Process `channel_update`/`node_announcement` async if needed
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
22 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
23 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
24 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
25 use crate::ln::msgs;
26 use crate::routing::utxo::{self, UtxoLookup};
27 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
28 use crate::util::logger::{Logger, Level};
29 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
30 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
31 use crate::util::string::PrintableString;
32 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
33
34 use crate::io;
35 use crate::io_extras::{copy, sink};
36 use crate::prelude::*;
37 use core::{cmp, fmt};
38 use crate::sync::{RwLock, RwLockReadGuard};
39 #[cfg(feature = "std")]
40 use core::sync::atomic::{AtomicUsize, Ordering};
41 use crate::sync::Mutex;
42 use core::ops::{Bound, Deref};
43
44 #[cfg(feature = "std")]
45 use std::time::{SystemTime, UNIX_EPOCH};
46
47 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
48 /// suggestion.
49 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
50
51 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
52 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
53
54 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
55 /// refuse to relay the message.
56 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
57
58 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
59 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
60 const MAX_SCIDS_PER_REPLY: usize = 8000;
61
62 /// Represents the compressed public key of a node
63 #[derive(Clone, Copy)]
64 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
65
66 impl NodeId {
67         /// Create a new NodeId from a public key
68         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
69                 NodeId(pubkey.serialize())
70         }
71
72         /// Get the public key slice from this NodeId
73         pub fn as_slice(&self) -> &[u8] {
74                 &self.0
75         }
76 }
77
78 impl fmt::Debug for NodeId {
79         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
80                 write!(f, "NodeId({})", log_bytes!(self.0))
81         }
82 }
83 impl fmt::Display for NodeId {
84         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85                 write!(f, "{}", log_bytes!(self.0))
86         }
87 }
88
89 impl core::hash::Hash for NodeId {
90         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
91                 self.0.hash(hasher);
92         }
93 }
94
95 impl Eq for NodeId {}
96
97 impl PartialEq for NodeId {
98         fn eq(&self, other: &Self) -> bool {
99                 self.0[..] == other.0[..]
100         }
101 }
102
103 impl cmp::PartialOrd for NodeId {
104         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
105                 Some(self.cmp(other))
106         }
107 }
108
109 impl Ord for NodeId {
110         fn cmp(&self, other: &Self) -> cmp::Ordering {
111                 self.0[..].cmp(&other.0[..])
112         }
113 }
114
115 impl Writeable for NodeId {
116         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
117                 writer.write_all(&self.0)?;
118                 Ok(())
119         }
120 }
121
122 impl Readable for NodeId {
123         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
124                 let mut buf = [0; PUBLIC_KEY_SIZE];
125                 reader.read_exact(&mut buf)?;
126                 Ok(Self(buf))
127         }
128 }
129
130 /// Represents the network as nodes and channels between them
131 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
132         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
133         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
134         genesis_hash: BlockHash,
135         logger: L,
136         // Lock order: channels -> nodes
137         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
138         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
139         // Lock order: removed_channels -> removed_nodes
140         //
141         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
142         // of `std::time::Instant`s for a few reasons:
143         //   * We want it to be possible to do tracking in no-std environments where we can compare
144         //     a provided current UNIX timestamp with the time at which we started tracking.
145         //   * In the future, if we decide to persist these maps, they will already be serializable.
146         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
147         //     environment should be practical over the time period we are considering (on the order of a
148         //     week).
149         //
150         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
151         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
152         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
153         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
154         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
155         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
156         /// that once some time passes, we can potentially resync it from gossip again.
157         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
158         /// Announcement messages which are awaiting an on-chain lookup to be processed.
159         pub(super) pending_checks: utxo::PendingChecks,
160 }
161
162 /// A read-only view of [`NetworkGraph`].
163 pub struct ReadOnlyNetworkGraph<'a> {
164         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
165         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
166 }
167
168 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
169 /// return packet by a node along the route. See [BOLT #4] for details.
170 ///
171 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
172 #[derive(Clone, Debug, PartialEq, Eq)]
173 pub enum NetworkUpdate {
174         /// An error indicating a `channel_update` messages should be applied via
175         /// [`NetworkGraph::update_channel`].
176         ChannelUpdateMessage {
177                 /// The update to apply via [`NetworkGraph::update_channel`].
178                 msg: ChannelUpdate,
179         },
180         /// An error indicating that a channel failed to route a payment, which should be applied via
181         /// [`NetworkGraph::channel_failed`].
182         ChannelFailure {
183                 /// The short channel id of the closed channel.
184                 short_channel_id: u64,
185                 /// Whether the channel should be permanently removed or temporarily disabled until a new
186                 /// `channel_update` message is received.
187                 is_permanent: bool,
188         },
189         /// An error indicating that a node failed to route a payment, which should be applied via
190         /// [`NetworkGraph::node_failed_permanent`] if permanent.
191         NodeFailure {
192                 /// The node id of the failed node.
193                 node_id: PublicKey,
194                 /// Whether the node should be permanently removed from consideration or can be restored
195                 /// when a new `channel_update` message is received.
196                 is_permanent: bool,
197         }
198 }
199
200 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
201         (0, ChannelUpdateMessage) => {
202                 (0, msg, required),
203         },
204         (2, ChannelFailure) => {
205                 (0, short_channel_id, required),
206                 (2, is_permanent, required),
207         },
208         (4, NodeFailure) => {
209                 (0, node_id, required),
210                 (2, is_permanent, required),
211         },
212 );
213
214 /// Receives and validates network updates from peers,
215 /// stores authentic and relevant data as a network graph.
216 /// This network graph is then used for routing payments.
217 /// Provides interface to help with initial routing sync by
218 /// serving historical announcements.
219 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
220 where U::Target: UtxoLookup, L::Target: Logger
221 {
222         network_graph: G,
223         utxo_lookup: Option<U>,
224         #[cfg(feature = "std")]
225         full_syncs_requested: AtomicUsize,
226         pending_events: Mutex<Vec<MessageSendEvent>>,
227         logger: L,
228 }
229
230 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
231 where U::Target: UtxoLookup, L::Target: Logger
232 {
233         /// Creates a new tracker of the actual state of the network of channels and nodes,
234         /// assuming an existing Network Graph.
235         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
236         /// correct, and the announcement is signed with channel owners' keys.
237         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
238                 P2PGossipSync {
239                         network_graph,
240                         #[cfg(feature = "std")]
241                         full_syncs_requested: AtomicUsize::new(0),
242                         utxo_lookup,
243                         pending_events: Mutex::new(vec![]),
244                         logger,
245                 }
246         }
247
248         /// Adds a provider used to check new announcements. Does not affect
249         /// existing announcements unless they are updated.
250         /// Add, update or remove the provider would replace the current one.
251         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
252                 self.utxo_lookup = utxo_lookup;
253         }
254
255         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
256         /// [`P2PGossipSync::new`].
257         ///
258         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
259         pub fn network_graph(&self) -> &G {
260                 &self.network_graph
261         }
262
263         #[cfg(feature = "std")]
264         /// Returns true when a full routing table sync should be performed with a peer.
265         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
266                 //TODO: Determine whether to request a full sync based on the network map.
267                 const FULL_SYNCS_TO_REQUEST: usize = 5;
268                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
269                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
270                         true
271                 } else {
272                         false
273                 }
274         }
275 }
276
277 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
278         /// Handles any network updates originating from [`Event`]s.
279         ///
280         /// [`Event`]: crate::util::events::Event
281         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
282                 match *network_update {
283                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
284                                 let short_channel_id = msg.contents.short_channel_id;
285                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
286                                 let status = if is_enabled { "enabled" } else { "disabled" };
287                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
288                                 let _ = self.update_channel(msg);
289                         },
290                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
291                                 let action = if is_permanent { "Removing" } else { "Disabling" };
292                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
293                                 self.channel_failed(short_channel_id, is_permanent);
294                         },
295                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
296                                 if is_permanent {
297                                         log_debug!(self.logger,
298                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
299                                         self.node_failed_permanent(node_id);
300                                 };
301                         },
302                 }
303         }
304 }
305
306 macro_rules! secp_verify_sig {
307         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
308                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
309                         Ok(_) => {},
310                         Err(_) => {
311                                 return Err(LightningError {
312                                         err: format!("Invalid signature on {} message", $msg_type),
313                                         action: ErrorAction::SendWarningMessage {
314                                                 msg: msgs::WarningMessage {
315                                                         channel_id: [0; 32],
316                                                         data: format!("Invalid signature on {} message", $msg_type),
317                                                 },
318                                                 log_level: Level::Trace,
319                                         },
320                                 });
321                         },
322                 }
323         };
324 }
325
326 macro_rules! get_pubkey_from_node_id {
327         ( $node_id: expr, $msg_type: expr ) => {
328                 PublicKey::from_slice($node_id.as_slice())
329                         .map_err(|_| LightningError {
330                                 err: format!("Invalid public key on {} message", $msg_type),
331                                 action: ErrorAction::SendWarningMessage {
332                                         msg: msgs::WarningMessage {
333                                                 channel_id: [0; 32],
334                                                 data: format!("Invalid public key on {} message", $msg_type),
335                                         },
336                                         log_level: Level::Trace
337                                 }
338                         })?
339         }
340 }
341
342 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
343 where U::Target: UtxoLookup, L::Target: Logger
344 {
345         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
346                 self.network_graph.update_node_from_announcement(msg)?;
347                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
348                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
349                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
350         }
351
352         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
353                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
354                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
355                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
356         }
357
358         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
359                 self.network_graph.update_channel(msg)?;
360                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
361         }
362
363         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
364                 let channels = self.network_graph.channels.read().unwrap();
365                 for (_, ref chan) in channels.range(starting_point..) {
366                         if chan.announcement_message.is_some() {
367                                 let chan_announcement = chan.announcement_message.clone().unwrap();
368                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
369                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
370                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
371                                         one_to_two_announcement = one_to_two.last_update_message.clone();
372                                 }
373                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
374                                         two_to_one_announcement = two_to_one.last_update_message.clone();
375                                 }
376                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
377                         } else {
378                                 // TODO: We may end up sending un-announced channel_updates if we are sending
379                                 // initial sync data while receiving announce/updates for this channel.
380                         }
381                 }
382                 None
383         }
384
385         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
386                 let nodes = self.network_graph.nodes.read().unwrap();
387                 let iter = if let Some(node_id) = starting_point {
388                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
389                         } else {
390                                 nodes.range(..)
391                         };
392                 for (_, ref node) in iter {
393                         if let Some(node_info) = node.announcement_info.as_ref() {
394                                 if let Some(msg) = node_info.announcement_message.clone() {
395                                         return Some(msg);
396                                 }
397                         }
398                 }
399                 None
400         }
401
402         /// Initiates a stateless sync of routing gossip information with a peer
403         /// using gossip_queries. The default strategy used by this implementation
404         /// is to sync the full block range with several peers.
405         ///
406         /// We should expect one or more reply_channel_range messages in response
407         /// to our query_channel_range. Each reply will enqueue a query_scid message
408         /// to request gossip messages for each channel. The sync is considered complete
409         /// when the final reply_scids_end message is received, though we are not
410         /// tracking this directly.
411         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) -> Result<(), ()> {
412                 // We will only perform a sync with peers that support gossip_queries.
413                 if !init_msg.features.supports_gossip_queries() {
414                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
415                         // channels with peers even without being able to exchange gossip.
416                         return Ok(());
417                 }
418
419                 // The lightning network's gossip sync system is completely broken in numerous ways.
420                 //
421                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
422                 // to do a full sync from the first few peers we connect to, and then receive gossip
423                 // updates from all our peers normally.
424                 //
425                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
426                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
427                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
428                 // seen.
429                 //
430                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
431                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
432                 // channel data which you are missing. Except there was no way at all to identify which
433                 // `channel_update`s you were missing, so you still had to request everything, just in a
434                 // very complicated way with some queries instead of just getting the dump.
435                 //
436                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
437                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
438                 // relying on it useless.
439                 //
440                 // After gossip queries were introduced, support for receiving a full gossip table dump on
441                 // connection was removed from several nodes, making it impossible to get a full sync
442                 // without using the "gossip queries" messages.
443                 //
444                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
445                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
446                 // message, as the name implies, tells the peer to not forward any gossip messages with a
447                 // timestamp older than a given value (not the time the peer received the filter, but the
448                 // timestamp in the update message, which is often hours behind when the peer received the
449                 // message).
450                 //
451                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
452                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
453                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
454                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
455                 // will simply not forward any new updates they see to you which were generated some time
456                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
457                 // ago), you will always get the full routing graph from all your peers.
458                 //
459                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
460                 // propagated some time after it was generated, and, worse, often disable gossiping with
461                 // several peers after their first connection. The second behavior can cause gossip to not
462                 // propagate fully if there are cuts in the gossiping subgraph.
463                 //
464                 // In an attempt to cut a middle ground between always fetching the full graph from all of
465                 // our peers and never receiving gossip from peers at all, we send all of our peers a
466                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
467                 //
468                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
469                 #[allow(unused_mut, unused_assignments)]
470                 let mut gossip_start_time = 0;
471                 #[cfg(feature = "std")]
472                 {
473                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
474                         if self.should_request_full_sync(&their_node_id) {
475                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
476                         } else {
477                                 gossip_start_time -= 60 * 60; // an hour ago
478                         }
479                 }
480
481                 let mut pending_events = self.pending_events.lock().unwrap();
482                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
483                         node_id: their_node_id.clone(),
484                         msg: GossipTimestampFilter {
485                                 chain_hash: self.network_graph.genesis_hash,
486                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
487                                 timestamp_range: u32::max_value(),
488                         },
489                 });
490                 Ok(())
491         }
492
493         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
494                 // We don't make queries, so should never receive replies. If, in the future, the set
495                 // reconciliation extensions to gossip queries become broadly supported, we should revert
496                 // this code to its state pre-0.0.106.
497                 Ok(())
498         }
499
500         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
501                 // We don't make queries, so should never receive replies. If, in the future, the set
502                 // reconciliation extensions to gossip queries become broadly supported, we should revert
503                 // this code to its state pre-0.0.106.
504                 Ok(())
505         }
506
507         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
508         /// are in the specified block range. Due to message size limits, large range
509         /// queries may result in several reply messages. This implementation enqueues
510         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
511         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
512         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
513         /// memory constrained systems.
514         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
515                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
516
517                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
518
519                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
520                 // If so, we manually cap the ending block to avoid this overflow.
521                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
522
523                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
524                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
525                         let mut pending_events = self.pending_events.lock().unwrap();
526                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
527                                 node_id: their_node_id.clone(),
528                                 msg: ReplyChannelRange {
529                                         chain_hash: msg.chain_hash.clone(),
530                                         first_blocknum: msg.first_blocknum,
531                                         number_of_blocks: msg.number_of_blocks,
532                                         sync_complete: true,
533                                         short_channel_ids: vec![],
534                                 }
535                         });
536                         return Err(LightningError {
537                                 err: String::from("query_channel_range could not be processed"),
538                                 action: ErrorAction::IgnoreError,
539                         });
540                 }
541
542                 // Creates channel batches. We are not checking if the channel is routable
543                 // (has at least one update). A peer may still want to know the channel
544                 // exists even if its not yet routable.
545                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
546                 let channels = self.network_graph.channels.read().unwrap();
547                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
548                         if let Some(chan_announcement) = &chan.announcement_message {
549                                 // Construct a new batch if last one is full
550                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
551                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
552                                 }
553
554                                 let batch = batches.last_mut().unwrap();
555                                 batch.push(chan_announcement.contents.short_channel_id);
556                         }
557                 }
558                 drop(channels);
559
560                 let mut pending_events = self.pending_events.lock().unwrap();
561                 let batch_count = batches.len();
562                 let mut prev_batch_endblock = msg.first_blocknum;
563                 for (batch_index, batch) in batches.into_iter().enumerate() {
564                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
565                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
566                         //
567                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
568                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
569                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
570                         // significant diversion from the requirements set by the spec, and, in case of blocks
571                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
572                         // and *not* derive the first_blocknum from the actual first block of the reply.
573                         let first_blocknum = prev_batch_endblock;
574
575                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
576                         // fit in. Though there is no requirement that we use exactly the number of blocks its
577                         // contents are from, except for the bogus requirements c-lightning enforces, above.
578                         //
579                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
580                         // >= the query's end block. Thus, for the last reply, we calculate the difference
581                         // between the query's end block and the start of the reply.
582                         //
583                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
584                         // first_blocknum will be either msg.first_blocknum or a higher block height.
585                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
586                                 (true, msg.end_blocknum() - first_blocknum)
587                         }
588                         // Prior replies should use the number of blocks that fit into the reply. Overflow
589                         // safe since first_blocknum is always <= last SCID's block.
590                         else {
591                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
592                         };
593
594                         prev_batch_endblock = first_blocknum + number_of_blocks;
595
596                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
597                                 node_id: their_node_id.clone(),
598                                 msg: ReplyChannelRange {
599                                         chain_hash: msg.chain_hash.clone(),
600                                         first_blocknum,
601                                         number_of_blocks,
602                                         sync_complete,
603                                         short_channel_ids: batch,
604                                 }
605                         });
606                 }
607
608                 Ok(())
609         }
610
611         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
612                 // TODO
613                 Err(LightningError {
614                         err: String::from("Not implemented"),
615                         action: ErrorAction::IgnoreError,
616                 })
617         }
618
619         fn provided_node_features(&self) -> NodeFeatures {
620                 let mut features = NodeFeatures::empty();
621                 features.set_gossip_queries_optional();
622                 features
623         }
624
625         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
626                 let mut features = InitFeatures::empty();
627                 features.set_gossip_queries_optional();
628                 features
629         }
630 }
631
632 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
633 where
634         U::Target: UtxoLookup,
635         L::Target: Logger,
636 {
637         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
638                 let mut ret = Vec::new();
639                 let mut pending_events = self.pending_events.lock().unwrap();
640                 core::mem::swap(&mut ret, &mut pending_events);
641                 ret
642         }
643 }
644
645 #[derive(Clone, Debug, PartialEq, Eq)]
646 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
647 pub struct ChannelUpdateInfo {
648         /// When the last update to the channel direction was issued.
649         /// Value is opaque, as set in the announcement.
650         pub last_update: u32,
651         /// Whether the channel can be currently used for payments (in this one direction).
652         pub enabled: bool,
653         /// The difference in CLTV values that you must have when routing through this channel.
654         pub cltv_expiry_delta: u16,
655         /// The minimum value, which must be relayed to the next hop via the channel
656         pub htlc_minimum_msat: u64,
657         /// The maximum value which may be relayed to the next hop via the channel.
658         pub htlc_maximum_msat: u64,
659         /// Fees charged when the channel is used for routing
660         pub fees: RoutingFees,
661         /// Most recent update for the channel received from the network
662         /// Mostly redundant with the data we store in fields explicitly.
663         /// Everything else is useful only for sending out for initial routing sync.
664         /// Not stored if contains excess data to prevent DoS.
665         pub last_update_message: Option<ChannelUpdate>,
666 }
667
668 impl fmt::Display for ChannelUpdateInfo {
669         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
670                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
671                 Ok(())
672         }
673 }
674
675 impl Writeable for ChannelUpdateInfo {
676         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
677                 write_tlv_fields!(writer, {
678                         (0, self.last_update, required),
679                         (2, self.enabled, required),
680                         (4, self.cltv_expiry_delta, required),
681                         (6, self.htlc_minimum_msat, required),
682                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
683                         // compatibility with LDK versions prior to v0.0.110.
684                         (8, Some(self.htlc_maximum_msat), required),
685                         (10, self.fees, required),
686                         (12, self.last_update_message, required),
687                 });
688                 Ok(())
689         }
690 }
691
692 impl Readable for ChannelUpdateInfo {
693         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
694                 _init_tlv_field_var!(last_update, required);
695                 _init_tlv_field_var!(enabled, required);
696                 _init_tlv_field_var!(cltv_expiry_delta, required);
697                 _init_tlv_field_var!(htlc_minimum_msat, required);
698                 _init_tlv_field_var!(htlc_maximum_msat, option);
699                 _init_tlv_field_var!(fees, required);
700                 _init_tlv_field_var!(last_update_message, required);
701
702                 read_tlv_fields!(reader, {
703                         (0, last_update, required),
704                         (2, enabled, required),
705                         (4, cltv_expiry_delta, required),
706                         (6, htlc_minimum_msat, required),
707                         (8, htlc_maximum_msat, required),
708                         (10, fees, required),
709                         (12, last_update_message, required)
710                 });
711
712                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
713                         Ok(ChannelUpdateInfo {
714                                 last_update: _init_tlv_based_struct_field!(last_update, required),
715                                 enabled: _init_tlv_based_struct_field!(enabled, required),
716                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
717                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
718                                 htlc_maximum_msat,
719                                 fees: _init_tlv_based_struct_field!(fees, required),
720                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
721                         })
722                 } else {
723                         Err(DecodeError::InvalidValue)
724                 }
725         }
726 }
727
728 #[derive(Clone, Debug, PartialEq, Eq)]
729 /// Details about a channel (both directions).
730 /// Received within a channel announcement.
731 pub struct ChannelInfo {
732         /// Protocol features of a channel communicated during its announcement
733         pub features: ChannelFeatures,
734         /// Source node of the first direction of a channel
735         pub node_one: NodeId,
736         /// Details about the first direction of a channel
737         pub one_to_two: Option<ChannelUpdateInfo>,
738         /// Source node of the second direction of a channel
739         pub node_two: NodeId,
740         /// Details about the second direction of a channel
741         pub two_to_one: Option<ChannelUpdateInfo>,
742         /// The channel capacity as seen on-chain, if chain lookup is available.
743         pub capacity_sats: Option<u64>,
744         /// An initial announcement of the channel
745         /// Mostly redundant with the data we store in fields explicitly.
746         /// Everything else is useful only for sending out for initial routing sync.
747         /// Not stored if contains excess data to prevent DoS.
748         pub announcement_message: Option<ChannelAnnouncement>,
749         /// The timestamp when we received the announcement, if we are running with feature = "std"
750         /// (which we can probably assume we are - no-std environments probably won't have a full
751         /// network graph in memory!).
752         announcement_received_time: u64,
753 }
754
755 impl ChannelInfo {
756         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
757         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
758         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
759                 let (direction, source) = {
760                         if target == &self.node_one {
761                                 (self.two_to_one.as_ref(), &self.node_two)
762                         } else if target == &self.node_two {
763                                 (self.one_to_two.as_ref(), &self.node_one)
764                         } else {
765                                 return None;
766                         }
767                 };
768                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
769         }
770
771         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
772         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
773         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
774                 let (direction, target) = {
775                         if source == &self.node_one {
776                                 (self.one_to_two.as_ref(), &self.node_two)
777                         } else if source == &self.node_two {
778                                 (self.two_to_one.as_ref(), &self.node_one)
779                         } else {
780                                 return None;
781                         }
782                 };
783                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
784         }
785
786         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
787         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
788                 let direction = channel_flags & 1u8;
789                 if direction == 0 {
790                         self.one_to_two.as_ref()
791                 } else {
792                         self.two_to_one.as_ref()
793                 }
794         }
795 }
796
797 impl fmt::Display for ChannelInfo {
798         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
799                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
800                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
801                 Ok(())
802         }
803 }
804
805 impl Writeable for ChannelInfo {
806         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
807                 write_tlv_fields!(writer, {
808                         (0, self.features, required),
809                         (1, self.announcement_received_time, (default_value, 0)),
810                         (2, self.node_one, required),
811                         (4, self.one_to_two, required),
812                         (6, self.node_two, required),
813                         (8, self.two_to_one, required),
814                         (10, self.capacity_sats, required),
815                         (12, self.announcement_message, required),
816                 });
817                 Ok(())
818         }
819 }
820
821 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
822 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
823 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
824 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
825 // channel updates via the gossip network.
826 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
827
828 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
829         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
830                 match crate::util::ser::Readable::read(reader) {
831                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
832                         Err(DecodeError::ShortRead) => Ok(None),
833                         Err(DecodeError::InvalidValue) => Ok(None),
834                         Err(err) => Err(err),
835                 }
836         }
837 }
838
839 impl Readable for ChannelInfo {
840         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
841                 _init_tlv_field_var!(features, required);
842                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
843                 _init_tlv_field_var!(node_one, required);
844                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
845                 _init_tlv_field_var!(node_two, required);
846                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
847                 _init_tlv_field_var!(capacity_sats, required);
848                 _init_tlv_field_var!(announcement_message, required);
849                 read_tlv_fields!(reader, {
850                         (0, features, required),
851                         (1, announcement_received_time, (default_value, 0)),
852                         (2, node_one, required),
853                         (4, one_to_two_wrap, ignorable),
854                         (6, node_two, required),
855                         (8, two_to_one_wrap, ignorable),
856                         (10, capacity_sats, required),
857                         (12, announcement_message, required),
858                 });
859
860                 Ok(ChannelInfo {
861                         features: _init_tlv_based_struct_field!(features, required),
862                         node_one: _init_tlv_based_struct_field!(node_one, required),
863                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
864                         node_two: _init_tlv_based_struct_field!(node_two, required),
865                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
866                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
867                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
868                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
869                 })
870         }
871 }
872
873 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
874 /// source node to a target node.
875 #[derive(Clone)]
876 pub struct DirectedChannelInfo<'a> {
877         channel: &'a ChannelInfo,
878         direction: &'a ChannelUpdateInfo,
879         htlc_maximum_msat: u64,
880         effective_capacity: EffectiveCapacity,
881 }
882
883 impl<'a> DirectedChannelInfo<'a> {
884         #[inline]
885         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
886                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
887                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
888
889                 let effective_capacity = match capacity_msat {
890                         Some(capacity_msat) => {
891                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
892                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
893                         },
894                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
895                 };
896
897                 Self {
898                         channel, direction, htlc_maximum_msat, effective_capacity
899                 }
900         }
901
902         /// Returns information for the channel.
903         #[inline]
904         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
905
906         /// Returns the maximum HTLC amount allowed over the channel in the direction.
907         #[inline]
908         pub fn htlc_maximum_msat(&self) -> u64 {
909                 self.htlc_maximum_msat
910         }
911
912         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
913         ///
914         /// This is either the total capacity from the funding transaction, if known, or the
915         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
916         /// otherwise.
917         pub fn effective_capacity(&self) -> EffectiveCapacity {
918                 self.effective_capacity
919         }
920
921         /// Returns information for the direction.
922         #[inline]
923         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
924 }
925
926 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
927         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
928                 f.debug_struct("DirectedChannelInfo")
929                         .field("channel", &self.channel)
930                         .finish()
931         }
932 }
933
934 /// The effective capacity of a channel for routing purposes.
935 ///
936 /// While this may be smaller than the actual channel capacity, amounts greater than
937 /// [`Self::as_msat`] should not be routed through the channel.
938 #[derive(Clone, Copy, Debug)]
939 pub enum EffectiveCapacity {
940         /// The available liquidity in the channel known from being a channel counterparty, and thus a
941         /// direct hop.
942         ExactLiquidity {
943                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
944                 /// millisatoshi.
945                 liquidity_msat: u64,
946         },
947         /// The maximum HTLC amount in one direction as advertised on the gossip network.
948         MaximumHTLC {
949                 /// The maximum HTLC amount denominated in millisatoshi.
950                 amount_msat: u64,
951         },
952         /// The total capacity of the channel as determined by the funding transaction.
953         Total {
954                 /// The funding amount denominated in millisatoshi.
955                 capacity_msat: u64,
956                 /// The maximum HTLC amount denominated in millisatoshi.
957                 htlc_maximum_msat: u64
958         },
959         /// A capacity sufficient to route any payment, typically used for private channels provided by
960         /// an invoice.
961         Infinite,
962         /// A capacity that is unknown possibly because either the chain state is unavailable to know
963         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
964         Unknown,
965 }
966
967 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
968 /// use when making routing decisions.
969 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
970
971 impl EffectiveCapacity {
972         /// Returns the effective capacity denominated in millisatoshi.
973         pub fn as_msat(&self) -> u64 {
974                 match self {
975                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
976                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
977                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
978                         EffectiveCapacity::Infinite => u64::max_value(),
979                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
980                 }
981         }
982 }
983
984 /// Fees for routing via a given channel or a node
985 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
986 pub struct RoutingFees {
987         /// Flat routing fee in satoshis
988         pub base_msat: u32,
989         /// Liquidity-based routing fee in millionths of a routed amount.
990         /// In other words, 10000 is 1%.
991         pub proportional_millionths: u32,
992 }
993
994 impl_writeable_tlv_based!(RoutingFees, {
995         (0, base_msat, required),
996         (2, proportional_millionths, required)
997 });
998
999 #[derive(Clone, Debug, PartialEq, Eq)]
1000 /// Information received in the latest node_announcement from this node.
1001 pub struct NodeAnnouncementInfo {
1002         /// Protocol features the node announced support for
1003         pub features: NodeFeatures,
1004         /// When the last known update to the node state was issued.
1005         /// Value is opaque, as set in the announcement.
1006         pub last_update: u32,
1007         /// Color assigned to the node
1008         pub rgb: [u8; 3],
1009         /// Moniker assigned to the node.
1010         /// May be invalid or malicious (eg control chars),
1011         /// should not be exposed to the user.
1012         pub alias: NodeAlias,
1013         /// Internet-level addresses via which one can connect to the node
1014         pub addresses: Vec<NetAddress>,
1015         /// An initial announcement of the node
1016         /// Mostly redundant with the data we store in fields explicitly.
1017         /// Everything else is useful only for sending out for initial routing sync.
1018         /// Not stored if contains excess data to prevent DoS.
1019         pub announcement_message: Option<NodeAnnouncement>
1020 }
1021
1022 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1023         (0, features, required),
1024         (2, last_update, required),
1025         (4, rgb, required),
1026         (6, alias, required),
1027         (8, announcement_message, option),
1028         (10, addresses, vec_type),
1029 });
1030
1031 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1032 ///
1033 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1034 /// attacks. Care must be taken when processing.
1035 #[derive(Clone, Debug, PartialEq, Eq)]
1036 pub struct NodeAlias(pub [u8; 32]);
1037
1038 impl fmt::Display for NodeAlias {
1039         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1040                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1041                 let bytes = self.0.split_at(first_null).0;
1042                 match core::str::from_utf8(bytes) {
1043                         Ok(alias) => PrintableString(alias).fmt(f)?,
1044                         Err(_) => {
1045                                 use core::fmt::Write;
1046                                 for c in bytes.iter().map(|b| *b as char) {
1047                                         // Display printable ASCII characters
1048                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1049                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1050                                         f.write_char(c)?;
1051                                 }
1052                         },
1053                 };
1054                 Ok(())
1055         }
1056 }
1057
1058 impl Writeable for NodeAlias {
1059         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1060                 self.0.write(w)
1061         }
1062 }
1063
1064 impl Readable for NodeAlias {
1065         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1066                 Ok(NodeAlias(Readable::read(r)?))
1067         }
1068 }
1069
1070 #[derive(Clone, Debug, PartialEq, Eq)]
1071 /// Details about a node in the network, known from the network announcement.
1072 pub struct NodeInfo {
1073         /// All valid channels a node has announced
1074         pub channels: Vec<u64>,
1075         /// More information about a node from node_announcement.
1076         /// Optional because we store a Node entry after learning about it from
1077         /// a channel announcement, but before receiving a node announcement.
1078         pub announcement_info: Option<NodeAnnouncementInfo>
1079 }
1080
1081 impl fmt::Display for NodeInfo {
1082         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1083                 write!(f, " channels: {:?}, announcement_info: {:?}",
1084                         &self.channels[..], self.announcement_info)?;
1085                 Ok(())
1086         }
1087 }
1088
1089 impl Writeable for NodeInfo {
1090         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1091                 write_tlv_fields!(writer, {
1092                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1093                         (2, self.announcement_info, option),
1094                         (4, self.channels, vec_type),
1095                 });
1096                 Ok(())
1097         }
1098 }
1099
1100 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1101 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1102 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1103 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1104 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1105
1106 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1107         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1108                 match crate::util::ser::Readable::read(reader) {
1109                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1110                         Err(_) => {
1111                                 copy(reader, &mut sink()).unwrap();
1112                                 return Ok(None)
1113                         },
1114                 };
1115         }
1116 }
1117
1118 impl Readable for NodeInfo {
1119         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1120                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1121                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1122                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1123                 // requires additional complexity and lookups during routing, it ends up being a
1124                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1125                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1126                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1127                 _init_tlv_field_var!(channels, vec_type);
1128
1129                 read_tlv_fields!(reader, {
1130                         (0, _lowest_inbound_channel_fees, option),
1131                         (2, announcement_info_wrap, ignorable),
1132                         (4, channels, vec_type),
1133                 });
1134
1135                 Ok(NodeInfo {
1136                         announcement_info: announcement_info_wrap.map(|w| w.0),
1137                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1138                 })
1139         }
1140 }
1141
1142 const SERIALIZATION_VERSION: u8 = 1;
1143 const MIN_SERIALIZATION_VERSION: u8 = 1;
1144
1145 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1146         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1147                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1148
1149                 self.genesis_hash.write(writer)?;
1150                 let channels = self.channels.read().unwrap();
1151                 (channels.len() as u64).write(writer)?;
1152                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1153                         (*chan_id).write(writer)?;
1154                         chan_info.write(writer)?;
1155                 }
1156                 let nodes = self.nodes.read().unwrap();
1157                 (nodes.len() as u64).write(writer)?;
1158                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1159                         node_id.write(writer)?;
1160                         node_info.write(writer)?;
1161                 }
1162
1163                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1164                 write_tlv_fields!(writer, {
1165                         (1, last_rapid_gossip_sync_timestamp, option),
1166                 });
1167                 Ok(())
1168         }
1169 }
1170
1171 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1172         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1173                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1174
1175                 let genesis_hash: BlockHash = Readable::read(reader)?;
1176                 let channels_count: u64 = Readable::read(reader)?;
1177                 let mut channels = IndexedMap::new();
1178                 for _ in 0..channels_count {
1179                         let chan_id: u64 = Readable::read(reader)?;
1180                         let chan_info = Readable::read(reader)?;
1181                         channels.insert(chan_id, chan_info);
1182                 }
1183                 let nodes_count: u64 = Readable::read(reader)?;
1184                 let mut nodes = IndexedMap::new();
1185                 for _ in 0..nodes_count {
1186                         let node_id = Readable::read(reader)?;
1187                         let node_info = Readable::read(reader)?;
1188                         nodes.insert(node_id, node_info);
1189                 }
1190
1191                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1192                 read_tlv_fields!(reader, {
1193                         (1, last_rapid_gossip_sync_timestamp, option),
1194                 });
1195
1196                 Ok(NetworkGraph {
1197                         secp_ctx: Secp256k1::verification_only(),
1198                         genesis_hash,
1199                         logger,
1200                         channels: RwLock::new(channels),
1201                         nodes: RwLock::new(nodes),
1202                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1203                         removed_nodes: Mutex::new(HashMap::new()),
1204                         removed_channels: Mutex::new(HashMap::new()),
1205                         pending_checks: utxo::PendingChecks::new(),
1206                 })
1207         }
1208 }
1209
1210 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1211         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1212                 writeln!(f, "Network map\n[Channels]")?;
1213                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1214                         writeln!(f, " {}: {}", key, val)?;
1215                 }
1216                 writeln!(f, "[Nodes]")?;
1217                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1218                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1219                 }
1220                 Ok(())
1221         }
1222 }
1223
1224 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1225 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1226         fn eq(&self, other: &Self) -> bool {
1227                 self.genesis_hash == other.genesis_hash &&
1228                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1229                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1230         }
1231 }
1232
1233 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1234         /// Creates a new, empty, network graph.
1235         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1236                 Self {
1237                         secp_ctx: Secp256k1::verification_only(),
1238                         genesis_hash,
1239                         logger,
1240                         channels: RwLock::new(IndexedMap::new()),
1241                         nodes: RwLock::new(IndexedMap::new()),
1242                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1243                         removed_channels: Mutex::new(HashMap::new()),
1244                         removed_nodes: Mutex::new(HashMap::new()),
1245                         pending_checks: utxo::PendingChecks::new(),
1246                 }
1247         }
1248
1249         /// Returns a read-only view of the network graph.
1250         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1251                 let channels = self.channels.read().unwrap();
1252                 let nodes = self.nodes.read().unwrap();
1253                 ReadOnlyNetworkGraph {
1254                         channels,
1255                         nodes,
1256                 }
1257         }
1258
1259         /// The unix timestamp provided by the most recent rapid gossip sync.
1260         /// It will be set by the rapid sync process after every sync completion.
1261         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1262                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1263         }
1264
1265         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1266         /// This should be done automatically by the rapid sync process after every sync completion.
1267         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1268                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1269         }
1270
1271         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1272         /// purposes.
1273         #[cfg(test)]
1274         pub fn clear_nodes_announcement_info(&self) {
1275                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1276                         node.1.announcement_info = None;
1277                 }
1278         }
1279
1280         /// For an already known node (from channel announcements), update its stored properties from a
1281         /// given node announcement.
1282         ///
1283         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1284         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1285         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1286         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1287                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1288                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1289                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1290         }
1291
1292         /// For an already known node (from channel announcements), update its stored properties from a
1293         /// given node announcement without verifying the associated signatures. Because we aren't
1294         /// given the associated signatures here we cannot relay the node announcement to any of our
1295         /// peers.
1296         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1297                 self.update_node_from_announcement_intern(msg, None)
1298         }
1299
1300         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1301                 let mut nodes = self.nodes.write().unwrap();
1302                 match nodes.get_mut(&msg.node_id) {
1303                         None => {
1304                                 core::mem::drop(nodes);
1305                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1306                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1307                         },
1308                         Some(node) => {
1309                                 if let Some(node_info) = node.announcement_info.as_ref() {
1310                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1311                                         // updates to ensure you always have the latest one, only vaguely suggesting
1312                                         // that it be at least the current time.
1313                                         if node_info.last_update  > msg.timestamp {
1314                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1315                                         } else if node_info.last_update  == msg.timestamp {
1316                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1317                                         }
1318                                 }
1319
1320                                 let should_relay =
1321                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1322                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1323                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1324                                 node.announcement_info = Some(NodeAnnouncementInfo {
1325                                         features: msg.features.clone(),
1326                                         last_update: msg.timestamp,
1327                                         rgb: msg.rgb,
1328                                         alias: NodeAlias(msg.alias),
1329                                         addresses: msg.addresses.clone(),
1330                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1331                                 });
1332
1333                                 Ok(())
1334                         }
1335                 }
1336         }
1337
1338         /// Store or update channel info from a channel announcement.
1339         ///
1340         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1341         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1342         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1343         ///
1344         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1345         /// the corresponding UTXO exists on chain and is correctly-formatted.
1346         pub fn update_channel_from_announcement<U: Deref>(
1347                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1348         ) -> Result<(), LightningError>
1349         where
1350                 U::Target: UtxoLookup,
1351         {
1352                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1353                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1354                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1355                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1356                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1357                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1358         }
1359
1360         /// Store or update channel info from a channel announcement without verifying the associated
1361         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1362         /// channel announcement to any of our peers.
1363         ///
1364         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1365         /// the corresponding UTXO exists on chain and is correctly-formatted.
1366         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1367                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1368         ) -> Result<(), LightningError>
1369         where
1370                 U::Target: UtxoLookup,
1371         {
1372                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1373         }
1374
1375         /// Update channel from partial announcement data received via rapid gossip sync
1376         ///
1377         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1378         /// rapid gossip sync server)
1379         ///
1380         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1381         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1382                 if node_id_1 == node_id_2 {
1383                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1384                 };
1385
1386                 let node_1 = NodeId::from_pubkey(&node_id_1);
1387                 let node_2 = NodeId::from_pubkey(&node_id_2);
1388                 let channel_info = ChannelInfo {
1389                         features,
1390                         node_one: node_1.clone(),
1391                         one_to_two: None,
1392                         node_two: node_2.clone(),
1393                         two_to_one: None,
1394                         capacity_sats: None,
1395                         announcement_message: None,
1396                         announcement_received_time: timestamp,
1397                 };
1398
1399                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1400         }
1401
1402         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1403                 let mut channels = self.channels.write().unwrap();
1404                 let mut nodes = self.nodes.write().unwrap();
1405
1406                 let node_id_a = channel_info.node_one.clone();
1407                 let node_id_b = channel_info.node_two.clone();
1408
1409                 match channels.entry(short_channel_id) {
1410                         IndexedMapEntry::Occupied(mut entry) => {
1411                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1412                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1413                                 //exactly how...
1414                                 if utxo_value.is_some() {
1415                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1416                                         // only sometimes returns results. In any case remove the previous entry. Note
1417                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1418                                         // do that because
1419                                         // a) we don't *require* a UTXO provider that always returns results.
1420                                         // b) we don't track UTXOs of channels we know about and remove them if they
1421                                         //    get reorg'd out.
1422                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1423                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1424                                         *entry.get_mut() = channel_info;
1425                                 } else {
1426                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1427                                 }
1428                         },
1429                         IndexedMapEntry::Vacant(entry) => {
1430                                 entry.insert(channel_info);
1431                         }
1432                 };
1433
1434                 for current_node_id in [node_id_a, node_id_b].iter() {
1435                         match nodes.entry(current_node_id.clone()) {
1436                                 IndexedMapEntry::Occupied(node_entry) => {
1437                                         node_entry.into_mut().channels.push(short_channel_id);
1438                                 },
1439                                 IndexedMapEntry::Vacant(node_entry) => {
1440                                         node_entry.insert(NodeInfo {
1441                                                 channels: vec!(short_channel_id),
1442                                                 announcement_info: None,
1443                                         });
1444                                 }
1445                         };
1446                 };
1447
1448                 Ok(())
1449         }
1450
1451         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1452                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1453         ) -> Result<(), LightningError>
1454         where
1455                 U::Target: UtxoLookup,
1456         {
1457                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1458                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1459                 }
1460
1461                 {
1462                         let channels = self.channels.read().unwrap();
1463
1464                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1465                                 if chan.capacity_sats.is_some() {
1466                                         // If we'd previously looked up the channel on-chain and checked the script
1467                                         // against what appears on-chain, ignore the duplicate announcement.
1468                                         //
1469                                         // Because a reorg could replace one channel with another at the same SCID, if
1470                                         // the channel appears to be different, we re-validate. This doesn't expose us
1471                                         // to any more DoS risk than not, as a peer can always flood us with
1472                                         // randomly-generated SCID values anyway.
1473                                         //
1474                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1475                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1476                                         // if the peers on the channel changed anyway.
1477                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1478                                                 return Err(LightningError {
1479                                                         err: "Already have chain-validated channel".to_owned(),
1480                                                         action: ErrorAction::IgnoreDuplicateGossip
1481                                                 });
1482                                         }
1483                                 } else if utxo_lookup.is_none() {
1484                                         // Similarly, if we can't check the chain right now anyway, ignore the
1485                                         // duplicate announcement without bothering to take the channels write lock.
1486                                         return Err(LightningError {
1487                                                 err: "Already have non-chain-validated channel".to_owned(),
1488                                                 action: ErrorAction::IgnoreDuplicateGossip
1489                                         });
1490                                 }
1491                         }
1492                 }
1493
1494                 {
1495                         let removed_channels = self.removed_channels.lock().unwrap();
1496                         let removed_nodes = self.removed_nodes.lock().unwrap();
1497                         if removed_channels.contains_key(&msg.short_channel_id) ||
1498                                 removed_nodes.contains_key(&msg.node_id_1) ||
1499                                 removed_nodes.contains_key(&msg.node_id_2) {
1500                                 return Err(LightningError{
1501                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1502                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1503                         }
1504                 }
1505
1506                 let utxo_value = self.pending_checks.check_channel_announcement(
1507                         utxo_lookup, msg, full_msg)?;
1508
1509                 #[allow(unused_mut, unused_assignments)]
1510                 let mut announcement_received_time = 0;
1511                 #[cfg(feature = "std")]
1512                 {
1513                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1514                 }
1515
1516                 let chan_info = ChannelInfo {
1517                         features: msg.features.clone(),
1518                         node_one: msg.node_id_1,
1519                         one_to_two: None,
1520                         node_two: msg.node_id_2,
1521                         two_to_one: None,
1522                         capacity_sats: utxo_value,
1523                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1524                                 { full_msg.cloned() } else { None },
1525                         announcement_received_time,
1526                 };
1527
1528                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1529         }
1530
1531         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1532         /// If permanent, removes a channel from the local storage.
1533         /// May cause the removal of nodes too, if this was their last channel.
1534         /// If not permanent, makes channels unavailable for routing.
1535         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1536                 #[cfg(feature = "std")]
1537                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1538                 #[cfg(not(feature = "std"))]
1539                 let current_time_unix = None;
1540
1541                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1542         }
1543
1544         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1545         /// If permanent, removes a channel from the local storage.
1546         /// May cause the removal of nodes too, if this was their last channel.
1547         /// If not permanent, makes channels unavailable for routing.
1548         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1549                 let mut channels = self.channels.write().unwrap();
1550                 if is_permanent {
1551                         if let Some(chan) = channels.remove(&short_channel_id) {
1552                                 let mut nodes = self.nodes.write().unwrap();
1553                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1554                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1555                         }
1556                 } else {
1557                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1558                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1559                                         one_to_two.enabled = false;
1560                                 }
1561                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1562                                         two_to_one.enabled = false;
1563                                 }
1564                         }
1565                 }
1566         }
1567
1568         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1569         /// from local storage.
1570         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1571                 #[cfg(feature = "std")]
1572                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1573                 #[cfg(not(feature = "std"))]
1574                 let current_time_unix = None;
1575
1576                 let node_id = NodeId::from_pubkey(node_id);
1577                 let mut channels = self.channels.write().unwrap();
1578                 let mut nodes = self.nodes.write().unwrap();
1579                 let mut removed_channels = self.removed_channels.lock().unwrap();
1580                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1581
1582                 if let Some(node) = nodes.remove(&node_id) {
1583                         for scid in node.channels.iter() {
1584                                 if let Some(chan_info) = channels.remove(scid) {
1585                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1586                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1587                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1588                                                         *scid != *chan_id
1589                                                 });
1590                                                 if other_node_entry.get().channels.is_empty() {
1591                                                         other_node_entry.remove_entry();
1592                                                 }
1593                                         }
1594                                         removed_channels.insert(*scid, current_time_unix);
1595                                 }
1596                         }
1597                         removed_nodes.insert(node_id, current_time_unix);
1598                 }
1599         }
1600
1601         #[cfg(feature = "std")]
1602         /// Removes information about channels that we haven't heard any updates about in some time.
1603         /// This can be used regularly to prune the network graph of channels that likely no longer
1604         /// exist.
1605         ///
1606         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1607         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1608         /// pruning occur for updates which are at least two weeks old, which we implement here.
1609         ///
1610         /// Note that for users of the `lightning-background-processor` crate this method may be
1611         /// automatically called regularly for you.
1612         ///
1613         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1614         /// in the map for a while so that these can be resynced from gossip in the future.
1615         ///
1616         /// This method is only available with the `std` feature. See
1617         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1618         pub fn remove_stale_channels_and_tracking(&self) {
1619                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1620                 self.remove_stale_channels_and_tracking_with_time(time);
1621         }
1622
1623         /// Removes information about channels that we haven't heard any updates about in some time.
1624         /// This can be used regularly to prune the network graph of channels that likely no longer
1625         /// exist.
1626         ///
1627         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1628         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1629         /// pruning occur for updates which are at least two weeks old, which we implement here.
1630         ///
1631         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1632         /// in the map for a while so that these can be resynced from gossip in the future.
1633         ///
1634         /// This function takes the current unix time as an argument. For users with the `std` feature
1635         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1636         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1637                 let mut channels = self.channels.write().unwrap();
1638                 // Time out if we haven't received an update in at least 14 days.
1639                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1640                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1641                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1642                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1643                 // time.
1644                 let mut scids_to_remove = Vec::new();
1645                 for (scid, info) in channels.unordered_iter_mut() {
1646                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1647                                 info.one_to_two = None;
1648                         }
1649                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1650                                 info.two_to_one = None;
1651                         }
1652                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1653                                 // We check the announcement_received_time here to ensure we don't drop
1654                                 // announcements that we just received and are just waiting for our peer to send a
1655                                 // channel_update for.
1656                                 if info.announcement_received_time < min_time_unix as u64 {
1657                                         scids_to_remove.push(*scid);
1658                                 }
1659                         }
1660                 }
1661                 if !scids_to_remove.is_empty() {
1662                         let mut nodes = self.nodes.write().unwrap();
1663                         for scid in scids_to_remove {
1664                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1665                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1666                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1667                         }
1668                 }
1669
1670                 let should_keep_tracking = |time: &mut Option<u64>| {
1671                         if let Some(time) = time {
1672                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1673                         } else {
1674                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1675                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1676                                 // of this function.
1677                                 #[cfg(feature = "no-std")]
1678                                 {
1679                                         let mut tracked_time = Some(current_time_unix);
1680                                         core::mem::swap(time, &mut tracked_time);
1681                                         return true;
1682                                 }
1683                                 #[allow(unreachable_code)]
1684                                 false
1685                         }};
1686
1687                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1688                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1689         }
1690
1691         /// For an already known (from announcement) channel, update info about one of the directions
1692         /// of the channel.
1693         ///
1694         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1695         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1696         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1697         ///
1698         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1699         /// materially in the future will be rejected.
1700         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1701                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1702         }
1703
1704         /// For an already known (from announcement) channel, update info about one of the directions
1705         /// of the channel without verifying the associated signatures. Because we aren't given the
1706         /// associated signatures here we cannot relay the channel update to any of our peers.
1707         ///
1708         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1709         /// materially in the future will be rejected.
1710         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1711                 self.update_channel_intern(msg, None, None)
1712         }
1713
1714         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1715                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1716
1717                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1718                 {
1719                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1720                         // disable this check during tests!
1721                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1722                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1723                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1724                         }
1725                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1726                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1727                         }
1728                 }
1729
1730                 let mut channels = self.channels.write().unwrap();
1731                 match channels.get_mut(&msg.short_channel_id) {
1732                         None => {
1733                                 core::mem::drop(channels);
1734                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1735                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1736                         },
1737                         Some(channel) => {
1738                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1739                                         return Err(LightningError{err:
1740                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1741                                                 action: ErrorAction::IgnoreError});
1742                                 }
1743
1744                                 if let Some(capacity_sats) = channel.capacity_sats {
1745                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1746                                         // Don't query UTXO set here to reduce DoS risks.
1747                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1748                                                 return Err(LightningError{err:
1749                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1750                                                         action: ErrorAction::IgnoreError});
1751                                         }
1752                                 }
1753                                 macro_rules! check_update_latest {
1754                                         ($target: expr) => {
1755                                                 if let Some(existing_chan_info) = $target.as_ref() {
1756                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1757                                                         // order updates to ensure you always have the latest one, only
1758                                                         // suggesting  that it be at least the current time. For
1759                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1760                                                         // pruning based on the timestamp field being more than two weeks old,
1761                                                         // but only in the non-normative section.
1762                                                         if existing_chan_info.last_update > msg.timestamp {
1763                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1764                                                         } else if existing_chan_info.last_update == msg.timestamp {
1765                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1766                                                         }
1767                                                 }
1768                                         }
1769                                 }
1770
1771                                 macro_rules! get_new_channel_info {
1772                                         () => { {
1773                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1774                                                         { full_msg.cloned() } else { None };
1775
1776                                                 let updated_channel_update_info = ChannelUpdateInfo {
1777                                                         enabled: chan_enabled,
1778                                                         last_update: msg.timestamp,
1779                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1780                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1781                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1782                                                         fees: RoutingFees {
1783                                                                 base_msat: msg.fee_base_msat,
1784                                                                 proportional_millionths: msg.fee_proportional_millionths,
1785                                                         },
1786                                                         last_update_message
1787                                                 };
1788                                                 Some(updated_channel_update_info)
1789                                         } }
1790                                 }
1791
1792                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1793                                 if msg.flags & 1 == 1 {
1794                                         check_update_latest!(channel.two_to_one);
1795                                         if let Some(sig) = sig {
1796                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1797                                                         err: "Couldn't parse source node pubkey".to_owned(),
1798                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1799                                                 })?, "channel_update");
1800                                         }
1801                                         channel.two_to_one = get_new_channel_info!();
1802                                 } else {
1803                                         check_update_latest!(channel.one_to_two);
1804                                         if let Some(sig) = sig {
1805                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1806                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1807                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1808                                                 })?, "channel_update");
1809                                         }
1810                                         channel.one_to_two = get_new_channel_info!();
1811                                 }
1812                         }
1813                 }
1814
1815                 Ok(())
1816         }
1817
1818         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1819                 macro_rules! remove_from_node {
1820                         ($node_id: expr) => {
1821                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1822                                         entry.get_mut().channels.retain(|chan_id| {
1823                                                 short_channel_id != *chan_id
1824                                         });
1825                                         if entry.get().channels.is_empty() {
1826                                                 entry.remove_entry();
1827                                         }
1828                                 } else {
1829                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1830                                 }
1831                         }
1832                 }
1833
1834                 remove_from_node!(chan.node_one);
1835                 remove_from_node!(chan.node_two);
1836         }
1837 }
1838
1839 impl ReadOnlyNetworkGraph<'_> {
1840         /// Returns all known valid channels' short ids along with announced channel info.
1841         ///
1842         /// (C-not exported) because we don't want to return lifetime'd references
1843         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1844                 &*self.channels
1845         }
1846
1847         /// Returns information on a channel with the given id.
1848         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1849                 self.channels.get(&short_channel_id)
1850         }
1851
1852         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1853         /// Returns the list of channels in the graph
1854         pub fn list_channels(&self) -> Vec<u64> {
1855                 self.channels.unordered_keys().map(|c| *c).collect()
1856         }
1857
1858         /// Returns all known nodes' public keys along with announced node info.
1859         ///
1860         /// (C-not exported) because we don't want to return lifetime'd references
1861         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1862                 &*self.nodes
1863         }
1864
1865         /// Returns information on a node with the given id.
1866         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1867                 self.nodes.get(node_id)
1868         }
1869
1870         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1871         /// Returns the list of nodes in the graph
1872         pub fn list_nodes(&self) -> Vec<NodeId> {
1873                 self.nodes.unordered_keys().map(|n| *n).collect()
1874         }
1875
1876         /// Get network addresses by node id.
1877         /// Returns None if the requested node is completely unknown,
1878         /// or if node announcement for the node was never received.
1879         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1880                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1881                         if let Some(node_info) = node.announcement_info.as_ref() {
1882                                 return Some(node_info.addresses.clone())
1883                         }
1884                 }
1885                 None
1886         }
1887 }
1888
1889 #[cfg(test)]
1890 mod tests {
1891         use crate::ln::channelmanager;
1892         use crate::ln::chan_utils::make_funding_redeemscript;
1893         #[cfg(feature = "std")]
1894         use crate::ln::features::InitFeatures;
1895         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1896         use crate::routing::utxo::UtxoLookupError;
1897         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1898                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1899                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1900         use crate::util::config::UserConfig;
1901         use crate::util::test_utils;
1902         use crate::util::ser::{ReadableArgs, Writeable};
1903         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1904         use crate::util::scid_utils::scid_from_parts;
1905
1906         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1907         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1908
1909         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1910         use bitcoin::hashes::Hash;
1911         use bitcoin::network::constants::Network;
1912         use bitcoin::blockdata::constants::genesis_block;
1913         use bitcoin::blockdata::script::Script;
1914         use bitcoin::blockdata::transaction::TxOut;
1915
1916         use hex;
1917
1918         use bitcoin::secp256k1::{PublicKey, SecretKey};
1919         use bitcoin::secp256k1::{All, Secp256k1};
1920
1921         use crate::io;
1922         use bitcoin::secp256k1;
1923         use crate::prelude::*;
1924         use crate::sync::Arc;
1925
1926         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1927                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1928                 let logger = Arc::new(test_utils::TestLogger::new());
1929                 NetworkGraph::new(genesis_hash, logger)
1930         }
1931
1932         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1933                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1934                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1935         ) {
1936                 let secp_ctx = Secp256k1::new();
1937                 let logger = Arc::new(test_utils::TestLogger::new());
1938                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1939                 (secp_ctx, gossip_sync)
1940         }
1941
1942         #[test]
1943         #[cfg(feature = "std")]
1944         fn request_full_sync_finite_times() {
1945                 let network_graph = create_network_graph();
1946                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1947                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1948
1949                 assert!(gossip_sync.should_request_full_sync(&node_id));
1950                 assert!(gossip_sync.should_request_full_sync(&node_id));
1951                 assert!(gossip_sync.should_request_full_sync(&node_id));
1952                 assert!(gossip_sync.should_request_full_sync(&node_id));
1953                 assert!(gossip_sync.should_request_full_sync(&node_id));
1954                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1955         }
1956
1957         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1958                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
1959                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1960                         features: channelmanager::provided_node_features(&UserConfig::default()),
1961                         timestamp: 100,
1962                         node_id,
1963                         rgb: [0; 3],
1964                         alias: [0; 32],
1965                         addresses: Vec::new(),
1966                         excess_address_data: Vec::new(),
1967                         excess_data: Vec::new(),
1968                 };
1969                 f(&mut unsigned_announcement);
1970                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1971                 NodeAnnouncement {
1972                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1973                         contents: unsigned_announcement
1974                 }
1975         }
1976
1977         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1978                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1979                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1980                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1981                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1982
1983                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1984                         features: channelmanager::provided_channel_features(&UserConfig::default()),
1985                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1986                         short_channel_id: 0,
1987                         node_id_1: NodeId::from_pubkey(&node_id_1),
1988                         node_id_2: NodeId::from_pubkey(&node_id_2),
1989                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
1990                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
1991                         excess_data: Vec::new(),
1992                 };
1993                 f(&mut unsigned_announcement);
1994                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1995                 ChannelAnnouncement {
1996                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1997                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1998                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1999                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2000                         contents: unsigned_announcement,
2001                 }
2002         }
2003
2004         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2005                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2006                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2007                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2008                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2009         }
2010
2011         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2012                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2013                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2014                         short_channel_id: 0,
2015                         timestamp: 100,
2016                         flags: 0,
2017                         cltv_expiry_delta: 144,
2018                         htlc_minimum_msat: 1_000_000,
2019                         htlc_maximum_msat: 1_000_000,
2020                         fee_base_msat: 10_000,
2021                         fee_proportional_millionths: 20,
2022                         excess_data: Vec::new()
2023                 };
2024                 f(&mut unsigned_channel_update);
2025                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2026                 ChannelUpdate {
2027                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2028                         contents: unsigned_channel_update
2029                 }
2030         }
2031
2032         #[test]
2033         fn handling_node_announcements() {
2034                 let network_graph = create_network_graph();
2035                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2036
2037                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2038                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2039                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2040
2041                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2042                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2043                         Ok(_) => panic!(),
2044                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2045                 };
2046
2047                 {
2048                         // Announce a channel to add a corresponding node.
2049                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2050                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2051                                 Ok(res) => assert!(res),
2052                                 _ => panic!()
2053                         };
2054                 }
2055
2056                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2057                         Ok(res) => assert!(res),
2058                         Err(_) => panic!()
2059                 };
2060
2061                 let fake_msghash = hash_to_message!(&zero_hash);
2062                 match gossip_sync.handle_node_announcement(
2063                         &NodeAnnouncement {
2064                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2065                                 contents: valid_announcement.contents.clone()
2066                 }) {
2067                         Ok(_) => panic!(),
2068                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2069                 };
2070
2071                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2072                         unsigned_announcement.timestamp += 1000;
2073                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2074                 }, node_1_privkey, &secp_ctx);
2075                 // Return false because contains excess data.
2076                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2077                         Ok(res) => assert!(!res),
2078                         Err(_) => panic!()
2079                 };
2080
2081                 // Even though previous announcement was not relayed further, we still accepted it,
2082                 // so we now won't accept announcements before the previous one.
2083                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2084                         unsigned_announcement.timestamp += 1000 - 10;
2085                 }, node_1_privkey, &secp_ctx);
2086                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2087                         Ok(_) => panic!(),
2088                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2089                 };
2090         }
2091
2092         #[test]
2093         fn handling_channel_announcements() {
2094                 let secp_ctx = Secp256k1::new();
2095                 let logger = test_utils::TestLogger::new();
2096
2097                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2098                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2099
2100                 let good_script = get_channel_script(&secp_ctx);
2101                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2102
2103                 // Test if the UTXO lookups were not supported
2104                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2105                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2106                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2107                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2108                         Ok(res) => assert!(res),
2109                         _ => panic!()
2110                 };
2111
2112                 {
2113                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2114                                 None => panic!(),
2115                                 Some(_) => ()
2116                         };
2117                 }
2118
2119                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2120                 // drop new one on the floor, since we can't see any changes.
2121                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2122                         Ok(_) => panic!(),
2123                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2124                 };
2125
2126                 // Test if an associated transaction were not on-chain (or not confirmed).
2127                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2128                 *chain_source.utxo_ret.lock().unwrap() = Err(UtxoLookupError::UnknownTx);
2129                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2130                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2131
2132                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2133                         unsigned_announcement.short_channel_id += 1;
2134                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2135                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2136                         Ok(_) => panic!(),
2137                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2138                 };
2139
2140                 // Now test if the transaction is found in the UTXO set and the script is correct.
2141                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2142                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2143                         unsigned_announcement.short_channel_id += 2;
2144                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2145                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2146                         Ok(res) => assert!(res),
2147                         _ => panic!()
2148                 };
2149
2150                 {
2151                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2152                                 None => panic!(),
2153                                 Some(_) => ()
2154                         };
2155                 }
2156
2157                 // If we receive announcement for the same channel, once we've validated it against the
2158                 // chain, we simply ignore all new (duplicate) announcements.
2159                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2160                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2161                         Ok(_) => panic!(),
2162                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2163                 };
2164
2165                 #[cfg(feature = "std")]
2166                 {
2167                         use std::time::{SystemTime, UNIX_EPOCH};
2168
2169                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2170                         // Mark a node as permanently failed so it's tracked as removed.
2171                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2172
2173                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2174                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2175                                 unsigned_announcement.short_channel_id += 3;
2176                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2177                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2178                                 Ok(_) => panic!(),
2179                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2180                         }
2181
2182                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2183
2184                         // The above channel announcement should be handled as per normal now.
2185                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2186                                 Ok(res) => assert!(res),
2187                                 _ => panic!()
2188                         }
2189                 }
2190
2191                 // Don't relay valid channels with excess data
2192                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2193                         unsigned_announcement.short_channel_id += 4;
2194                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2195                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2196                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2197                         Ok(res) => assert!(!res),
2198                         _ => panic!()
2199                 };
2200
2201                 let mut invalid_sig_announcement = valid_announcement.clone();
2202                 invalid_sig_announcement.contents.excess_data = Vec::new();
2203                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2204                         Ok(_) => panic!(),
2205                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2206                 };
2207
2208                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2209                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2210                         Ok(_) => panic!(),
2211                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2212                 };
2213         }
2214
2215         #[test]
2216         fn handling_channel_update() {
2217                 let secp_ctx = Secp256k1::new();
2218                 let logger = test_utils::TestLogger::new();
2219                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2220                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2221                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2222                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2223
2224                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2225                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2226
2227                 let amount_sats = 1000_000;
2228                 let short_channel_id;
2229
2230                 {
2231                         // Announce a channel we will update
2232                         let good_script = get_channel_script(&secp_ctx);
2233                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2234
2235                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2236                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2237                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2238                                 Ok(_) => (),
2239                                 Err(_) => panic!()
2240                         };
2241
2242                 }
2243
2244                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2245                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2246                         Ok(res) => assert!(res),
2247                         _ => panic!(),
2248                 };
2249
2250                 {
2251                         match network_graph.read_only().channels().get(&short_channel_id) {
2252                                 None => panic!(),
2253                                 Some(channel_info) => {
2254                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2255                                         assert!(channel_info.two_to_one.is_none());
2256                                 }
2257                         };
2258                 }
2259
2260                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2261                         unsigned_channel_update.timestamp += 100;
2262                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2263                 }, node_1_privkey, &secp_ctx);
2264                 // Return false because contains excess data
2265                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2266                         Ok(res) => assert!(!res),
2267                         _ => panic!()
2268                 };
2269
2270                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2271                         unsigned_channel_update.timestamp += 110;
2272                         unsigned_channel_update.short_channel_id += 1;
2273                 }, node_1_privkey, &secp_ctx);
2274                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2275                         Ok(_) => panic!(),
2276                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2277                 };
2278
2279                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2280                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2281                         unsigned_channel_update.timestamp += 110;
2282                 }, node_1_privkey, &secp_ctx);
2283                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2284                         Ok(_) => panic!(),
2285                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2286                 };
2287
2288                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2289                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2290                         unsigned_channel_update.timestamp += 110;
2291                 }, node_1_privkey, &secp_ctx);
2292                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2293                         Ok(_) => panic!(),
2294                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2295                 };
2296
2297                 // Even though previous update was not relayed further, we still accepted it,
2298                 // so we now won't accept update before the previous one.
2299                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2300                         unsigned_channel_update.timestamp += 100;
2301                 }, node_1_privkey, &secp_ctx);
2302                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2303                         Ok(_) => panic!(),
2304                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2305                 };
2306
2307                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2308                         unsigned_channel_update.timestamp += 500;
2309                 }, node_1_privkey, &secp_ctx);
2310                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2311                 let fake_msghash = hash_to_message!(&zero_hash);
2312                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2313                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2314                         Ok(_) => panic!(),
2315                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2316                 };
2317         }
2318
2319         #[test]
2320         fn handling_network_update() {
2321                 let logger = test_utils::TestLogger::new();
2322                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2323                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2324                 let secp_ctx = Secp256k1::new();
2325
2326                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2327                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2328                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2329
2330                 {
2331                         // There is no nodes in the table at the beginning.
2332                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2333                 }
2334
2335                 let short_channel_id;
2336                 {
2337                         // Announce a channel we will update
2338                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2339                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2340                         let chain_source: Option<&test_utils::TestChainSource> = None;
2341                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2342                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2343
2344                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2345                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2346
2347                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2348                                 msg: valid_channel_update,
2349                         });
2350
2351                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2352                 }
2353
2354                 // Non-permanent closing just disables a channel
2355                 {
2356                         match network_graph.read_only().channels().get(&short_channel_id) {
2357                                 None => panic!(),
2358                                 Some(channel_info) => {
2359                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2360                                 }
2361                         };
2362
2363                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2364                                 short_channel_id,
2365                                 is_permanent: false,
2366                         });
2367
2368                         match network_graph.read_only().channels().get(&short_channel_id) {
2369                                 None => panic!(),
2370                                 Some(channel_info) => {
2371                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2372                                 }
2373                         };
2374                 }
2375
2376                 // Permanent closing deletes a channel
2377                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2378                         short_channel_id,
2379                         is_permanent: true,
2380                 });
2381
2382                 assert_eq!(network_graph.read_only().channels().len(), 0);
2383                 // Nodes are also deleted because there are no associated channels anymore
2384                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2385
2386                 {
2387                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2388                         let network_graph = NetworkGraph::new(genesis_hash, &logger);
2389
2390                         // Announce a channel to test permanent node failure
2391                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2392                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2393                         let chain_source: Option<&test_utils::TestChainSource> = None;
2394                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2395                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2396
2397                         // Non-permanent node failure does not delete any nodes or channels
2398                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2399                                 node_id: node_2_id,
2400                                 is_permanent: false,
2401                         });
2402
2403                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2404                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2405
2406                         // Permanent node failure deletes node and its channels
2407                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2408                                 node_id: node_2_id,
2409                                 is_permanent: true,
2410                         });
2411
2412                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2413                         // Channels are also deleted because the associated node has been deleted
2414                         assert_eq!(network_graph.read_only().channels().len(), 0);
2415                 }
2416         }
2417
2418         #[test]
2419         fn test_channel_timeouts() {
2420                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2421                 let logger = test_utils::TestLogger::new();
2422                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2423                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2424                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2425                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2426                 let secp_ctx = Secp256k1::new();
2427
2428                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2429                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2430
2431                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2432                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2433                 let chain_source: Option<&test_utils::TestChainSource> = None;
2434                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2435                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2436
2437                 // Submit two channel updates for each channel direction (update.flags bit).
2438                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2439                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2440                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2441
2442                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2443                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2444                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2445
2446                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2447                 assert_eq!(network_graph.read_only().channels().len(), 1);
2448                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2449
2450                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2451                 #[cfg(not(feature = "std"))] {
2452                         // Make sure removed channels are tracked.
2453                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2454                 }
2455                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2456                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2457
2458                 #[cfg(feature = "std")]
2459                 {
2460                         // In std mode, a further check is performed before fully removing the channel -
2461                         // the channel_announcement must have been received at least two weeks ago. We
2462                         // fudge that here by indicating the time has jumped two weeks.
2463                         assert_eq!(network_graph.read_only().channels().len(), 1);
2464                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2465
2466                         // Note that the directional channel information will have been removed already..
2467                         // We want to check that this will work even if *one* of the channel updates is recent,
2468                         // so we should add it with a recent timestamp.
2469                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2470                         use std::time::{SystemTime, UNIX_EPOCH};
2471                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2472                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2473                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2474                         }, node_1_privkey, &secp_ctx);
2475                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2476                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2477                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2478                         // Make sure removed channels are tracked.
2479                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2480                         // Provide a later time so that sufficient time has passed
2481                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2482                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2483                 }
2484
2485                 assert_eq!(network_graph.read_only().channels().len(), 0);
2486                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2487                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2488
2489                 #[cfg(feature = "std")]
2490                 {
2491                         use std::time::{SystemTime, UNIX_EPOCH};
2492
2493                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2494
2495                         // Clear tracked nodes and channels for clean slate
2496                         network_graph.removed_channels.lock().unwrap().clear();
2497                         network_graph.removed_nodes.lock().unwrap().clear();
2498
2499                         // Add a channel and nodes from channel announcement. So our network graph will
2500                         // now only consist of two nodes and one channel between them.
2501                         assert!(network_graph.update_channel_from_announcement(
2502                                 &valid_channel_announcement, &chain_source).is_ok());
2503
2504                         // Mark the channel as permanently failed. This will also remove the two nodes
2505                         // and all of the entries will be tracked as removed.
2506                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2507
2508                         // Should not remove from tracking if insufficient time has passed
2509                         network_graph.remove_stale_channels_and_tracking_with_time(
2510                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2511                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2512
2513                         // Provide a later time so that sufficient time has passed
2514                         network_graph.remove_stale_channels_and_tracking_with_time(
2515                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2516                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2517                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2518                 }
2519
2520                 #[cfg(not(feature = "std"))]
2521                 {
2522                         // When we don't have access to the system clock, the time we started tracking removal will only
2523                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2524                         // only if sufficient time has passed after that first call, will the next call remove it from
2525                         // tracking.
2526                         let removal_time = 1664619654;
2527
2528                         // Clear removed nodes and channels for clean slate
2529                         network_graph.removed_channels.lock().unwrap().clear();
2530                         network_graph.removed_nodes.lock().unwrap().clear();
2531
2532                         // Add a channel and nodes from channel announcement. So our network graph will
2533                         // now only consist of two nodes and one channel between them.
2534                         assert!(network_graph.update_channel_from_announcement(
2535                                 &valid_channel_announcement, &chain_source).is_ok());
2536
2537                         // Mark the channel as permanently failed. This will also remove the two nodes
2538                         // and all of the entries will be tracked as removed.
2539                         network_graph.channel_failed(short_channel_id, true);
2540
2541                         // The first time we call the following, the channel will have a removal time assigned.
2542                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2543                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2544
2545                         // Provide a later time so that sufficient time has passed
2546                         network_graph.remove_stale_channels_and_tracking_with_time(
2547                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2548                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2549                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2550                 }
2551         }
2552
2553         #[test]
2554         fn getting_next_channel_announcements() {
2555                 let network_graph = create_network_graph();
2556                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2557                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2558                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2559
2560                 // Channels were not announced yet.
2561                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2562                 assert!(channels_with_announcements.is_none());
2563
2564                 let short_channel_id;
2565                 {
2566                         // Announce a channel we will update
2567                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2568                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2569                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2570                                 Ok(_) => (),
2571                                 Err(_) => panic!()
2572                         };
2573                 }
2574
2575                 // Contains initial channel announcement now.
2576                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2577                 if let Some(channel_announcements) = channels_with_announcements {
2578                         let (_, ref update_1, ref update_2) = channel_announcements;
2579                         assert_eq!(update_1, &None);
2580                         assert_eq!(update_2, &None);
2581                 } else {
2582                         panic!();
2583                 }
2584
2585                 {
2586                         // Valid channel update
2587                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2588                                 unsigned_channel_update.timestamp = 101;
2589                         }, node_1_privkey, &secp_ctx);
2590                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2591                                 Ok(_) => (),
2592                                 Err(_) => panic!()
2593                         };
2594                 }
2595
2596                 // Now contains an initial announcement and an update.
2597                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2598                 if let Some(channel_announcements) = channels_with_announcements {
2599                         let (_, ref update_1, ref update_2) = channel_announcements;
2600                         assert_ne!(update_1, &None);
2601                         assert_eq!(update_2, &None);
2602                 } else {
2603                         panic!();
2604                 }
2605
2606                 {
2607                         // Channel update with excess data.
2608                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2609                                 unsigned_channel_update.timestamp = 102;
2610                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2611                         }, node_1_privkey, &secp_ctx);
2612                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2613                                 Ok(_) => (),
2614                                 Err(_) => panic!()
2615                         };
2616                 }
2617
2618                 // Test that announcements with excess data won't be returned
2619                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2620                 if let Some(channel_announcements) = channels_with_announcements {
2621                         let (_, ref update_1, ref update_2) = channel_announcements;
2622                         assert_eq!(update_1, &None);
2623                         assert_eq!(update_2, &None);
2624                 } else {
2625                         panic!();
2626                 }
2627
2628                 // Further starting point have no channels after it
2629                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2630                 assert!(channels_with_announcements.is_none());
2631         }
2632
2633         #[test]
2634         fn getting_next_node_announcements() {
2635                 let network_graph = create_network_graph();
2636                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2637                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2638                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2639                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2640
2641                 // No nodes yet.
2642                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2643                 assert!(next_announcements.is_none());
2644
2645                 {
2646                         // Announce a channel to add 2 nodes
2647                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2648                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2649                                 Ok(_) => (),
2650                                 Err(_) => panic!()
2651                         };
2652                 }
2653
2654                 // Nodes were never announced
2655                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2656                 assert!(next_announcements.is_none());
2657
2658                 {
2659                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2660                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2661                                 Ok(_) => (),
2662                                 Err(_) => panic!()
2663                         };
2664
2665                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2666                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2667                                 Ok(_) => (),
2668                                 Err(_) => panic!()
2669                         };
2670                 }
2671
2672                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2673                 assert!(next_announcements.is_some());
2674
2675                 // Skip the first node.
2676                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2677                 assert!(next_announcements.is_some());
2678
2679                 {
2680                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2681                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2682                                 unsigned_announcement.timestamp += 10;
2683                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2684                         }, node_2_privkey, &secp_ctx);
2685                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2686                                 Ok(res) => assert!(!res),
2687                                 Err(_) => panic!()
2688                         };
2689                 }
2690
2691                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2692                 assert!(next_announcements.is_none());
2693         }
2694
2695         #[test]
2696         fn network_graph_serialization() {
2697                 let network_graph = create_network_graph();
2698                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2699
2700                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2701                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2702
2703                 // Announce a channel to add a corresponding node.
2704                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2705                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2706                         Ok(res) => assert!(res),
2707                         _ => panic!()
2708                 };
2709
2710                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2711                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2712                         Ok(_) => (),
2713                         Err(_) => panic!()
2714                 };
2715
2716                 let mut w = test_utils::TestVecWriter(Vec::new());
2717                 assert!(!network_graph.read_only().nodes().is_empty());
2718                 assert!(!network_graph.read_only().channels().is_empty());
2719                 network_graph.write(&mut w).unwrap();
2720
2721                 let logger = Arc::new(test_utils::TestLogger::new());
2722                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2723         }
2724
2725         #[test]
2726         fn network_graph_tlv_serialization() {
2727                 let network_graph = create_network_graph();
2728                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2729
2730                 let mut w = test_utils::TestVecWriter(Vec::new());
2731                 network_graph.write(&mut w).unwrap();
2732
2733                 let logger = Arc::new(test_utils::TestLogger::new());
2734                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2735                 assert!(reassembled_network_graph == network_graph);
2736                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2737         }
2738
2739         #[test]
2740         #[cfg(feature = "std")]
2741         fn calling_sync_routing_table() {
2742                 use std::time::{SystemTime, UNIX_EPOCH};
2743                 use crate::ln::msgs::Init;
2744
2745                 let network_graph = create_network_graph();
2746                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2747                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2748                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2749
2750                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2751
2752                 // It should ignore if gossip_queries feature is not enabled
2753                 {
2754                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2755                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2756                         let events = gossip_sync.get_and_clear_pending_msg_events();
2757                         assert_eq!(events.len(), 0);
2758                 }
2759
2760                 // It should send a gossip_timestamp_filter with the correct information
2761                 {
2762                         let mut features = InitFeatures::empty();
2763                         features.set_gossip_queries_optional();
2764                         let init_msg = Init { features, remote_network_address: None };
2765                         gossip_sync.peer_connected(&node_id_1, &init_msg).unwrap();
2766                         let events = gossip_sync.get_and_clear_pending_msg_events();
2767                         assert_eq!(events.len(), 1);
2768                         match &events[0] {
2769                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2770                                         assert_eq!(node_id, &node_id_1);
2771                                         assert_eq!(msg.chain_hash, chain_hash);
2772                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2773                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2774                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2775                                         assert_eq!(msg.timestamp_range, u32::max_value());
2776                                 },
2777                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2778                         };
2779                 }
2780         }
2781
2782         #[test]
2783         fn handling_query_channel_range() {
2784                 let network_graph = create_network_graph();
2785                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2786
2787                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2788                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2789                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2790                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2791
2792                 let mut scids: Vec<u64> = vec![
2793                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2794                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2795                 ];
2796
2797                 // used for testing multipart reply across blocks
2798                 for block in 100000..=108001 {
2799                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2800                 }
2801
2802                 // used for testing resumption on same block
2803                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2804
2805                 for scid in scids {
2806                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2807                                 unsigned_announcement.short_channel_id = scid;
2808                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2809                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2810                                 Ok(_) => (),
2811                                 _ => panic!()
2812                         };
2813                 }
2814
2815                 // Error when number_of_blocks=0
2816                 do_handling_query_channel_range(
2817                         &gossip_sync,
2818                         &node_id_2,
2819                         QueryChannelRange {
2820                                 chain_hash: chain_hash.clone(),
2821                                 first_blocknum: 0,
2822                                 number_of_blocks: 0,
2823                         },
2824                         false,
2825                         vec![ReplyChannelRange {
2826                                 chain_hash: chain_hash.clone(),
2827                                 first_blocknum: 0,
2828                                 number_of_blocks: 0,
2829                                 sync_complete: true,
2830                                 short_channel_ids: vec![]
2831                         }]
2832                 );
2833
2834                 // Error when wrong chain
2835                 do_handling_query_channel_range(
2836                         &gossip_sync,
2837                         &node_id_2,
2838                         QueryChannelRange {
2839                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2840                                 first_blocknum: 0,
2841                                 number_of_blocks: 0xffff_ffff,
2842                         },
2843                         false,
2844                         vec![ReplyChannelRange {
2845                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2846                                 first_blocknum: 0,
2847                                 number_of_blocks: 0xffff_ffff,
2848                                 sync_complete: true,
2849                                 short_channel_ids: vec![],
2850                         }]
2851                 );
2852
2853                 // Error when first_blocknum > 0xffffff
2854                 do_handling_query_channel_range(
2855                         &gossip_sync,
2856                         &node_id_2,
2857                         QueryChannelRange {
2858                                 chain_hash: chain_hash.clone(),
2859                                 first_blocknum: 0x01000000,
2860                                 number_of_blocks: 0xffff_ffff,
2861                         },
2862                         false,
2863                         vec![ReplyChannelRange {
2864                                 chain_hash: chain_hash.clone(),
2865                                 first_blocknum: 0x01000000,
2866                                 number_of_blocks: 0xffff_ffff,
2867                                 sync_complete: true,
2868                                 short_channel_ids: vec![]
2869                         }]
2870                 );
2871
2872                 // Empty reply when max valid SCID block num
2873                 do_handling_query_channel_range(
2874                         &gossip_sync,
2875                         &node_id_2,
2876                         QueryChannelRange {
2877                                 chain_hash: chain_hash.clone(),
2878                                 first_blocknum: 0xffffff,
2879                                 number_of_blocks: 1,
2880                         },
2881                         true,
2882                         vec![
2883                                 ReplyChannelRange {
2884                                         chain_hash: chain_hash.clone(),
2885                                         first_blocknum: 0xffffff,
2886                                         number_of_blocks: 1,
2887                                         sync_complete: true,
2888                                         short_channel_ids: vec![]
2889                                 },
2890                         ]
2891                 );
2892
2893                 // No results in valid query range
2894                 do_handling_query_channel_range(
2895                         &gossip_sync,
2896                         &node_id_2,
2897                         QueryChannelRange {
2898                                 chain_hash: chain_hash.clone(),
2899                                 first_blocknum: 1000,
2900                                 number_of_blocks: 1000,
2901                         },
2902                         true,
2903                         vec![
2904                                 ReplyChannelRange {
2905                                         chain_hash: chain_hash.clone(),
2906                                         first_blocknum: 1000,
2907                                         number_of_blocks: 1000,
2908                                         sync_complete: true,
2909                                         short_channel_ids: vec![],
2910                                 }
2911                         ]
2912                 );
2913
2914                 // Overflow first_blocknum + number_of_blocks
2915                 do_handling_query_channel_range(
2916                         &gossip_sync,
2917                         &node_id_2,
2918                         QueryChannelRange {
2919                                 chain_hash: chain_hash.clone(),
2920                                 first_blocknum: 0xfe0000,
2921                                 number_of_blocks: 0xffffffff,
2922                         },
2923                         true,
2924                         vec![
2925                                 ReplyChannelRange {
2926                                         chain_hash: chain_hash.clone(),
2927                                         first_blocknum: 0xfe0000,
2928                                         number_of_blocks: 0xffffffff - 0xfe0000,
2929                                         sync_complete: true,
2930                                         short_channel_ids: vec![
2931                                                 0xfffffe_ffffff_ffff, // max
2932                                         ]
2933                                 }
2934                         ]
2935                 );
2936
2937                 // Single block exactly full
2938                 do_handling_query_channel_range(
2939                         &gossip_sync,
2940                         &node_id_2,
2941                         QueryChannelRange {
2942                                 chain_hash: chain_hash.clone(),
2943                                 first_blocknum: 100000,
2944                                 number_of_blocks: 8000,
2945                         },
2946                         true,
2947                         vec![
2948                                 ReplyChannelRange {
2949                                         chain_hash: chain_hash.clone(),
2950                                         first_blocknum: 100000,
2951                                         number_of_blocks: 8000,
2952                                         sync_complete: true,
2953                                         short_channel_ids: (100000..=107999)
2954                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2955                                                 .collect(),
2956                                 },
2957                         ]
2958                 );
2959
2960                 // Multiple split on new block
2961                 do_handling_query_channel_range(
2962                         &gossip_sync,
2963                         &node_id_2,
2964                         QueryChannelRange {
2965                                 chain_hash: chain_hash.clone(),
2966                                 first_blocknum: 100000,
2967                                 number_of_blocks: 8001,
2968                         },
2969                         true,
2970                         vec![
2971                                 ReplyChannelRange {
2972                                         chain_hash: chain_hash.clone(),
2973                                         first_blocknum: 100000,
2974                                         number_of_blocks: 7999,
2975                                         sync_complete: false,
2976                                         short_channel_ids: (100000..=107999)
2977                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2978                                                 .collect(),
2979                                 },
2980                                 ReplyChannelRange {
2981                                         chain_hash: chain_hash.clone(),
2982                                         first_blocknum: 107999,
2983                                         number_of_blocks: 2,
2984                                         sync_complete: true,
2985                                         short_channel_ids: vec![
2986                                                 scid_from_parts(108000, 0, 0).unwrap(),
2987                                         ],
2988                                 }
2989                         ]
2990                 );
2991
2992                 // Multiple split on same block
2993                 do_handling_query_channel_range(
2994                         &gossip_sync,
2995                         &node_id_2,
2996                         QueryChannelRange {
2997                                 chain_hash: chain_hash.clone(),
2998                                 first_blocknum: 100002,
2999                                 number_of_blocks: 8000,
3000                         },
3001                         true,
3002                         vec![
3003                                 ReplyChannelRange {
3004                                         chain_hash: chain_hash.clone(),
3005                                         first_blocknum: 100002,
3006                                         number_of_blocks: 7999,
3007                                         sync_complete: false,
3008                                         short_channel_ids: (100002..=108001)
3009                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3010                                                 .collect(),
3011                                 },
3012                                 ReplyChannelRange {
3013                                         chain_hash: chain_hash.clone(),
3014                                         first_blocknum: 108001,
3015                                         number_of_blocks: 1,
3016                                         sync_complete: true,
3017                                         short_channel_ids: vec![
3018                                                 scid_from_parts(108001, 1, 0).unwrap(),
3019                                         ],
3020                                 }
3021                         ]
3022                 );
3023         }
3024
3025         fn do_handling_query_channel_range(
3026                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3027                 test_node_id: &PublicKey,
3028                 msg: QueryChannelRange,
3029                 expected_ok: bool,
3030                 expected_replies: Vec<ReplyChannelRange>
3031         ) {
3032                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3033                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3034                 let query_end_blocknum = msg.end_blocknum();
3035                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3036
3037                 if expected_ok {
3038                         assert!(result.is_ok());
3039                 } else {
3040                         assert!(result.is_err());
3041                 }
3042
3043                 let events = gossip_sync.get_and_clear_pending_msg_events();
3044                 assert_eq!(events.len(), expected_replies.len());
3045
3046                 for i in 0..events.len() {
3047                         let expected_reply = &expected_replies[i];
3048                         match &events[i] {
3049                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3050                                         assert_eq!(node_id, test_node_id);
3051                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3052                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3053                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3054                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3055                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3056
3057                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3058                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3059                                         assert!(msg.first_blocknum >= max_firstblocknum);
3060                                         max_firstblocknum = msg.first_blocknum;
3061                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3062
3063                                         // Check that the last block count is >= the query's end_blocknum
3064                                         if i == events.len() - 1 {
3065                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3066                                         }
3067                                 },
3068                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3069                         }
3070                 }
3071         }
3072
3073         #[test]
3074         fn handling_query_short_channel_ids() {
3075                 let network_graph = create_network_graph();
3076                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3077                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3078                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3079
3080                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3081
3082                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3083                         chain_hash,
3084                         short_channel_ids: vec![0x0003e8_000000_0000],
3085                 });
3086                 assert!(result.is_err());
3087         }
3088
3089         #[test]
3090         fn displays_node_alias() {
3091                 let format_str_alias = |alias: &str| {
3092                         let mut bytes = [0u8; 32];
3093                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3094                         format!("{}", NodeAlias(bytes))
3095                 };
3096
3097                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3098                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3099                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3100
3101                 let format_bytes_alias = |alias: &[u8]| {
3102                         let mut bytes = [0u8; 32];
3103                         bytes[..alias.len()].copy_from_slice(alias);
3104                         format!("{}", NodeAlias(bytes))
3105                 };
3106
3107                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3108                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3109                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3110         }
3111
3112         #[test]
3113         fn channel_info_is_readable() {
3114                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3115                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3116                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3117                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3118                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3119
3120                 // 1. Test encoding/decoding of ChannelUpdateInfo
3121                 let chan_update_info = ChannelUpdateInfo {
3122                         last_update: 23,
3123                         enabled: true,
3124                         cltv_expiry_delta: 42,
3125                         htlc_minimum_msat: 1234,
3126                         htlc_maximum_msat: 5678,
3127                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3128                         last_update_message: None,
3129                 };
3130
3131                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3132                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3133
3134                 // First make sure we can read ChannelUpdateInfos we just wrote
3135                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3136                 assert_eq!(chan_update_info, read_chan_update_info);
3137
3138                 // Check the serialization hasn't changed.
3139                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3140                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3141
3142                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3143                 // or the ChannelUpdate enclosed with `last_update_message`.
3144                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3145                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3146                 assert!(read_chan_update_info_res.is_err());
3147
3148                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3149                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3150                 assert!(read_chan_update_info_res.is_err());
3151
3152                 // 2. Test encoding/decoding of ChannelInfo
3153                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3154                 let chan_info_none_updates = ChannelInfo {
3155                         features: channelmanager::provided_channel_features(&config),
3156                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3157                         one_to_two: None,
3158                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3159                         two_to_one: None,
3160                         capacity_sats: None,
3161                         announcement_message: None,
3162                         announcement_received_time: 87654,
3163                 };
3164
3165                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3166                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3167
3168                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3169                 assert_eq!(chan_info_none_updates, read_chan_info);
3170
3171                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3172                 let chan_info_some_updates = ChannelInfo {
3173                         features: channelmanager::provided_channel_features(&config),
3174                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3175                         one_to_two: Some(chan_update_info.clone()),
3176                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3177                         two_to_one: Some(chan_update_info.clone()),
3178                         capacity_sats: None,
3179                         announcement_message: None,
3180                         announcement_received_time: 87654,
3181                 };
3182
3183                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3184                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3185
3186                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3187                 assert_eq!(chan_info_some_updates, read_chan_info);
3188
3189                 // Check the serialization hasn't changed.
3190                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3191                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3192
3193                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3194                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3195                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3196                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3197                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3198                 assert_eq!(read_chan_info.one_to_two, None);
3199                 assert_eq!(read_chan_info.two_to_one, None);
3200
3201                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3202                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3203                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3204                 assert_eq!(read_chan_info.one_to_two, None);
3205                 assert_eq!(read_chan_info.two_to_one, None);
3206         }
3207
3208         #[test]
3209         fn node_info_is_readable() {
3210                 use std::convert::TryFrom;
3211
3212                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3213                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3214                 let valid_node_ann_info = NodeAnnouncementInfo {
3215                         features: channelmanager::provided_node_features(&UserConfig::default()),
3216                         last_update: 0,
3217                         rgb: [0u8; 3],
3218                         alias: NodeAlias([0u8; 32]),
3219                         addresses: vec![valid_netaddr],
3220                         announcement_message: None,
3221                 };
3222
3223                 let mut encoded_valid_node_ann_info = Vec::new();
3224                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3225                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3226                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3227
3228                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3229                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3230                 assert!(read_invalid_node_ann_info_res.is_err());
3231
3232                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3233                 let valid_node_info = NodeInfo {
3234                         channels: Vec::new(),
3235                         announcement_info: Some(valid_node_ann_info),
3236                 };
3237
3238                 let mut encoded_valid_node_info = Vec::new();
3239                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3240                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3241                 assert_eq!(read_valid_node_info, valid_node_info);
3242
3243                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3244                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3245                 assert_eq!(read_invalid_node_info.announcement_info, None);
3246         }
3247 }
3248
3249 #[cfg(all(test, feature = "_bench_unstable"))]
3250 mod benches {
3251         use super::*;
3252
3253         use test::Bencher;
3254         use std::io::Read;
3255
3256         #[bench]
3257         fn read_network_graph(bench: &mut Bencher) {
3258                 let logger = crate::util::test_utils::TestLogger::new();
3259                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3260                 let mut v = Vec::new();
3261                 d.read_to_end(&mut v).unwrap();
3262                 bench.iter(|| {
3263                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3264                 });
3265         }
3266
3267         #[bench]
3268         fn write_network_graph(bench: &mut Bencher) {
3269                 let logger = crate::util::test_utils::TestLogger::new();
3270                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3271                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3272                 bench.iter(|| {
3273                         let _ = net_graph.encode();
3274                 });
3275         }
3276 }