1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
21 use bitcoin::network::constants::Network;
22 use bitcoin::blockdata::constants::genesis_block;
24 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
25 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
26 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
27 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::routing::utxo::{self, UtxoLookup};
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
54 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
55 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
57 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
58 /// refuse to relay the message.
59 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
61 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
62 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
63 const MAX_SCIDS_PER_REPLY: usize = 8000;
65 /// Represents the compressed public key of a node
66 #[derive(Clone, Copy)]
67 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
70 /// Create a new NodeId from a public key
71 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
72 NodeId(pubkey.serialize())
75 /// Get the public key slice from this NodeId
76 pub fn as_slice(&self) -> &[u8] {
81 impl fmt::Debug for NodeId {
82 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83 write!(f, "NodeId({})", log_bytes!(self.0))
86 impl fmt::Display for NodeId {
87 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
88 write!(f, "{}", log_bytes!(self.0))
92 impl core::hash::Hash for NodeId {
93 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
100 impl PartialEq for NodeId {
101 fn eq(&self, other: &Self) -> bool {
102 self.0[..] == other.0[..]
106 impl cmp::PartialOrd for NodeId {
107 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
108 Some(self.cmp(other))
112 impl Ord for NodeId {
113 fn cmp(&self, other: &Self) -> cmp::Ordering {
114 self.0[..].cmp(&other.0[..])
118 impl Writeable for NodeId {
119 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
120 writer.write_all(&self.0)?;
125 impl Readable for NodeId {
126 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
127 let mut buf = [0; PUBLIC_KEY_SIZE];
128 reader.read_exact(&mut buf)?;
133 /// Represents the network as nodes and channels between them
134 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
135 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
136 last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
137 genesis_hash: BlockHash,
139 // Lock order: channels -> nodes
140 channels: RwLock<IndexedMap<u64, ChannelInfo>>,
141 nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
142 // Lock order: removed_channels -> removed_nodes
144 // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
145 // of `std::time::Instant`s for a few reasons:
146 // * We want it to be possible to do tracking in no-std environments where we can compare
147 // a provided current UNIX timestamp with the time at which we started tracking.
148 // * In the future, if we decide to persist these maps, they will already be serializable.
149 // * Although we lose out on the platform's monotonic clock, the system clock in a std
150 // environment should be practical over the time period we are considering (on the order of a
153 /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
154 /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
155 /// it was removed so that once some time passes, we can potentially resync it from gossip again.
156 removed_channels: Mutex<HashMap<u64, Option<u64>>>,
157 /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
158 /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
159 /// that once some time passes, we can potentially resync it from gossip again.
160 removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
161 /// Announcement messages which are awaiting an on-chain lookup to be processed.
162 pub(super) pending_checks: utxo::PendingChecks,
165 /// A read-only view of [`NetworkGraph`].
166 pub struct ReadOnlyNetworkGraph<'a> {
167 channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
168 nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
171 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
172 /// return packet by a node along the route. See [BOLT #4] for details.
174 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
175 #[derive(Clone, Debug, PartialEq, Eq)]
176 pub enum NetworkUpdate {
177 /// An error indicating a `channel_update` messages should be applied via
178 /// [`NetworkGraph::update_channel`].
179 ChannelUpdateMessage {
180 /// The update to apply via [`NetworkGraph::update_channel`].
183 /// An error indicating that a channel failed to route a payment, which should be applied via
184 /// [`NetworkGraph::channel_failed`].
186 /// The short channel id of the closed channel.
187 short_channel_id: u64,
188 /// Whether the channel should be permanently removed or temporarily disabled until a new
189 /// `channel_update` message is received.
192 /// An error indicating that a node failed to route a payment, which should be applied via
193 /// [`NetworkGraph::node_failed_permanent`] if permanent.
195 /// The node id of the failed node.
197 /// Whether the node should be permanently removed from consideration or can be restored
198 /// when a new `channel_update` message is received.
203 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
204 (0, ChannelUpdateMessage) => {
207 (2, ChannelFailure) => {
208 (0, short_channel_id, required),
209 (2, is_permanent, required),
211 (4, NodeFailure) => {
212 (0, node_id, required),
213 (2, is_permanent, required),
217 /// Receives and validates network updates from peers,
218 /// stores authentic and relevant data as a network graph.
219 /// This network graph is then used for routing payments.
220 /// Provides interface to help with initial routing sync by
221 /// serving historical announcements.
222 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
223 where U::Target: UtxoLookup, L::Target: Logger
226 utxo_lookup: Option<U>,
227 #[cfg(feature = "std")]
228 full_syncs_requested: AtomicUsize,
229 pending_events: Mutex<Vec<MessageSendEvent>>,
233 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
234 where U::Target: UtxoLookup, L::Target: Logger
236 /// Creates a new tracker of the actual state of the network of channels and nodes,
237 /// assuming an existing Network Graph.
238 /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
239 /// correct, and the announcement is signed with channel owners' keys.
240 pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
243 #[cfg(feature = "std")]
244 full_syncs_requested: AtomicUsize::new(0),
246 pending_events: Mutex::new(vec![]),
251 /// Adds a provider used to check new announcements. Does not affect
252 /// existing announcements unless they are updated.
253 /// Add, update or remove the provider would replace the current one.
254 pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
255 self.utxo_lookup = utxo_lookup;
258 /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
259 /// [`P2PGossipSync::new`].
261 /// (C-not exported) as bindings don't support a reference-to-a-reference yet
262 pub fn network_graph(&self) -> &G {
266 #[cfg(feature = "std")]
267 /// Returns true when a full routing table sync should be performed with a peer.
268 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
269 //TODO: Determine whether to request a full sync based on the network map.
270 const FULL_SYNCS_TO_REQUEST: usize = 5;
271 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
272 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
279 /// Used to broadcast forward gossip messages which were validated async.
281 /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
283 pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
285 MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
286 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
287 if update_msg.as_ref()
288 .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
293 MessageSendEvent::BroadcastChannelUpdate { msg } => {
294 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
296 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
297 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
298 msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
299 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
306 self.pending_events.lock().unwrap().push(ev);
310 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
311 /// Handles any network updates originating from [`Event`]s.
313 /// [`Event`]: crate::util::events::Event
314 pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
315 match *network_update {
316 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
317 let short_channel_id = msg.contents.short_channel_id;
318 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
319 let status = if is_enabled { "enabled" } else { "disabled" };
320 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
321 let _ = self.update_channel(msg);
323 NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
324 let action = if is_permanent { "Removing" } else { "Disabling" };
325 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
326 self.channel_failed(short_channel_id, is_permanent);
328 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
330 log_debug!(self.logger,
331 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
332 self.node_failed_permanent(node_id);
339 macro_rules! secp_verify_sig {
340 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
341 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
344 return Err(LightningError {
345 err: format!("Invalid signature on {} message", $msg_type),
346 action: ErrorAction::SendWarningMessage {
347 msg: msgs::WarningMessage {
349 data: format!("Invalid signature on {} message", $msg_type),
351 log_level: Level::Trace,
359 macro_rules! get_pubkey_from_node_id {
360 ( $node_id: expr, $msg_type: expr ) => {
361 PublicKey::from_slice($node_id.as_slice())
362 .map_err(|_| LightningError {
363 err: format!("Invalid public key on {} message", $msg_type),
364 action: ErrorAction::SendWarningMessage {
365 msg: msgs::WarningMessage {
367 data: format!("Invalid public key on {} message", $msg_type),
369 log_level: Level::Trace
375 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
376 where U::Target: UtxoLookup, L::Target: Logger
378 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
379 self.network_graph.update_node_from_announcement(msg)?;
380 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
381 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
382 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
385 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
386 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
387 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
390 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
391 self.network_graph.update_channel(msg)?;
392 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
395 fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
396 let mut channels = self.network_graph.channels.write().unwrap();
397 for (_, ref chan) in channels.range(starting_point..) {
398 if chan.announcement_message.is_some() {
399 let chan_announcement = chan.announcement_message.clone().unwrap();
400 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
401 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
402 if let Some(one_to_two) = chan.one_to_two.as_ref() {
403 one_to_two_announcement = one_to_two.last_update_message.clone();
405 if let Some(two_to_one) = chan.two_to_one.as_ref() {
406 two_to_one_announcement = two_to_one.last_update_message.clone();
408 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
410 // TODO: We may end up sending un-announced channel_updates if we are sending
411 // initial sync data while receiving announce/updates for this channel.
417 fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
418 let mut nodes = self.network_graph.nodes.write().unwrap();
419 let iter = if let Some(node_id) = starting_point {
420 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
424 for (_, ref node) in iter {
425 if let Some(node_info) = node.announcement_info.as_ref() {
426 if let Some(msg) = node_info.announcement_message.clone() {
434 /// Initiates a stateless sync of routing gossip information with a peer
435 /// using gossip_queries. The default strategy used by this implementation
436 /// is to sync the full block range with several peers.
438 /// We should expect one or more reply_channel_range messages in response
439 /// to our query_channel_range. Each reply will enqueue a query_scid message
440 /// to request gossip messages for each channel. The sync is considered complete
441 /// when the final reply_scids_end message is received, though we are not
442 /// tracking this directly.
443 fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
444 // We will only perform a sync with peers that support gossip_queries.
445 if !init_msg.features.supports_gossip_queries() {
446 // Don't disconnect peers for not supporting gossip queries. We may wish to have
447 // channels with peers even without being able to exchange gossip.
451 // The lightning network's gossip sync system is completely broken in numerous ways.
453 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
454 // to do a full sync from the first few peers we connect to, and then receive gossip
455 // updates from all our peers normally.
457 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
458 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
459 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
462 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
463 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
464 // channel data which you are missing. Except there was no way at all to identify which
465 // `channel_update`s you were missing, so you still had to request everything, just in a
466 // very complicated way with some queries instead of just getting the dump.
468 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
469 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
470 // relying on it useless.
472 // After gossip queries were introduced, support for receiving a full gossip table dump on
473 // connection was removed from several nodes, making it impossible to get a full sync
474 // without using the "gossip queries" messages.
476 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
477 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
478 // message, as the name implies, tells the peer to not forward any gossip messages with a
479 // timestamp older than a given value (not the time the peer received the filter, but the
480 // timestamp in the update message, which is often hours behind when the peer received the
483 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
484 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
485 // tell a peer to send you any updates as it sees them, you have to also ask for the full
486 // routing graph to be synced. If you set a timestamp filter near the current time, peers
487 // will simply not forward any new updates they see to you which were generated some time
488 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
489 // ago), you will always get the full routing graph from all your peers.
491 // Most lightning nodes today opt to simply turn off receiving gossip data which only
492 // propagated some time after it was generated, and, worse, often disable gossiping with
493 // several peers after their first connection. The second behavior can cause gossip to not
494 // propagate fully if there are cuts in the gossiping subgraph.
496 // In an attempt to cut a middle ground between always fetching the full graph from all of
497 // our peers and never receiving gossip from peers at all, we send all of our peers a
498 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
500 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
501 #[allow(unused_mut, unused_assignments)]
502 let mut gossip_start_time = 0;
503 #[cfg(feature = "std")]
505 gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
506 if self.should_request_full_sync(&their_node_id) {
507 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
509 gossip_start_time -= 60 * 60; // an hour ago
513 let mut pending_events = self.pending_events.lock().unwrap();
514 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
515 node_id: their_node_id.clone(),
516 msg: GossipTimestampFilter {
517 chain_hash: self.network_graph.genesis_hash,
518 first_timestamp: gossip_start_time as u32, // 2106 issue!
519 timestamp_range: u32::max_value(),
525 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
526 // We don't make queries, so should never receive replies. If, in the future, the set
527 // reconciliation extensions to gossip queries become broadly supported, we should revert
528 // this code to its state pre-0.0.106.
532 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
533 // We don't make queries, so should never receive replies. If, in the future, the set
534 // reconciliation extensions to gossip queries become broadly supported, we should revert
535 // this code to its state pre-0.0.106.
539 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
540 /// are in the specified block range. Due to message size limits, large range
541 /// queries may result in several reply messages. This implementation enqueues
542 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
543 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
544 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
545 /// memory constrained systems.
546 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
547 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
549 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
551 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
552 // If so, we manually cap the ending block to avoid this overflow.
553 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
555 // Per spec, we must reply to a query. Send an empty message when things are invalid.
556 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
557 let mut pending_events = self.pending_events.lock().unwrap();
558 pending_events.push(MessageSendEvent::SendReplyChannelRange {
559 node_id: their_node_id.clone(),
560 msg: ReplyChannelRange {
561 chain_hash: msg.chain_hash.clone(),
562 first_blocknum: msg.first_blocknum,
563 number_of_blocks: msg.number_of_blocks,
565 short_channel_ids: vec![],
568 return Err(LightningError {
569 err: String::from("query_channel_range could not be processed"),
570 action: ErrorAction::IgnoreError,
574 // Creates channel batches. We are not checking if the channel is routable
575 // (has at least one update). A peer may still want to know the channel
576 // exists even if its not yet routable.
577 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
578 let mut channels = self.network_graph.channels.write().unwrap();
579 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
580 if let Some(chan_announcement) = &chan.announcement_message {
581 // Construct a new batch if last one is full
582 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
583 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
586 let batch = batches.last_mut().unwrap();
587 batch.push(chan_announcement.contents.short_channel_id);
592 let mut pending_events = self.pending_events.lock().unwrap();
593 let batch_count = batches.len();
594 let mut prev_batch_endblock = msg.first_blocknum;
595 for (batch_index, batch) in batches.into_iter().enumerate() {
596 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
597 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
599 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
600 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
601 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
602 // significant diversion from the requirements set by the spec, and, in case of blocks
603 // with no channel opens (e.g. empty blocks), requires that we use the previous value
604 // and *not* derive the first_blocknum from the actual first block of the reply.
605 let first_blocknum = prev_batch_endblock;
607 // Each message carries the number of blocks (from the `first_blocknum`) its contents
608 // fit in. Though there is no requirement that we use exactly the number of blocks its
609 // contents are from, except for the bogus requirements c-lightning enforces, above.
611 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
612 // >= the query's end block. Thus, for the last reply, we calculate the difference
613 // between the query's end block and the start of the reply.
615 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
616 // first_blocknum will be either msg.first_blocknum or a higher block height.
617 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
618 (true, msg.end_blocknum() - first_blocknum)
620 // Prior replies should use the number of blocks that fit into the reply. Overflow
621 // safe since first_blocknum is always <= last SCID's block.
623 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
626 prev_batch_endblock = first_blocknum + number_of_blocks;
628 pending_events.push(MessageSendEvent::SendReplyChannelRange {
629 node_id: their_node_id.clone(),
630 msg: ReplyChannelRange {
631 chain_hash: msg.chain_hash.clone(),
635 short_channel_ids: batch,
643 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
646 err: String::from("Not implemented"),
647 action: ErrorAction::IgnoreError,
651 fn provided_node_features(&self) -> NodeFeatures {
652 let mut features = NodeFeatures::empty();
653 features.set_gossip_queries_optional();
657 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
658 let mut features = InitFeatures::empty();
659 features.set_gossip_queries_optional();
663 fn processing_queue_high(&self) -> bool {
664 self.network_graph.pending_checks.too_many_checks_pending()
668 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
670 U::Target: UtxoLookup,
673 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
674 let mut ret = Vec::new();
675 let mut pending_events = self.pending_events.lock().unwrap();
676 core::mem::swap(&mut ret, &mut pending_events);
681 #[derive(Clone, Debug, PartialEq, Eq)]
682 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
683 pub struct ChannelUpdateInfo {
684 /// When the last update to the channel direction was issued.
685 /// Value is opaque, as set in the announcement.
686 pub last_update: u32,
687 /// Whether the channel can be currently used for payments (in this one direction).
689 /// The difference in CLTV values that you must have when routing through this channel.
690 pub cltv_expiry_delta: u16,
691 /// The minimum value, which must be relayed to the next hop via the channel
692 pub htlc_minimum_msat: u64,
693 /// The maximum value which may be relayed to the next hop via the channel.
694 pub htlc_maximum_msat: u64,
695 /// Fees charged when the channel is used for routing
696 pub fees: RoutingFees,
697 /// Most recent update for the channel received from the network
698 /// Mostly redundant with the data we store in fields explicitly.
699 /// Everything else is useful only for sending out for initial routing sync.
700 /// Not stored if contains excess data to prevent DoS.
701 pub last_update_message: Option<ChannelUpdate>,
704 impl fmt::Display for ChannelUpdateInfo {
705 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
706 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
711 impl Writeable for ChannelUpdateInfo {
712 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
713 write_tlv_fields!(writer, {
714 (0, self.last_update, required),
715 (2, self.enabled, required),
716 (4, self.cltv_expiry_delta, required),
717 (6, self.htlc_minimum_msat, required),
718 // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
719 // compatibility with LDK versions prior to v0.0.110.
720 (8, Some(self.htlc_maximum_msat), required),
721 (10, self.fees, required),
722 (12, self.last_update_message, required),
728 impl Readable for ChannelUpdateInfo {
729 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
730 _init_tlv_field_var!(last_update, required);
731 _init_tlv_field_var!(enabled, required);
732 _init_tlv_field_var!(cltv_expiry_delta, required);
733 _init_tlv_field_var!(htlc_minimum_msat, required);
734 _init_tlv_field_var!(htlc_maximum_msat, option);
735 _init_tlv_field_var!(fees, required);
736 _init_tlv_field_var!(last_update_message, required);
738 read_tlv_fields!(reader, {
739 (0, last_update, required),
740 (2, enabled, required),
741 (4, cltv_expiry_delta, required),
742 (6, htlc_minimum_msat, required),
743 (8, htlc_maximum_msat, required),
744 (10, fees, required),
745 (12, last_update_message, required)
748 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
749 Ok(ChannelUpdateInfo {
750 last_update: _init_tlv_based_struct_field!(last_update, required),
751 enabled: _init_tlv_based_struct_field!(enabled, required),
752 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
753 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
755 fees: _init_tlv_based_struct_field!(fees, required),
756 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
759 Err(DecodeError::InvalidValue)
764 #[derive(Clone, Debug, PartialEq, Eq)]
765 /// Details about a channel (both directions).
766 /// Received within a channel announcement.
767 pub struct ChannelInfo {
768 /// Protocol features of a channel communicated during its announcement
769 pub features: ChannelFeatures,
770 /// Source node of the first direction of a channel
771 pub node_one: NodeId,
772 /// Details about the first direction of a channel
773 pub one_to_two: Option<ChannelUpdateInfo>,
774 /// Source node of the second direction of a channel
775 pub node_two: NodeId,
776 /// Details about the second direction of a channel
777 pub two_to_one: Option<ChannelUpdateInfo>,
778 /// The channel capacity as seen on-chain, if chain lookup is available.
779 pub capacity_sats: Option<u64>,
780 /// An initial announcement of the channel
781 /// Mostly redundant with the data we store in fields explicitly.
782 /// Everything else is useful only for sending out for initial routing sync.
783 /// Not stored if contains excess data to prevent DoS.
784 pub announcement_message: Option<ChannelAnnouncement>,
785 /// The timestamp when we received the announcement, if we are running with feature = "std"
786 /// (which we can probably assume we are - no-std environments probably won't have a full
787 /// network graph in memory!).
788 announcement_received_time: u64,
792 /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
793 /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
794 pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
795 let (direction, source) = {
796 if target == &self.node_one {
797 (self.two_to_one.as_ref(), &self.node_two)
798 } else if target == &self.node_two {
799 (self.one_to_two.as_ref(), &self.node_one)
804 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
807 /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
808 /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
809 pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
810 let (direction, target) = {
811 if source == &self.node_one {
812 (self.one_to_two.as_ref(), &self.node_two)
813 } else if source == &self.node_two {
814 (self.two_to_one.as_ref(), &self.node_one)
819 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
822 /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
823 pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
824 let direction = channel_flags & 1u8;
826 self.one_to_two.as_ref()
828 self.two_to_one.as_ref()
833 impl fmt::Display for ChannelInfo {
834 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
835 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
836 log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
841 impl Writeable for ChannelInfo {
842 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
843 write_tlv_fields!(writer, {
844 (0, self.features, required),
845 (1, self.announcement_received_time, (default_value, 0)),
846 (2, self.node_one, required),
847 (4, self.one_to_two, required),
848 (6, self.node_two, required),
849 (8, self.two_to_one, required),
850 (10, self.capacity_sats, required),
851 (12, self.announcement_message, required),
857 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
858 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
859 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
860 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
861 // channel updates via the gossip network.
862 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
864 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
865 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
866 match crate::util::ser::Readable::read(reader) {
867 Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
868 Err(DecodeError::ShortRead) => Ok(None),
869 Err(DecodeError::InvalidValue) => Ok(None),
870 Err(err) => Err(err),
875 impl Readable for ChannelInfo {
876 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
877 _init_tlv_field_var!(features, required);
878 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
879 _init_tlv_field_var!(node_one, required);
880 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
881 _init_tlv_field_var!(node_two, required);
882 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
883 _init_tlv_field_var!(capacity_sats, required);
884 _init_tlv_field_var!(announcement_message, required);
885 read_tlv_fields!(reader, {
886 (0, features, required),
887 (1, announcement_received_time, (default_value, 0)),
888 (2, node_one, required),
889 (4, one_to_two_wrap, upgradable_option),
890 (6, node_two, required),
891 (8, two_to_one_wrap, upgradable_option),
892 (10, capacity_sats, required),
893 (12, announcement_message, required),
897 features: _init_tlv_based_struct_field!(features, required),
898 node_one: _init_tlv_based_struct_field!(node_one, required),
899 one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
900 node_two: _init_tlv_based_struct_field!(node_two, required),
901 two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
902 capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
903 announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
904 announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
909 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
910 /// source node to a target node.
912 pub struct DirectedChannelInfo<'a> {
913 channel: &'a ChannelInfo,
914 direction: &'a ChannelUpdateInfo,
915 htlc_maximum_msat: u64,
916 effective_capacity: EffectiveCapacity,
919 impl<'a> DirectedChannelInfo<'a> {
921 fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
922 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
923 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
925 let effective_capacity = match capacity_msat {
926 Some(capacity_msat) => {
927 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
928 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
930 None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
934 channel, direction, htlc_maximum_msat, effective_capacity
938 /// Returns information for the channel.
940 pub fn channel(&self) -> &'a ChannelInfo { self.channel }
942 /// Returns the maximum HTLC amount allowed over the channel in the direction.
944 pub fn htlc_maximum_msat(&self) -> u64 {
945 self.htlc_maximum_msat
948 /// Returns the [`EffectiveCapacity`] of the channel in the direction.
950 /// This is either the total capacity from the funding transaction, if known, or the
951 /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
953 pub fn effective_capacity(&self) -> EffectiveCapacity {
954 self.effective_capacity
957 /// Returns information for the direction.
959 pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
962 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
963 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
964 f.debug_struct("DirectedChannelInfo")
965 .field("channel", &self.channel)
970 /// The effective capacity of a channel for routing purposes.
972 /// While this may be smaller than the actual channel capacity, amounts greater than
973 /// [`Self::as_msat`] should not be routed through the channel.
974 #[derive(Clone, Copy, Debug, PartialEq)]
975 pub enum EffectiveCapacity {
976 /// The available liquidity in the channel known from being a channel counterparty, and thus a
979 /// Either the inbound or outbound liquidity depending on the direction, denominated in
983 /// The maximum HTLC amount in one direction as advertised on the gossip network.
985 /// The maximum HTLC amount denominated in millisatoshi.
988 /// The total capacity of the channel as determined by the funding transaction.
990 /// The funding amount denominated in millisatoshi.
992 /// The maximum HTLC amount denominated in millisatoshi.
993 htlc_maximum_msat: u64
995 /// A capacity sufficient to route any payment, typically used for private channels provided by
998 /// A capacity that is unknown possibly because either the chain state is unavailable to know
999 /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1003 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1004 /// use when making routing decisions.
1005 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1007 impl EffectiveCapacity {
1008 /// Returns the effective capacity denominated in millisatoshi.
1009 pub fn as_msat(&self) -> u64 {
1011 EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1012 EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1013 EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1014 EffectiveCapacity::Infinite => u64::max_value(),
1015 EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1020 /// Fees for routing via a given channel or a node
1021 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1022 pub struct RoutingFees {
1023 /// Flat routing fee in millisatoshis.
1025 /// Liquidity-based routing fee in millionths of a routed amount.
1026 /// In other words, 10000 is 1%.
1027 pub proportional_millionths: u32,
1030 impl_writeable_tlv_based!(RoutingFees, {
1031 (0, base_msat, required),
1032 (2, proportional_millionths, required)
1035 #[derive(Clone, Debug, PartialEq, Eq)]
1036 /// Information received in the latest node_announcement from this node.
1037 pub struct NodeAnnouncementInfo {
1038 /// Protocol features the node announced support for
1039 pub features: NodeFeatures,
1040 /// When the last known update to the node state was issued.
1041 /// Value is opaque, as set in the announcement.
1042 pub last_update: u32,
1043 /// Color assigned to the node
1045 /// Moniker assigned to the node.
1046 /// May be invalid or malicious (eg control chars),
1047 /// should not be exposed to the user.
1048 pub alias: NodeAlias,
1049 /// An initial announcement of the node
1050 /// Mostly redundant with the data we store in fields explicitly.
1051 /// Everything else is useful only for sending out for initial routing sync.
1052 /// Not stored if contains excess data to prevent DoS.
1053 pub announcement_message: Option<NodeAnnouncement>
1056 impl NodeAnnouncementInfo {
1057 /// Internet-level addresses via which one can connect to the node
1058 pub fn addresses(&self) -> &[NetAddress] {
1059 self.announcement_message.as_ref()
1060 .map(|msg| msg.contents.addresses.as_slice())
1061 .unwrap_or_default()
1065 impl Writeable for NodeAnnouncementInfo {
1066 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1067 let empty_addresses = Vec::<NetAddress>::new();
1068 write_tlv_fields!(writer, {
1069 (0, self.features, required),
1070 (2, self.last_update, required),
1071 (4, self.rgb, required),
1072 (6, self.alias, required),
1073 (8, self.announcement_message, option),
1074 (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1080 impl Readable for NodeAnnouncementInfo {
1081 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1082 _init_and_read_tlv_fields!(reader, {
1083 (0, features, required),
1084 (2, last_update, required),
1086 (6, alias, required),
1087 (8, announcement_message, option),
1088 (10, _addresses, vec_type), // deprecated, not used anymore
1090 let _: Option<Vec<NetAddress>> = _addresses;
1091 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1092 alias: alias.0.unwrap(), announcement_message })
1096 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1098 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1099 /// attacks. Care must be taken when processing.
1100 #[derive(Clone, Debug, PartialEq, Eq)]
1101 pub struct NodeAlias(pub [u8; 32]);
1103 impl fmt::Display for NodeAlias {
1104 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1105 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1106 let bytes = self.0.split_at(first_null).0;
1107 match core::str::from_utf8(bytes) {
1108 Ok(alias) => PrintableString(alias).fmt(f)?,
1110 use core::fmt::Write;
1111 for c in bytes.iter().map(|b| *b as char) {
1112 // Display printable ASCII characters
1113 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1114 let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1123 impl Writeable for NodeAlias {
1124 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1129 impl Readable for NodeAlias {
1130 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1131 Ok(NodeAlias(Readable::read(r)?))
1135 #[derive(Clone, Debug, PartialEq, Eq)]
1136 /// Details about a node in the network, known from the network announcement.
1137 pub struct NodeInfo {
1138 /// All valid channels a node has announced
1139 pub channels: Vec<u64>,
1140 /// More information about a node from node_announcement.
1141 /// Optional because we store a Node entry after learning about it from
1142 /// a channel announcement, but before receiving a node announcement.
1143 pub announcement_info: Option<NodeAnnouncementInfo>
1146 impl fmt::Display for NodeInfo {
1147 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1148 write!(f, " channels: {:?}, announcement_info: {:?}",
1149 &self.channels[..], self.announcement_info)?;
1154 impl Writeable for NodeInfo {
1155 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1156 write_tlv_fields!(writer, {
1157 // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1158 (2, self.announcement_info, option),
1159 (4, self.channels, vec_type),
1165 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1166 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1167 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1168 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1169 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1171 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1172 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1173 match crate::util::ser::Readable::read(reader) {
1174 Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1176 copy(reader, &mut sink()).unwrap();
1183 impl Readable for NodeInfo {
1184 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1185 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1186 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1187 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1188 // requires additional complexity and lookups during routing, it ends up being a
1189 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1190 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1191 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1192 _init_tlv_field_var!(channels, vec_type);
1194 read_tlv_fields!(reader, {
1195 (0, _lowest_inbound_channel_fees, option),
1196 (2, announcement_info_wrap, upgradable_option),
1197 (4, channels, vec_type),
1201 announcement_info: announcement_info_wrap.map(|w| w.0),
1202 channels: _init_tlv_based_struct_field!(channels, vec_type),
1207 const SERIALIZATION_VERSION: u8 = 1;
1208 const MIN_SERIALIZATION_VERSION: u8 = 1;
1210 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1211 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1212 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1214 self.genesis_hash.write(writer)?;
1215 let channels = self.channels.read().unwrap();
1216 (channels.len() as u64).write(writer)?;
1217 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1218 (*chan_id).write(writer)?;
1219 chan_info.write(writer)?;
1221 let nodes = self.nodes.read().unwrap();
1222 (nodes.len() as u64).write(writer)?;
1223 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1224 node_id.write(writer)?;
1225 node_info.write(writer)?;
1228 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1229 write_tlv_fields!(writer, {
1230 (1, last_rapid_gossip_sync_timestamp, option),
1236 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1237 fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1238 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1240 let genesis_hash: BlockHash = Readable::read(reader)?;
1241 let channels_count: u64 = Readable::read(reader)?;
1242 let mut channels = IndexedMap::new();
1243 for _ in 0..channels_count {
1244 let chan_id: u64 = Readable::read(reader)?;
1245 let chan_info = Readable::read(reader)?;
1246 channels.insert(chan_id, chan_info);
1248 let nodes_count: u64 = Readable::read(reader)?;
1249 let mut nodes = IndexedMap::new();
1250 for _ in 0..nodes_count {
1251 let node_id = Readable::read(reader)?;
1252 let node_info = Readable::read(reader)?;
1253 nodes.insert(node_id, node_info);
1256 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1257 read_tlv_fields!(reader, {
1258 (1, last_rapid_gossip_sync_timestamp, option),
1262 secp_ctx: Secp256k1::verification_only(),
1265 channels: RwLock::new(channels),
1266 nodes: RwLock::new(nodes),
1267 last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1268 removed_nodes: Mutex::new(HashMap::new()),
1269 removed_channels: Mutex::new(HashMap::new()),
1270 pending_checks: utxo::PendingChecks::new(),
1275 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1276 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1277 writeln!(f, "Network map\n[Channels]")?;
1278 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1279 writeln!(f, " {}: {}", key, val)?;
1281 writeln!(f, "[Nodes]")?;
1282 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1283 writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1289 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1290 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1291 fn eq(&self, other: &Self) -> bool {
1292 self.genesis_hash == other.genesis_hash &&
1293 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1294 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1298 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1299 /// Creates a new, empty, network graph.
1300 pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1302 secp_ctx: Secp256k1::verification_only(),
1303 genesis_hash: genesis_block(network).header.block_hash(),
1305 channels: RwLock::new(IndexedMap::new()),
1306 nodes: RwLock::new(IndexedMap::new()),
1307 last_rapid_gossip_sync_timestamp: Mutex::new(None),
1308 removed_channels: Mutex::new(HashMap::new()),
1309 removed_nodes: Mutex::new(HashMap::new()),
1310 pending_checks: utxo::PendingChecks::new(),
1314 /// Returns a read-only view of the network graph.
1315 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1316 let channels = self.channels.read().unwrap();
1317 let nodes = self.nodes.read().unwrap();
1318 ReadOnlyNetworkGraph {
1324 /// The unix timestamp provided by the most recent rapid gossip sync.
1325 /// It will be set by the rapid sync process after every sync completion.
1326 pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1327 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1330 /// Update the unix timestamp provided by the most recent rapid gossip sync.
1331 /// This should be done automatically by the rapid sync process after every sync completion.
1332 pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1333 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1336 /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1339 pub fn clear_nodes_announcement_info(&self) {
1340 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1341 node.1.announcement_info = None;
1345 /// For an already known node (from channel announcements), update its stored properties from a
1346 /// given node announcement.
1348 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1349 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1350 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1351 pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1352 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1353 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1354 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1357 /// For an already known node (from channel announcements), update its stored properties from a
1358 /// given node announcement without verifying the associated signatures. Because we aren't
1359 /// given the associated signatures here we cannot relay the node announcement to any of our
1361 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1362 self.update_node_from_announcement_intern(msg, None)
1365 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1366 let mut nodes = self.nodes.write().unwrap();
1367 match nodes.get_mut(&msg.node_id) {
1369 core::mem::drop(nodes);
1370 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1371 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1374 if let Some(node_info) = node.announcement_info.as_ref() {
1375 // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1376 // updates to ensure you always have the latest one, only vaguely suggesting
1377 // that it be at least the current time.
1378 if node_info.last_update > msg.timestamp {
1379 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1380 } else if node_info.last_update == msg.timestamp {
1381 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1386 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1387 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1388 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1389 node.announcement_info = Some(NodeAnnouncementInfo {
1390 features: msg.features.clone(),
1391 last_update: msg.timestamp,
1393 alias: NodeAlias(msg.alias),
1394 announcement_message: if should_relay { full_msg.cloned() } else { None },
1402 /// Store or update channel info from a channel announcement.
1404 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1405 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1406 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1408 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1409 /// the corresponding UTXO exists on chain and is correctly-formatted.
1410 pub fn update_channel_from_announcement<U: Deref>(
1411 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1412 ) -> Result<(), LightningError>
1414 U::Target: UtxoLookup,
1416 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1417 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1418 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1419 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1420 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1421 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1424 /// Store or update channel info from a channel announcement without verifying the associated
1425 /// signatures. Because we aren't given the associated signatures here we cannot relay the
1426 /// channel announcement to any of our peers.
1428 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1429 /// the corresponding UTXO exists on chain and is correctly-formatted.
1430 pub fn update_channel_from_unsigned_announcement<U: Deref>(
1431 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1432 ) -> Result<(), LightningError>
1434 U::Target: UtxoLookup,
1436 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1439 /// Update channel from partial announcement data received via rapid gossip sync
1441 /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1442 /// rapid gossip sync server)
1444 /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1445 pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1446 if node_id_1 == node_id_2 {
1447 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1450 let node_1 = NodeId::from_pubkey(&node_id_1);
1451 let node_2 = NodeId::from_pubkey(&node_id_2);
1452 let channel_info = ChannelInfo {
1454 node_one: node_1.clone(),
1456 node_two: node_2.clone(),
1458 capacity_sats: None,
1459 announcement_message: None,
1460 announcement_received_time: timestamp,
1463 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1466 fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1467 let mut channels = self.channels.write().unwrap();
1468 let mut nodes = self.nodes.write().unwrap();
1470 let node_id_a = channel_info.node_one.clone();
1471 let node_id_b = channel_info.node_two.clone();
1473 match channels.entry(short_channel_id) {
1474 IndexedMapEntry::Occupied(mut entry) => {
1475 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1476 //in the blockchain API, we need to handle it smartly here, though it's unclear
1478 if utxo_value.is_some() {
1479 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1480 // only sometimes returns results. In any case remove the previous entry. Note
1481 // that the spec expects us to "blacklist" the node_ids involved, but we can't
1483 // a) we don't *require* a UTXO provider that always returns results.
1484 // b) we don't track UTXOs of channels we know about and remove them if they
1486 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1487 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1488 *entry.get_mut() = channel_info;
1490 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1493 IndexedMapEntry::Vacant(entry) => {
1494 entry.insert(channel_info);
1498 for current_node_id in [node_id_a, node_id_b].iter() {
1499 match nodes.entry(current_node_id.clone()) {
1500 IndexedMapEntry::Occupied(node_entry) => {
1501 node_entry.into_mut().channels.push(short_channel_id);
1503 IndexedMapEntry::Vacant(node_entry) => {
1504 node_entry.insert(NodeInfo {
1505 channels: vec!(short_channel_id),
1506 announcement_info: None,
1515 fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1516 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1517 ) -> Result<(), LightningError>
1519 U::Target: UtxoLookup,
1521 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1522 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1526 let channels = self.channels.read().unwrap();
1528 if let Some(chan) = channels.get(&msg.short_channel_id) {
1529 if chan.capacity_sats.is_some() {
1530 // If we'd previously looked up the channel on-chain and checked the script
1531 // against what appears on-chain, ignore the duplicate announcement.
1533 // Because a reorg could replace one channel with another at the same SCID, if
1534 // the channel appears to be different, we re-validate. This doesn't expose us
1535 // to any more DoS risk than not, as a peer can always flood us with
1536 // randomly-generated SCID values anyway.
1538 // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1539 // as we didn't (necessarily) store the bitcoin keys, and we only really care
1540 // if the peers on the channel changed anyway.
1541 if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1542 return Err(LightningError {
1543 err: "Already have chain-validated channel".to_owned(),
1544 action: ErrorAction::IgnoreDuplicateGossip
1547 } else if utxo_lookup.is_none() {
1548 // Similarly, if we can't check the chain right now anyway, ignore the
1549 // duplicate announcement without bothering to take the channels write lock.
1550 return Err(LightningError {
1551 err: "Already have non-chain-validated channel".to_owned(),
1552 action: ErrorAction::IgnoreDuplicateGossip
1559 let removed_channels = self.removed_channels.lock().unwrap();
1560 let removed_nodes = self.removed_nodes.lock().unwrap();
1561 if removed_channels.contains_key(&msg.short_channel_id) ||
1562 removed_nodes.contains_key(&msg.node_id_1) ||
1563 removed_nodes.contains_key(&msg.node_id_2) {
1564 return Err(LightningError{
1565 err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1566 action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1570 let utxo_value = self.pending_checks.check_channel_announcement(
1571 utxo_lookup, msg, full_msg)?;
1573 #[allow(unused_mut, unused_assignments)]
1574 let mut announcement_received_time = 0;
1575 #[cfg(feature = "std")]
1577 announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1580 let chan_info = ChannelInfo {
1581 features: msg.features.clone(),
1582 node_one: msg.node_id_1,
1584 node_two: msg.node_id_2,
1586 capacity_sats: utxo_value,
1587 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1588 { full_msg.cloned() } else { None },
1589 announcement_received_time,
1592 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1594 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1598 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1599 /// If permanent, removes a channel from the local storage.
1600 /// May cause the removal of nodes too, if this was their last channel.
1601 /// If not permanent, makes channels unavailable for routing.
1602 pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1603 #[cfg(feature = "std")]
1604 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1605 #[cfg(not(feature = "std"))]
1606 let current_time_unix = None;
1608 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1611 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1612 /// If permanent, removes a channel from the local storage.
1613 /// May cause the removal of nodes too, if this was their last channel.
1614 /// If not permanent, makes channels unavailable for routing.
1615 fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1616 let mut channels = self.channels.write().unwrap();
1618 if let Some(chan) = channels.remove(&short_channel_id) {
1619 let mut nodes = self.nodes.write().unwrap();
1620 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1621 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1624 if let Some(chan) = channels.get_mut(&short_channel_id) {
1625 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1626 one_to_two.enabled = false;
1628 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1629 two_to_one.enabled = false;
1635 /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1636 /// from local storage.
1637 pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1638 #[cfg(feature = "std")]
1639 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1640 #[cfg(not(feature = "std"))]
1641 let current_time_unix = None;
1643 let node_id = NodeId::from_pubkey(node_id);
1644 let mut channels = self.channels.write().unwrap();
1645 let mut nodes = self.nodes.write().unwrap();
1646 let mut removed_channels = self.removed_channels.lock().unwrap();
1647 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1649 if let Some(node) = nodes.remove(&node_id) {
1650 for scid in node.channels.iter() {
1651 if let Some(chan_info) = channels.remove(scid) {
1652 let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1653 if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1654 other_node_entry.get_mut().channels.retain(|chan_id| {
1657 if other_node_entry.get().channels.is_empty() {
1658 other_node_entry.remove_entry();
1661 removed_channels.insert(*scid, current_time_unix);
1664 removed_nodes.insert(node_id, current_time_unix);
1668 #[cfg(feature = "std")]
1669 /// Removes information about channels that we haven't heard any updates about in some time.
1670 /// This can be used regularly to prune the network graph of channels that likely no longer
1673 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1674 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1675 /// pruning occur for updates which are at least two weeks old, which we implement here.
1677 /// Note that for users of the `lightning-background-processor` crate this method may be
1678 /// automatically called regularly for you.
1680 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1681 /// in the map for a while so that these can be resynced from gossip in the future.
1683 /// This method is only available with the `std` feature. See
1684 /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1685 pub fn remove_stale_channels_and_tracking(&self) {
1686 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1687 self.remove_stale_channels_and_tracking_with_time(time);
1690 /// Removes information about channels that we haven't heard any updates about in some time.
1691 /// This can be used regularly to prune the network graph of channels that likely no longer
1694 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1695 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1696 /// pruning occur for updates which are at least two weeks old, which we implement here.
1698 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1699 /// in the map for a while so that these can be resynced from gossip in the future.
1701 /// This function takes the current unix time as an argument. For users with the `std` feature
1702 /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1703 pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1704 let mut channels = self.channels.write().unwrap();
1705 // Time out if we haven't received an update in at least 14 days.
1706 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1707 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1708 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1709 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1711 let mut scids_to_remove = Vec::new();
1712 for (scid, info) in channels.unordered_iter_mut() {
1713 if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1714 info.one_to_two = None;
1716 if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1717 info.two_to_one = None;
1719 if info.one_to_two.is_none() || info.two_to_one.is_none() {
1720 // We check the announcement_received_time here to ensure we don't drop
1721 // announcements that we just received and are just waiting for our peer to send a
1722 // channel_update for.
1723 if info.announcement_received_time < min_time_unix as u64 {
1724 scids_to_remove.push(*scid);
1728 if !scids_to_remove.is_empty() {
1729 let mut nodes = self.nodes.write().unwrap();
1730 for scid in scids_to_remove {
1731 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1732 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1733 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1737 let should_keep_tracking = |time: &mut Option<u64>| {
1738 if let Some(time) = time {
1739 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1741 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1742 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1743 // of this function.
1744 #[cfg(feature = "no-std")]
1746 let mut tracked_time = Some(current_time_unix);
1747 core::mem::swap(time, &mut tracked_time);
1750 #[allow(unreachable_code)]
1754 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1755 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1758 /// For an already known (from announcement) channel, update info about one of the directions
1761 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1762 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1763 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1765 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1766 /// materially in the future will be rejected.
1767 pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1768 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1771 /// For an already known (from announcement) channel, update info about one of the directions
1772 /// of the channel without verifying the associated signatures. Because we aren't given the
1773 /// associated signatures here we cannot relay the channel update to any of our peers.
1775 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1776 /// materially in the future will be rejected.
1777 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1778 self.update_channel_intern(msg, None, None)
1781 fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1782 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1784 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1786 // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1787 // disable this check during tests!
1788 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1789 if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1790 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1792 if msg.timestamp as u64 > time + 60 * 60 * 24 {
1793 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1797 let mut channels = self.channels.write().unwrap();
1798 match channels.get_mut(&msg.short_channel_id) {
1800 core::mem::drop(channels);
1801 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1802 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1805 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1806 return Err(LightningError{err:
1807 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1808 action: ErrorAction::IgnoreError});
1811 if let Some(capacity_sats) = channel.capacity_sats {
1812 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1813 // Don't query UTXO set here to reduce DoS risks.
1814 if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1815 return Err(LightningError{err:
1816 "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1817 action: ErrorAction::IgnoreError});
1820 macro_rules! check_update_latest {
1821 ($target: expr) => {
1822 if let Some(existing_chan_info) = $target.as_ref() {
1823 // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1824 // order updates to ensure you always have the latest one, only
1825 // suggesting that it be at least the current time. For
1826 // channel_updates specifically, the BOLTs discuss the possibility of
1827 // pruning based on the timestamp field being more than two weeks old,
1828 // but only in the non-normative section.
1829 if existing_chan_info.last_update > msg.timestamp {
1830 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1831 } else if existing_chan_info.last_update == msg.timestamp {
1832 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1838 macro_rules! get_new_channel_info {
1840 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1841 { full_msg.cloned() } else { None };
1843 let updated_channel_update_info = ChannelUpdateInfo {
1844 enabled: chan_enabled,
1845 last_update: msg.timestamp,
1846 cltv_expiry_delta: msg.cltv_expiry_delta,
1847 htlc_minimum_msat: msg.htlc_minimum_msat,
1848 htlc_maximum_msat: msg.htlc_maximum_msat,
1850 base_msat: msg.fee_base_msat,
1851 proportional_millionths: msg.fee_proportional_millionths,
1855 Some(updated_channel_update_info)
1859 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1860 if msg.flags & 1 == 1 {
1861 check_update_latest!(channel.two_to_one);
1862 if let Some(sig) = sig {
1863 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1864 err: "Couldn't parse source node pubkey".to_owned(),
1865 action: ErrorAction::IgnoreAndLog(Level::Debug)
1866 })?, "channel_update");
1868 channel.two_to_one = get_new_channel_info!();
1870 check_update_latest!(channel.one_to_two);
1871 if let Some(sig) = sig {
1872 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1873 err: "Couldn't parse destination node pubkey".to_owned(),
1874 action: ErrorAction::IgnoreAndLog(Level::Debug)
1875 })?, "channel_update");
1877 channel.one_to_two = get_new_channel_info!();
1885 fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1886 macro_rules! remove_from_node {
1887 ($node_id: expr) => {
1888 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1889 entry.get_mut().channels.retain(|chan_id| {
1890 short_channel_id != *chan_id
1892 if entry.get().channels.is_empty() {
1893 entry.remove_entry();
1896 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1901 remove_from_node!(chan.node_one);
1902 remove_from_node!(chan.node_two);
1906 impl ReadOnlyNetworkGraph<'_> {
1907 /// Returns all known valid channels' short ids along with announced channel info.
1909 /// (C-not exported) because we don't want to return lifetime'd references
1910 pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1914 /// Returns information on a channel with the given id.
1915 pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1916 self.channels.get(&short_channel_id)
1919 #[cfg(c_bindings)] // Non-bindings users should use `channels`
1920 /// Returns the list of channels in the graph
1921 pub fn list_channels(&self) -> Vec<u64> {
1922 self.channels.unordered_keys().map(|c| *c).collect()
1925 /// Returns all known nodes' public keys along with announced node info.
1927 /// (C-not exported) because we don't want to return lifetime'd references
1928 pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1932 /// Returns information on a node with the given id.
1933 pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1934 self.nodes.get(node_id)
1937 #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1938 /// Returns the list of nodes in the graph
1939 pub fn list_nodes(&self) -> Vec<NodeId> {
1940 self.nodes.unordered_keys().map(|n| *n).collect()
1943 /// Get network addresses by node id.
1944 /// Returns None if the requested node is completely unknown,
1945 /// or if node announcement for the node was never received.
1946 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1947 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1948 .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1953 pub(crate) mod tests {
1954 use crate::ln::channelmanager;
1955 use crate::ln::chan_utils::make_funding_redeemscript;
1956 #[cfg(feature = "std")]
1957 use crate::ln::features::InitFeatures;
1958 use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1959 use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1960 use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1961 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1962 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1963 use crate::util::config::UserConfig;
1964 use crate::util::test_utils;
1965 use crate::util::ser::{ReadableArgs, Readable, Writeable};
1966 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1967 use crate::util::scid_utils::scid_from_parts;
1969 use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1970 use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1972 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1973 use bitcoin::hashes::Hash;
1974 use bitcoin::network::constants::Network;
1975 use bitcoin::blockdata::constants::genesis_block;
1976 use bitcoin::blockdata::script::Script;
1977 use bitcoin::blockdata::transaction::TxOut;
1981 use bitcoin::secp256k1::{PublicKey, SecretKey};
1982 use bitcoin::secp256k1::{All, Secp256k1};
1985 use bitcoin::secp256k1;
1986 use crate::prelude::*;
1987 use crate::sync::Arc;
1989 fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1990 let logger = Arc::new(test_utils::TestLogger::new());
1991 NetworkGraph::new(Network::Testnet, logger)
1994 fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1995 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1996 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1998 let secp_ctx = Secp256k1::new();
1999 let logger = Arc::new(test_utils::TestLogger::new());
2000 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2001 (secp_ctx, gossip_sync)
2005 #[cfg(feature = "std")]
2006 fn request_full_sync_finite_times() {
2007 let network_graph = create_network_graph();
2008 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2009 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2011 assert!(gossip_sync.should_request_full_sync(&node_id));
2012 assert!(gossip_sync.should_request_full_sync(&node_id));
2013 assert!(gossip_sync.should_request_full_sync(&node_id));
2014 assert!(gossip_sync.should_request_full_sync(&node_id));
2015 assert!(gossip_sync.should_request_full_sync(&node_id));
2016 assert!(!gossip_sync.should_request_full_sync(&node_id));
2019 pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2020 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2021 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2022 features: channelmanager::provided_node_features(&UserConfig::default()),
2027 addresses: Vec::new(),
2028 excess_address_data: Vec::new(),
2029 excess_data: Vec::new(),
2031 f(&mut unsigned_announcement);
2032 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2034 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2035 contents: unsigned_announcement
2039 pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2040 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2041 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2042 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2043 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2045 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2046 features: channelmanager::provided_channel_features(&UserConfig::default()),
2047 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2048 short_channel_id: 0,
2049 node_id_1: NodeId::from_pubkey(&node_id_1),
2050 node_id_2: NodeId::from_pubkey(&node_id_2),
2051 bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2052 bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2053 excess_data: Vec::new(),
2055 f(&mut unsigned_announcement);
2056 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2057 ChannelAnnouncement {
2058 node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2059 node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2060 bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2061 bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2062 contents: unsigned_announcement,
2066 pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2067 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2068 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2069 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2070 &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2073 pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2074 let mut unsigned_channel_update = UnsignedChannelUpdate {
2075 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2076 short_channel_id: 0,
2079 cltv_expiry_delta: 144,
2080 htlc_minimum_msat: 1_000_000,
2081 htlc_maximum_msat: 1_000_000,
2082 fee_base_msat: 10_000,
2083 fee_proportional_millionths: 20,
2084 excess_data: Vec::new()
2086 f(&mut unsigned_channel_update);
2087 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2089 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2090 contents: unsigned_channel_update
2095 fn handling_node_announcements() {
2096 let network_graph = create_network_graph();
2097 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2099 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2100 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2101 let zero_hash = Sha256dHash::hash(&[0; 32]);
2103 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2104 match gossip_sync.handle_node_announcement(&valid_announcement) {
2106 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2110 // Announce a channel to add a corresponding node.
2111 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2112 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2113 Ok(res) => assert!(res),
2118 match gossip_sync.handle_node_announcement(&valid_announcement) {
2119 Ok(res) => assert!(res),
2123 let fake_msghash = hash_to_message!(&zero_hash);
2124 match gossip_sync.handle_node_announcement(
2126 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2127 contents: valid_announcement.contents.clone()
2130 Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2133 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2134 unsigned_announcement.timestamp += 1000;
2135 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2136 }, node_1_privkey, &secp_ctx);
2137 // Return false because contains excess data.
2138 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2139 Ok(res) => assert!(!res),
2143 // Even though previous announcement was not relayed further, we still accepted it,
2144 // so we now won't accept announcements before the previous one.
2145 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2146 unsigned_announcement.timestamp += 1000 - 10;
2147 }, node_1_privkey, &secp_ctx);
2148 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2150 Err(e) => assert_eq!(e.err, "Update older than last processed update")
2155 fn handling_channel_announcements() {
2156 let secp_ctx = Secp256k1::new();
2157 let logger = test_utils::TestLogger::new();
2159 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2160 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2162 let good_script = get_channel_script(&secp_ctx);
2163 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2165 // Test if the UTXO lookups were not supported
2166 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2167 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2168 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2169 Ok(res) => assert!(res),
2174 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2180 // If we receive announcement for the same channel (with UTXO lookups disabled),
2181 // drop new one on the floor, since we can't see any changes.
2182 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2184 Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2187 // Test if an associated transaction were not on-chain (or not confirmed).
2188 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2189 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2190 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2191 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2193 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2194 unsigned_announcement.short_channel_id += 1;
2195 }, node_1_privkey, node_2_privkey, &secp_ctx);
2196 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2198 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2201 // Now test if the transaction is found in the UTXO set and the script is correct.
2202 *chain_source.utxo_ret.lock().unwrap() =
2203 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2204 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2205 unsigned_announcement.short_channel_id += 2;
2206 }, node_1_privkey, node_2_privkey, &secp_ctx);
2207 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2208 Ok(res) => assert!(res),
2213 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2219 // If we receive announcement for the same channel, once we've validated it against the
2220 // chain, we simply ignore all new (duplicate) announcements.
2221 *chain_source.utxo_ret.lock().unwrap() =
2222 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2223 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2225 Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2228 #[cfg(feature = "std")]
2230 use std::time::{SystemTime, UNIX_EPOCH};
2232 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2233 // Mark a node as permanently failed so it's tracked as removed.
2234 gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2236 // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2237 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2238 unsigned_announcement.short_channel_id += 3;
2239 }, node_1_privkey, node_2_privkey, &secp_ctx);
2240 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2242 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2245 gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2247 // The above channel announcement should be handled as per normal now.
2248 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2249 Ok(res) => assert!(res),
2254 // Don't relay valid channels with excess data
2255 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2256 unsigned_announcement.short_channel_id += 4;
2257 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2258 }, node_1_privkey, node_2_privkey, &secp_ctx);
2259 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2260 Ok(res) => assert!(!res),
2264 let mut invalid_sig_announcement = valid_announcement.clone();
2265 invalid_sig_announcement.contents.excess_data = Vec::new();
2266 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2268 Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2271 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2272 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2274 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2279 fn handling_channel_update() {
2280 let secp_ctx = Secp256k1::new();
2281 let logger = test_utils::TestLogger::new();
2282 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2283 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2284 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2286 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2287 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2289 let amount_sats = 1000_000;
2290 let short_channel_id;
2293 // Announce a channel we will update
2294 let good_script = get_channel_script(&secp_ctx);
2295 *chain_source.utxo_ret.lock().unwrap() =
2296 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2298 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2299 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2300 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2307 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2308 match gossip_sync.handle_channel_update(&valid_channel_update) {
2309 Ok(res) => assert!(res),
2314 match network_graph.read_only().channels().get(&short_channel_id) {
2316 Some(channel_info) => {
2317 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2318 assert!(channel_info.two_to_one.is_none());
2323 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2324 unsigned_channel_update.timestamp += 100;
2325 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2326 }, node_1_privkey, &secp_ctx);
2327 // Return false because contains excess data
2328 match gossip_sync.handle_channel_update(&valid_channel_update) {
2329 Ok(res) => assert!(!res),
2333 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2334 unsigned_channel_update.timestamp += 110;
2335 unsigned_channel_update.short_channel_id += 1;
2336 }, node_1_privkey, &secp_ctx);
2337 match gossip_sync.handle_channel_update(&valid_channel_update) {
2339 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2342 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2343 unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2344 unsigned_channel_update.timestamp += 110;
2345 }, node_1_privkey, &secp_ctx);
2346 match gossip_sync.handle_channel_update(&valid_channel_update) {
2348 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2351 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2352 unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2353 unsigned_channel_update.timestamp += 110;
2354 }, node_1_privkey, &secp_ctx);
2355 match gossip_sync.handle_channel_update(&valid_channel_update) {
2357 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2360 // Even though previous update was not relayed further, we still accepted it,
2361 // so we now won't accept update before the previous one.
2362 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2363 unsigned_channel_update.timestamp += 100;
2364 }, node_1_privkey, &secp_ctx);
2365 match gossip_sync.handle_channel_update(&valid_channel_update) {
2367 Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2370 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2371 unsigned_channel_update.timestamp += 500;
2372 }, node_1_privkey, &secp_ctx);
2373 let zero_hash = Sha256dHash::hash(&[0; 32]);
2374 let fake_msghash = hash_to_message!(&zero_hash);
2375 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2376 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2378 Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2383 fn handling_network_update() {
2384 let logger = test_utils::TestLogger::new();
2385 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2386 let secp_ctx = Secp256k1::new();
2388 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2389 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2390 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2393 // There is no nodes in the table at the beginning.
2394 assert_eq!(network_graph.read_only().nodes().len(), 0);
2397 let short_channel_id;
2399 // Announce a channel we will update
2400 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2401 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2402 let chain_source: Option<&test_utils::TestChainSource> = None;
2403 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2404 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2406 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2407 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2409 network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2410 msg: valid_channel_update,
2413 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2416 // Non-permanent closing just disables a channel
2418 match network_graph.read_only().channels().get(&short_channel_id) {
2420 Some(channel_info) => {
2421 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2425 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2427 is_permanent: false,
2430 match network_graph.read_only().channels().get(&short_channel_id) {
2432 Some(channel_info) => {
2433 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2438 // Permanent closing deletes a channel
2439 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2444 assert_eq!(network_graph.read_only().channels().len(), 0);
2445 // Nodes are also deleted because there are no associated channels anymore
2446 assert_eq!(network_graph.read_only().nodes().len(), 0);
2449 // Get a new network graph since we don't want to track removed nodes in this test with "std"
2450 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2452 // Announce a channel to test permanent node failure
2453 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2454 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2455 let chain_source: Option<&test_utils::TestChainSource> = None;
2456 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2457 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2459 // Non-permanent node failure does not delete any nodes or channels
2460 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2462 is_permanent: false,
2465 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2466 assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2468 // Permanent node failure deletes node and its channels
2469 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2474 assert_eq!(network_graph.read_only().nodes().len(), 0);
2475 // Channels are also deleted because the associated node has been deleted
2476 assert_eq!(network_graph.read_only().channels().len(), 0);
2481 fn test_channel_timeouts() {
2482 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2483 let logger = test_utils::TestLogger::new();
2484 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2485 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2486 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2487 let secp_ctx = Secp256k1::new();
2489 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2490 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2492 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2493 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2494 let chain_source: Option<&test_utils::TestChainSource> = None;
2495 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2496 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2498 // Submit two channel updates for each channel direction (update.flags bit).
2499 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2500 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2501 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2503 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2504 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2505 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2507 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2508 assert_eq!(network_graph.read_only().channels().len(), 1);
2509 assert_eq!(network_graph.read_only().nodes().len(), 2);
2511 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2512 #[cfg(not(feature = "std"))] {
2513 // Make sure removed channels are tracked.
2514 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2516 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2517 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2519 #[cfg(feature = "std")]
2521 // In std mode, a further check is performed before fully removing the channel -
2522 // the channel_announcement must have been received at least two weeks ago. We
2523 // fudge that here by indicating the time has jumped two weeks.
2524 assert_eq!(network_graph.read_only().channels().len(), 1);
2525 assert_eq!(network_graph.read_only().nodes().len(), 2);
2527 // Note that the directional channel information will have been removed already..
2528 // We want to check that this will work even if *one* of the channel updates is recent,
2529 // so we should add it with a recent timestamp.
2530 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2531 use std::time::{SystemTime, UNIX_EPOCH};
2532 let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2533 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2534 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2535 }, node_1_privkey, &secp_ctx);
2536 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2537 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2538 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2539 // Make sure removed channels are tracked.
2540 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2541 // Provide a later time so that sufficient time has passed
2542 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2543 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2546 assert_eq!(network_graph.read_only().channels().len(), 0);
2547 assert_eq!(network_graph.read_only().nodes().len(), 0);
2548 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2550 #[cfg(feature = "std")]
2552 use std::time::{SystemTime, UNIX_EPOCH};
2554 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2556 // Clear tracked nodes and channels for clean slate
2557 network_graph.removed_channels.lock().unwrap().clear();
2558 network_graph.removed_nodes.lock().unwrap().clear();
2560 // Add a channel and nodes from channel announcement. So our network graph will
2561 // now only consist of two nodes and one channel between them.
2562 assert!(network_graph.update_channel_from_announcement(
2563 &valid_channel_announcement, &chain_source).is_ok());
2565 // Mark the channel as permanently failed. This will also remove the two nodes
2566 // and all of the entries will be tracked as removed.
2567 network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2569 // Should not remove from tracking if insufficient time has passed
2570 network_graph.remove_stale_channels_and_tracking_with_time(
2571 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2572 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count ≠1 with tracking_time {}", tracking_time);
2574 // Provide a later time so that sufficient time has passed
2575 network_graph.remove_stale_channels_and_tracking_with_time(
2576 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2577 assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2578 assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2581 #[cfg(not(feature = "std"))]
2583 // When we don't have access to the system clock, the time we started tracking removal will only
2584 // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2585 // only if sufficient time has passed after that first call, will the next call remove it from
2587 let removal_time = 1664619654;
2589 // Clear removed nodes and channels for clean slate
2590 network_graph.removed_channels.lock().unwrap().clear();
2591 network_graph.removed_nodes.lock().unwrap().clear();
2593 // Add a channel and nodes from channel announcement. So our network graph will
2594 // now only consist of two nodes and one channel between them.
2595 assert!(network_graph.update_channel_from_announcement(
2596 &valid_channel_announcement, &chain_source).is_ok());
2598 // Mark the channel as permanently failed. This will also remove the two nodes
2599 // and all of the entries will be tracked as removed.
2600 network_graph.channel_failed(short_channel_id, true);
2602 // The first time we call the following, the channel will have a removal time assigned.
2603 network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2604 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2606 // Provide a later time so that sufficient time has passed
2607 network_graph.remove_stale_channels_and_tracking_with_time(
2608 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2609 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2610 assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2615 fn getting_next_channel_announcements() {
2616 let network_graph = create_network_graph();
2617 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2618 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2619 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2621 // Channels were not announced yet.
2622 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2623 assert!(channels_with_announcements.is_none());
2625 let short_channel_id;
2627 // Announce a channel we will update
2628 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2629 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2630 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2636 // Contains initial channel announcement now.
2637 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2638 if let Some(channel_announcements) = channels_with_announcements {
2639 let (_, ref update_1, ref update_2) = channel_announcements;
2640 assert_eq!(update_1, &None);
2641 assert_eq!(update_2, &None);
2647 // Valid channel update
2648 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2649 unsigned_channel_update.timestamp = 101;
2650 }, node_1_privkey, &secp_ctx);
2651 match gossip_sync.handle_channel_update(&valid_channel_update) {
2657 // Now contains an initial announcement and an update.
2658 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2659 if let Some(channel_announcements) = channels_with_announcements {
2660 let (_, ref update_1, ref update_2) = channel_announcements;
2661 assert_ne!(update_1, &None);
2662 assert_eq!(update_2, &None);
2668 // Channel update with excess data.
2669 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2670 unsigned_channel_update.timestamp = 102;
2671 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2672 }, node_1_privkey, &secp_ctx);
2673 match gossip_sync.handle_channel_update(&valid_channel_update) {
2679 // Test that announcements with excess data won't be returned
2680 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2681 if let Some(channel_announcements) = channels_with_announcements {
2682 let (_, ref update_1, ref update_2) = channel_announcements;
2683 assert_eq!(update_1, &None);
2684 assert_eq!(update_2, &None);
2689 // Further starting point have no channels after it
2690 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2691 assert!(channels_with_announcements.is_none());
2695 fn getting_next_node_announcements() {
2696 let network_graph = create_network_graph();
2697 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2698 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2699 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2700 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2703 let next_announcements = gossip_sync.get_next_node_announcement(None);
2704 assert!(next_announcements.is_none());
2707 // Announce a channel to add 2 nodes
2708 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2709 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2715 // Nodes were never announced
2716 let next_announcements = gossip_sync.get_next_node_announcement(None);
2717 assert!(next_announcements.is_none());
2720 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2721 match gossip_sync.handle_node_announcement(&valid_announcement) {
2726 let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2727 match gossip_sync.handle_node_announcement(&valid_announcement) {
2733 let next_announcements = gossip_sync.get_next_node_announcement(None);
2734 assert!(next_announcements.is_some());
2736 // Skip the first node.
2737 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2738 assert!(next_announcements.is_some());
2741 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2742 let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2743 unsigned_announcement.timestamp += 10;
2744 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2745 }, node_2_privkey, &secp_ctx);
2746 match gossip_sync.handle_node_announcement(&valid_announcement) {
2747 Ok(res) => assert!(!res),
2752 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2753 assert!(next_announcements.is_none());
2757 fn network_graph_serialization() {
2758 let network_graph = create_network_graph();
2759 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2761 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2762 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2764 // Announce a channel to add a corresponding node.
2765 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2766 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2767 Ok(res) => assert!(res),
2771 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2772 match gossip_sync.handle_node_announcement(&valid_announcement) {
2777 let mut w = test_utils::TestVecWriter(Vec::new());
2778 assert!(!network_graph.read_only().nodes().is_empty());
2779 assert!(!network_graph.read_only().channels().is_empty());
2780 network_graph.write(&mut w).unwrap();
2782 let logger = Arc::new(test_utils::TestLogger::new());
2783 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2787 fn network_graph_tlv_serialization() {
2788 let network_graph = create_network_graph();
2789 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2791 let mut w = test_utils::TestVecWriter(Vec::new());
2792 network_graph.write(&mut w).unwrap();
2794 let logger = Arc::new(test_utils::TestLogger::new());
2795 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2796 assert!(reassembled_network_graph == network_graph);
2797 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2801 #[cfg(feature = "std")]
2802 fn calling_sync_routing_table() {
2803 use std::time::{SystemTime, UNIX_EPOCH};
2804 use crate::ln::msgs::Init;
2806 let network_graph = create_network_graph();
2807 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2808 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2809 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2811 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2813 // It should ignore if gossip_queries feature is not enabled
2815 let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2816 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2817 let events = gossip_sync.get_and_clear_pending_msg_events();
2818 assert_eq!(events.len(), 0);
2821 // It should send a gossip_timestamp_filter with the correct information
2823 let mut features = InitFeatures::empty();
2824 features.set_gossip_queries_optional();
2825 let init_msg = Init { features, remote_network_address: None };
2826 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2827 let events = gossip_sync.get_and_clear_pending_msg_events();
2828 assert_eq!(events.len(), 1);
2830 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2831 assert_eq!(node_id, &node_id_1);
2832 assert_eq!(msg.chain_hash, chain_hash);
2833 let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2834 assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2835 assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2836 assert_eq!(msg.timestamp_range, u32::max_value());
2838 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2844 fn handling_query_channel_range() {
2845 let network_graph = create_network_graph();
2846 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2848 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2849 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2850 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2851 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2853 let mut scids: Vec<u64> = vec![
2854 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2855 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2858 // used for testing multipart reply across blocks
2859 for block in 100000..=108001 {
2860 scids.push(scid_from_parts(block, 0, 0).unwrap());
2863 // used for testing resumption on same block
2864 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2867 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2868 unsigned_announcement.short_channel_id = scid;
2869 }, node_1_privkey, node_2_privkey, &secp_ctx);
2870 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2876 // Error when number_of_blocks=0
2877 do_handling_query_channel_range(
2881 chain_hash: chain_hash.clone(),
2883 number_of_blocks: 0,
2886 vec![ReplyChannelRange {
2887 chain_hash: chain_hash.clone(),
2889 number_of_blocks: 0,
2890 sync_complete: true,
2891 short_channel_ids: vec![]
2895 // Error when wrong chain
2896 do_handling_query_channel_range(
2900 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2902 number_of_blocks: 0xffff_ffff,
2905 vec![ReplyChannelRange {
2906 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2908 number_of_blocks: 0xffff_ffff,
2909 sync_complete: true,
2910 short_channel_ids: vec![],
2914 // Error when first_blocknum > 0xffffff
2915 do_handling_query_channel_range(
2919 chain_hash: chain_hash.clone(),
2920 first_blocknum: 0x01000000,
2921 number_of_blocks: 0xffff_ffff,
2924 vec![ReplyChannelRange {
2925 chain_hash: chain_hash.clone(),
2926 first_blocknum: 0x01000000,
2927 number_of_blocks: 0xffff_ffff,
2928 sync_complete: true,
2929 short_channel_ids: vec![]
2933 // Empty reply when max valid SCID block num
2934 do_handling_query_channel_range(
2938 chain_hash: chain_hash.clone(),
2939 first_blocknum: 0xffffff,
2940 number_of_blocks: 1,
2945 chain_hash: chain_hash.clone(),
2946 first_blocknum: 0xffffff,
2947 number_of_blocks: 1,
2948 sync_complete: true,
2949 short_channel_ids: vec![]
2954 // No results in valid query range
2955 do_handling_query_channel_range(
2959 chain_hash: chain_hash.clone(),
2960 first_blocknum: 1000,
2961 number_of_blocks: 1000,
2966 chain_hash: chain_hash.clone(),
2967 first_blocknum: 1000,
2968 number_of_blocks: 1000,
2969 sync_complete: true,
2970 short_channel_ids: vec![],
2975 // Overflow first_blocknum + number_of_blocks
2976 do_handling_query_channel_range(
2980 chain_hash: chain_hash.clone(),
2981 first_blocknum: 0xfe0000,
2982 number_of_blocks: 0xffffffff,
2987 chain_hash: chain_hash.clone(),
2988 first_blocknum: 0xfe0000,
2989 number_of_blocks: 0xffffffff - 0xfe0000,
2990 sync_complete: true,
2991 short_channel_ids: vec![
2992 0xfffffe_ffffff_ffff, // max
2998 // Single block exactly full
2999 do_handling_query_channel_range(
3003 chain_hash: chain_hash.clone(),
3004 first_blocknum: 100000,
3005 number_of_blocks: 8000,
3010 chain_hash: chain_hash.clone(),
3011 first_blocknum: 100000,
3012 number_of_blocks: 8000,
3013 sync_complete: true,
3014 short_channel_ids: (100000..=107999)
3015 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3021 // Multiple split on new block
3022 do_handling_query_channel_range(
3026 chain_hash: chain_hash.clone(),
3027 first_blocknum: 100000,
3028 number_of_blocks: 8001,
3033 chain_hash: chain_hash.clone(),
3034 first_blocknum: 100000,
3035 number_of_blocks: 7999,
3036 sync_complete: false,
3037 short_channel_ids: (100000..=107999)
3038 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3042 chain_hash: chain_hash.clone(),
3043 first_blocknum: 107999,
3044 number_of_blocks: 2,
3045 sync_complete: true,
3046 short_channel_ids: vec![
3047 scid_from_parts(108000, 0, 0).unwrap(),
3053 // Multiple split on same block
3054 do_handling_query_channel_range(
3058 chain_hash: chain_hash.clone(),
3059 first_blocknum: 100002,
3060 number_of_blocks: 8000,
3065 chain_hash: chain_hash.clone(),
3066 first_blocknum: 100002,
3067 number_of_blocks: 7999,
3068 sync_complete: false,
3069 short_channel_ids: (100002..=108001)
3070 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3074 chain_hash: chain_hash.clone(),
3075 first_blocknum: 108001,
3076 number_of_blocks: 1,
3077 sync_complete: true,
3078 short_channel_ids: vec![
3079 scid_from_parts(108001, 1, 0).unwrap(),
3086 fn do_handling_query_channel_range(
3087 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3088 test_node_id: &PublicKey,
3089 msg: QueryChannelRange,
3091 expected_replies: Vec<ReplyChannelRange>
3093 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3094 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3095 let query_end_blocknum = msg.end_blocknum();
3096 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3099 assert!(result.is_ok());
3101 assert!(result.is_err());
3104 let events = gossip_sync.get_and_clear_pending_msg_events();
3105 assert_eq!(events.len(), expected_replies.len());
3107 for i in 0..events.len() {
3108 let expected_reply = &expected_replies[i];
3110 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3111 assert_eq!(node_id, test_node_id);
3112 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3113 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3114 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3115 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3116 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3118 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3119 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3120 assert!(msg.first_blocknum >= max_firstblocknum);
3121 max_firstblocknum = msg.first_blocknum;
3122 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3124 // Check that the last block count is >= the query's end_blocknum
3125 if i == events.len() - 1 {
3126 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3129 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3135 fn handling_query_short_channel_ids() {
3136 let network_graph = create_network_graph();
3137 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3138 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3139 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3141 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3143 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3145 short_channel_ids: vec![0x0003e8_000000_0000],
3147 assert!(result.is_err());
3151 fn displays_node_alias() {
3152 let format_str_alias = |alias: &str| {
3153 let mut bytes = [0u8; 32];
3154 bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3155 format!("{}", NodeAlias(bytes))
3158 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3159 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3160 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3162 let format_bytes_alias = |alias: &[u8]| {
3163 let mut bytes = [0u8; 32];
3164 bytes[..alias.len()].copy_from_slice(alias);
3165 format!("{}", NodeAlias(bytes))
3168 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3169 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3170 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3174 fn channel_info_is_readable() {
3175 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3176 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3177 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3178 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3179 let config = crate::ln::functional_test_utils::test_default_channel_config();
3181 // 1. Test encoding/decoding of ChannelUpdateInfo
3182 let chan_update_info = ChannelUpdateInfo {
3185 cltv_expiry_delta: 42,
3186 htlc_minimum_msat: 1234,
3187 htlc_maximum_msat: 5678,
3188 fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3189 last_update_message: None,
3192 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3193 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3195 // First make sure we can read ChannelUpdateInfos we just wrote
3196 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3197 assert_eq!(chan_update_info, read_chan_update_info);
3199 // Check the serialization hasn't changed.
3200 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3201 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3203 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3204 // or the ChannelUpdate enclosed with `last_update_message`.
3205 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3206 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3207 assert!(read_chan_update_info_res.is_err());
3209 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3210 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3211 assert!(read_chan_update_info_res.is_err());
3213 // 2. Test encoding/decoding of ChannelInfo
3214 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3215 let chan_info_none_updates = ChannelInfo {
3216 features: channelmanager::provided_channel_features(&config),
3217 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3219 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3221 capacity_sats: None,
3222 announcement_message: None,
3223 announcement_received_time: 87654,
3226 let mut encoded_chan_info: Vec<u8> = Vec::new();
3227 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3229 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3230 assert_eq!(chan_info_none_updates, read_chan_info);
3232 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3233 let chan_info_some_updates = ChannelInfo {
3234 features: channelmanager::provided_channel_features(&config),
3235 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3236 one_to_two: Some(chan_update_info.clone()),
3237 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3238 two_to_one: Some(chan_update_info.clone()),
3239 capacity_sats: None,
3240 announcement_message: None,
3241 announcement_received_time: 87654,
3244 let mut encoded_chan_info: Vec<u8> = Vec::new();
3245 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3247 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3248 assert_eq!(chan_info_some_updates, read_chan_info);
3250 // Check the serialization hasn't changed.
3251 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3252 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3254 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3255 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3256 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3257 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3258 assert_eq!(read_chan_info.announcement_received_time, 87654);
3259 assert_eq!(read_chan_info.one_to_two, None);
3260 assert_eq!(read_chan_info.two_to_one, None);
3262 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3263 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3264 assert_eq!(read_chan_info.announcement_received_time, 87654);
3265 assert_eq!(read_chan_info.one_to_two, None);
3266 assert_eq!(read_chan_info.two_to_one, None);
3270 fn node_info_is_readable() {
3271 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3272 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3273 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3274 let valid_node_ann_info = NodeAnnouncementInfo {
3275 features: channelmanager::provided_node_features(&UserConfig::default()),
3278 alias: NodeAlias([0u8; 32]),
3279 announcement_message: Some(announcement_message)
3282 let mut encoded_valid_node_ann_info = Vec::new();
3283 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3284 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3285 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3286 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3288 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3289 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3290 assert!(read_invalid_node_ann_info_res.is_err());
3292 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3293 let valid_node_info = NodeInfo {
3294 channels: Vec::new(),
3295 announcement_info: Some(valid_node_ann_info),
3298 let mut encoded_valid_node_info = Vec::new();
3299 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3300 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3301 assert_eq!(read_valid_node_info, valid_node_info);
3303 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3304 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3305 assert_eq!(read_invalid_node_info.announcement_info, None);
3309 fn test_node_info_keeps_compatibility() {
3310 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3311 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3312 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3313 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3314 assert!(ann_info_with_addresses.addresses().is_empty());
3318 #[cfg(all(test, feature = "_bench_unstable"))]
3326 fn read_network_graph(bench: &mut Bencher) {
3327 let logger = crate::util::test_utils::TestLogger::new();
3328 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3329 let mut v = Vec::new();
3330 d.read_to_end(&mut v).unwrap();
3332 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3337 fn write_network_graph(bench: &mut Bencher) {
3338 let logger = crate::util::test_utils::TestLogger::new();
3339 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3340 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3342 let _ = net_graph.encode();