Implement to and from for PublicKey and NodeId
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use bitcoin::network::constants::Network;
22 use bitcoin::blockdata::constants::genesis_block;
23
24 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::routing::utxo::{self, UtxoLookup};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use core::convert::TryFrom;
42 use crate::sync::{RwLock, RwLockReadGuard};
43 #[cfg(feature = "std")]
44 use core::sync::atomic::{AtomicUsize, Ordering};
45 use crate::sync::Mutex;
46 use core::ops::{Bound, Deref};
47
48 #[cfg(feature = "std")]
49 use std::time::{SystemTime, UNIX_EPOCH};
50
51 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 /// suggestion.
53 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54
55 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
56 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57
58 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
59 /// refuse to relay the message.
60 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61
62 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
63 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
64 const MAX_SCIDS_PER_REPLY: usize = 8000;
65
66 /// Represents the compressed public key of a node
67 #[derive(Clone, Copy)]
68 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
69
70 impl NodeId {
71         /// Create a new NodeId from a public key
72         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
73                 NodeId(pubkey.serialize())
74         }
75
76         /// Get the public key slice from this NodeId
77         pub fn as_slice(&self) -> &[u8] {
78                 &self.0
79         }
80
81         /// Get the public key from this NodeId
82         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
83                 PublicKey::from_slice(&self.0)
84         }
85 }
86
87 impl fmt::Debug for NodeId {
88         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
89                 write!(f, "NodeId({})", log_bytes!(self.0))
90         }
91 }
92 impl fmt::Display for NodeId {
93         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
94                 write!(f, "{}", log_bytes!(self.0))
95         }
96 }
97
98 impl core::hash::Hash for NodeId {
99         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
100                 self.0.hash(hasher);
101         }
102 }
103
104 impl Eq for NodeId {}
105
106 impl PartialEq for NodeId {
107         fn eq(&self, other: &Self) -> bool {
108                 self.0[..] == other.0[..]
109         }
110 }
111
112 impl cmp::PartialOrd for NodeId {
113         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
114                 Some(self.cmp(other))
115         }
116 }
117
118 impl Ord for NodeId {
119         fn cmp(&self, other: &Self) -> cmp::Ordering {
120                 self.0[..].cmp(&other.0[..])
121         }
122 }
123
124 impl Writeable for NodeId {
125         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
126                 writer.write_all(&self.0)?;
127                 Ok(())
128         }
129 }
130
131 impl Readable for NodeId {
132         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
133                 let mut buf = [0; PUBLIC_KEY_SIZE];
134                 reader.read_exact(&mut buf)?;
135                 Ok(Self(buf))
136         }
137 }
138
139 impl From<PublicKey> for NodeId {
140         fn from(pubkey: PublicKey) -> Self {
141                 Self::from_pubkey(&pubkey)
142         }
143 }
144
145 impl TryFrom<NodeId> for PublicKey {
146         type Error = secp256k1::Error;
147
148         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
149                 node_id.as_pubkey()
150         }
151 }
152
153 /// Represents the network as nodes and channels between them
154 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
155         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
156         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
157         genesis_hash: BlockHash,
158         logger: L,
159         // Lock order: channels -> nodes
160         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
161         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
162         // Lock order: removed_channels -> removed_nodes
163         //
164         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
165         // of `std::time::Instant`s for a few reasons:
166         //   * We want it to be possible to do tracking in no-std environments where we can compare
167         //     a provided current UNIX timestamp with the time at which we started tracking.
168         //   * In the future, if we decide to persist these maps, they will already be serializable.
169         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
170         //     environment should be practical over the time period we are considering (on the order of a
171         //     week).
172         //
173         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
174         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
175         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
176         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
177         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
178         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
179         /// that once some time passes, we can potentially resync it from gossip again.
180         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
181         /// Announcement messages which are awaiting an on-chain lookup to be processed.
182         pub(super) pending_checks: utxo::PendingChecks,
183 }
184
185 /// A read-only view of [`NetworkGraph`].
186 pub struct ReadOnlyNetworkGraph<'a> {
187         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
188         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
189 }
190
191 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
192 /// return packet by a node along the route. See [BOLT #4] for details.
193 ///
194 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
195 #[derive(Clone, Debug, PartialEq, Eq)]
196 pub enum NetworkUpdate {
197         /// An error indicating a `channel_update` messages should be applied via
198         /// [`NetworkGraph::update_channel`].
199         ChannelUpdateMessage {
200                 /// The update to apply via [`NetworkGraph::update_channel`].
201                 msg: ChannelUpdate,
202         },
203         /// An error indicating that a channel failed to route a payment, which should be applied via
204         /// [`NetworkGraph::channel_failed`].
205         ChannelFailure {
206                 /// The short channel id of the closed channel.
207                 short_channel_id: u64,
208                 /// Whether the channel should be permanently removed or temporarily disabled until a new
209                 /// `channel_update` message is received.
210                 is_permanent: bool,
211         },
212         /// An error indicating that a node failed to route a payment, which should be applied via
213         /// [`NetworkGraph::node_failed_permanent`] if permanent.
214         NodeFailure {
215                 /// The node id of the failed node.
216                 node_id: PublicKey,
217                 /// Whether the node should be permanently removed from consideration or can be restored
218                 /// when a new `channel_update` message is received.
219                 is_permanent: bool,
220         }
221 }
222
223 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
224         (0, ChannelUpdateMessage) => {
225                 (0, msg, required),
226         },
227         (2, ChannelFailure) => {
228                 (0, short_channel_id, required),
229                 (2, is_permanent, required),
230         },
231         (4, NodeFailure) => {
232                 (0, node_id, required),
233                 (2, is_permanent, required),
234         },
235 );
236
237 /// Receives and validates network updates from peers,
238 /// stores authentic and relevant data as a network graph.
239 /// This network graph is then used for routing payments.
240 /// Provides interface to help with initial routing sync by
241 /// serving historical announcements.
242 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
243 where U::Target: UtxoLookup, L::Target: Logger
244 {
245         network_graph: G,
246         utxo_lookup: Option<U>,
247         #[cfg(feature = "std")]
248         full_syncs_requested: AtomicUsize,
249         pending_events: Mutex<Vec<MessageSendEvent>>,
250         logger: L,
251 }
252
253 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
254 where U::Target: UtxoLookup, L::Target: Logger
255 {
256         /// Creates a new tracker of the actual state of the network of channels and nodes,
257         /// assuming an existing [`NetworkGraph`].
258         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
259         /// correct, and the announcement is signed with channel owners' keys.
260         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
261                 P2PGossipSync {
262                         network_graph,
263                         #[cfg(feature = "std")]
264                         full_syncs_requested: AtomicUsize::new(0),
265                         utxo_lookup,
266                         pending_events: Mutex::new(vec![]),
267                         logger,
268                 }
269         }
270
271         /// Adds a provider used to check new announcements. Does not affect
272         /// existing announcements unless they are updated.
273         /// Add, update or remove the provider would replace the current one.
274         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
275                 self.utxo_lookup = utxo_lookup;
276         }
277
278         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
279         /// [`P2PGossipSync::new`].
280         ///
281         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
282         pub fn network_graph(&self) -> &G {
283                 &self.network_graph
284         }
285
286         #[cfg(feature = "std")]
287         /// Returns true when a full routing table sync should be performed with a peer.
288         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
289                 //TODO: Determine whether to request a full sync based on the network map.
290                 const FULL_SYNCS_TO_REQUEST: usize = 5;
291                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
292                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
293                         true
294                 } else {
295                         false
296                 }
297         }
298
299         /// Used to broadcast forward gossip messages which were validated async.
300         ///
301         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
302         /// data.
303         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
304                 match &mut ev {
305                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
306                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
307                                 if update_msg.as_ref()
308                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
309                                 {
310                                         *update_msg = None;
311                                 }
312                         },
313                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
314                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
315                         },
316                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
317                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
318                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
319                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
320                                 {
321                                         return;
322                                 }
323                         },
324                         _ => return,
325                 }
326                 self.pending_events.lock().unwrap().push(ev);
327         }
328 }
329
330 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
331         /// Handles any network updates originating from [`Event`]s.
332         ///
333         /// [`Event`]: crate::events::Event
334         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
335                 match *network_update {
336                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
337                                 let short_channel_id = msg.contents.short_channel_id;
338                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
339                                 let status = if is_enabled { "enabled" } else { "disabled" };
340                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
341                                 let _ = self.update_channel(msg);
342                         },
343                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
344                                 let action = if is_permanent { "Removing" } else { "Disabling" };
345                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
346                                 self.channel_failed(short_channel_id, is_permanent);
347                         },
348                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
349                                 if is_permanent {
350                                         log_debug!(self.logger,
351                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
352                                         self.node_failed_permanent(node_id);
353                                 };
354                         },
355                 }
356         }
357 }
358
359 macro_rules! secp_verify_sig {
360         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
361                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
362                         Ok(_) => {},
363                         Err(_) => {
364                                 return Err(LightningError {
365                                         err: format!("Invalid signature on {} message", $msg_type),
366                                         action: ErrorAction::SendWarningMessage {
367                                                 msg: msgs::WarningMessage {
368                                                         channel_id: [0; 32],
369                                                         data: format!("Invalid signature on {} message", $msg_type),
370                                                 },
371                                                 log_level: Level::Trace,
372                                         },
373                                 });
374                         },
375                 }
376         };
377 }
378
379 macro_rules! get_pubkey_from_node_id {
380         ( $node_id: expr, $msg_type: expr ) => {
381                 PublicKey::from_slice($node_id.as_slice())
382                         .map_err(|_| LightningError {
383                                 err: format!("Invalid public key on {} message", $msg_type),
384                                 action: ErrorAction::SendWarningMessage {
385                                         msg: msgs::WarningMessage {
386                                                 channel_id: [0; 32],
387                                                 data: format!("Invalid public key on {} message", $msg_type),
388                                         },
389                                         log_level: Level::Trace
390                                 }
391                         })?
392         }
393 }
394
395 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
396 where U::Target: UtxoLookup, L::Target: Logger
397 {
398         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
399                 self.network_graph.update_node_from_announcement(msg)?;
400                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
401                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
402                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
403         }
404
405         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
406                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
407                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
408         }
409
410         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
411                 self.network_graph.update_channel(msg)?;
412                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
413         }
414
415         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
416                 let mut channels = self.network_graph.channels.write().unwrap();
417                 for (_, ref chan) in channels.range(starting_point..) {
418                         if chan.announcement_message.is_some() {
419                                 let chan_announcement = chan.announcement_message.clone().unwrap();
420                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
421                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
422                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
423                                         one_to_two_announcement = one_to_two.last_update_message.clone();
424                                 }
425                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
426                                         two_to_one_announcement = two_to_one.last_update_message.clone();
427                                 }
428                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
429                         } else {
430                                 // TODO: We may end up sending un-announced channel_updates if we are sending
431                                 // initial sync data while receiving announce/updates for this channel.
432                         }
433                 }
434                 None
435         }
436
437         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
438                 let mut nodes = self.network_graph.nodes.write().unwrap();
439                 let iter = if let Some(node_id) = starting_point {
440                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
441                         } else {
442                                 nodes.range(..)
443                         };
444                 for (_, ref node) in iter {
445                         if let Some(node_info) = node.announcement_info.as_ref() {
446                                 if let Some(msg) = node_info.announcement_message.clone() {
447                                         return Some(msg);
448                                 }
449                         }
450                 }
451                 None
452         }
453
454         /// Initiates a stateless sync of routing gossip information with a peer
455         /// using [`gossip_queries`]. The default strategy used by this implementation
456         /// is to sync the full block range with several peers.
457         ///
458         /// We should expect one or more [`reply_channel_range`] messages in response
459         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
460         /// to request gossip messages for each channel. The sync is considered complete
461         /// when the final [`reply_scids_end`] message is received, though we are not
462         /// tracking this directly.
463         ///
464         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
465         /// [`reply_channel_range`]: msgs::ReplyChannelRange
466         /// [`query_channel_range`]: msgs::QueryChannelRange
467         /// [`query_scid`]: msgs::QueryShortChannelIds
468         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
469         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
470                 // We will only perform a sync with peers that support gossip_queries.
471                 if !init_msg.features.supports_gossip_queries() {
472                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
473                         // channels with peers even without being able to exchange gossip.
474                         return Ok(());
475                 }
476
477                 // The lightning network's gossip sync system is completely broken in numerous ways.
478                 //
479                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
480                 // to do a full sync from the first few peers we connect to, and then receive gossip
481                 // updates from all our peers normally.
482                 //
483                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
484                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
485                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
486                 // seen.
487                 //
488                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
489                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
490                 // channel data which you are missing. Except there was no way at all to identify which
491                 // `channel_update`s you were missing, so you still had to request everything, just in a
492                 // very complicated way with some queries instead of just getting the dump.
493                 //
494                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
495                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
496                 // relying on it useless.
497                 //
498                 // After gossip queries were introduced, support for receiving a full gossip table dump on
499                 // connection was removed from several nodes, making it impossible to get a full sync
500                 // without using the "gossip queries" messages.
501                 //
502                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
503                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
504                 // message, as the name implies, tells the peer to not forward any gossip messages with a
505                 // timestamp older than a given value (not the time the peer received the filter, but the
506                 // timestamp in the update message, which is often hours behind when the peer received the
507                 // message).
508                 //
509                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
510                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
511                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
512                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
513                 // will simply not forward any new updates they see to you which were generated some time
514                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
515                 // ago), you will always get the full routing graph from all your peers.
516                 //
517                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
518                 // propagated some time after it was generated, and, worse, often disable gossiping with
519                 // several peers after their first connection. The second behavior can cause gossip to not
520                 // propagate fully if there are cuts in the gossiping subgraph.
521                 //
522                 // In an attempt to cut a middle ground between always fetching the full graph from all of
523                 // our peers and never receiving gossip from peers at all, we send all of our peers a
524                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
525                 //
526                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
527                 #[allow(unused_mut, unused_assignments)]
528                 let mut gossip_start_time = 0;
529                 #[cfg(feature = "std")]
530                 {
531                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
532                         if self.should_request_full_sync(&their_node_id) {
533                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
534                         } else {
535                                 gossip_start_time -= 60 * 60; // an hour ago
536                         }
537                 }
538
539                 let mut pending_events = self.pending_events.lock().unwrap();
540                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
541                         node_id: their_node_id.clone(),
542                         msg: GossipTimestampFilter {
543                                 chain_hash: self.network_graph.genesis_hash,
544                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
545                                 timestamp_range: u32::max_value(),
546                         },
547                 });
548                 Ok(())
549         }
550
551         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
552                 // We don't make queries, so should never receive replies. If, in the future, the set
553                 // reconciliation extensions to gossip queries become broadly supported, we should revert
554                 // this code to its state pre-0.0.106.
555                 Ok(())
556         }
557
558         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
559                 // We don't make queries, so should never receive replies. If, in the future, the set
560                 // reconciliation extensions to gossip queries become broadly supported, we should revert
561                 // this code to its state pre-0.0.106.
562                 Ok(())
563         }
564
565         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
566         /// are in the specified block range. Due to message size limits, large range
567         /// queries may result in several reply messages. This implementation enqueues
568         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
569         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
570         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
571         /// memory constrained systems.
572         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
573                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
574
575                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
576
577                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
578                 // If so, we manually cap the ending block to avoid this overflow.
579                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
580
581                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
582                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
583                         let mut pending_events = self.pending_events.lock().unwrap();
584                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
585                                 node_id: their_node_id.clone(),
586                                 msg: ReplyChannelRange {
587                                         chain_hash: msg.chain_hash.clone(),
588                                         first_blocknum: msg.first_blocknum,
589                                         number_of_blocks: msg.number_of_blocks,
590                                         sync_complete: true,
591                                         short_channel_ids: vec![],
592                                 }
593                         });
594                         return Err(LightningError {
595                                 err: String::from("query_channel_range could not be processed"),
596                                 action: ErrorAction::IgnoreError,
597                         });
598                 }
599
600                 // Creates channel batches. We are not checking if the channel is routable
601                 // (has at least one update). A peer may still want to know the channel
602                 // exists even if its not yet routable.
603                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
604                 let mut channels = self.network_graph.channels.write().unwrap();
605                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
606                         if let Some(chan_announcement) = &chan.announcement_message {
607                                 // Construct a new batch if last one is full
608                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
609                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
610                                 }
611
612                                 let batch = batches.last_mut().unwrap();
613                                 batch.push(chan_announcement.contents.short_channel_id);
614                         }
615                 }
616                 drop(channels);
617
618                 let mut pending_events = self.pending_events.lock().unwrap();
619                 let batch_count = batches.len();
620                 let mut prev_batch_endblock = msg.first_blocknum;
621                 for (batch_index, batch) in batches.into_iter().enumerate() {
622                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
623                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
624                         //
625                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
626                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
627                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
628                         // significant diversion from the requirements set by the spec, and, in case of blocks
629                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
630                         // and *not* derive the first_blocknum from the actual first block of the reply.
631                         let first_blocknum = prev_batch_endblock;
632
633                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
634                         // fit in. Though there is no requirement that we use exactly the number of blocks its
635                         // contents are from, except for the bogus requirements c-lightning enforces, above.
636                         //
637                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
638                         // >= the query's end block. Thus, for the last reply, we calculate the difference
639                         // between the query's end block and the start of the reply.
640                         //
641                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
642                         // first_blocknum will be either msg.first_blocknum or a higher block height.
643                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
644                                 (true, msg.end_blocknum() - first_blocknum)
645                         }
646                         // Prior replies should use the number of blocks that fit into the reply. Overflow
647                         // safe since first_blocknum is always <= last SCID's block.
648                         else {
649                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
650                         };
651
652                         prev_batch_endblock = first_blocknum + number_of_blocks;
653
654                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
655                                 node_id: their_node_id.clone(),
656                                 msg: ReplyChannelRange {
657                                         chain_hash: msg.chain_hash.clone(),
658                                         first_blocknum,
659                                         number_of_blocks,
660                                         sync_complete,
661                                         short_channel_ids: batch,
662                                 }
663                         });
664                 }
665
666                 Ok(())
667         }
668
669         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
670                 // TODO
671                 Err(LightningError {
672                         err: String::from("Not implemented"),
673                         action: ErrorAction::IgnoreError,
674                 })
675         }
676
677         fn provided_node_features(&self) -> NodeFeatures {
678                 let mut features = NodeFeatures::empty();
679                 features.set_gossip_queries_optional();
680                 features
681         }
682
683         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
684                 let mut features = InitFeatures::empty();
685                 features.set_gossip_queries_optional();
686                 features
687         }
688
689         fn processing_queue_high(&self) -> bool {
690                 self.network_graph.pending_checks.too_many_checks_pending()
691         }
692 }
693
694 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
695 where
696         U::Target: UtxoLookup,
697         L::Target: Logger,
698 {
699         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
700                 let mut ret = Vec::new();
701                 let mut pending_events = self.pending_events.lock().unwrap();
702                 core::mem::swap(&mut ret, &mut pending_events);
703                 ret
704         }
705 }
706
707 #[derive(Clone, Debug, PartialEq, Eq)]
708 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
709 pub struct ChannelUpdateInfo {
710         /// When the last update to the channel direction was issued.
711         /// Value is opaque, as set in the announcement.
712         pub last_update: u32,
713         /// Whether the channel can be currently used for payments (in this one direction).
714         pub enabled: bool,
715         /// The difference in CLTV values that you must have when routing through this channel.
716         pub cltv_expiry_delta: u16,
717         /// The minimum value, which must be relayed to the next hop via the channel
718         pub htlc_minimum_msat: u64,
719         /// The maximum value which may be relayed to the next hop via the channel.
720         pub htlc_maximum_msat: u64,
721         /// Fees charged when the channel is used for routing
722         pub fees: RoutingFees,
723         /// Most recent update for the channel received from the network
724         /// Mostly redundant with the data we store in fields explicitly.
725         /// Everything else is useful only for sending out for initial routing sync.
726         /// Not stored if contains excess data to prevent DoS.
727         pub last_update_message: Option<ChannelUpdate>,
728 }
729
730 impl fmt::Display for ChannelUpdateInfo {
731         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
732                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
733                 Ok(())
734         }
735 }
736
737 impl Writeable for ChannelUpdateInfo {
738         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
739                 write_tlv_fields!(writer, {
740                         (0, self.last_update, required),
741                         (2, self.enabled, required),
742                         (4, self.cltv_expiry_delta, required),
743                         (6, self.htlc_minimum_msat, required),
744                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
745                         // compatibility with LDK versions prior to v0.0.110.
746                         (8, Some(self.htlc_maximum_msat), required),
747                         (10, self.fees, required),
748                         (12, self.last_update_message, required),
749                 });
750                 Ok(())
751         }
752 }
753
754 impl Readable for ChannelUpdateInfo {
755         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
756                 _init_tlv_field_var!(last_update, required);
757                 _init_tlv_field_var!(enabled, required);
758                 _init_tlv_field_var!(cltv_expiry_delta, required);
759                 _init_tlv_field_var!(htlc_minimum_msat, required);
760                 _init_tlv_field_var!(htlc_maximum_msat, option);
761                 _init_tlv_field_var!(fees, required);
762                 _init_tlv_field_var!(last_update_message, required);
763
764                 read_tlv_fields!(reader, {
765                         (0, last_update, required),
766                         (2, enabled, required),
767                         (4, cltv_expiry_delta, required),
768                         (6, htlc_minimum_msat, required),
769                         (8, htlc_maximum_msat, required),
770                         (10, fees, required),
771                         (12, last_update_message, required)
772                 });
773
774                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
775                         Ok(ChannelUpdateInfo {
776                                 last_update: _init_tlv_based_struct_field!(last_update, required),
777                                 enabled: _init_tlv_based_struct_field!(enabled, required),
778                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
779                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
780                                 htlc_maximum_msat,
781                                 fees: _init_tlv_based_struct_field!(fees, required),
782                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
783                         })
784                 } else {
785                         Err(DecodeError::InvalidValue)
786                 }
787         }
788 }
789
790 #[derive(Clone, Debug, PartialEq, Eq)]
791 /// Details about a channel (both directions).
792 /// Received within a channel announcement.
793 pub struct ChannelInfo {
794         /// Protocol features of a channel communicated during its announcement
795         pub features: ChannelFeatures,
796         /// Source node of the first direction of a channel
797         pub node_one: NodeId,
798         /// Details about the first direction of a channel
799         pub one_to_two: Option<ChannelUpdateInfo>,
800         /// Source node of the second direction of a channel
801         pub node_two: NodeId,
802         /// Details about the second direction of a channel
803         pub two_to_one: Option<ChannelUpdateInfo>,
804         /// The channel capacity as seen on-chain, if chain lookup is available.
805         pub capacity_sats: Option<u64>,
806         /// An initial announcement of the channel
807         /// Mostly redundant with the data we store in fields explicitly.
808         /// Everything else is useful only for sending out for initial routing sync.
809         /// Not stored if contains excess data to prevent DoS.
810         pub announcement_message: Option<ChannelAnnouncement>,
811         /// The timestamp when we received the announcement, if we are running with feature = "std"
812         /// (which we can probably assume we are - no-std environments probably won't have a full
813         /// network graph in memory!).
814         announcement_received_time: u64,
815 }
816
817 impl ChannelInfo {
818         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
819         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
820         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
821                 let (direction, source) = {
822                         if target == &self.node_one {
823                                 (self.two_to_one.as_ref(), &self.node_two)
824                         } else if target == &self.node_two {
825                                 (self.one_to_two.as_ref(), &self.node_one)
826                         } else {
827                                 return None;
828                         }
829                 };
830                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
831         }
832
833         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
834         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
835         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
836                 let (direction, target) = {
837                         if source == &self.node_one {
838                                 (self.one_to_two.as_ref(), &self.node_two)
839                         } else if source == &self.node_two {
840                                 (self.two_to_one.as_ref(), &self.node_one)
841                         } else {
842                                 return None;
843                         }
844                 };
845                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
846         }
847
848         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
849         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
850                 let direction = channel_flags & 1u8;
851                 if direction == 0 {
852                         self.one_to_two.as_ref()
853                 } else {
854                         self.two_to_one.as_ref()
855                 }
856         }
857 }
858
859 impl fmt::Display for ChannelInfo {
860         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
861                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
862                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
863                 Ok(())
864         }
865 }
866
867 impl Writeable for ChannelInfo {
868         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
869                 write_tlv_fields!(writer, {
870                         (0, self.features, required),
871                         (1, self.announcement_received_time, (default_value, 0)),
872                         (2, self.node_one, required),
873                         (4, self.one_to_two, required),
874                         (6, self.node_two, required),
875                         (8, self.two_to_one, required),
876                         (10, self.capacity_sats, required),
877                         (12, self.announcement_message, required),
878                 });
879                 Ok(())
880         }
881 }
882
883 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
884 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
885 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
886 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
887 // channel updates via the gossip network.
888 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
889
890 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
891         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
892                 match crate::util::ser::Readable::read(reader) {
893                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
894                         Err(DecodeError::ShortRead) => Ok(None),
895                         Err(DecodeError::InvalidValue) => Ok(None),
896                         Err(err) => Err(err),
897                 }
898         }
899 }
900
901 impl Readable for ChannelInfo {
902         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
903                 _init_tlv_field_var!(features, required);
904                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
905                 _init_tlv_field_var!(node_one, required);
906                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
907                 _init_tlv_field_var!(node_two, required);
908                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
909                 _init_tlv_field_var!(capacity_sats, required);
910                 _init_tlv_field_var!(announcement_message, required);
911                 read_tlv_fields!(reader, {
912                         (0, features, required),
913                         (1, announcement_received_time, (default_value, 0)),
914                         (2, node_one, required),
915                         (4, one_to_two_wrap, upgradable_option),
916                         (6, node_two, required),
917                         (8, two_to_one_wrap, upgradable_option),
918                         (10, capacity_sats, required),
919                         (12, announcement_message, required),
920                 });
921
922                 Ok(ChannelInfo {
923                         features: _init_tlv_based_struct_field!(features, required),
924                         node_one: _init_tlv_based_struct_field!(node_one, required),
925                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
926                         node_two: _init_tlv_based_struct_field!(node_two, required),
927                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
928                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
929                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
930                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
931                 })
932         }
933 }
934
935 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
936 /// source node to a target node.
937 #[derive(Clone)]
938 pub struct DirectedChannelInfo<'a> {
939         channel: &'a ChannelInfo,
940         direction: &'a ChannelUpdateInfo,
941         htlc_maximum_msat: u64,
942         effective_capacity: EffectiveCapacity,
943 }
944
945 impl<'a> DirectedChannelInfo<'a> {
946         #[inline]
947         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
948                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
949                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
950
951                 let effective_capacity = match capacity_msat {
952                         Some(capacity_msat) => {
953                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
954                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
955                         },
956                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
957                 };
958
959                 Self {
960                         channel, direction, htlc_maximum_msat, effective_capacity
961                 }
962         }
963
964         /// Returns information for the channel.
965         #[inline]
966         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
967
968         /// Returns the maximum HTLC amount allowed over the channel in the direction.
969         #[inline]
970         pub fn htlc_maximum_msat(&self) -> u64 {
971                 self.htlc_maximum_msat
972         }
973
974         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
975         ///
976         /// This is either the total capacity from the funding transaction, if known, or the
977         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
978         /// otherwise.
979         pub fn effective_capacity(&self) -> EffectiveCapacity {
980                 self.effective_capacity
981         }
982
983         /// Returns information for the direction.
984         #[inline]
985         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
986 }
987
988 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
989         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
990                 f.debug_struct("DirectedChannelInfo")
991                         .field("channel", &self.channel)
992                         .finish()
993         }
994 }
995
996 /// The effective capacity of a channel for routing purposes.
997 ///
998 /// While this may be smaller than the actual channel capacity, amounts greater than
999 /// [`Self::as_msat`] should not be routed through the channel.
1000 #[derive(Clone, Copy, Debug, PartialEq)]
1001 pub enum EffectiveCapacity {
1002         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1003         /// direct hop.
1004         ExactLiquidity {
1005                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1006                 /// millisatoshi.
1007                 liquidity_msat: u64,
1008         },
1009         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1010         MaximumHTLC {
1011                 /// The maximum HTLC amount denominated in millisatoshi.
1012                 amount_msat: u64,
1013         },
1014         /// The total capacity of the channel as determined by the funding transaction.
1015         Total {
1016                 /// The funding amount denominated in millisatoshi.
1017                 capacity_msat: u64,
1018                 /// The maximum HTLC amount denominated in millisatoshi.
1019                 htlc_maximum_msat: u64
1020         },
1021         /// A capacity sufficient to route any payment, typically used for private channels provided by
1022         /// an invoice.
1023         Infinite,
1024         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1025         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1026         Unknown,
1027 }
1028
1029 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1030 /// use when making routing decisions.
1031 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1032
1033 impl EffectiveCapacity {
1034         /// Returns the effective capacity denominated in millisatoshi.
1035         pub fn as_msat(&self) -> u64 {
1036                 match self {
1037                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1038                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1039                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1040                         EffectiveCapacity::Infinite => u64::max_value(),
1041                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1042                 }
1043         }
1044 }
1045
1046 /// Fees for routing via a given channel or a node
1047 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1048 pub struct RoutingFees {
1049         /// Flat routing fee in millisatoshis.
1050         pub base_msat: u32,
1051         /// Liquidity-based routing fee in millionths of a routed amount.
1052         /// In other words, 10000 is 1%.
1053         pub proportional_millionths: u32,
1054 }
1055
1056 impl_writeable_tlv_based!(RoutingFees, {
1057         (0, base_msat, required),
1058         (2, proportional_millionths, required)
1059 });
1060
1061 #[derive(Clone, Debug, PartialEq, Eq)]
1062 /// Information received in the latest node_announcement from this node.
1063 pub struct NodeAnnouncementInfo {
1064         /// Protocol features the node announced support for
1065         pub features: NodeFeatures,
1066         /// When the last known update to the node state was issued.
1067         /// Value is opaque, as set in the announcement.
1068         pub last_update: u32,
1069         /// Color assigned to the node
1070         pub rgb: [u8; 3],
1071         /// Moniker assigned to the node.
1072         /// May be invalid or malicious (eg control chars),
1073         /// should not be exposed to the user.
1074         pub alias: NodeAlias,
1075         /// An initial announcement of the node
1076         /// Mostly redundant with the data we store in fields explicitly.
1077         /// Everything else is useful only for sending out for initial routing sync.
1078         /// Not stored if contains excess data to prevent DoS.
1079         pub announcement_message: Option<NodeAnnouncement>
1080 }
1081
1082 impl NodeAnnouncementInfo {
1083         /// Internet-level addresses via which one can connect to the node
1084         pub fn addresses(&self) -> &[NetAddress] {
1085                 self.announcement_message.as_ref()
1086                         .map(|msg| msg.contents.addresses.as_slice())
1087                         .unwrap_or_default()
1088         }
1089 }
1090
1091 impl Writeable for NodeAnnouncementInfo {
1092         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1093                 let empty_addresses = Vec::<NetAddress>::new();
1094                 write_tlv_fields!(writer, {
1095                         (0, self.features, required),
1096                         (2, self.last_update, required),
1097                         (4, self.rgb, required),
1098                         (6, self.alias, required),
1099                         (8, self.announcement_message, option),
1100                         (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1101                 });
1102                 Ok(())
1103         }
1104 }
1105
1106 impl Readable for NodeAnnouncementInfo {
1107     fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1108                 _init_and_read_tlv_fields!(reader, {
1109                         (0, features, required),
1110                         (2, last_update, required),
1111                         (4, rgb, required),
1112                         (6, alias, required),
1113                         (8, announcement_message, option),
1114                         (10, _addresses, vec_type), // deprecated, not used anymore
1115                 });
1116                 let _: Option<Vec<NetAddress>> = _addresses;
1117                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1118                         alias: alias.0.unwrap(), announcement_message })
1119     }
1120 }
1121
1122 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1123 ///
1124 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1125 /// attacks. Care must be taken when processing.
1126 #[derive(Clone, Debug, PartialEq, Eq)]
1127 pub struct NodeAlias(pub [u8; 32]);
1128
1129 impl fmt::Display for NodeAlias {
1130         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1131                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1132                 let bytes = self.0.split_at(first_null).0;
1133                 match core::str::from_utf8(bytes) {
1134                         Ok(alias) => PrintableString(alias).fmt(f)?,
1135                         Err(_) => {
1136                                 use core::fmt::Write;
1137                                 for c in bytes.iter().map(|b| *b as char) {
1138                                         // Display printable ASCII characters
1139                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1140                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1141                                         f.write_char(c)?;
1142                                 }
1143                         },
1144                 };
1145                 Ok(())
1146         }
1147 }
1148
1149 impl Writeable for NodeAlias {
1150         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1151                 self.0.write(w)
1152         }
1153 }
1154
1155 impl Readable for NodeAlias {
1156         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1157                 Ok(NodeAlias(Readable::read(r)?))
1158         }
1159 }
1160
1161 #[derive(Clone, Debug, PartialEq, Eq)]
1162 /// Details about a node in the network, known from the network announcement.
1163 pub struct NodeInfo {
1164         /// All valid channels a node has announced
1165         pub channels: Vec<u64>,
1166         /// More information about a node from node_announcement.
1167         /// Optional because we store a Node entry after learning about it from
1168         /// a channel announcement, but before receiving a node announcement.
1169         pub announcement_info: Option<NodeAnnouncementInfo>
1170 }
1171
1172 impl fmt::Display for NodeInfo {
1173         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1174                 write!(f, " channels: {:?}, announcement_info: {:?}",
1175                         &self.channels[..], self.announcement_info)?;
1176                 Ok(())
1177         }
1178 }
1179
1180 impl Writeable for NodeInfo {
1181         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1182                 write_tlv_fields!(writer, {
1183                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1184                         (2, self.announcement_info, option),
1185                         (4, self.channels, vec_type),
1186                 });
1187                 Ok(())
1188         }
1189 }
1190
1191 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1192 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1193 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1194 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1195 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1196
1197 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1198         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1199                 match crate::util::ser::Readable::read(reader) {
1200                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1201                         Err(_) => {
1202                                 copy(reader, &mut sink()).unwrap();
1203                                 return Ok(None)
1204                         },
1205                 };
1206         }
1207 }
1208
1209 impl Readable for NodeInfo {
1210         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1211                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1212                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1213                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1214                 // requires additional complexity and lookups during routing, it ends up being a
1215                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1216                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1217                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1218                 _init_tlv_field_var!(channels, vec_type);
1219
1220                 read_tlv_fields!(reader, {
1221                         (0, _lowest_inbound_channel_fees, option),
1222                         (2, announcement_info_wrap, upgradable_option),
1223                         (4, channels, vec_type),
1224                 });
1225
1226                 Ok(NodeInfo {
1227                         announcement_info: announcement_info_wrap.map(|w| w.0),
1228                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1229                 })
1230         }
1231 }
1232
1233 const SERIALIZATION_VERSION: u8 = 1;
1234 const MIN_SERIALIZATION_VERSION: u8 = 1;
1235
1236 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1237         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1238                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1239
1240                 self.genesis_hash.write(writer)?;
1241                 let channels = self.channels.read().unwrap();
1242                 (channels.len() as u64).write(writer)?;
1243                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1244                         (*chan_id).write(writer)?;
1245                         chan_info.write(writer)?;
1246                 }
1247                 let nodes = self.nodes.read().unwrap();
1248                 (nodes.len() as u64).write(writer)?;
1249                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1250                         node_id.write(writer)?;
1251                         node_info.write(writer)?;
1252                 }
1253
1254                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1255                 write_tlv_fields!(writer, {
1256                         (1, last_rapid_gossip_sync_timestamp, option),
1257                 });
1258                 Ok(())
1259         }
1260 }
1261
1262 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1263         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1264                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1265
1266                 let genesis_hash: BlockHash = Readable::read(reader)?;
1267                 let channels_count: u64 = Readable::read(reader)?;
1268                 let mut channels = IndexedMap::new();
1269                 for _ in 0..channels_count {
1270                         let chan_id: u64 = Readable::read(reader)?;
1271                         let chan_info = Readable::read(reader)?;
1272                         channels.insert(chan_id, chan_info);
1273                 }
1274                 let nodes_count: u64 = Readable::read(reader)?;
1275                 let mut nodes = IndexedMap::new();
1276                 for _ in 0..nodes_count {
1277                         let node_id = Readable::read(reader)?;
1278                         let node_info = Readable::read(reader)?;
1279                         nodes.insert(node_id, node_info);
1280                 }
1281
1282                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1283                 read_tlv_fields!(reader, {
1284                         (1, last_rapid_gossip_sync_timestamp, option),
1285                 });
1286
1287                 Ok(NetworkGraph {
1288                         secp_ctx: Secp256k1::verification_only(),
1289                         genesis_hash,
1290                         logger,
1291                         channels: RwLock::new(channels),
1292                         nodes: RwLock::new(nodes),
1293                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1294                         removed_nodes: Mutex::new(HashMap::new()),
1295                         removed_channels: Mutex::new(HashMap::new()),
1296                         pending_checks: utxo::PendingChecks::new(),
1297                 })
1298         }
1299 }
1300
1301 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1302         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1303                 writeln!(f, "Network map\n[Channels]")?;
1304                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1305                         writeln!(f, " {}: {}", key, val)?;
1306                 }
1307                 writeln!(f, "[Nodes]")?;
1308                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1309                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1310                 }
1311                 Ok(())
1312         }
1313 }
1314
1315 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1316 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1317         fn eq(&self, other: &Self) -> bool {
1318                 self.genesis_hash == other.genesis_hash &&
1319                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1320                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1321         }
1322 }
1323
1324 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1325         /// Creates a new, empty, network graph.
1326         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1327                 Self {
1328                         secp_ctx: Secp256k1::verification_only(),
1329                         genesis_hash: genesis_block(network).header.block_hash(),
1330                         logger,
1331                         channels: RwLock::new(IndexedMap::new()),
1332                         nodes: RwLock::new(IndexedMap::new()),
1333                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1334                         removed_channels: Mutex::new(HashMap::new()),
1335                         removed_nodes: Mutex::new(HashMap::new()),
1336                         pending_checks: utxo::PendingChecks::new(),
1337                 }
1338         }
1339
1340         /// Returns a read-only view of the network graph.
1341         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1342                 let channels = self.channels.read().unwrap();
1343                 let nodes = self.nodes.read().unwrap();
1344                 ReadOnlyNetworkGraph {
1345                         channels,
1346                         nodes,
1347                 }
1348         }
1349
1350         /// The unix timestamp provided by the most recent rapid gossip sync.
1351         /// It will be set by the rapid sync process after every sync completion.
1352         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1353                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1354         }
1355
1356         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1357         /// This should be done automatically by the rapid sync process after every sync completion.
1358         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1359                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1360         }
1361
1362         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1363         /// purposes.
1364         #[cfg(test)]
1365         pub fn clear_nodes_announcement_info(&self) {
1366                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1367                         node.1.announcement_info = None;
1368                 }
1369         }
1370
1371         /// For an already known node (from channel announcements), update its stored properties from a
1372         /// given node announcement.
1373         ///
1374         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1375         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1376         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1377         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1378                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1379                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1380                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1381         }
1382
1383         /// For an already known node (from channel announcements), update its stored properties from a
1384         /// given node announcement without verifying the associated signatures. Because we aren't
1385         /// given the associated signatures here we cannot relay the node announcement to any of our
1386         /// peers.
1387         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1388                 self.update_node_from_announcement_intern(msg, None)
1389         }
1390
1391         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1392                 let mut nodes = self.nodes.write().unwrap();
1393                 match nodes.get_mut(&msg.node_id) {
1394                         None => {
1395                                 core::mem::drop(nodes);
1396                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1397                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1398                         },
1399                         Some(node) => {
1400                                 if let Some(node_info) = node.announcement_info.as_ref() {
1401                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1402                                         // updates to ensure you always have the latest one, only vaguely suggesting
1403                                         // that it be at least the current time.
1404                                         if node_info.last_update  > msg.timestamp {
1405                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1406                                         } else if node_info.last_update  == msg.timestamp {
1407                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1408                                         }
1409                                 }
1410
1411                                 let should_relay =
1412                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1413                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1414                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1415                                 node.announcement_info = Some(NodeAnnouncementInfo {
1416                                         features: msg.features.clone(),
1417                                         last_update: msg.timestamp,
1418                                         rgb: msg.rgb,
1419                                         alias: NodeAlias(msg.alias),
1420                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1421                                 });
1422
1423                                 Ok(())
1424                         }
1425                 }
1426         }
1427
1428         /// Store or update channel info from a channel announcement.
1429         ///
1430         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1431         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1432         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1433         ///
1434         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1435         /// the corresponding UTXO exists on chain and is correctly-formatted.
1436         pub fn update_channel_from_announcement<U: Deref>(
1437                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1438         ) -> Result<(), LightningError>
1439         where
1440                 U::Target: UtxoLookup,
1441         {
1442                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1443                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1444                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1445                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1446                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1447                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1448         }
1449
1450         /// Store or update channel info from a channel announcement without verifying the associated
1451         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1452         /// channel announcement to any of our peers.
1453         ///
1454         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1455         /// the corresponding UTXO exists on chain and is correctly-formatted.
1456         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1457                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1458         ) -> Result<(), LightningError>
1459         where
1460                 U::Target: UtxoLookup,
1461         {
1462                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1463         }
1464
1465         /// Update channel from partial announcement data received via rapid gossip sync
1466         ///
1467         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1468         /// rapid gossip sync server)
1469         ///
1470         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1471         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1472                 if node_id_1 == node_id_2 {
1473                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1474                 };
1475
1476                 let node_1 = NodeId::from_pubkey(&node_id_1);
1477                 let node_2 = NodeId::from_pubkey(&node_id_2);
1478                 let channel_info = ChannelInfo {
1479                         features,
1480                         node_one: node_1.clone(),
1481                         one_to_two: None,
1482                         node_two: node_2.clone(),
1483                         two_to_one: None,
1484                         capacity_sats: None,
1485                         announcement_message: None,
1486                         announcement_received_time: timestamp,
1487                 };
1488
1489                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1490         }
1491
1492         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1493                 let mut channels = self.channels.write().unwrap();
1494                 let mut nodes = self.nodes.write().unwrap();
1495
1496                 let node_id_a = channel_info.node_one.clone();
1497                 let node_id_b = channel_info.node_two.clone();
1498
1499                 match channels.entry(short_channel_id) {
1500                         IndexedMapEntry::Occupied(mut entry) => {
1501                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1502                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1503                                 //exactly how...
1504                                 if utxo_value.is_some() {
1505                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1506                                         // only sometimes returns results. In any case remove the previous entry. Note
1507                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1508                                         // do that because
1509                                         // a) we don't *require* a UTXO provider that always returns results.
1510                                         // b) we don't track UTXOs of channels we know about and remove them if they
1511                                         //    get reorg'd out.
1512                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1513                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1514                                         *entry.get_mut() = channel_info;
1515                                 } else {
1516                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1517                                 }
1518                         },
1519                         IndexedMapEntry::Vacant(entry) => {
1520                                 entry.insert(channel_info);
1521                         }
1522                 };
1523
1524                 for current_node_id in [node_id_a, node_id_b].iter() {
1525                         match nodes.entry(current_node_id.clone()) {
1526                                 IndexedMapEntry::Occupied(node_entry) => {
1527                                         node_entry.into_mut().channels.push(short_channel_id);
1528                                 },
1529                                 IndexedMapEntry::Vacant(node_entry) => {
1530                                         node_entry.insert(NodeInfo {
1531                                                 channels: vec!(short_channel_id),
1532                                                 announcement_info: None,
1533                                         });
1534                                 }
1535                         };
1536                 };
1537
1538                 Ok(())
1539         }
1540
1541         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1542                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1543         ) -> Result<(), LightningError>
1544         where
1545                 U::Target: UtxoLookup,
1546         {
1547                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1548                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1549                 }
1550
1551                 {
1552                         let channels = self.channels.read().unwrap();
1553
1554                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1555                                 if chan.capacity_sats.is_some() {
1556                                         // If we'd previously looked up the channel on-chain and checked the script
1557                                         // against what appears on-chain, ignore the duplicate announcement.
1558                                         //
1559                                         // Because a reorg could replace one channel with another at the same SCID, if
1560                                         // the channel appears to be different, we re-validate. This doesn't expose us
1561                                         // to any more DoS risk than not, as a peer can always flood us with
1562                                         // randomly-generated SCID values anyway.
1563                                         //
1564                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1565                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1566                                         // if the peers on the channel changed anyway.
1567                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1568                                                 return Err(LightningError {
1569                                                         err: "Already have chain-validated channel".to_owned(),
1570                                                         action: ErrorAction::IgnoreDuplicateGossip
1571                                                 });
1572                                         }
1573                                 } else if utxo_lookup.is_none() {
1574                                         // Similarly, if we can't check the chain right now anyway, ignore the
1575                                         // duplicate announcement without bothering to take the channels write lock.
1576                                         return Err(LightningError {
1577                                                 err: "Already have non-chain-validated channel".to_owned(),
1578                                                 action: ErrorAction::IgnoreDuplicateGossip
1579                                         });
1580                                 }
1581                         }
1582                 }
1583
1584                 {
1585                         let removed_channels = self.removed_channels.lock().unwrap();
1586                         let removed_nodes = self.removed_nodes.lock().unwrap();
1587                         if removed_channels.contains_key(&msg.short_channel_id) ||
1588                                 removed_nodes.contains_key(&msg.node_id_1) ||
1589                                 removed_nodes.contains_key(&msg.node_id_2) {
1590                                 return Err(LightningError{
1591                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1592                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1593                         }
1594                 }
1595
1596                 let utxo_value = self.pending_checks.check_channel_announcement(
1597                         utxo_lookup, msg, full_msg)?;
1598
1599                 #[allow(unused_mut, unused_assignments)]
1600                 let mut announcement_received_time = 0;
1601                 #[cfg(feature = "std")]
1602                 {
1603                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1604                 }
1605
1606                 let chan_info = ChannelInfo {
1607                         features: msg.features.clone(),
1608                         node_one: msg.node_id_1,
1609                         one_to_two: None,
1610                         node_two: msg.node_id_2,
1611                         two_to_one: None,
1612                         capacity_sats: utxo_value,
1613                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1614                                 { full_msg.cloned() } else { None },
1615                         announcement_received_time,
1616                 };
1617
1618                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1619
1620                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1621                 Ok(())
1622         }
1623
1624         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1625         /// If permanent, removes a channel from the local storage.
1626         /// May cause the removal of nodes too, if this was their last channel.
1627         /// If not permanent, makes channels unavailable for routing.
1628         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1629                 #[cfg(feature = "std")]
1630                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1631                 #[cfg(not(feature = "std"))]
1632                 let current_time_unix = None;
1633
1634                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1635         }
1636
1637         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1638         /// If permanent, removes a channel from the local storage.
1639         /// May cause the removal of nodes too, if this was their last channel.
1640         /// If not permanent, makes channels unavailable for routing.
1641         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1642                 let mut channels = self.channels.write().unwrap();
1643                 if is_permanent {
1644                         if let Some(chan) = channels.remove(&short_channel_id) {
1645                                 let mut nodes = self.nodes.write().unwrap();
1646                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1647                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1648                         }
1649                 } else {
1650                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1651                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1652                                         one_to_two.enabled = false;
1653                                 }
1654                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1655                                         two_to_one.enabled = false;
1656                                 }
1657                         }
1658                 }
1659         }
1660
1661         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1662         /// from local storage.
1663         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1664                 #[cfg(feature = "std")]
1665                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1666                 #[cfg(not(feature = "std"))]
1667                 let current_time_unix = None;
1668
1669                 let node_id = NodeId::from_pubkey(node_id);
1670                 let mut channels = self.channels.write().unwrap();
1671                 let mut nodes = self.nodes.write().unwrap();
1672                 let mut removed_channels = self.removed_channels.lock().unwrap();
1673                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1674
1675                 if let Some(node) = nodes.remove(&node_id) {
1676                         for scid in node.channels.iter() {
1677                                 if let Some(chan_info) = channels.remove(scid) {
1678                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1679                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1680                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1681                                                         *scid != *chan_id
1682                                                 });
1683                                                 if other_node_entry.get().channels.is_empty() {
1684                                                         other_node_entry.remove_entry();
1685                                                 }
1686                                         }
1687                                         removed_channels.insert(*scid, current_time_unix);
1688                                 }
1689                         }
1690                         removed_nodes.insert(node_id, current_time_unix);
1691                 }
1692         }
1693
1694         #[cfg(feature = "std")]
1695         /// Removes information about channels that we haven't heard any updates about in some time.
1696         /// This can be used regularly to prune the network graph of channels that likely no longer
1697         /// exist.
1698         ///
1699         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1700         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1701         /// pruning occur for updates which are at least two weeks old, which we implement here.
1702         ///
1703         /// Note that for users of the `lightning-background-processor` crate this method may be
1704         /// automatically called regularly for you.
1705         ///
1706         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1707         /// in the map for a while so that these can be resynced from gossip in the future.
1708         ///
1709         /// This method is only available with the `std` feature. See
1710         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1711         pub fn remove_stale_channels_and_tracking(&self) {
1712                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1713                 self.remove_stale_channels_and_tracking_with_time(time);
1714         }
1715
1716         /// Removes information about channels that we haven't heard any updates about in some time.
1717         /// This can be used regularly to prune the network graph of channels that likely no longer
1718         /// exist.
1719         ///
1720         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1721         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1722         /// pruning occur for updates which are at least two weeks old, which we implement here.
1723         ///
1724         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1725         /// in the map for a while so that these can be resynced from gossip in the future.
1726         ///
1727         /// This function takes the current unix time as an argument. For users with the `std` feature
1728         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1729         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1730                 let mut channels = self.channels.write().unwrap();
1731                 // Time out if we haven't received an update in at least 14 days.
1732                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1733                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1734                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1735                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1736                 // time.
1737                 let mut scids_to_remove = Vec::new();
1738                 for (scid, info) in channels.unordered_iter_mut() {
1739                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1740                                 info.one_to_two = None;
1741                         }
1742                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1743                                 info.two_to_one = None;
1744                         }
1745                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1746                                 // We check the announcement_received_time here to ensure we don't drop
1747                                 // announcements that we just received and are just waiting for our peer to send a
1748                                 // channel_update for.
1749                                 if info.announcement_received_time < min_time_unix as u64 {
1750                                         scids_to_remove.push(*scid);
1751                                 }
1752                         }
1753                 }
1754                 if !scids_to_remove.is_empty() {
1755                         let mut nodes = self.nodes.write().unwrap();
1756                         for scid in scids_to_remove {
1757                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1758                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1759                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1760                         }
1761                 }
1762
1763                 let should_keep_tracking = |time: &mut Option<u64>| {
1764                         if let Some(time) = time {
1765                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1766                         } else {
1767                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1768                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1769                                 // of this function.
1770                                 #[cfg(feature = "no-std")]
1771                                 {
1772                                         let mut tracked_time = Some(current_time_unix);
1773                                         core::mem::swap(time, &mut tracked_time);
1774                                         return true;
1775                                 }
1776                                 #[allow(unreachable_code)]
1777                                 false
1778                         }};
1779
1780                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1781                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1782         }
1783
1784         /// For an already known (from announcement) channel, update info about one of the directions
1785         /// of the channel.
1786         ///
1787         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1788         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1789         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1790         ///
1791         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1792         /// materially in the future will be rejected.
1793         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1794                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1795         }
1796
1797         /// For an already known (from announcement) channel, update info about one of the directions
1798         /// of the channel without verifying the associated signatures. Because we aren't given the
1799         /// associated signatures here we cannot relay the channel update to any of our peers.
1800         ///
1801         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1802         /// materially in the future will be rejected.
1803         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1804                 self.update_channel_intern(msg, None, None)
1805         }
1806
1807         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1808                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1809
1810                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1811                 {
1812                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1813                         // disable this check during tests!
1814                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1815                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1816                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1817                         }
1818                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1819                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1820                         }
1821                 }
1822
1823                 let mut channels = self.channels.write().unwrap();
1824                 match channels.get_mut(&msg.short_channel_id) {
1825                         None => {
1826                                 core::mem::drop(channels);
1827                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1828                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1829                         },
1830                         Some(channel) => {
1831                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1832                                         return Err(LightningError{err:
1833                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1834                                                 action: ErrorAction::IgnoreError});
1835                                 }
1836
1837                                 if let Some(capacity_sats) = channel.capacity_sats {
1838                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1839                                         // Don't query UTXO set here to reduce DoS risks.
1840                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1841                                                 return Err(LightningError{err:
1842                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1843                                                         action: ErrorAction::IgnoreError});
1844                                         }
1845                                 }
1846                                 macro_rules! check_update_latest {
1847                                         ($target: expr) => {
1848                                                 if let Some(existing_chan_info) = $target.as_ref() {
1849                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1850                                                         // order updates to ensure you always have the latest one, only
1851                                                         // suggesting  that it be at least the current time. For
1852                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1853                                                         // pruning based on the timestamp field being more than two weeks old,
1854                                                         // but only in the non-normative section.
1855                                                         if existing_chan_info.last_update > msg.timestamp {
1856                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1857                                                         } else if existing_chan_info.last_update == msg.timestamp {
1858                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1859                                                         }
1860                                                 }
1861                                         }
1862                                 }
1863
1864                                 macro_rules! get_new_channel_info {
1865                                         () => { {
1866                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1867                                                         { full_msg.cloned() } else { None };
1868
1869                                                 let updated_channel_update_info = ChannelUpdateInfo {
1870                                                         enabled: chan_enabled,
1871                                                         last_update: msg.timestamp,
1872                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1873                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1874                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1875                                                         fees: RoutingFees {
1876                                                                 base_msat: msg.fee_base_msat,
1877                                                                 proportional_millionths: msg.fee_proportional_millionths,
1878                                                         },
1879                                                         last_update_message
1880                                                 };
1881                                                 Some(updated_channel_update_info)
1882                                         } }
1883                                 }
1884
1885                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1886                                 if msg.flags & 1 == 1 {
1887                                         check_update_latest!(channel.two_to_one);
1888                                         if let Some(sig) = sig {
1889                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1890                                                         err: "Couldn't parse source node pubkey".to_owned(),
1891                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1892                                                 })?, "channel_update");
1893                                         }
1894                                         channel.two_to_one = get_new_channel_info!();
1895                                 } else {
1896                                         check_update_latest!(channel.one_to_two);
1897                                         if let Some(sig) = sig {
1898                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1899                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1900                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1901                                                 })?, "channel_update");
1902                                         }
1903                                         channel.one_to_two = get_new_channel_info!();
1904                                 }
1905                         }
1906                 }
1907
1908                 Ok(())
1909         }
1910
1911         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1912                 macro_rules! remove_from_node {
1913                         ($node_id: expr) => {
1914                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1915                                         entry.get_mut().channels.retain(|chan_id| {
1916                                                 short_channel_id != *chan_id
1917                                         });
1918                                         if entry.get().channels.is_empty() {
1919                                                 entry.remove_entry();
1920                                         }
1921                                 } else {
1922                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1923                                 }
1924                         }
1925                 }
1926
1927                 remove_from_node!(chan.node_one);
1928                 remove_from_node!(chan.node_two);
1929         }
1930 }
1931
1932 impl ReadOnlyNetworkGraph<'_> {
1933         /// Returns all known valid channels' short ids along with announced channel info.
1934         ///
1935         /// This is not exported to bindings users because we don't want to return lifetime'd references
1936         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1937                 &*self.channels
1938         }
1939
1940         /// Returns information on a channel with the given id.
1941         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1942                 self.channels.get(&short_channel_id)
1943         }
1944
1945         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1946         /// Returns the list of channels in the graph
1947         pub fn list_channels(&self) -> Vec<u64> {
1948                 self.channels.unordered_keys().map(|c| *c).collect()
1949         }
1950
1951         /// Returns all known nodes' public keys along with announced node info.
1952         ///
1953         /// This is not exported to bindings users because we don't want to return lifetime'd references
1954         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1955                 &*self.nodes
1956         }
1957
1958         /// Returns information on a node with the given id.
1959         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1960                 self.nodes.get(node_id)
1961         }
1962
1963         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1964         /// Returns the list of nodes in the graph
1965         pub fn list_nodes(&self) -> Vec<NodeId> {
1966                 self.nodes.unordered_keys().map(|n| *n).collect()
1967         }
1968
1969         /// Get network addresses by node id.
1970         /// Returns None if the requested node is completely unknown,
1971         /// or if node announcement for the node was never received.
1972         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1973                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1974                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1975         }
1976 }
1977
1978 #[cfg(test)]
1979 pub(crate) mod tests {
1980         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
1981         use crate::ln::channelmanager;
1982         use crate::ln::chan_utils::make_funding_redeemscript;
1983         #[cfg(feature = "std")]
1984         use crate::ln::features::InitFeatures;
1985         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1986         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1987         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1988                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1989                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1990         use crate::util::config::UserConfig;
1991         use crate::util::test_utils;
1992         use crate::util::ser::{ReadableArgs, Readable, Writeable};
1993         use crate::util::scid_utils::scid_from_parts;
1994
1995         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1996         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1997
1998         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1999         use bitcoin::hashes::Hash;
2000         use bitcoin::network::constants::Network;
2001         use bitcoin::blockdata::constants::genesis_block;
2002         use bitcoin::blockdata::script::Script;
2003         use bitcoin::blockdata::transaction::TxOut;
2004
2005         use hex;
2006
2007         use bitcoin::secp256k1::{PublicKey, SecretKey};
2008         use bitcoin::secp256k1::{All, Secp256k1};
2009
2010         use crate::io;
2011         use bitcoin::secp256k1;
2012         use crate::prelude::*;
2013         use crate::sync::Arc;
2014
2015         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2016                 let logger = Arc::new(test_utils::TestLogger::new());
2017                 NetworkGraph::new(Network::Testnet, logger)
2018         }
2019
2020         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2021                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2022                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2023         ) {
2024                 let secp_ctx = Secp256k1::new();
2025                 let logger = Arc::new(test_utils::TestLogger::new());
2026                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2027                 (secp_ctx, gossip_sync)
2028         }
2029
2030         #[test]
2031         #[cfg(feature = "std")]
2032         fn request_full_sync_finite_times() {
2033                 let network_graph = create_network_graph();
2034                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2035                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2036
2037                 assert!(gossip_sync.should_request_full_sync(&node_id));
2038                 assert!(gossip_sync.should_request_full_sync(&node_id));
2039                 assert!(gossip_sync.should_request_full_sync(&node_id));
2040                 assert!(gossip_sync.should_request_full_sync(&node_id));
2041                 assert!(gossip_sync.should_request_full_sync(&node_id));
2042                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2043         }
2044
2045         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2046                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2047                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2048                         features: channelmanager::provided_node_features(&UserConfig::default()),
2049                         timestamp: 100,
2050                         node_id,
2051                         rgb: [0; 3],
2052                         alias: [0; 32],
2053                         addresses: Vec::new(),
2054                         excess_address_data: Vec::new(),
2055                         excess_data: Vec::new(),
2056                 };
2057                 f(&mut unsigned_announcement);
2058                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2059                 NodeAnnouncement {
2060                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2061                         contents: unsigned_announcement
2062                 }
2063         }
2064
2065         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2066                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2067                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2068                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2069                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2070
2071                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2072                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2073                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2074                         short_channel_id: 0,
2075                         node_id_1: NodeId::from_pubkey(&node_id_1),
2076                         node_id_2: NodeId::from_pubkey(&node_id_2),
2077                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2078                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2079                         excess_data: Vec::new(),
2080                 };
2081                 f(&mut unsigned_announcement);
2082                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2083                 ChannelAnnouncement {
2084                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2085                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2086                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2087                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2088                         contents: unsigned_announcement,
2089                 }
2090         }
2091
2092         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2093                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2094                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2095                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2096                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2097         }
2098
2099         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2100                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2101                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2102                         short_channel_id: 0,
2103                         timestamp: 100,
2104                         flags: 0,
2105                         cltv_expiry_delta: 144,
2106                         htlc_minimum_msat: 1_000_000,
2107                         htlc_maximum_msat: 1_000_000,
2108                         fee_base_msat: 10_000,
2109                         fee_proportional_millionths: 20,
2110                         excess_data: Vec::new()
2111                 };
2112                 f(&mut unsigned_channel_update);
2113                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2114                 ChannelUpdate {
2115                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2116                         contents: unsigned_channel_update
2117                 }
2118         }
2119
2120         #[test]
2121         fn handling_node_announcements() {
2122                 let network_graph = create_network_graph();
2123                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2124
2125                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2126                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2127                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2128
2129                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2130                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2131                         Ok(_) => panic!(),
2132                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2133                 };
2134
2135                 {
2136                         // Announce a channel to add a corresponding node.
2137                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2138                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2139                                 Ok(res) => assert!(res),
2140                                 _ => panic!()
2141                         };
2142                 }
2143
2144                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2145                         Ok(res) => assert!(res),
2146                         Err(_) => panic!()
2147                 };
2148
2149                 let fake_msghash = hash_to_message!(&zero_hash);
2150                 match gossip_sync.handle_node_announcement(
2151                         &NodeAnnouncement {
2152                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2153                                 contents: valid_announcement.contents.clone()
2154                 }) {
2155                         Ok(_) => panic!(),
2156                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2157                 };
2158
2159                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2160                         unsigned_announcement.timestamp += 1000;
2161                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2162                 }, node_1_privkey, &secp_ctx);
2163                 // Return false because contains excess data.
2164                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2165                         Ok(res) => assert!(!res),
2166                         Err(_) => panic!()
2167                 };
2168
2169                 // Even though previous announcement was not relayed further, we still accepted it,
2170                 // so we now won't accept announcements before the previous one.
2171                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2172                         unsigned_announcement.timestamp += 1000 - 10;
2173                 }, node_1_privkey, &secp_ctx);
2174                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2175                         Ok(_) => panic!(),
2176                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2177                 };
2178         }
2179
2180         #[test]
2181         fn handling_channel_announcements() {
2182                 let secp_ctx = Secp256k1::new();
2183                 let logger = test_utils::TestLogger::new();
2184
2185                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2186                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2187
2188                 let good_script = get_channel_script(&secp_ctx);
2189                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2190
2191                 // Test if the UTXO lookups were not supported
2192                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2193                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2194                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2195                         Ok(res) => assert!(res),
2196                         _ => panic!()
2197                 };
2198
2199                 {
2200                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2201                                 None => panic!(),
2202                                 Some(_) => ()
2203                         };
2204                 }
2205
2206                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2207                 // drop new one on the floor, since we can't see any changes.
2208                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2209                         Ok(_) => panic!(),
2210                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2211                 };
2212
2213                 // Test if an associated transaction were not on-chain (or not confirmed).
2214                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2215                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2216                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2217                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2218
2219                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2220                         unsigned_announcement.short_channel_id += 1;
2221                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2222                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2223                         Ok(_) => panic!(),
2224                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2225                 };
2226
2227                 // Now test if the transaction is found in the UTXO set and the script is correct.
2228                 *chain_source.utxo_ret.lock().unwrap() =
2229                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2230                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2231                         unsigned_announcement.short_channel_id += 2;
2232                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2233                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2234                         Ok(res) => assert!(res),
2235                         _ => panic!()
2236                 };
2237
2238                 {
2239                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2240                                 None => panic!(),
2241                                 Some(_) => ()
2242                         };
2243                 }
2244
2245                 // If we receive announcement for the same channel, once we've validated it against the
2246                 // chain, we simply ignore all new (duplicate) announcements.
2247                 *chain_source.utxo_ret.lock().unwrap() =
2248                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2249                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2250                         Ok(_) => panic!(),
2251                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2252                 };
2253
2254                 #[cfg(feature = "std")]
2255                 {
2256                         use std::time::{SystemTime, UNIX_EPOCH};
2257
2258                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2259                         // Mark a node as permanently failed so it's tracked as removed.
2260                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2261
2262                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2263                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2264                                 unsigned_announcement.short_channel_id += 3;
2265                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2266                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2267                                 Ok(_) => panic!(),
2268                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2269                         }
2270
2271                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2272
2273                         // The above channel announcement should be handled as per normal now.
2274                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2275                                 Ok(res) => assert!(res),
2276                                 _ => panic!()
2277                         }
2278                 }
2279
2280                 // Don't relay valid channels with excess data
2281                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2282                         unsigned_announcement.short_channel_id += 4;
2283                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2284                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2285                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2286                         Ok(res) => assert!(!res),
2287                         _ => panic!()
2288                 };
2289
2290                 let mut invalid_sig_announcement = valid_announcement.clone();
2291                 invalid_sig_announcement.contents.excess_data = Vec::new();
2292                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2293                         Ok(_) => panic!(),
2294                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2295                 };
2296
2297                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2298                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2299                         Ok(_) => panic!(),
2300                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2301                 };
2302         }
2303
2304         #[test]
2305         fn handling_channel_update() {
2306                 let secp_ctx = Secp256k1::new();
2307                 let logger = test_utils::TestLogger::new();
2308                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2309                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2310                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2311
2312                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2313                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2314
2315                 let amount_sats = 1000_000;
2316                 let short_channel_id;
2317
2318                 {
2319                         // Announce a channel we will update
2320                         let good_script = get_channel_script(&secp_ctx);
2321                         *chain_source.utxo_ret.lock().unwrap() =
2322                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2323
2324                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2325                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2326                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2327                                 Ok(_) => (),
2328                                 Err(_) => panic!()
2329                         };
2330
2331                 }
2332
2333                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2334                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2335                         Ok(res) => assert!(res),
2336                         _ => panic!(),
2337                 };
2338
2339                 {
2340                         match network_graph.read_only().channels().get(&short_channel_id) {
2341                                 None => panic!(),
2342                                 Some(channel_info) => {
2343                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2344                                         assert!(channel_info.two_to_one.is_none());
2345                                 }
2346                         };
2347                 }
2348
2349                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2350                         unsigned_channel_update.timestamp += 100;
2351                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2352                 }, node_1_privkey, &secp_ctx);
2353                 // Return false because contains excess data
2354                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2355                         Ok(res) => assert!(!res),
2356                         _ => panic!()
2357                 };
2358
2359                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2360                         unsigned_channel_update.timestamp += 110;
2361                         unsigned_channel_update.short_channel_id += 1;
2362                 }, node_1_privkey, &secp_ctx);
2363                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2364                         Ok(_) => panic!(),
2365                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2366                 };
2367
2368                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2369                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2370                         unsigned_channel_update.timestamp += 110;
2371                 }, node_1_privkey, &secp_ctx);
2372                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2373                         Ok(_) => panic!(),
2374                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2375                 };
2376
2377                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2378                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2379                         unsigned_channel_update.timestamp += 110;
2380                 }, node_1_privkey, &secp_ctx);
2381                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2382                         Ok(_) => panic!(),
2383                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2384                 };
2385
2386                 // Even though previous update was not relayed further, we still accepted it,
2387                 // so we now won't accept update before the previous one.
2388                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2389                         unsigned_channel_update.timestamp += 100;
2390                 }, node_1_privkey, &secp_ctx);
2391                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2392                         Ok(_) => panic!(),
2393                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2394                 };
2395
2396                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2397                         unsigned_channel_update.timestamp += 500;
2398                 }, node_1_privkey, &secp_ctx);
2399                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2400                 let fake_msghash = hash_to_message!(&zero_hash);
2401                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2402                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2403                         Ok(_) => panic!(),
2404                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2405                 };
2406         }
2407
2408         #[test]
2409         fn handling_network_update() {
2410                 let logger = test_utils::TestLogger::new();
2411                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2412                 let secp_ctx = Secp256k1::new();
2413
2414                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2415                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2416                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2417
2418                 {
2419                         // There is no nodes in the table at the beginning.
2420                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2421                 }
2422
2423                 let short_channel_id;
2424                 {
2425                         // Announce a channel we will update
2426                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2427                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2428                         let chain_source: Option<&test_utils::TestChainSource> = None;
2429                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2430                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2431
2432                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2433                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2434
2435                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2436                                 msg: valid_channel_update,
2437                         });
2438
2439                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2440                 }
2441
2442                 // Non-permanent closing just disables a channel
2443                 {
2444                         match network_graph.read_only().channels().get(&short_channel_id) {
2445                                 None => panic!(),
2446                                 Some(channel_info) => {
2447                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2448                                 }
2449                         };
2450
2451                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2452                                 short_channel_id,
2453                                 is_permanent: false,
2454                         });
2455
2456                         match network_graph.read_only().channels().get(&short_channel_id) {
2457                                 None => panic!(),
2458                                 Some(channel_info) => {
2459                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2460                                 }
2461                         };
2462                 }
2463
2464                 // Permanent closing deletes a channel
2465                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2466                         short_channel_id,
2467                         is_permanent: true,
2468                 });
2469
2470                 assert_eq!(network_graph.read_only().channels().len(), 0);
2471                 // Nodes are also deleted because there are no associated channels anymore
2472                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2473
2474                 {
2475                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2476                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2477
2478                         // Announce a channel to test permanent node failure
2479                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2480                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2481                         let chain_source: Option<&test_utils::TestChainSource> = None;
2482                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2483                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2484
2485                         // Non-permanent node failure does not delete any nodes or channels
2486                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2487                                 node_id: node_2_id,
2488                                 is_permanent: false,
2489                         });
2490
2491                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2492                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2493
2494                         // Permanent node failure deletes node and its channels
2495                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2496                                 node_id: node_2_id,
2497                                 is_permanent: true,
2498                         });
2499
2500                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2501                         // Channels are also deleted because the associated node has been deleted
2502                         assert_eq!(network_graph.read_only().channels().len(), 0);
2503                 }
2504         }
2505
2506         #[test]
2507         fn test_channel_timeouts() {
2508                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2509                 let logger = test_utils::TestLogger::new();
2510                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2511                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2512                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2513                 let secp_ctx = Secp256k1::new();
2514
2515                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2516                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2517
2518                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2519                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2520                 let chain_source: Option<&test_utils::TestChainSource> = None;
2521                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2522                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2523
2524                 // Submit two channel updates for each channel direction (update.flags bit).
2525                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2526                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2527                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2528
2529                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2530                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2531                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2532
2533                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2534                 assert_eq!(network_graph.read_only().channels().len(), 1);
2535                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2536
2537                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2538                 #[cfg(not(feature = "std"))] {
2539                         // Make sure removed channels are tracked.
2540                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2541                 }
2542                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2543                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2544
2545                 #[cfg(feature = "std")]
2546                 {
2547                         // In std mode, a further check is performed before fully removing the channel -
2548                         // the channel_announcement must have been received at least two weeks ago. We
2549                         // fudge that here by indicating the time has jumped two weeks.
2550                         assert_eq!(network_graph.read_only().channels().len(), 1);
2551                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2552
2553                         // Note that the directional channel information will have been removed already..
2554                         // We want to check that this will work even if *one* of the channel updates is recent,
2555                         // so we should add it with a recent timestamp.
2556                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2557                         use std::time::{SystemTime, UNIX_EPOCH};
2558                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2559                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2560                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2561                         }, node_1_privkey, &secp_ctx);
2562                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2563                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2564                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2565                         // Make sure removed channels are tracked.
2566                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2567                         // Provide a later time so that sufficient time has passed
2568                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2569                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2570                 }
2571
2572                 assert_eq!(network_graph.read_only().channels().len(), 0);
2573                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2574                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2575
2576                 #[cfg(feature = "std")]
2577                 {
2578                         use std::time::{SystemTime, UNIX_EPOCH};
2579
2580                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2581
2582                         // Clear tracked nodes and channels for clean slate
2583                         network_graph.removed_channels.lock().unwrap().clear();
2584                         network_graph.removed_nodes.lock().unwrap().clear();
2585
2586                         // Add a channel and nodes from channel announcement. So our network graph will
2587                         // now only consist of two nodes and one channel between them.
2588                         assert!(network_graph.update_channel_from_announcement(
2589                                 &valid_channel_announcement, &chain_source).is_ok());
2590
2591                         // Mark the channel as permanently failed. This will also remove the two nodes
2592                         // and all of the entries will be tracked as removed.
2593                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2594
2595                         // Should not remove from tracking if insufficient time has passed
2596                         network_graph.remove_stale_channels_and_tracking_with_time(
2597                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2598                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2599
2600                         // Provide a later time so that sufficient time has passed
2601                         network_graph.remove_stale_channels_and_tracking_with_time(
2602                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2603                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2604                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2605                 }
2606
2607                 #[cfg(not(feature = "std"))]
2608                 {
2609                         // When we don't have access to the system clock, the time we started tracking removal will only
2610                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2611                         // only if sufficient time has passed after that first call, will the next call remove it from
2612                         // tracking.
2613                         let removal_time = 1664619654;
2614
2615                         // Clear removed nodes and channels for clean slate
2616                         network_graph.removed_channels.lock().unwrap().clear();
2617                         network_graph.removed_nodes.lock().unwrap().clear();
2618
2619                         // Add a channel and nodes from channel announcement. So our network graph will
2620                         // now only consist of two nodes and one channel between them.
2621                         assert!(network_graph.update_channel_from_announcement(
2622                                 &valid_channel_announcement, &chain_source).is_ok());
2623
2624                         // Mark the channel as permanently failed. This will also remove the two nodes
2625                         // and all of the entries will be tracked as removed.
2626                         network_graph.channel_failed(short_channel_id, true);
2627
2628                         // The first time we call the following, the channel will have a removal time assigned.
2629                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2630                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2631
2632                         // Provide a later time so that sufficient time has passed
2633                         network_graph.remove_stale_channels_and_tracking_with_time(
2634                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2635                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2636                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2637                 }
2638         }
2639
2640         #[test]
2641         fn getting_next_channel_announcements() {
2642                 let network_graph = create_network_graph();
2643                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2644                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2645                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2646
2647                 // Channels were not announced yet.
2648                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2649                 assert!(channels_with_announcements.is_none());
2650
2651                 let short_channel_id;
2652                 {
2653                         // Announce a channel we will update
2654                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2655                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2656                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2657                                 Ok(_) => (),
2658                                 Err(_) => panic!()
2659                         };
2660                 }
2661
2662                 // Contains initial channel announcement now.
2663                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2664                 if let Some(channel_announcements) = channels_with_announcements {
2665                         let (_, ref update_1, ref update_2) = channel_announcements;
2666                         assert_eq!(update_1, &None);
2667                         assert_eq!(update_2, &None);
2668                 } else {
2669                         panic!();
2670                 }
2671
2672                 {
2673                         // Valid channel update
2674                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2675                                 unsigned_channel_update.timestamp = 101;
2676                         }, node_1_privkey, &secp_ctx);
2677                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2678                                 Ok(_) => (),
2679                                 Err(_) => panic!()
2680                         };
2681                 }
2682
2683                 // Now contains an initial announcement and an update.
2684                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2685                 if let Some(channel_announcements) = channels_with_announcements {
2686                         let (_, ref update_1, ref update_2) = channel_announcements;
2687                         assert_ne!(update_1, &None);
2688                         assert_eq!(update_2, &None);
2689                 } else {
2690                         panic!();
2691                 }
2692
2693                 {
2694                         // Channel update with excess data.
2695                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2696                                 unsigned_channel_update.timestamp = 102;
2697                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2698                         }, node_1_privkey, &secp_ctx);
2699                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2700                                 Ok(_) => (),
2701                                 Err(_) => panic!()
2702                         };
2703                 }
2704
2705                 // Test that announcements with excess data won't be returned
2706                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2707                 if let Some(channel_announcements) = channels_with_announcements {
2708                         let (_, ref update_1, ref update_2) = channel_announcements;
2709                         assert_eq!(update_1, &None);
2710                         assert_eq!(update_2, &None);
2711                 } else {
2712                         panic!();
2713                 }
2714
2715                 // Further starting point have no channels after it
2716                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2717                 assert!(channels_with_announcements.is_none());
2718         }
2719
2720         #[test]
2721         fn getting_next_node_announcements() {
2722                 let network_graph = create_network_graph();
2723                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2724                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2725                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2726                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2727
2728                 // No nodes yet.
2729                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2730                 assert!(next_announcements.is_none());
2731
2732                 {
2733                         // Announce a channel to add 2 nodes
2734                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2735                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2736                                 Ok(_) => (),
2737                                 Err(_) => panic!()
2738                         };
2739                 }
2740
2741                 // Nodes were never announced
2742                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2743                 assert!(next_announcements.is_none());
2744
2745                 {
2746                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2747                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2748                                 Ok(_) => (),
2749                                 Err(_) => panic!()
2750                         };
2751
2752                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2753                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2754                                 Ok(_) => (),
2755                                 Err(_) => panic!()
2756                         };
2757                 }
2758
2759                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2760                 assert!(next_announcements.is_some());
2761
2762                 // Skip the first node.
2763                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2764                 assert!(next_announcements.is_some());
2765
2766                 {
2767                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2768                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2769                                 unsigned_announcement.timestamp += 10;
2770                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2771                         }, node_2_privkey, &secp_ctx);
2772                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2773                                 Ok(res) => assert!(!res),
2774                                 Err(_) => panic!()
2775                         };
2776                 }
2777
2778                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2779                 assert!(next_announcements.is_none());
2780         }
2781
2782         #[test]
2783         fn network_graph_serialization() {
2784                 let network_graph = create_network_graph();
2785                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2786
2787                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2788                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2789
2790                 // Announce a channel to add a corresponding node.
2791                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2792                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2793                         Ok(res) => assert!(res),
2794                         _ => panic!()
2795                 };
2796
2797                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2798                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2799                         Ok(_) => (),
2800                         Err(_) => panic!()
2801                 };
2802
2803                 let mut w = test_utils::TestVecWriter(Vec::new());
2804                 assert!(!network_graph.read_only().nodes().is_empty());
2805                 assert!(!network_graph.read_only().channels().is_empty());
2806                 network_graph.write(&mut w).unwrap();
2807
2808                 let logger = Arc::new(test_utils::TestLogger::new());
2809                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2810         }
2811
2812         #[test]
2813         fn network_graph_tlv_serialization() {
2814                 let network_graph = create_network_graph();
2815                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2816
2817                 let mut w = test_utils::TestVecWriter(Vec::new());
2818                 network_graph.write(&mut w).unwrap();
2819
2820                 let logger = Arc::new(test_utils::TestLogger::new());
2821                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2822                 assert!(reassembled_network_graph == network_graph);
2823                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2824         }
2825
2826         #[test]
2827         #[cfg(feature = "std")]
2828         fn calling_sync_routing_table() {
2829                 use std::time::{SystemTime, UNIX_EPOCH};
2830                 use crate::ln::msgs::Init;
2831
2832                 let network_graph = create_network_graph();
2833                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2834                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2835                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2836
2837                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2838
2839                 // It should ignore if gossip_queries feature is not enabled
2840                 {
2841                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2842                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2843                         let events = gossip_sync.get_and_clear_pending_msg_events();
2844                         assert_eq!(events.len(), 0);
2845                 }
2846
2847                 // It should send a gossip_timestamp_filter with the correct information
2848                 {
2849                         let mut features = InitFeatures::empty();
2850                         features.set_gossip_queries_optional();
2851                         let init_msg = Init { features, remote_network_address: None };
2852                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2853                         let events = gossip_sync.get_and_clear_pending_msg_events();
2854                         assert_eq!(events.len(), 1);
2855                         match &events[0] {
2856                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2857                                         assert_eq!(node_id, &node_id_1);
2858                                         assert_eq!(msg.chain_hash, chain_hash);
2859                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2860                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2861                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2862                                         assert_eq!(msg.timestamp_range, u32::max_value());
2863                                 },
2864                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2865                         };
2866                 }
2867         }
2868
2869         #[test]
2870         fn handling_query_channel_range() {
2871                 let network_graph = create_network_graph();
2872                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2873
2874                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2875                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2876                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2877                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2878
2879                 let mut scids: Vec<u64> = vec![
2880                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2881                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2882                 ];
2883
2884                 // used for testing multipart reply across blocks
2885                 for block in 100000..=108001 {
2886                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2887                 }
2888
2889                 // used for testing resumption on same block
2890                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2891
2892                 for scid in scids {
2893                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2894                                 unsigned_announcement.short_channel_id = scid;
2895                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2896                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2897                                 Ok(_) => (),
2898                                 _ => panic!()
2899                         };
2900                 }
2901
2902                 // Error when number_of_blocks=0
2903                 do_handling_query_channel_range(
2904                         &gossip_sync,
2905                         &node_id_2,
2906                         QueryChannelRange {
2907                                 chain_hash: chain_hash.clone(),
2908                                 first_blocknum: 0,
2909                                 number_of_blocks: 0,
2910                         },
2911                         false,
2912                         vec![ReplyChannelRange {
2913                                 chain_hash: chain_hash.clone(),
2914                                 first_blocknum: 0,
2915                                 number_of_blocks: 0,
2916                                 sync_complete: true,
2917                                 short_channel_ids: vec![]
2918                         }]
2919                 );
2920
2921                 // Error when wrong chain
2922                 do_handling_query_channel_range(
2923                         &gossip_sync,
2924                         &node_id_2,
2925                         QueryChannelRange {
2926                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2927                                 first_blocknum: 0,
2928                                 number_of_blocks: 0xffff_ffff,
2929                         },
2930                         false,
2931                         vec![ReplyChannelRange {
2932                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2933                                 first_blocknum: 0,
2934                                 number_of_blocks: 0xffff_ffff,
2935                                 sync_complete: true,
2936                                 short_channel_ids: vec![],
2937                         }]
2938                 );
2939
2940                 // Error when first_blocknum > 0xffffff
2941                 do_handling_query_channel_range(
2942                         &gossip_sync,
2943                         &node_id_2,
2944                         QueryChannelRange {
2945                                 chain_hash: chain_hash.clone(),
2946                                 first_blocknum: 0x01000000,
2947                                 number_of_blocks: 0xffff_ffff,
2948                         },
2949                         false,
2950                         vec![ReplyChannelRange {
2951                                 chain_hash: chain_hash.clone(),
2952                                 first_blocknum: 0x01000000,
2953                                 number_of_blocks: 0xffff_ffff,
2954                                 sync_complete: true,
2955                                 short_channel_ids: vec![]
2956                         }]
2957                 );
2958
2959                 // Empty reply when max valid SCID block num
2960                 do_handling_query_channel_range(
2961                         &gossip_sync,
2962                         &node_id_2,
2963                         QueryChannelRange {
2964                                 chain_hash: chain_hash.clone(),
2965                                 first_blocknum: 0xffffff,
2966                                 number_of_blocks: 1,
2967                         },
2968                         true,
2969                         vec![
2970                                 ReplyChannelRange {
2971                                         chain_hash: chain_hash.clone(),
2972                                         first_blocknum: 0xffffff,
2973                                         number_of_blocks: 1,
2974                                         sync_complete: true,
2975                                         short_channel_ids: vec![]
2976                                 },
2977                         ]
2978                 );
2979
2980                 // No results in valid query range
2981                 do_handling_query_channel_range(
2982                         &gossip_sync,
2983                         &node_id_2,
2984                         QueryChannelRange {
2985                                 chain_hash: chain_hash.clone(),
2986                                 first_blocknum: 1000,
2987                                 number_of_blocks: 1000,
2988                         },
2989                         true,
2990                         vec![
2991                                 ReplyChannelRange {
2992                                         chain_hash: chain_hash.clone(),
2993                                         first_blocknum: 1000,
2994                                         number_of_blocks: 1000,
2995                                         sync_complete: true,
2996                                         short_channel_ids: vec![],
2997                                 }
2998                         ]
2999                 );
3000
3001                 // Overflow first_blocknum + number_of_blocks
3002                 do_handling_query_channel_range(
3003                         &gossip_sync,
3004                         &node_id_2,
3005                         QueryChannelRange {
3006                                 chain_hash: chain_hash.clone(),
3007                                 first_blocknum: 0xfe0000,
3008                                 number_of_blocks: 0xffffffff,
3009                         },
3010                         true,
3011                         vec![
3012                                 ReplyChannelRange {
3013                                         chain_hash: chain_hash.clone(),
3014                                         first_blocknum: 0xfe0000,
3015                                         number_of_blocks: 0xffffffff - 0xfe0000,
3016                                         sync_complete: true,
3017                                         short_channel_ids: vec![
3018                                                 0xfffffe_ffffff_ffff, // max
3019                                         ]
3020                                 }
3021                         ]
3022                 );
3023
3024                 // Single block exactly full
3025                 do_handling_query_channel_range(
3026                         &gossip_sync,
3027                         &node_id_2,
3028                         QueryChannelRange {
3029                                 chain_hash: chain_hash.clone(),
3030                                 first_blocknum: 100000,
3031                                 number_of_blocks: 8000,
3032                         },
3033                         true,
3034                         vec![
3035                                 ReplyChannelRange {
3036                                         chain_hash: chain_hash.clone(),
3037                                         first_blocknum: 100000,
3038                                         number_of_blocks: 8000,
3039                                         sync_complete: true,
3040                                         short_channel_ids: (100000..=107999)
3041                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3042                                                 .collect(),
3043                                 },
3044                         ]
3045                 );
3046
3047                 // Multiple split on new block
3048                 do_handling_query_channel_range(
3049                         &gossip_sync,
3050                         &node_id_2,
3051                         QueryChannelRange {
3052                                 chain_hash: chain_hash.clone(),
3053                                 first_blocknum: 100000,
3054                                 number_of_blocks: 8001,
3055                         },
3056                         true,
3057                         vec![
3058                                 ReplyChannelRange {
3059                                         chain_hash: chain_hash.clone(),
3060                                         first_blocknum: 100000,
3061                                         number_of_blocks: 7999,
3062                                         sync_complete: false,
3063                                         short_channel_ids: (100000..=107999)
3064                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3065                                                 .collect(),
3066                                 },
3067                                 ReplyChannelRange {
3068                                         chain_hash: chain_hash.clone(),
3069                                         first_blocknum: 107999,
3070                                         number_of_blocks: 2,
3071                                         sync_complete: true,
3072                                         short_channel_ids: vec![
3073                                                 scid_from_parts(108000, 0, 0).unwrap(),
3074                                         ],
3075                                 }
3076                         ]
3077                 );
3078
3079                 // Multiple split on same block
3080                 do_handling_query_channel_range(
3081                         &gossip_sync,
3082                         &node_id_2,
3083                         QueryChannelRange {
3084                                 chain_hash: chain_hash.clone(),
3085                                 first_blocknum: 100002,
3086                                 number_of_blocks: 8000,
3087                         },
3088                         true,
3089                         vec![
3090                                 ReplyChannelRange {
3091                                         chain_hash: chain_hash.clone(),
3092                                         first_blocknum: 100002,
3093                                         number_of_blocks: 7999,
3094                                         sync_complete: false,
3095                                         short_channel_ids: (100002..=108001)
3096                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3097                                                 .collect(),
3098                                 },
3099                                 ReplyChannelRange {
3100                                         chain_hash: chain_hash.clone(),
3101                                         first_blocknum: 108001,
3102                                         number_of_blocks: 1,
3103                                         sync_complete: true,
3104                                         short_channel_ids: vec![
3105                                                 scid_from_parts(108001, 1, 0).unwrap(),
3106                                         ],
3107                                 }
3108                         ]
3109                 );
3110         }
3111
3112         fn do_handling_query_channel_range(
3113                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3114                 test_node_id: &PublicKey,
3115                 msg: QueryChannelRange,
3116                 expected_ok: bool,
3117                 expected_replies: Vec<ReplyChannelRange>
3118         ) {
3119                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3120                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3121                 let query_end_blocknum = msg.end_blocknum();
3122                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3123
3124                 if expected_ok {
3125                         assert!(result.is_ok());
3126                 } else {
3127                         assert!(result.is_err());
3128                 }
3129
3130                 let events = gossip_sync.get_and_clear_pending_msg_events();
3131                 assert_eq!(events.len(), expected_replies.len());
3132
3133                 for i in 0..events.len() {
3134                         let expected_reply = &expected_replies[i];
3135                         match &events[i] {
3136                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3137                                         assert_eq!(node_id, test_node_id);
3138                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3139                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3140                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3141                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3142                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3143
3144                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3145                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3146                                         assert!(msg.first_blocknum >= max_firstblocknum);
3147                                         max_firstblocknum = msg.first_blocknum;
3148                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3149
3150                                         // Check that the last block count is >= the query's end_blocknum
3151                                         if i == events.len() - 1 {
3152                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3153                                         }
3154                                 },
3155                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3156                         }
3157                 }
3158         }
3159
3160         #[test]
3161         fn handling_query_short_channel_ids() {
3162                 let network_graph = create_network_graph();
3163                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3164                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3165                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3166
3167                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3168
3169                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3170                         chain_hash,
3171                         short_channel_ids: vec![0x0003e8_000000_0000],
3172                 });
3173                 assert!(result.is_err());
3174         }
3175
3176         #[test]
3177         fn displays_node_alias() {
3178                 let format_str_alias = |alias: &str| {
3179                         let mut bytes = [0u8; 32];
3180                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3181                         format!("{}", NodeAlias(bytes))
3182                 };
3183
3184                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3185                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3186                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3187
3188                 let format_bytes_alias = |alias: &[u8]| {
3189                         let mut bytes = [0u8; 32];
3190                         bytes[..alias.len()].copy_from_slice(alias);
3191                         format!("{}", NodeAlias(bytes))
3192                 };
3193
3194                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3195                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3196                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3197         }
3198
3199         #[test]
3200         fn channel_info_is_readable() {
3201                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3202                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3203                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3204                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3205                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3206
3207                 // 1. Test encoding/decoding of ChannelUpdateInfo
3208                 let chan_update_info = ChannelUpdateInfo {
3209                         last_update: 23,
3210                         enabled: true,
3211                         cltv_expiry_delta: 42,
3212                         htlc_minimum_msat: 1234,
3213                         htlc_maximum_msat: 5678,
3214                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3215                         last_update_message: None,
3216                 };
3217
3218                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3219                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3220
3221                 // First make sure we can read ChannelUpdateInfos we just wrote
3222                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3223                 assert_eq!(chan_update_info, read_chan_update_info);
3224
3225                 // Check the serialization hasn't changed.
3226                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3227                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3228
3229                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3230                 // or the ChannelUpdate enclosed with `last_update_message`.
3231                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3232                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3233                 assert!(read_chan_update_info_res.is_err());
3234
3235                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3236                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3237                 assert!(read_chan_update_info_res.is_err());
3238
3239                 // 2. Test encoding/decoding of ChannelInfo
3240                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3241                 let chan_info_none_updates = ChannelInfo {
3242                         features: channelmanager::provided_channel_features(&config),
3243                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3244                         one_to_two: None,
3245                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3246                         two_to_one: None,
3247                         capacity_sats: None,
3248                         announcement_message: None,
3249                         announcement_received_time: 87654,
3250                 };
3251
3252                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3253                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3254
3255                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3256                 assert_eq!(chan_info_none_updates, read_chan_info);
3257
3258                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3259                 let chan_info_some_updates = ChannelInfo {
3260                         features: channelmanager::provided_channel_features(&config),
3261                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3262                         one_to_two: Some(chan_update_info.clone()),
3263                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3264                         two_to_one: Some(chan_update_info.clone()),
3265                         capacity_sats: None,
3266                         announcement_message: None,
3267                         announcement_received_time: 87654,
3268                 };
3269
3270                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3271                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3272
3273                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3274                 assert_eq!(chan_info_some_updates, read_chan_info);
3275
3276                 // Check the serialization hasn't changed.
3277                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3278                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3279
3280                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3281                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3282                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3283                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3284                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3285                 assert_eq!(read_chan_info.one_to_two, None);
3286                 assert_eq!(read_chan_info.two_to_one, None);
3287
3288                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3289                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3290                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3291                 assert_eq!(read_chan_info.one_to_two, None);
3292                 assert_eq!(read_chan_info.two_to_one, None);
3293         }
3294
3295         #[test]
3296         fn node_info_is_readable() {
3297                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3298                 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3299                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3300                 let valid_node_ann_info = NodeAnnouncementInfo {
3301                         features: channelmanager::provided_node_features(&UserConfig::default()),
3302                         last_update: 0,
3303                         rgb: [0u8; 3],
3304                         alias: NodeAlias([0u8; 32]),
3305                         announcement_message: Some(announcement_message)
3306                 };
3307
3308                 let mut encoded_valid_node_ann_info = Vec::new();
3309                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3310                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3311                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3312                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3313
3314                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3315                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3316                 assert!(read_invalid_node_ann_info_res.is_err());
3317
3318                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3319                 let valid_node_info = NodeInfo {
3320                         channels: Vec::new(),
3321                         announcement_info: Some(valid_node_ann_info),
3322                 };
3323
3324                 let mut encoded_valid_node_info = Vec::new();
3325                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3326                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3327                 assert_eq!(read_valid_node_info, valid_node_info);
3328
3329                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3330                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3331                 assert_eq!(read_invalid_node_info.announcement_info, None);
3332         }
3333
3334         #[test]
3335         fn test_node_info_keeps_compatibility() {
3336                 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3337                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3338                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3339                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3340                 assert!(ann_info_with_addresses.addresses().is_empty());
3341         }
3342 }
3343
3344 #[cfg(all(test, feature = "_bench_unstable"))]
3345 mod benches {
3346         use super::*;
3347
3348         use test::Bencher;
3349         use std::io::Read;
3350
3351         #[bench]
3352         fn read_network_graph(bench: &mut Bencher) {
3353                 let logger = crate::util::test_utils::TestLogger::new();
3354                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3355                 let mut v = Vec::new();
3356                 d.read_to_end(&mut v).unwrap();
3357                 bench.iter(|| {
3358                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3359                 });
3360         }
3361
3362         #[bench]
3363         fn write_network_graph(bench: &mut Bencher) {
3364                 let logger = crate::util::test_utils::TestLogger::new();
3365                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3366                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3367                 bench.iter(|| {
3368                         let _ = net_graph.encode();
3369                 });
3370         }
3371 }