() {
2390 let logger = test_utils::TestLogger::new();
2391 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2392 let secp_ctx = Secp256k1::new();
2394 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2395 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2396 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2399 // There is no nodes in the table at the beginning.
2400 assert_eq!(network_graph.read_only().nodes().len(), 0);
2403 let short_channel_id;
2405 // Announce a channel we will update
2406 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2407 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2408 let chain_source: Option<&test_utils::TestChainSource> = None;
2409 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2410 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2412 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2413 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2415 network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2416 msg: valid_channel_update,
2419 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2422 // Non-permanent closing just disables a channel
2424 match network_graph.read_only().channels().get(&short_channel_id) {
2426 Some(channel_info) => {
2427 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2431 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2433 is_permanent: false,
2436 match network_graph.read_only().channels().get(&short_channel_id) {
2438 Some(channel_info) => {
2439 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2444 // Permanent closing deletes a channel
2445 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2450 assert_eq!(network_graph.read_only().channels().len(), 0);
2451 // Nodes are also deleted because there are no associated channels anymore
2452 assert_eq!(network_graph.read_only().nodes().len(), 0);
2455 // Get a new network graph since we don't want to track removed nodes in this test with "std"
2456 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2458 // Announce a channel to test permanent node failure
2459 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2460 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2461 let chain_source: Option<&test_utils::TestChainSource> = None;
2462 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2463 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2465 // Non-permanent node failure does not delete any nodes or channels
2466 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2468 is_permanent: false,
2471 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2472 assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2474 // Permanent node failure deletes node and its channels
2475 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2480 assert_eq!(network_graph.read_only().nodes().len(), 0);
2481 // Channels are also deleted because the associated node has been deleted
2482 assert_eq!(network_graph.read_only().channels().len(), 0);
2487 fn test_channel_timeouts() {
2488 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2489 let logger = test_utils::TestLogger::new();
2490 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2491 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2492 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2493 let secp_ctx = Secp256k1::new();
2495 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2496 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2498 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2499 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2500 let chain_source: Option<&test_utils::TestChainSource> = None;
2501 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2502 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2504 // Submit two channel updates for each channel direction (update.flags bit).
2505 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2506 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2507 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2509 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2510 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2511 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2513 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2514 assert_eq!(network_graph.read_only().channels().len(), 1);
2515 assert_eq!(network_graph.read_only().nodes().len(), 2);
2517 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2518 #[cfg(not(feature = "std"))] {
2519 // Make sure removed channels are tracked.
2520 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2522 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2523 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2525 #[cfg(feature = "std")]
2527 // In std mode, a further check is performed before fully removing the channel -
2528 // the channel_announcement must have been received at least two weeks ago. We
2529 // fudge that here by indicating the time has jumped two weeks.
2530 assert_eq!(network_graph.read_only().channels().len(), 1);
2531 assert_eq!(network_graph.read_only().nodes().len(), 2);
2533 // Note that the directional channel information will have been removed already..
2534 // We want to check that this will work even if *one* of the channel updates is recent,
2535 // so we should add it with a recent timestamp.
2536 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2537 use std::time::{SystemTime, UNIX_EPOCH};
2538 let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2539 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2540 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2541 }, node_1_privkey, &secp_ctx);
2542 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2543 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2544 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2545 // Make sure removed channels are tracked.
2546 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2547 // Provide a later time so that sufficient time has passed
2548 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2549 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2552 assert_eq!(network_graph.read_only().channels().len(), 0);
2553 assert_eq!(network_graph.read_only().nodes().len(), 0);
2554 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2556 #[cfg(feature = "std")]
2558 use std::time::{SystemTime, UNIX_EPOCH};
2560 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2562 // Clear tracked nodes and channels for clean slate
2563 network_graph.removed_channels.lock().unwrap().clear();
2564 network_graph.removed_nodes.lock().unwrap().clear();
2566 // Add a channel and nodes from channel announcement. So our network graph will
2567 // now only consist of two nodes and one channel between them.
2568 assert!(network_graph.update_channel_from_announcement(
2569 &valid_channel_announcement, &chain_source).is_ok());
2571 // Mark the channel as permanently failed. This will also remove the two nodes
2572 // and all of the entries will be tracked as removed.
2573 network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2575 // Should not remove from tracking if insufficient time has passed
2576 network_graph.remove_stale_channels_and_tracking_with_time(
2577 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2578 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count ≠1 with tracking_time {}", tracking_time);
2580 // Provide a later time so that sufficient time has passed
2581 network_graph.remove_stale_channels_and_tracking_with_time(
2582 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2583 assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2584 assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2587 #[cfg(not(feature = "std"))]
2589 // When we don't have access to the system clock, the time we started tracking removal will only
2590 // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2591 // only if sufficient time has passed after that first call, will the next call remove it from
2593 let removal_time = 1664619654;
2595 // Clear removed nodes and channels for clean slate
2596 network_graph.removed_channels.lock().unwrap().clear();
2597 network_graph.removed_nodes.lock().unwrap().clear();
2599 // Add a channel and nodes from channel announcement. So our network graph will
2600 // now only consist of two nodes and one channel between them.
2601 assert!(network_graph.update_channel_from_announcement(
2602 &valid_channel_announcement, &chain_source).is_ok());
2604 // Mark the channel as permanently failed. This will also remove the two nodes
2605 // and all of the entries will be tracked as removed.
2606 network_graph.channel_failed(short_channel_id, true);
2608 // The first time we call the following, the channel will have a removal time assigned.
2609 network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2610 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2612 // Provide a later time so that sufficient time has passed
2613 network_graph.remove_stale_channels_and_tracking_with_time(
2614 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2615 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2616 assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2621 fn getting_next_channel_announcements() {
2622 let network_graph = create_network_graph();
2623 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2624 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2625 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2627 // Channels were not announced yet.
2628 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2629 assert!(channels_with_announcements.is_none());
2631 let short_channel_id;
2633 // Announce a channel we will update
2634 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2635 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2636 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2642 // Contains initial channel announcement now.
2643 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2644 if let Some(channel_announcements) = channels_with_announcements {
2645 let (_, ref update_1, ref update_2) = channel_announcements;
2646 assert_eq!(update_1, &None);
2647 assert_eq!(update_2, &None);
2653 // Valid channel update
2654 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2655 unsigned_channel_update.timestamp = 101;
2656 }, node_1_privkey, &secp_ctx);
2657 match gossip_sync.handle_channel_update(&valid_channel_update) {
2663 // Now contains an initial announcement and an update.
2664 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2665 if let Some(channel_announcements) = channels_with_announcements {
2666 let (_, ref update_1, ref update_2) = channel_announcements;
2667 assert_ne!(update_1, &None);
2668 assert_eq!(update_2, &None);
2674 // Channel update with excess data.
2675 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2676 unsigned_channel_update.timestamp = 102;
2677 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2678 }, node_1_privkey, &secp_ctx);
2679 match gossip_sync.handle_channel_update(&valid_channel_update) {
2685 // Test that announcements with excess data won't be returned
2686 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2687 if let Some(channel_announcements) = channels_with_announcements {
2688 let (_, ref update_1, ref update_2) = channel_announcements;
2689 assert_eq!(update_1, &None);
2690 assert_eq!(update_2, &None);
2695 // Further starting point have no channels after it
2696 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2697 assert!(channels_with_announcements.is_none());
2701 fn getting_next_node_announcements() {
2702 let network_graph = create_network_graph();
2703 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2704 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2705 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2706 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2709 let next_announcements = gossip_sync.get_next_node_announcement(None);
2710 assert!(next_announcements.is_none());
2713 // Announce a channel to add 2 nodes
2714 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2715 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2721 // Nodes were never announced
2722 let next_announcements = gossip_sync.get_next_node_announcement(None);
2723 assert!(next_announcements.is_none());
2726 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2727 match gossip_sync.handle_node_announcement(&valid_announcement) {
2732 let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2733 match gossip_sync.handle_node_announcement(&valid_announcement) {
2739 let next_announcements = gossip_sync.get_next_node_announcement(None);
2740 assert!(next_announcements.is_some());
2742 // Skip the first node.
2743 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2744 assert!(next_announcements.is_some());
2747 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2748 let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2749 unsigned_announcement.timestamp += 10;
2750 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2751 }, node_2_privkey, &secp_ctx);
2752 match gossip_sync.handle_node_announcement(&valid_announcement) {
2753 Ok(res) => assert!(!res),
2758 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2759 assert!(next_announcements.is_none());
2763 fn network_graph_serialization() {
2764 let network_graph = create_network_graph();
2765 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2767 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2768 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2770 // Announce a channel to add a corresponding node.
2771 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2772 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2773 Ok(res) => assert!(res),
2777 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2778 match gossip_sync.handle_node_announcement(&valid_announcement) {
2783 let mut w = test_utils::TestVecWriter(Vec::new());
2784 assert!(!network_graph.read_only().nodes().is_empty());
2785 assert!(!network_graph.read_only().channels().is_empty());
2786 network_graph.write(&mut w).unwrap();
2788 let logger = Arc::new(test_utils::TestLogger::new());
2789 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2793 fn network_graph_tlv_serialization() {
2794 let network_graph = create_network_graph();
2795 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2797 let mut w = test_utils::TestVecWriter(Vec::new());
2798 network_graph.write(&mut w).unwrap();
2800 let logger = Arc::new(test_utils::TestLogger::new());
2801 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2802 assert!(reassembled_network_graph == network_graph);
2803 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2807 #[cfg(feature = "std")]
2808 fn calling_sync_routing_table() {
2809 use std::time::{SystemTime, UNIX_EPOCH};
2810 use crate::ln::msgs::Init;
2812 let network_graph = create_network_graph();
2813 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2814 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2815 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2817 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2819 // It should ignore if gossip_queries feature is not enabled
2821 let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2822 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2823 let events = gossip_sync.get_and_clear_pending_msg_events();
2824 assert_eq!(events.len(), 0);
2827 // It should send a gossip_timestamp_filter with the correct information
2829 let mut features = InitFeatures::empty();
2830 features.set_gossip_queries_optional();
2831 let init_msg = Init { features, remote_network_address: None };
2832 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2833 let events = gossip_sync.get_and_clear_pending_msg_events();
2834 assert_eq!(events.len(), 1);
2836 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2837 assert_eq!(node_id, &node_id_1);
2838 assert_eq!(msg.chain_hash, chain_hash);
2839 let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2840 assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2841 assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2842 assert_eq!(msg.timestamp_range, u32::max_value());
2844 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2850 fn handling_query_channel_range() {
2851 let network_graph = create_network_graph();
2852 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2854 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2855 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2856 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2857 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2859 let mut scids: Vec<u64> = vec![
2860 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2861 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2864 // used for testing multipart reply across blocks
2865 for block in 100000..=108001 {
2866 scids.push(scid_from_parts(block, 0, 0).unwrap());
2869 // used for testing resumption on same block
2870 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2873 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2874 unsigned_announcement.short_channel_id = scid;
2875 }, node_1_privkey, node_2_privkey, &secp_ctx);
2876 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2882 // Error when number_of_blocks=0
2883 do_handling_query_channel_range(
2887 chain_hash: chain_hash.clone(),
2889 number_of_blocks: 0,
2892 vec![ReplyChannelRange {
2893 chain_hash: chain_hash.clone(),
2895 number_of_blocks: 0,
2896 sync_complete: true,
2897 short_channel_ids: vec![]
2901 // Error when wrong chain
2902 do_handling_query_channel_range(
2906 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2908 number_of_blocks: 0xffff_ffff,
2911 vec![ReplyChannelRange {
2912 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2914 number_of_blocks: 0xffff_ffff,
2915 sync_complete: true,
2916 short_channel_ids: vec![],
2920 // Error when first_blocknum > 0xffffff
2921 do_handling_query_channel_range(
2925 chain_hash: chain_hash.clone(),
2926 first_blocknum: 0x01000000,
2927 number_of_blocks: 0xffff_ffff,
2930 vec![ReplyChannelRange {
2931 chain_hash: chain_hash.clone(),
2932 first_blocknum: 0x01000000,
2933 number_of_blocks: 0xffff_ffff,
2934 sync_complete: true,
2935 short_channel_ids: vec![]
2939 // Empty reply when max valid SCID block num
2940 do_handling_query_channel_range(
2944 chain_hash: chain_hash.clone(),
2945 first_blocknum: 0xffffff,
2946 number_of_blocks: 1,
2951 chain_hash: chain_hash.clone(),
2952 first_blocknum: 0xffffff,
2953 number_of_blocks: 1,
2954 sync_complete: true,
2955 short_channel_ids: vec![]
2960 // No results in valid query range
2961 do_handling_query_channel_range(
2965 chain_hash: chain_hash.clone(),
2966 first_blocknum: 1000,
2967 number_of_blocks: 1000,
2972 chain_hash: chain_hash.clone(),
2973 first_blocknum: 1000,
2974 number_of_blocks: 1000,
2975 sync_complete: true,
2976 short_channel_ids: vec![],
2981 // Overflow first_blocknum + number_of_blocks
2982 do_handling_query_channel_range(
2986 chain_hash: chain_hash.clone(),
2987 first_blocknum: 0xfe0000,
2988 number_of_blocks: 0xffffffff,
2993 chain_hash: chain_hash.clone(),
2994 first_blocknum: 0xfe0000,
2995 number_of_blocks: 0xffffffff - 0xfe0000,
2996 sync_complete: true,
2997 short_channel_ids: vec![
2998 0xfffffe_ffffff_ffff, // max
3004 // Single block exactly full
3005 do_handling_query_channel_range(
3009 chain_hash: chain_hash.clone(),
3010 first_blocknum: 100000,
3011 number_of_blocks: 8000,
3016 chain_hash: chain_hash.clone(),
3017 first_blocknum: 100000,
3018 number_of_blocks: 8000,
3019 sync_complete: true,
3020 short_channel_ids: (100000..=107999)
3021 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3027 // Multiple split on new block
3028 do_handling_query_channel_range(
3032 chain_hash: chain_hash.clone(),
3033 first_blocknum: 100000,
3034 number_of_blocks: 8001,
3039 chain_hash: chain_hash.clone(),
3040 first_blocknum: 100000,
3041 number_of_blocks: 7999,
3042 sync_complete: false,
3043 short_channel_ids: (100000..=107999)
3044 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3048 chain_hash: chain_hash.clone(),
3049 first_blocknum: 107999,
3050 number_of_blocks: 2,
3051 sync_complete: true,
3052 short_channel_ids: vec![
3053 scid_from_parts(108000, 0, 0).unwrap(),
3059 // Multiple split on same block
3060 do_handling_query_channel_range(
3064 chain_hash: chain_hash.clone(),
3065 first_blocknum: 100002,
3066 number_of_blocks: 8000,
3071 chain_hash: chain_hash.clone(),
3072 first_blocknum: 100002,
3073 number_of_blocks: 7999,
3074 sync_complete: false,
3075 short_channel_ids: (100002..=108001)
3076 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3080 chain_hash: chain_hash.clone(),
3081 first_blocknum: 108001,
3082 number_of_blocks: 1,
3083 sync_complete: true,
3084 short_channel_ids: vec![
3085 scid_from_parts(108001, 1, 0).unwrap(),
3092 fn do_handling_query_channel_range(
3093 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3094 test_node_id: &PublicKey,
3095 msg: QueryChannelRange,
3097 expected_replies: Vec<ReplyChannelRange>
3099 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3100 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3101 let query_end_blocknum = msg.end_blocknum();
3102 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3105 assert!(result.is_ok());
3107 assert!(result.is_err());
3110 let events = gossip_sync.get_and_clear_pending_msg_events();
3111 assert_eq!(events.len(), expected_replies.len());
3113 for i in 0..events.len() {
3114 let expected_reply = &expected_replies[i];
3116 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3117 assert_eq!(node_id, test_node_id);
3118 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3119 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3120 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3121 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3122 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3124 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3125 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3126 assert!(msg.first_blocknum >= max_firstblocknum);
3127 max_firstblocknum = msg.first_blocknum;
3128 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3130 // Check that the last block count is >= the query's end_blocknum
3131 if i == events.len() - 1 {
3132 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3135 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3141 fn handling_query_short_channel_ids() {
3142 let network_graph = create_network_graph();
3143 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3144 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3145 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3147 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3149 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3151 short_channel_ids: vec![0x0003e8_000000_0000],
3153 assert!(result.is_err());
3157 fn displays_node_alias() {
3158 let format_str_alias = |alias: &str| {
3159 let mut bytes = [0u8; 32];
3160 bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3161 format!("{}", NodeAlias(bytes))
3164 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3165 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3166 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3168 let format_bytes_alias = |alias: &[u8]| {
3169 let mut bytes = [0u8; 32];
3170 bytes[..alias.len()].copy_from_slice(alias);
3171 format!("{}", NodeAlias(bytes))
3174 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3175 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3176 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3180 fn channel_info_is_readable() {
3181 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3182 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3183 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3184 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3185 let config = crate::ln::functional_test_utils::test_default_channel_config();
3187 // 1. Test encoding/decoding of ChannelUpdateInfo
3188 let chan_update_info = ChannelUpdateInfo {
3191 cltv_expiry_delta: 42,
3192 htlc_minimum_msat: 1234,
3193 htlc_maximum_msat: 5678,
3194 fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3195 last_update_message: None,
3198 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3199 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3201 // First make sure we can read ChannelUpdateInfos we just wrote
3202 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3203 assert_eq!(chan_update_info, read_chan_update_info);
3205 // Check the serialization hasn't changed.
3206 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3207 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3209 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3210 // or the ChannelUpdate enclosed with `last_update_message`.
3211 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3212 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3213 assert!(read_chan_update_info_res.is_err());
3215 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3216 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3217 assert!(read_chan_update_info_res.is_err());
3219 // 2. Test encoding/decoding of ChannelInfo
3220 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3221 let chan_info_none_updates = ChannelInfo {
3222 features: channelmanager::provided_channel_features(&config),
3223 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3225 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3227 capacity_sats: None,
3228 announcement_message: None,
3229 announcement_received_time: 87654,
3232 let mut encoded_chan_info: Vec<u8> = Vec::new();
3233 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3235 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3236 assert_eq!(chan_info_none_updates, read_chan_info);
3238 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3239 let chan_info_some_updates = ChannelInfo {
3240 features: channelmanager::provided_channel_features(&config),
3241 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3242 one_to_two: Some(chan_update_info.clone()),
3243 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3244 two_to_one: Some(chan_update_info.clone()),
3245 capacity_sats: None,
3246 announcement_message: None,
3247 announcement_received_time: 87654,
3250 let mut encoded_chan_info: Vec<u8> = Vec::new();
3251 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3253 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3254 assert_eq!(chan_info_some_updates, read_chan_info);
3256 // Check the serialization hasn't changed.
3257 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3258 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3260 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3261 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3262 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3263 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3264 assert_eq!(read_chan_info.announcement_received_time, 87654);
3265 assert_eq!(read_chan_info.one_to_two, None);
3266 assert_eq!(read_chan_info.two_to_one, None);
3268 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3269 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3270 assert_eq!(read_chan_info.announcement_received_time, 87654);
3271 assert_eq!(read_chan_info.one_to_two, None);
3272 assert_eq!(read_chan_info.two_to_one, None);
3276 fn node_info_is_readable() {
3277 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3278 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3279 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3280 let valid_node_ann_info = NodeAnnouncementInfo {
3281 features: channelmanager::provided_node_features(&UserConfig::default()),
3284 alias: NodeAlias([0u8; 32]),
3285 announcement_message: Some(announcement_message)
3288 let mut encoded_valid_node_ann_info = Vec::new();
3289 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3290 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3291 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3292 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3294 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3295 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3296 assert!(read_invalid_node_ann_info_res.is_err());
3298 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3299 let valid_node_info = NodeInfo {
3300 channels: Vec::new(),
3301 announcement_info: Some(valid_node_ann_info),
3304 let mut encoded_valid_node_info = Vec::new();
3305 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3306 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3307 assert_eq!(read_valid_node_info, valid_node_info);
3309 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3310 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3311 assert_eq!(read_invalid_node_info.announcement_info, None);
3315 fn test_node_info_keeps_compatibility() {
3316 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3317 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3318 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3319 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3320 assert!(ann_info_with_addresses.addresses().is_empty());
3324 #[cfg(all(test, feature = "_bench_unstable"))]
3332 fn read_network_graph(bench: &mut Bencher) {
3333 let logger = crate::util::test_utils::TestLogger::new();
3334 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3335 let mut v = Vec::new();
3336 d.read_to_end(&mut v).unwrap();
3338 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3343 fn write_network_graph(bench: &mut Bencher) {
3344 let logger = crate::util::test_utils::TestLogger::new();
3345 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3346 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3348 let _ = net_graph.encode();