]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/routing/gossip.rs
Impl FromStr for NodeId
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hashes::hex::FromHex;
20 use bitcoin::hash_types::BlockHash;
21
22 use bitcoin::network::constants::Network;
23 use bitcoin::blockdata::constants::genesis_block;
24
25 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
26 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
27 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use crate::ln::msgs;
31 use crate::routing::utxo::{self, UtxoLookup};
32 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
33 use crate::util::logger::{Logger, Level};
34 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35 use crate::util::string::PrintableString;
36 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
37
38 use crate::io;
39 use crate::io_extras::{copy, sink};
40 use crate::prelude::*;
41 use core::{cmp, fmt};
42 use core::convert::TryFrom;
43 use crate::sync::{RwLock, RwLockReadGuard};
44 #[cfg(feature = "std")]
45 use core::sync::atomic::{AtomicUsize, Ordering};
46 use crate::sync::Mutex;
47 use core::ops::{Bound, Deref};
48 use core::str::FromStr;
49
50 #[cfg(feature = "std")]
51 use std::time::{SystemTime, UNIX_EPOCH};
52
53 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
54 /// suggestion.
55 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
56
57 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
58 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
59
60 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
61 /// refuse to relay the message.
62 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
63
64 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
65 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
66 const MAX_SCIDS_PER_REPLY: usize = 8000;
67
68 /// Represents the compressed public key of a node
69 #[derive(Clone, Copy)]
70 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
71
72 impl NodeId {
73         /// Create a new NodeId from a public key
74         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
75                 NodeId(pubkey.serialize())
76         }
77
78         /// Get the public key slice from this NodeId
79         pub fn as_slice(&self) -> &[u8] {
80                 &self.0
81         }
82
83         /// Get the public key from this NodeId
84         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
85                 PublicKey::from_slice(&self.0)
86         }
87 }
88
89 impl fmt::Debug for NodeId {
90         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
91                 write!(f, "NodeId({})", log_bytes!(self.0))
92         }
93 }
94 impl fmt::Display for NodeId {
95         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
96                 write!(f, "{}", log_bytes!(self.0))
97         }
98 }
99
100 impl core::hash::Hash for NodeId {
101         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
102                 self.0.hash(hasher);
103         }
104 }
105
106 impl Eq for NodeId {}
107
108 impl PartialEq for NodeId {
109         fn eq(&self, other: &Self) -> bool {
110                 self.0[..] == other.0[..]
111         }
112 }
113
114 impl cmp::PartialOrd for NodeId {
115         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
116                 Some(self.cmp(other))
117         }
118 }
119
120 impl Ord for NodeId {
121         fn cmp(&self, other: &Self) -> cmp::Ordering {
122                 self.0[..].cmp(&other.0[..])
123         }
124 }
125
126 impl Writeable for NodeId {
127         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
128                 writer.write_all(&self.0)?;
129                 Ok(())
130         }
131 }
132
133 impl Readable for NodeId {
134         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
135                 let mut buf = [0; PUBLIC_KEY_SIZE];
136                 reader.read_exact(&mut buf)?;
137                 Ok(Self(buf))
138         }
139 }
140
141 impl From<PublicKey> for NodeId {
142         fn from(pubkey: PublicKey) -> Self {
143                 Self::from_pubkey(&pubkey)
144         }
145 }
146
147 impl TryFrom<NodeId> for PublicKey {
148         type Error = secp256k1::Error;
149
150         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
151                 node_id.as_pubkey()
152         }
153 }
154
155 impl FromStr for NodeId {
156         type Err = bitcoin::hashes::hex::Error;
157
158         fn from_str(s: &str) -> Result<Self, Self::Err> {
159                 let data: [u8; PUBLIC_KEY_SIZE] = FromHex::from_hex(s)?;
160                 Ok(NodeId(data))
161         }
162 }
163
164 /// Represents the network as nodes and channels between them
165 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
166         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
167         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
168         genesis_hash: BlockHash,
169         logger: L,
170         // Lock order: channels -> nodes
171         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
172         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
173         // Lock order: removed_channels -> removed_nodes
174         //
175         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
176         // of `std::time::Instant`s for a few reasons:
177         //   * We want it to be possible to do tracking in no-std environments where we can compare
178         //     a provided current UNIX timestamp with the time at which we started tracking.
179         //   * In the future, if we decide to persist these maps, they will already be serializable.
180         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
181         //     environment should be practical over the time period we are considering (on the order of a
182         //     week).
183         //
184         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
185         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
186         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
187         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
188         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
189         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
190         /// that once some time passes, we can potentially resync it from gossip again.
191         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
192         /// Announcement messages which are awaiting an on-chain lookup to be processed.
193         pub(super) pending_checks: utxo::PendingChecks,
194 }
195
196 /// A read-only view of [`NetworkGraph`].
197 pub struct ReadOnlyNetworkGraph<'a> {
198         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
199         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
200 }
201
202 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
203 /// return packet by a node along the route. See [BOLT #4] for details.
204 ///
205 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
206 #[derive(Clone, Debug, PartialEq, Eq)]
207 pub enum NetworkUpdate {
208         /// An error indicating a `channel_update` messages should be applied via
209         /// [`NetworkGraph::update_channel`].
210         ChannelUpdateMessage {
211                 /// The update to apply via [`NetworkGraph::update_channel`].
212                 msg: ChannelUpdate,
213         },
214         /// An error indicating that a channel failed to route a payment, which should be applied via
215         /// [`NetworkGraph::channel_failed`].
216         ChannelFailure {
217                 /// The short channel id of the closed channel.
218                 short_channel_id: u64,
219                 /// Whether the channel should be permanently removed or temporarily disabled until a new
220                 /// `channel_update` message is received.
221                 is_permanent: bool,
222         },
223         /// An error indicating that a node failed to route a payment, which should be applied via
224         /// [`NetworkGraph::node_failed_permanent`] if permanent.
225         NodeFailure {
226                 /// The node id of the failed node.
227                 node_id: PublicKey,
228                 /// Whether the node should be permanently removed from consideration or can be restored
229                 /// when a new `channel_update` message is received.
230                 is_permanent: bool,
231         }
232 }
233
234 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
235         (0, ChannelUpdateMessage) => {
236                 (0, msg, required),
237         },
238         (2, ChannelFailure) => {
239                 (0, short_channel_id, required),
240                 (2, is_permanent, required),
241         },
242         (4, NodeFailure) => {
243                 (0, node_id, required),
244                 (2, is_permanent, required),
245         },
246 );
247
248 /// Receives and validates network updates from peers,
249 /// stores authentic and relevant data as a network graph.
250 /// This network graph is then used for routing payments.
251 /// Provides interface to help with initial routing sync by
252 /// serving historical announcements.
253 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
254 where U::Target: UtxoLookup, L::Target: Logger
255 {
256         network_graph: G,
257         utxo_lookup: Option<U>,
258         #[cfg(feature = "std")]
259         full_syncs_requested: AtomicUsize,
260         pending_events: Mutex<Vec<MessageSendEvent>>,
261         logger: L,
262 }
263
264 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
265 where U::Target: UtxoLookup, L::Target: Logger
266 {
267         /// Creates a new tracker of the actual state of the network of channels and nodes,
268         /// assuming an existing [`NetworkGraph`].
269         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
270         /// correct, and the announcement is signed with channel owners' keys.
271         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
272                 P2PGossipSync {
273                         network_graph,
274                         #[cfg(feature = "std")]
275                         full_syncs_requested: AtomicUsize::new(0),
276                         utxo_lookup,
277                         pending_events: Mutex::new(vec![]),
278                         logger,
279                 }
280         }
281
282         /// Adds a provider used to check new announcements. Does not affect
283         /// existing announcements unless they are updated.
284         /// Add, update or remove the provider would replace the current one.
285         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
286                 self.utxo_lookup = utxo_lookup;
287         }
288
289         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
290         /// [`P2PGossipSync::new`].
291         ///
292         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
293         pub fn network_graph(&self) -> &G {
294                 &self.network_graph
295         }
296
297         #[cfg(feature = "std")]
298         /// Returns true when a full routing table sync should be performed with a peer.
299         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
300                 //TODO: Determine whether to request a full sync based on the network map.
301                 const FULL_SYNCS_TO_REQUEST: usize = 5;
302                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
303                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
304                         true
305                 } else {
306                         false
307                 }
308         }
309
310         /// Used to broadcast forward gossip messages which were validated async.
311         ///
312         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
313         /// data.
314         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
315                 match &mut ev {
316                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
317                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
318                                 if update_msg.as_ref()
319                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
320                                 {
321                                         *update_msg = None;
322                                 }
323                         },
324                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
325                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
326                         },
327                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
328                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
329                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
330                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
331                                 {
332                                         return;
333                                 }
334                         },
335                         _ => return,
336                 }
337                 self.pending_events.lock().unwrap().push(ev);
338         }
339 }
340
341 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
342         /// Handles any network updates originating from [`Event`]s.
343         ///
344         /// [`Event`]: crate::events::Event
345         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
346                 match *network_update {
347                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
348                                 let short_channel_id = msg.contents.short_channel_id;
349                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
350                                 let status = if is_enabled { "enabled" } else { "disabled" };
351                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
352                                 let _ = self.update_channel(msg);
353                         },
354                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
355                                 let action = if is_permanent { "Removing" } else { "Disabling" };
356                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
357                                 self.channel_failed(short_channel_id, is_permanent);
358                         },
359                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
360                                 if is_permanent {
361                                         log_debug!(self.logger,
362                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
363                                         self.node_failed_permanent(node_id);
364                                 };
365                         },
366                 }
367         }
368 }
369
370 macro_rules! secp_verify_sig {
371         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
372                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
373                         Ok(_) => {},
374                         Err(_) => {
375                                 return Err(LightningError {
376                                         err: format!("Invalid signature on {} message", $msg_type),
377                                         action: ErrorAction::SendWarningMessage {
378                                                 msg: msgs::WarningMessage {
379                                                         channel_id: [0; 32],
380                                                         data: format!("Invalid signature on {} message", $msg_type),
381                                                 },
382                                                 log_level: Level::Trace,
383                                         },
384                                 });
385                         },
386                 }
387         };
388 }
389
390 macro_rules! get_pubkey_from_node_id {
391         ( $node_id: expr, $msg_type: expr ) => {
392                 PublicKey::from_slice($node_id.as_slice())
393                         .map_err(|_| LightningError {
394                                 err: format!("Invalid public key on {} message", $msg_type),
395                                 action: ErrorAction::SendWarningMessage {
396                                         msg: msgs::WarningMessage {
397                                                 channel_id: [0; 32],
398                                                 data: format!("Invalid public key on {} message", $msg_type),
399                                         },
400                                         log_level: Level::Trace
401                                 }
402                         })?
403         }
404 }
405
406 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
407 where U::Target: UtxoLookup, L::Target: Logger
408 {
409         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
410                 self.network_graph.update_node_from_announcement(msg)?;
411                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
412                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
413                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
414         }
415
416         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
417                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
418                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
419         }
420
421         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
422                 self.network_graph.update_channel(msg)?;
423                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
424         }
425
426         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
427                 let mut channels = self.network_graph.channels.write().unwrap();
428                 for (_, ref chan) in channels.range(starting_point..) {
429                         if chan.announcement_message.is_some() {
430                                 let chan_announcement = chan.announcement_message.clone().unwrap();
431                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
432                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
433                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
434                                         one_to_two_announcement = one_to_two.last_update_message.clone();
435                                 }
436                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
437                                         two_to_one_announcement = two_to_one.last_update_message.clone();
438                                 }
439                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
440                         } else {
441                                 // TODO: We may end up sending un-announced channel_updates if we are sending
442                                 // initial sync data while receiving announce/updates for this channel.
443                         }
444                 }
445                 None
446         }
447
448         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
449                 let mut nodes = self.network_graph.nodes.write().unwrap();
450                 let iter = if let Some(node_id) = starting_point {
451                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
452                         } else {
453                                 nodes.range(..)
454                         };
455                 for (_, ref node) in iter {
456                         if let Some(node_info) = node.announcement_info.as_ref() {
457                                 if let Some(msg) = node_info.announcement_message.clone() {
458                                         return Some(msg);
459                                 }
460                         }
461                 }
462                 None
463         }
464
465         /// Initiates a stateless sync of routing gossip information with a peer
466         /// using [`gossip_queries`]. The default strategy used by this implementation
467         /// is to sync the full block range with several peers.
468         ///
469         /// We should expect one or more [`reply_channel_range`] messages in response
470         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
471         /// to request gossip messages for each channel. The sync is considered complete
472         /// when the final [`reply_scids_end`] message is received, though we are not
473         /// tracking this directly.
474         ///
475         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
476         /// [`reply_channel_range`]: msgs::ReplyChannelRange
477         /// [`query_channel_range`]: msgs::QueryChannelRange
478         /// [`query_scid`]: msgs::QueryShortChannelIds
479         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
480         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
481                 // We will only perform a sync with peers that support gossip_queries.
482                 if !init_msg.features.supports_gossip_queries() {
483                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
484                         // channels with peers even without being able to exchange gossip.
485                         return Ok(());
486                 }
487
488                 // The lightning network's gossip sync system is completely broken in numerous ways.
489                 //
490                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
491                 // to do a full sync from the first few peers we connect to, and then receive gossip
492                 // updates from all our peers normally.
493                 //
494                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
495                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
496                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
497                 // seen.
498                 //
499                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
500                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
501                 // channel data which you are missing. Except there was no way at all to identify which
502                 // `channel_update`s you were missing, so you still had to request everything, just in a
503                 // very complicated way with some queries instead of just getting the dump.
504                 //
505                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
506                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
507                 // relying on it useless.
508                 //
509                 // After gossip queries were introduced, support for receiving a full gossip table dump on
510                 // connection was removed from several nodes, making it impossible to get a full sync
511                 // without using the "gossip queries" messages.
512                 //
513                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
514                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
515                 // message, as the name implies, tells the peer to not forward any gossip messages with a
516                 // timestamp older than a given value (not the time the peer received the filter, but the
517                 // timestamp in the update message, which is often hours behind when the peer received the
518                 // message).
519                 //
520                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
521                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
522                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
523                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
524                 // will simply not forward any new updates they see to you which were generated some time
525                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
526                 // ago), you will always get the full routing graph from all your peers.
527                 //
528                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
529                 // propagated some time after it was generated, and, worse, often disable gossiping with
530                 // several peers after their first connection. The second behavior can cause gossip to not
531                 // propagate fully if there are cuts in the gossiping subgraph.
532                 //
533                 // In an attempt to cut a middle ground between always fetching the full graph from all of
534                 // our peers and never receiving gossip from peers at all, we send all of our peers a
535                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
536                 //
537                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
538                 #[allow(unused_mut, unused_assignments)]
539                 let mut gossip_start_time = 0;
540                 #[cfg(feature = "std")]
541                 {
542                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
543                         if self.should_request_full_sync(&their_node_id) {
544                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
545                         } else {
546                                 gossip_start_time -= 60 * 60; // an hour ago
547                         }
548                 }
549
550                 let mut pending_events = self.pending_events.lock().unwrap();
551                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
552                         node_id: their_node_id.clone(),
553                         msg: GossipTimestampFilter {
554                                 chain_hash: self.network_graph.genesis_hash,
555                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
556                                 timestamp_range: u32::max_value(),
557                         },
558                 });
559                 Ok(())
560         }
561
562         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
563                 // We don't make queries, so should never receive replies. If, in the future, the set
564                 // reconciliation extensions to gossip queries become broadly supported, we should revert
565                 // this code to its state pre-0.0.106.
566                 Ok(())
567         }
568
569         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
570                 // We don't make queries, so should never receive replies. If, in the future, the set
571                 // reconciliation extensions to gossip queries become broadly supported, we should revert
572                 // this code to its state pre-0.0.106.
573                 Ok(())
574         }
575
576         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
577         /// are in the specified block range. Due to message size limits, large range
578         /// queries may result in several reply messages. This implementation enqueues
579         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
580         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
581         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
582         /// memory constrained systems.
583         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
584                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
585
586                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
587
588                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
589                 // If so, we manually cap the ending block to avoid this overflow.
590                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
591
592                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
593                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
594                         let mut pending_events = self.pending_events.lock().unwrap();
595                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
596                                 node_id: their_node_id.clone(),
597                                 msg: ReplyChannelRange {
598                                         chain_hash: msg.chain_hash.clone(),
599                                         first_blocknum: msg.first_blocknum,
600                                         number_of_blocks: msg.number_of_blocks,
601                                         sync_complete: true,
602                                         short_channel_ids: vec![],
603                                 }
604                         });
605                         return Err(LightningError {
606                                 err: String::from("query_channel_range could not be processed"),
607                                 action: ErrorAction::IgnoreError,
608                         });
609                 }
610
611                 // Creates channel batches. We are not checking if the channel is routable
612                 // (has at least one update). A peer may still want to know the channel
613                 // exists even if its not yet routable.
614                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
615                 let mut channels = self.network_graph.channels.write().unwrap();
616                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
617                         if let Some(chan_announcement) = &chan.announcement_message {
618                                 // Construct a new batch if last one is full
619                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
620                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
621                                 }
622
623                                 let batch = batches.last_mut().unwrap();
624                                 batch.push(chan_announcement.contents.short_channel_id);
625                         }
626                 }
627                 drop(channels);
628
629                 let mut pending_events = self.pending_events.lock().unwrap();
630                 let batch_count = batches.len();
631                 let mut prev_batch_endblock = msg.first_blocknum;
632                 for (batch_index, batch) in batches.into_iter().enumerate() {
633                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
634                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
635                         //
636                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
637                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
638                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
639                         // significant diversion from the requirements set by the spec, and, in case of blocks
640                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
641                         // and *not* derive the first_blocknum from the actual first block of the reply.
642                         let first_blocknum = prev_batch_endblock;
643
644                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
645                         // fit in. Though there is no requirement that we use exactly the number of blocks its
646                         // contents are from, except for the bogus requirements c-lightning enforces, above.
647                         //
648                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
649                         // >= the query's end block. Thus, for the last reply, we calculate the difference
650                         // between the query's end block and the start of the reply.
651                         //
652                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
653                         // first_blocknum will be either msg.first_blocknum or a higher block height.
654                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
655                                 (true, msg.end_blocknum() - first_blocknum)
656                         }
657                         // Prior replies should use the number of blocks that fit into the reply. Overflow
658                         // safe since first_blocknum is always <= last SCID's block.
659                         else {
660                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
661                         };
662
663                         prev_batch_endblock = first_blocknum + number_of_blocks;
664
665                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
666                                 node_id: their_node_id.clone(),
667                                 msg: ReplyChannelRange {
668                                         chain_hash: msg.chain_hash.clone(),
669                                         first_blocknum,
670                                         number_of_blocks,
671                                         sync_complete,
672                                         short_channel_ids: batch,
673                                 }
674                         });
675                 }
676
677                 Ok(())
678         }
679
680         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
681                 // TODO
682                 Err(LightningError {
683                         err: String::from("Not implemented"),
684                         action: ErrorAction::IgnoreError,
685                 })
686         }
687
688         fn provided_node_features(&self) -> NodeFeatures {
689                 let mut features = NodeFeatures::empty();
690                 features.set_gossip_queries_optional();
691                 features
692         }
693
694         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
695                 let mut features = InitFeatures::empty();
696                 features.set_gossip_queries_optional();
697                 features
698         }
699
700         fn processing_queue_high(&self) -> bool {
701                 self.network_graph.pending_checks.too_many_checks_pending()
702         }
703 }
704
705 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
706 where
707         U::Target: UtxoLookup,
708         L::Target: Logger,
709 {
710         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
711                 let mut ret = Vec::new();
712                 let mut pending_events = self.pending_events.lock().unwrap();
713                 core::mem::swap(&mut ret, &mut pending_events);
714                 ret
715         }
716 }
717
718 #[derive(Clone, Debug, PartialEq, Eq)]
719 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
720 pub struct ChannelUpdateInfo {
721         /// When the last update to the channel direction was issued.
722         /// Value is opaque, as set in the announcement.
723         pub last_update: u32,
724         /// Whether the channel can be currently used for payments (in this one direction).
725         pub enabled: bool,
726         /// The difference in CLTV values that you must have when routing through this channel.
727         pub cltv_expiry_delta: u16,
728         /// The minimum value, which must be relayed to the next hop via the channel
729         pub htlc_minimum_msat: u64,
730         /// The maximum value which may be relayed to the next hop via the channel.
731         pub htlc_maximum_msat: u64,
732         /// Fees charged when the channel is used for routing
733         pub fees: RoutingFees,
734         /// Most recent update for the channel received from the network
735         /// Mostly redundant with the data we store in fields explicitly.
736         /// Everything else is useful only for sending out for initial routing sync.
737         /// Not stored if contains excess data to prevent DoS.
738         pub last_update_message: Option<ChannelUpdate>,
739 }
740
741 impl fmt::Display for ChannelUpdateInfo {
742         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
743                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
744                 Ok(())
745         }
746 }
747
748 impl Writeable for ChannelUpdateInfo {
749         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
750                 write_tlv_fields!(writer, {
751                         (0, self.last_update, required),
752                         (2, self.enabled, required),
753                         (4, self.cltv_expiry_delta, required),
754                         (6, self.htlc_minimum_msat, required),
755                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
756                         // compatibility with LDK versions prior to v0.0.110.
757                         (8, Some(self.htlc_maximum_msat), required),
758                         (10, self.fees, required),
759                         (12, self.last_update_message, required),
760                 });
761                 Ok(())
762         }
763 }
764
765 impl Readable for ChannelUpdateInfo {
766         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
767                 _init_tlv_field_var!(last_update, required);
768                 _init_tlv_field_var!(enabled, required);
769                 _init_tlv_field_var!(cltv_expiry_delta, required);
770                 _init_tlv_field_var!(htlc_minimum_msat, required);
771                 _init_tlv_field_var!(htlc_maximum_msat, option);
772                 _init_tlv_field_var!(fees, required);
773                 _init_tlv_field_var!(last_update_message, required);
774
775                 read_tlv_fields!(reader, {
776                         (0, last_update, required),
777                         (2, enabled, required),
778                         (4, cltv_expiry_delta, required),
779                         (6, htlc_minimum_msat, required),
780                         (8, htlc_maximum_msat, required),
781                         (10, fees, required),
782                         (12, last_update_message, required)
783                 });
784
785                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
786                         Ok(ChannelUpdateInfo {
787                                 last_update: _init_tlv_based_struct_field!(last_update, required),
788                                 enabled: _init_tlv_based_struct_field!(enabled, required),
789                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
790                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
791                                 htlc_maximum_msat,
792                                 fees: _init_tlv_based_struct_field!(fees, required),
793                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
794                         })
795                 } else {
796                         Err(DecodeError::InvalidValue)
797                 }
798         }
799 }
800
801 #[derive(Clone, Debug, PartialEq, Eq)]
802 /// Details about a channel (both directions).
803 /// Received within a channel announcement.
804 pub struct ChannelInfo {
805         /// Protocol features of a channel communicated during its announcement
806         pub features: ChannelFeatures,
807         /// Source node of the first direction of a channel
808         pub node_one: NodeId,
809         /// Details about the first direction of a channel
810         pub one_to_two: Option<ChannelUpdateInfo>,
811         /// Source node of the second direction of a channel
812         pub node_two: NodeId,
813         /// Details about the second direction of a channel
814         pub two_to_one: Option<ChannelUpdateInfo>,
815         /// The channel capacity as seen on-chain, if chain lookup is available.
816         pub capacity_sats: Option<u64>,
817         /// An initial announcement of the channel
818         /// Mostly redundant with the data we store in fields explicitly.
819         /// Everything else is useful only for sending out for initial routing sync.
820         /// Not stored if contains excess data to prevent DoS.
821         pub announcement_message: Option<ChannelAnnouncement>,
822         /// The timestamp when we received the announcement, if we are running with feature = "std"
823         /// (which we can probably assume we are - no-std environments probably won't have a full
824         /// network graph in memory!).
825         announcement_received_time: u64,
826 }
827
828 impl ChannelInfo {
829         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
830         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
831         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
832                 let (direction, source) = {
833                         if target == &self.node_one {
834                                 (self.two_to_one.as_ref(), &self.node_two)
835                         } else if target == &self.node_two {
836                                 (self.one_to_two.as_ref(), &self.node_one)
837                         } else {
838                                 return None;
839                         }
840                 };
841                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
842         }
843
844         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
845         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
846         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
847                 let (direction, target) = {
848                         if source == &self.node_one {
849                                 (self.one_to_two.as_ref(), &self.node_two)
850                         } else if source == &self.node_two {
851                                 (self.two_to_one.as_ref(), &self.node_one)
852                         } else {
853                                 return None;
854                         }
855                 };
856                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
857         }
858
859         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
860         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
861                 let direction = channel_flags & 1u8;
862                 if direction == 0 {
863                         self.one_to_two.as_ref()
864                 } else {
865                         self.two_to_one.as_ref()
866                 }
867         }
868 }
869
870 impl fmt::Display for ChannelInfo {
871         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
872                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
873                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
874                 Ok(())
875         }
876 }
877
878 impl Writeable for ChannelInfo {
879         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
880                 write_tlv_fields!(writer, {
881                         (0, self.features, required),
882                         (1, self.announcement_received_time, (default_value, 0)),
883                         (2, self.node_one, required),
884                         (4, self.one_to_two, required),
885                         (6, self.node_two, required),
886                         (8, self.two_to_one, required),
887                         (10, self.capacity_sats, required),
888                         (12, self.announcement_message, required),
889                 });
890                 Ok(())
891         }
892 }
893
894 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
895 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
896 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
897 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
898 // channel updates via the gossip network.
899 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
900
901 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
902         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
903                 match crate::util::ser::Readable::read(reader) {
904                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
905                         Err(DecodeError::ShortRead) => Ok(None),
906                         Err(DecodeError::InvalidValue) => Ok(None),
907                         Err(err) => Err(err),
908                 }
909         }
910 }
911
912 impl Readable for ChannelInfo {
913         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
914                 _init_tlv_field_var!(features, required);
915                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
916                 _init_tlv_field_var!(node_one, required);
917                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
918                 _init_tlv_field_var!(node_two, required);
919                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
920                 _init_tlv_field_var!(capacity_sats, required);
921                 _init_tlv_field_var!(announcement_message, required);
922                 read_tlv_fields!(reader, {
923                         (0, features, required),
924                         (1, announcement_received_time, (default_value, 0)),
925                         (2, node_one, required),
926                         (4, one_to_two_wrap, upgradable_option),
927                         (6, node_two, required),
928                         (8, two_to_one_wrap, upgradable_option),
929                         (10, capacity_sats, required),
930                         (12, announcement_message, required),
931                 });
932
933                 Ok(ChannelInfo {
934                         features: _init_tlv_based_struct_field!(features, required),
935                         node_one: _init_tlv_based_struct_field!(node_one, required),
936                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
937                         node_two: _init_tlv_based_struct_field!(node_two, required),
938                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
939                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
940                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
941                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
942                 })
943         }
944 }
945
946 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
947 /// source node to a target node.
948 #[derive(Clone)]
949 pub struct DirectedChannelInfo<'a> {
950         channel: &'a ChannelInfo,
951         direction: &'a ChannelUpdateInfo,
952         htlc_maximum_msat: u64,
953         effective_capacity: EffectiveCapacity,
954 }
955
956 impl<'a> DirectedChannelInfo<'a> {
957         #[inline]
958         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
959                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
960                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
961
962                 let effective_capacity = match capacity_msat {
963                         Some(capacity_msat) => {
964                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
965                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
966                         },
967                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
968                 };
969
970                 Self {
971                         channel, direction, htlc_maximum_msat, effective_capacity
972                 }
973         }
974
975         /// Returns information for the channel.
976         #[inline]
977         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
978
979         /// Returns the maximum HTLC amount allowed over the channel in the direction.
980         #[inline]
981         pub fn htlc_maximum_msat(&self) -> u64 {
982                 self.htlc_maximum_msat
983         }
984
985         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
986         ///
987         /// This is either the total capacity from the funding transaction, if known, or the
988         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
989         /// otherwise.
990         pub fn effective_capacity(&self) -> EffectiveCapacity {
991                 self.effective_capacity
992         }
993
994         /// Returns information for the direction.
995         #[inline]
996         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
997 }
998
999 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1000         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1001                 f.debug_struct("DirectedChannelInfo")
1002                         .field("channel", &self.channel)
1003                         .finish()
1004         }
1005 }
1006
1007 /// The effective capacity of a channel for routing purposes.
1008 ///
1009 /// While this may be smaller than the actual channel capacity, amounts greater than
1010 /// [`Self::as_msat`] should not be routed through the channel.
1011 #[derive(Clone, Copy, Debug, PartialEq)]
1012 pub enum EffectiveCapacity {
1013         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1014         /// direct hop.
1015         ExactLiquidity {
1016                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1017                 /// millisatoshi.
1018                 liquidity_msat: u64,
1019         },
1020         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1021         MaximumHTLC {
1022                 /// The maximum HTLC amount denominated in millisatoshi.
1023                 amount_msat: u64,
1024         },
1025         /// The total capacity of the channel as determined by the funding transaction.
1026         Total {
1027                 /// The funding amount denominated in millisatoshi.
1028                 capacity_msat: u64,
1029                 /// The maximum HTLC amount denominated in millisatoshi.
1030                 htlc_maximum_msat: u64
1031         },
1032         /// A capacity sufficient to route any payment, typically used for private channels provided by
1033         /// an invoice.
1034         Infinite,
1035         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1036         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1037         Unknown,
1038 }
1039
1040 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1041 /// use when making routing decisions.
1042 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1043
1044 impl EffectiveCapacity {
1045         /// Returns the effective capacity denominated in millisatoshi.
1046         pub fn as_msat(&self) -> u64 {
1047                 match self {
1048                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1049                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1050                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1051                         EffectiveCapacity::Infinite => u64::max_value(),
1052                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1053                 }
1054         }
1055 }
1056
1057 /// Fees for routing via a given channel or a node
1058 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1059 pub struct RoutingFees {
1060         /// Flat routing fee in millisatoshis.
1061         pub base_msat: u32,
1062         /// Liquidity-based routing fee in millionths of a routed amount.
1063         /// In other words, 10000 is 1%.
1064         pub proportional_millionths: u32,
1065 }
1066
1067 impl_writeable_tlv_based!(RoutingFees, {
1068         (0, base_msat, required),
1069         (2, proportional_millionths, required)
1070 });
1071
1072 #[derive(Clone, Debug, PartialEq, Eq)]
1073 /// Information received in the latest node_announcement from this node.
1074 pub struct NodeAnnouncementInfo {
1075         /// Protocol features the node announced support for
1076         pub features: NodeFeatures,
1077         /// When the last known update to the node state was issued.
1078         /// Value is opaque, as set in the announcement.
1079         pub last_update: u32,
1080         /// Color assigned to the node
1081         pub rgb: [u8; 3],
1082         /// Moniker assigned to the node.
1083         /// May be invalid or malicious (eg control chars),
1084         /// should not be exposed to the user.
1085         pub alias: NodeAlias,
1086         /// An initial announcement of the node
1087         /// Mostly redundant with the data we store in fields explicitly.
1088         /// Everything else is useful only for sending out for initial routing sync.
1089         /// Not stored if contains excess data to prevent DoS.
1090         pub announcement_message: Option<NodeAnnouncement>
1091 }
1092
1093 impl NodeAnnouncementInfo {
1094         /// Internet-level addresses via which one can connect to the node
1095         pub fn addresses(&self) -> &[NetAddress] {
1096                 self.announcement_message.as_ref()
1097                         .map(|msg| msg.contents.addresses.as_slice())
1098                         .unwrap_or_default()
1099         }
1100 }
1101
1102 impl Writeable for NodeAnnouncementInfo {
1103         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1104                 let empty_addresses = Vec::<NetAddress>::new();
1105                 write_tlv_fields!(writer, {
1106                         (0, self.features, required),
1107                         (2, self.last_update, required),
1108                         (4, self.rgb, required),
1109                         (6, self.alias, required),
1110                         (8, self.announcement_message, option),
1111                         (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1112                 });
1113                 Ok(())
1114         }
1115 }
1116
1117 impl Readable for NodeAnnouncementInfo {
1118     fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1119                 _init_and_read_tlv_fields!(reader, {
1120                         (0, features, required),
1121                         (2, last_update, required),
1122                         (4, rgb, required),
1123                         (6, alias, required),
1124                         (8, announcement_message, option),
1125                         (10, _addresses, vec_type), // deprecated, not used anymore
1126                 });
1127                 let _: Option<Vec<NetAddress>> = _addresses;
1128                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1129                         alias: alias.0.unwrap(), announcement_message })
1130     }
1131 }
1132
1133 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1134 ///
1135 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1136 /// attacks. Care must be taken when processing.
1137 #[derive(Clone, Debug, PartialEq, Eq)]
1138 pub struct NodeAlias(pub [u8; 32]);
1139
1140 impl fmt::Display for NodeAlias {
1141         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1142                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1143                 let bytes = self.0.split_at(first_null).0;
1144                 match core::str::from_utf8(bytes) {
1145                         Ok(alias) => PrintableString(alias).fmt(f)?,
1146                         Err(_) => {
1147                                 use core::fmt::Write;
1148                                 for c in bytes.iter().map(|b| *b as char) {
1149                                         // Display printable ASCII characters
1150                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1151                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1152                                         f.write_char(c)?;
1153                                 }
1154                         },
1155                 };
1156                 Ok(())
1157         }
1158 }
1159
1160 impl Writeable for NodeAlias {
1161         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1162                 self.0.write(w)
1163         }
1164 }
1165
1166 impl Readable for NodeAlias {
1167         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1168                 Ok(NodeAlias(Readable::read(r)?))
1169         }
1170 }
1171
1172 #[derive(Clone, Debug, PartialEq, Eq)]
1173 /// Details about a node in the network, known from the network announcement.
1174 pub struct NodeInfo {
1175         /// All valid channels a node has announced
1176         pub channels: Vec<u64>,
1177         /// More information about a node from node_announcement.
1178         /// Optional because we store a Node entry after learning about it from
1179         /// a channel announcement, but before receiving a node announcement.
1180         pub announcement_info: Option<NodeAnnouncementInfo>
1181 }
1182
1183 impl fmt::Display for NodeInfo {
1184         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1185                 write!(f, " channels: {:?}, announcement_info: {:?}",
1186                         &self.channels[..], self.announcement_info)?;
1187                 Ok(())
1188         }
1189 }
1190
1191 impl Writeable for NodeInfo {
1192         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1193                 write_tlv_fields!(writer, {
1194                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1195                         (2, self.announcement_info, option),
1196                         (4, self.channels, vec_type),
1197                 });
1198                 Ok(())
1199         }
1200 }
1201
1202 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1203 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1204 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1205 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1206 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1207
1208 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1209         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1210                 match crate::util::ser::Readable::read(reader) {
1211                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1212                         Err(_) => {
1213                                 copy(reader, &mut sink()).unwrap();
1214                                 return Ok(None)
1215                         },
1216                 };
1217         }
1218 }
1219
1220 impl Readable for NodeInfo {
1221         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1222                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1223                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1224                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1225                 // requires additional complexity and lookups during routing, it ends up being a
1226                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1227                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1228                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1229                 _init_tlv_field_var!(channels, vec_type);
1230
1231                 read_tlv_fields!(reader, {
1232                         (0, _lowest_inbound_channel_fees, option),
1233                         (2, announcement_info_wrap, upgradable_option),
1234                         (4, channels, vec_type),
1235                 });
1236
1237                 Ok(NodeInfo {
1238                         announcement_info: announcement_info_wrap.map(|w| w.0),
1239                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1240                 })
1241         }
1242 }
1243
1244 const SERIALIZATION_VERSION: u8 = 1;
1245 const MIN_SERIALIZATION_VERSION: u8 = 1;
1246
1247 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1248         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1249                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1250
1251                 self.genesis_hash.write(writer)?;
1252                 let channels = self.channels.read().unwrap();
1253                 (channels.len() as u64).write(writer)?;
1254                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1255                         (*chan_id).write(writer)?;
1256                         chan_info.write(writer)?;
1257                 }
1258                 let nodes = self.nodes.read().unwrap();
1259                 (nodes.len() as u64).write(writer)?;
1260                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1261                         node_id.write(writer)?;
1262                         node_info.write(writer)?;
1263                 }
1264
1265                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1266                 write_tlv_fields!(writer, {
1267                         (1, last_rapid_gossip_sync_timestamp, option),
1268                 });
1269                 Ok(())
1270         }
1271 }
1272
1273 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1274         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1275                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1276
1277                 let genesis_hash: BlockHash = Readable::read(reader)?;
1278                 let channels_count: u64 = Readable::read(reader)?;
1279                 let mut channels = IndexedMap::new();
1280                 for _ in 0..channels_count {
1281                         let chan_id: u64 = Readable::read(reader)?;
1282                         let chan_info = Readable::read(reader)?;
1283                         channels.insert(chan_id, chan_info);
1284                 }
1285                 let nodes_count: u64 = Readable::read(reader)?;
1286                 let mut nodes = IndexedMap::new();
1287                 for _ in 0..nodes_count {
1288                         let node_id = Readable::read(reader)?;
1289                         let node_info = Readable::read(reader)?;
1290                         nodes.insert(node_id, node_info);
1291                 }
1292
1293                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1294                 read_tlv_fields!(reader, {
1295                         (1, last_rapid_gossip_sync_timestamp, option),
1296                 });
1297
1298                 Ok(NetworkGraph {
1299                         secp_ctx: Secp256k1::verification_only(),
1300                         genesis_hash,
1301                         logger,
1302                         channels: RwLock::new(channels),
1303                         nodes: RwLock::new(nodes),
1304                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1305                         removed_nodes: Mutex::new(HashMap::new()),
1306                         removed_channels: Mutex::new(HashMap::new()),
1307                         pending_checks: utxo::PendingChecks::new(),
1308                 })
1309         }
1310 }
1311
1312 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1313         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1314                 writeln!(f, "Network map\n[Channels]")?;
1315                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1316                         writeln!(f, " {}: {}", key, val)?;
1317                 }
1318                 writeln!(f, "[Nodes]")?;
1319                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1320                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1321                 }
1322                 Ok(())
1323         }
1324 }
1325
1326 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1327 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1328         fn eq(&self, other: &Self) -> bool {
1329                 self.genesis_hash == other.genesis_hash &&
1330                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1331                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1332         }
1333 }
1334
1335 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1336         /// Creates a new, empty, network graph.
1337         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1338                 Self {
1339                         secp_ctx: Secp256k1::verification_only(),
1340                         genesis_hash: genesis_block(network).header.block_hash(),
1341                         logger,
1342                         channels: RwLock::new(IndexedMap::new()),
1343                         nodes: RwLock::new(IndexedMap::new()),
1344                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1345                         removed_channels: Mutex::new(HashMap::new()),
1346                         removed_nodes: Mutex::new(HashMap::new()),
1347                         pending_checks: utxo::PendingChecks::new(),
1348                 }
1349         }
1350
1351         /// Returns a read-only view of the network graph.
1352         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1353                 let channels = self.channels.read().unwrap();
1354                 let nodes = self.nodes.read().unwrap();
1355                 ReadOnlyNetworkGraph {
1356                         channels,
1357                         nodes,
1358                 }
1359         }
1360
1361         /// The unix timestamp provided by the most recent rapid gossip sync.
1362         /// It will be set by the rapid sync process after every sync completion.
1363         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1364                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1365         }
1366
1367         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1368         /// This should be done automatically by the rapid sync process after every sync completion.
1369         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1370                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1371         }
1372
1373         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1374         /// purposes.
1375         #[cfg(test)]
1376         pub fn clear_nodes_announcement_info(&self) {
1377                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1378                         node.1.announcement_info = None;
1379                 }
1380         }
1381
1382         /// For an already known node (from channel announcements), update its stored properties from a
1383         /// given node announcement.
1384         ///
1385         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1386         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1387         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1388         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1389                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1390                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1391                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1392         }
1393
1394         /// For an already known node (from channel announcements), update its stored properties from a
1395         /// given node announcement without verifying the associated signatures. Because we aren't
1396         /// given the associated signatures here we cannot relay the node announcement to any of our
1397         /// peers.
1398         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1399                 self.update_node_from_announcement_intern(msg, None)
1400         }
1401
1402         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1403                 let mut nodes = self.nodes.write().unwrap();
1404                 match nodes.get_mut(&msg.node_id) {
1405                         None => {
1406                                 core::mem::drop(nodes);
1407                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1408                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1409                         },
1410                         Some(node) => {
1411                                 if let Some(node_info) = node.announcement_info.as_ref() {
1412                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1413                                         // updates to ensure you always have the latest one, only vaguely suggesting
1414                                         // that it be at least the current time.
1415                                         if node_info.last_update  > msg.timestamp {
1416                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1417                                         } else if node_info.last_update  == msg.timestamp {
1418                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1419                                         }
1420                                 }
1421
1422                                 let should_relay =
1423                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1424                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1425                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1426                                 node.announcement_info = Some(NodeAnnouncementInfo {
1427                                         features: msg.features.clone(),
1428                                         last_update: msg.timestamp,
1429                                         rgb: msg.rgb,
1430                                         alias: NodeAlias(msg.alias),
1431                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1432                                 });
1433
1434                                 Ok(())
1435                         }
1436                 }
1437         }
1438
1439         /// Store or update channel info from a channel announcement.
1440         ///
1441         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1442         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1443         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1444         ///
1445         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1446         /// the corresponding UTXO exists on chain and is correctly-formatted.
1447         pub fn update_channel_from_announcement<U: Deref>(
1448                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1449         ) -> Result<(), LightningError>
1450         where
1451                 U::Target: UtxoLookup,
1452         {
1453                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1454                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1455                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1456                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1457                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1458                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1459         }
1460
1461         /// Store or update channel info from a channel announcement without verifying the associated
1462         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1463         /// channel announcement to any of our peers.
1464         ///
1465         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1466         /// the corresponding UTXO exists on chain and is correctly-formatted.
1467         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1468                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1469         ) -> Result<(), LightningError>
1470         where
1471                 U::Target: UtxoLookup,
1472         {
1473                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1474         }
1475
1476         /// Update channel from partial announcement data received via rapid gossip sync
1477         ///
1478         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1479         /// rapid gossip sync server)
1480         ///
1481         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1482         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1483                 if node_id_1 == node_id_2 {
1484                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1485                 };
1486
1487                 let node_1 = NodeId::from_pubkey(&node_id_1);
1488                 let node_2 = NodeId::from_pubkey(&node_id_2);
1489                 let channel_info = ChannelInfo {
1490                         features,
1491                         node_one: node_1.clone(),
1492                         one_to_two: None,
1493                         node_two: node_2.clone(),
1494                         two_to_one: None,
1495                         capacity_sats: None,
1496                         announcement_message: None,
1497                         announcement_received_time: timestamp,
1498                 };
1499
1500                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1501         }
1502
1503         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1504                 let mut channels = self.channels.write().unwrap();
1505                 let mut nodes = self.nodes.write().unwrap();
1506
1507                 let node_id_a = channel_info.node_one.clone();
1508                 let node_id_b = channel_info.node_two.clone();
1509
1510                 match channels.entry(short_channel_id) {
1511                         IndexedMapEntry::Occupied(mut entry) => {
1512                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1513                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1514                                 //exactly how...
1515                                 if utxo_value.is_some() {
1516                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1517                                         // only sometimes returns results. In any case remove the previous entry. Note
1518                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1519                                         // do that because
1520                                         // a) we don't *require* a UTXO provider that always returns results.
1521                                         // b) we don't track UTXOs of channels we know about and remove them if they
1522                                         //    get reorg'd out.
1523                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1524                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1525                                         *entry.get_mut() = channel_info;
1526                                 } else {
1527                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1528                                 }
1529                         },
1530                         IndexedMapEntry::Vacant(entry) => {
1531                                 entry.insert(channel_info);
1532                         }
1533                 };
1534
1535                 for current_node_id in [node_id_a, node_id_b].iter() {
1536                         match nodes.entry(current_node_id.clone()) {
1537                                 IndexedMapEntry::Occupied(node_entry) => {
1538                                         node_entry.into_mut().channels.push(short_channel_id);
1539                                 },
1540                                 IndexedMapEntry::Vacant(node_entry) => {
1541                                         node_entry.insert(NodeInfo {
1542                                                 channels: vec!(short_channel_id),
1543                                                 announcement_info: None,
1544                                         });
1545                                 }
1546                         };
1547                 };
1548
1549                 Ok(())
1550         }
1551
1552         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1553                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1554         ) -> Result<(), LightningError>
1555         where
1556                 U::Target: UtxoLookup,
1557         {
1558                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1559                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1560                 }
1561
1562                 {
1563                         let channels = self.channels.read().unwrap();
1564
1565                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1566                                 if chan.capacity_sats.is_some() {
1567                                         // If we'd previously looked up the channel on-chain and checked the script
1568                                         // against what appears on-chain, ignore the duplicate announcement.
1569                                         //
1570                                         // Because a reorg could replace one channel with another at the same SCID, if
1571                                         // the channel appears to be different, we re-validate. This doesn't expose us
1572                                         // to any more DoS risk than not, as a peer can always flood us with
1573                                         // randomly-generated SCID values anyway.
1574                                         //
1575                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1576                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1577                                         // if the peers on the channel changed anyway.
1578                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1579                                                 return Err(LightningError {
1580                                                         err: "Already have chain-validated channel".to_owned(),
1581                                                         action: ErrorAction::IgnoreDuplicateGossip
1582                                                 });
1583                                         }
1584                                 } else if utxo_lookup.is_none() {
1585                                         // Similarly, if we can't check the chain right now anyway, ignore the
1586                                         // duplicate announcement without bothering to take the channels write lock.
1587                                         return Err(LightningError {
1588                                                 err: "Already have non-chain-validated channel".to_owned(),
1589                                                 action: ErrorAction::IgnoreDuplicateGossip
1590                                         });
1591                                 }
1592                         }
1593                 }
1594
1595                 {
1596                         let removed_channels = self.removed_channels.lock().unwrap();
1597                         let removed_nodes = self.removed_nodes.lock().unwrap();
1598                         if removed_channels.contains_key(&msg.short_channel_id) ||
1599                                 removed_nodes.contains_key(&msg.node_id_1) ||
1600                                 removed_nodes.contains_key(&msg.node_id_2) {
1601                                 return Err(LightningError{
1602                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1603                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1604                         }
1605                 }
1606
1607                 let utxo_value = self.pending_checks.check_channel_announcement(
1608                         utxo_lookup, msg, full_msg)?;
1609
1610                 #[allow(unused_mut, unused_assignments)]
1611                 let mut announcement_received_time = 0;
1612                 #[cfg(feature = "std")]
1613                 {
1614                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1615                 }
1616
1617                 let chan_info = ChannelInfo {
1618                         features: msg.features.clone(),
1619                         node_one: msg.node_id_1,
1620                         one_to_two: None,
1621                         node_two: msg.node_id_2,
1622                         two_to_one: None,
1623                         capacity_sats: utxo_value,
1624                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1625                                 { full_msg.cloned() } else { None },
1626                         announcement_received_time,
1627                 };
1628
1629                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1630
1631                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1632                 Ok(())
1633         }
1634
1635         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1636         /// If permanent, removes a channel from the local storage.
1637         /// May cause the removal of nodes too, if this was their last channel.
1638         /// If not permanent, makes channels unavailable for routing.
1639         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1640                 #[cfg(feature = "std")]
1641                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1642                 #[cfg(not(feature = "std"))]
1643                 let current_time_unix = None;
1644
1645                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1646         }
1647
1648         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1649         /// If permanent, removes a channel from the local storage.
1650         /// May cause the removal of nodes too, if this was their last channel.
1651         /// If not permanent, makes channels unavailable for routing.
1652         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1653                 let mut channels = self.channels.write().unwrap();
1654                 if is_permanent {
1655                         if let Some(chan) = channels.remove(&short_channel_id) {
1656                                 let mut nodes = self.nodes.write().unwrap();
1657                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1658                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1659                         }
1660                 } else {
1661                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1662                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1663                                         one_to_two.enabled = false;
1664                                 }
1665                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1666                                         two_to_one.enabled = false;
1667                                 }
1668                         }
1669                 }
1670         }
1671
1672         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1673         /// from local storage.
1674         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1675                 #[cfg(feature = "std")]
1676                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1677                 #[cfg(not(feature = "std"))]
1678                 let current_time_unix = None;
1679
1680                 let node_id = NodeId::from_pubkey(node_id);
1681                 let mut channels = self.channels.write().unwrap();
1682                 let mut nodes = self.nodes.write().unwrap();
1683                 let mut removed_channels = self.removed_channels.lock().unwrap();
1684                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1685
1686                 if let Some(node) = nodes.remove(&node_id) {
1687                         for scid in node.channels.iter() {
1688                                 if let Some(chan_info) = channels.remove(scid) {
1689                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1690                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1691                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1692                                                         *scid != *chan_id
1693                                                 });
1694                                                 if other_node_entry.get().channels.is_empty() {
1695                                                         other_node_entry.remove_entry();
1696                                                 }
1697                                         }
1698                                         removed_channels.insert(*scid, current_time_unix);
1699                                 }
1700                         }
1701                         removed_nodes.insert(node_id, current_time_unix);
1702                 }
1703         }
1704
1705         #[cfg(feature = "std")]
1706         /// Removes information about channels that we haven't heard any updates about in some time.
1707         /// This can be used regularly to prune the network graph of channels that likely no longer
1708         /// exist.
1709         ///
1710         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1711         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1712         /// pruning occur for updates which are at least two weeks old, which we implement here.
1713         ///
1714         /// Note that for users of the `lightning-background-processor` crate this method may be
1715         /// automatically called regularly for you.
1716         ///
1717         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1718         /// in the map for a while so that these can be resynced from gossip in the future.
1719         ///
1720         /// This method is only available with the `std` feature. See
1721         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1722         pub fn remove_stale_channels_and_tracking(&self) {
1723                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1724                 self.remove_stale_channels_and_tracking_with_time(time);
1725         }
1726
1727         /// Removes information about channels that we haven't heard any updates about in some time.
1728         /// This can be used regularly to prune the network graph of channels that likely no longer
1729         /// exist.
1730         ///
1731         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1732         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1733         /// pruning occur for updates which are at least two weeks old, which we implement here.
1734         ///
1735         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1736         /// in the map for a while so that these can be resynced from gossip in the future.
1737         ///
1738         /// This function takes the current unix time as an argument. For users with the `std` feature
1739         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1740         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1741                 let mut channels = self.channels.write().unwrap();
1742                 // Time out if we haven't received an update in at least 14 days.
1743                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1744                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1745                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1746                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1747                 // time.
1748                 let mut scids_to_remove = Vec::new();
1749                 for (scid, info) in channels.unordered_iter_mut() {
1750                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1751                                 info.one_to_two = None;
1752                         }
1753                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1754                                 info.two_to_one = None;
1755                         }
1756                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1757                                 // We check the announcement_received_time here to ensure we don't drop
1758                                 // announcements that we just received and are just waiting for our peer to send a
1759                                 // channel_update for.
1760                                 if info.announcement_received_time < min_time_unix as u64 {
1761                                         scids_to_remove.push(*scid);
1762                                 }
1763                         }
1764                 }
1765                 if !scids_to_remove.is_empty() {
1766                         let mut nodes = self.nodes.write().unwrap();
1767                         for scid in scids_to_remove {
1768                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1769                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1770                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1771                         }
1772                 }
1773
1774                 let should_keep_tracking = |time: &mut Option<u64>| {
1775                         if let Some(time) = time {
1776                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1777                         } else {
1778                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1779                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1780                                 // of this function.
1781                                 #[cfg(feature = "no-std")]
1782                                 {
1783                                         let mut tracked_time = Some(current_time_unix);
1784                                         core::mem::swap(time, &mut tracked_time);
1785                                         return true;
1786                                 }
1787                                 #[allow(unreachable_code)]
1788                                 false
1789                         }};
1790
1791                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1792                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1793         }
1794
1795         /// For an already known (from announcement) channel, update info about one of the directions
1796         /// of the channel.
1797         ///
1798         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1799         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1800         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1801         ///
1802         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1803         /// materially in the future will be rejected.
1804         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1805                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1806         }
1807
1808         /// For an already known (from announcement) channel, update info about one of the directions
1809         /// of the channel without verifying the associated signatures. Because we aren't given the
1810         /// associated signatures here we cannot relay the channel update to any of our peers.
1811         ///
1812         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1813         /// materially in the future will be rejected.
1814         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1815                 self.update_channel_intern(msg, None, None)
1816         }
1817
1818         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1819                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1820
1821                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1822                 {
1823                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1824                         // disable this check during tests!
1825                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1826                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1827                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1828                         }
1829                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1830                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1831                         }
1832                 }
1833
1834                 let mut channels = self.channels.write().unwrap();
1835                 match channels.get_mut(&msg.short_channel_id) {
1836                         None => {
1837                                 core::mem::drop(channels);
1838                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1839                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1840                         },
1841                         Some(channel) => {
1842                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1843                                         return Err(LightningError{err:
1844                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1845                                                 action: ErrorAction::IgnoreError});
1846                                 }
1847
1848                                 if let Some(capacity_sats) = channel.capacity_sats {
1849                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1850                                         // Don't query UTXO set here to reduce DoS risks.
1851                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1852                                                 return Err(LightningError{err:
1853                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1854                                                         action: ErrorAction::IgnoreError});
1855                                         }
1856                                 }
1857                                 macro_rules! check_update_latest {
1858                                         ($target: expr) => {
1859                                                 if let Some(existing_chan_info) = $target.as_ref() {
1860                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1861                                                         // order updates to ensure you always have the latest one, only
1862                                                         // suggesting  that it be at least the current time. For
1863                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1864                                                         // pruning based on the timestamp field being more than two weeks old,
1865                                                         // but only in the non-normative section.
1866                                                         if existing_chan_info.last_update > msg.timestamp {
1867                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1868                                                         } else if existing_chan_info.last_update == msg.timestamp {
1869                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1870                                                         }
1871                                                 }
1872                                         }
1873                                 }
1874
1875                                 macro_rules! get_new_channel_info {
1876                                         () => { {
1877                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1878                                                         { full_msg.cloned() } else { None };
1879
1880                                                 let updated_channel_update_info = ChannelUpdateInfo {
1881                                                         enabled: chan_enabled,
1882                                                         last_update: msg.timestamp,
1883                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1884                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1885                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1886                                                         fees: RoutingFees {
1887                                                                 base_msat: msg.fee_base_msat,
1888                                                                 proportional_millionths: msg.fee_proportional_millionths,
1889                                                         },
1890                                                         last_update_message
1891                                                 };
1892                                                 Some(updated_channel_update_info)
1893                                         } }
1894                                 }
1895
1896                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1897                                 if msg.flags & 1 == 1 {
1898                                         check_update_latest!(channel.two_to_one);
1899                                         if let Some(sig) = sig {
1900                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1901                                                         err: "Couldn't parse source node pubkey".to_owned(),
1902                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1903                                                 })?, "channel_update");
1904                                         }
1905                                         channel.two_to_one = get_new_channel_info!();
1906                                 } else {
1907                                         check_update_latest!(channel.one_to_two);
1908                                         if let Some(sig) = sig {
1909                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1910                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1911                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1912                                                 })?, "channel_update");
1913                                         }
1914                                         channel.one_to_two = get_new_channel_info!();
1915                                 }
1916                         }
1917                 }
1918
1919                 Ok(())
1920         }
1921
1922         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1923                 macro_rules! remove_from_node {
1924                         ($node_id: expr) => {
1925                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1926                                         entry.get_mut().channels.retain(|chan_id| {
1927                                                 short_channel_id != *chan_id
1928                                         });
1929                                         if entry.get().channels.is_empty() {
1930                                                 entry.remove_entry();
1931                                         }
1932                                 } else {
1933                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1934                                 }
1935                         }
1936                 }
1937
1938                 remove_from_node!(chan.node_one);
1939                 remove_from_node!(chan.node_two);
1940         }
1941 }
1942
1943 impl ReadOnlyNetworkGraph<'_> {
1944         /// Returns all known valid channels' short ids along with announced channel info.
1945         ///
1946         /// This is not exported to bindings users because we don't want to return lifetime'd references
1947         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1948                 &*self.channels
1949         }
1950
1951         /// Returns information on a channel with the given id.
1952         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1953                 self.channels.get(&short_channel_id)
1954         }
1955
1956         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1957         /// Returns the list of channels in the graph
1958         pub fn list_channels(&self) -> Vec<u64> {
1959                 self.channels.unordered_keys().map(|c| *c).collect()
1960         }
1961
1962         /// Returns all known nodes' public keys along with announced node info.
1963         ///
1964         /// This is not exported to bindings users because we don't want to return lifetime'd references
1965         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1966                 &*self.nodes
1967         }
1968
1969         /// Returns information on a node with the given id.
1970         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1971                 self.nodes.get(node_id)
1972         }
1973
1974         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1975         /// Returns the list of nodes in the graph
1976         pub fn list_nodes(&self) -> Vec<NodeId> {
1977                 self.nodes.unordered_keys().map(|n| *n).collect()
1978         }
1979
1980         /// Get network addresses by node id.
1981         /// Returns None if the requested node is completely unknown,
1982         /// or if node announcement for the node was never received.
1983         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1984                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1985                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1986         }
1987 }
1988
1989 #[cfg(test)]
1990 pub(crate) mod tests {
1991         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
1992         use crate::ln::channelmanager;
1993         use crate::ln::chan_utils::make_funding_redeemscript;
1994         #[cfg(feature = "std")]
1995         use crate::ln::features::InitFeatures;
1996         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1997         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1998         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1999                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2000                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2001         use crate::util::config::UserConfig;
2002         use crate::util::test_utils;
2003         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2004         use crate::util::scid_utils::scid_from_parts;
2005
2006         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2007         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2008
2009         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2010         use bitcoin::hashes::Hash;
2011         use bitcoin::network::constants::Network;
2012         use bitcoin::blockdata::constants::genesis_block;
2013         use bitcoin::blockdata::script::Script;
2014         use bitcoin::blockdata::transaction::TxOut;
2015
2016         use hex;
2017
2018         use bitcoin::secp256k1::{PublicKey, SecretKey};
2019         use bitcoin::secp256k1::{All, Secp256k1};
2020
2021         use crate::io;
2022         use bitcoin::secp256k1;
2023         use crate::prelude::*;
2024         use crate::sync::Arc;
2025
2026         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2027                 let logger = Arc::new(test_utils::TestLogger::new());
2028                 NetworkGraph::new(Network::Testnet, logger)
2029         }
2030
2031         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2032                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2033                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2034         ) {
2035                 let secp_ctx = Secp256k1::new();
2036                 let logger = Arc::new(test_utils::TestLogger::new());
2037                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2038                 (secp_ctx, gossip_sync)
2039         }
2040
2041         #[test]
2042         #[cfg(feature = "std")]
2043         fn request_full_sync_finite_times() {
2044                 let network_graph = create_network_graph();
2045                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2046                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2047
2048                 assert!(gossip_sync.should_request_full_sync(&node_id));
2049                 assert!(gossip_sync.should_request_full_sync(&node_id));
2050                 assert!(gossip_sync.should_request_full_sync(&node_id));
2051                 assert!(gossip_sync.should_request_full_sync(&node_id));
2052                 assert!(gossip_sync.should_request_full_sync(&node_id));
2053                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2054         }
2055
2056         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2057                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2058                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2059                         features: channelmanager::provided_node_features(&UserConfig::default()),
2060                         timestamp: 100,
2061                         node_id,
2062                         rgb: [0; 3],
2063                         alias: [0; 32],
2064                         addresses: Vec::new(),
2065                         excess_address_data: Vec::new(),
2066                         excess_data: Vec::new(),
2067                 };
2068                 f(&mut unsigned_announcement);
2069                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2070                 NodeAnnouncement {
2071                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2072                         contents: unsigned_announcement
2073                 }
2074         }
2075
2076         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2077                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2078                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2079                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2080                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2081
2082                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2083                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2084                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2085                         short_channel_id: 0,
2086                         node_id_1: NodeId::from_pubkey(&node_id_1),
2087                         node_id_2: NodeId::from_pubkey(&node_id_2),
2088                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2089                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2090                         excess_data: Vec::new(),
2091                 };
2092                 f(&mut unsigned_announcement);
2093                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2094                 ChannelAnnouncement {
2095                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2096                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2097                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2098                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2099                         contents: unsigned_announcement,
2100                 }
2101         }
2102
2103         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2104                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2105                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2106                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2107                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2108         }
2109
2110         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2111                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2112                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2113                         short_channel_id: 0,
2114                         timestamp: 100,
2115                         flags: 0,
2116                         cltv_expiry_delta: 144,
2117                         htlc_minimum_msat: 1_000_000,
2118                         htlc_maximum_msat: 1_000_000,
2119                         fee_base_msat: 10_000,
2120                         fee_proportional_millionths: 20,
2121                         excess_data: Vec::new()
2122                 };
2123                 f(&mut unsigned_channel_update);
2124                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2125                 ChannelUpdate {
2126                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2127                         contents: unsigned_channel_update
2128                 }
2129         }
2130
2131         #[test]
2132         fn handling_node_announcements() {
2133                 let network_graph = create_network_graph();
2134                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2135
2136                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2137                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2138                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2139
2140                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2141                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2142                         Ok(_) => panic!(),
2143                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2144                 };
2145
2146                 {
2147                         // Announce a channel to add a corresponding node.
2148                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2149                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2150                                 Ok(res) => assert!(res),
2151                                 _ => panic!()
2152                         };
2153                 }
2154
2155                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2156                         Ok(res) => assert!(res),
2157                         Err(_) => panic!()
2158                 };
2159
2160                 let fake_msghash = hash_to_message!(&zero_hash);
2161                 match gossip_sync.handle_node_announcement(
2162                         &NodeAnnouncement {
2163                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2164                                 contents: valid_announcement.contents.clone()
2165                 }) {
2166                         Ok(_) => panic!(),
2167                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2168                 };
2169
2170                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2171                         unsigned_announcement.timestamp += 1000;
2172                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2173                 }, node_1_privkey, &secp_ctx);
2174                 // Return false because contains excess data.
2175                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2176                         Ok(res) => assert!(!res),
2177                         Err(_) => panic!()
2178                 };
2179
2180                 // Even though previous announcement was not relayed further, we still accepted it,
2181                 // so we now won't accept announcements before the previous one.
2182                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2183                         unsigned_announcement.timestamp += 1000 - 10;
2184                 }, node_1_privkey, &secp_ctx);
2185                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2186                         Ok(_) => panic!(),
2187                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2188                 };
2189         }
2190
2191         #[test]
2192         fn handling_channel_announcements() {
2193                 let secp_ctx = Secp256k1::new();
2194                 let logger = test_utils::TestLogger::new();
2195
2196                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2197                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2198
2199                 let good_script = get_channel_script(&secp_ctx);
2200                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2201
2202                 // Test if the UTXO lookups were not supported
2203                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2204                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2205                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2206                         Ok(res) => assert!(res),
2207                         _ => panic!()
2208                 };
2209
2210                 {
2211                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2212                                 None => panic!(),
2213                                 Some(_) => ()
2214                         };
2215                 }
2216
2217                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2218                 // drop new one on the floor, since we can't see any changes.
2219                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2220                         Ok(_) => panic!(),
2221                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2222                 };
2223
2224                 // Test if an associated transaction were not on-chain (or not confirmed).
2225                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2226                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2227                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2228                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2229
2230                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2231                         unsigned_announcement.short_channel_id += 1;
2232                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2233                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2234                         Ok(_) => panic!(),
2235                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2236                 };
2237
2238                 // Now test if the transaction is found in the UTXO set and the script is correct.
2239                 *chain_source.utxo_ret.lock().unwrap() =
2240                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2241                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2242                         unsigned_announcement.short_channel_id += 2;
2243                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2244                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2245                         Ok(res) => assert!(res),
2246                         _ => panic!()
2247                 };
2248
2249                 {
2250                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2251                                 None => panic!(),
2252                                 Some(_) => ()
2253                         };
2254                 }
2255
2256                 // If we receive announcement for the same channel, once we've validated it against the
2257                 // chain, we simply ignore all new (duplicate) announcements.
2258                 *chain_source.utxo_ret.lock().unwrap() =
2259                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2260                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2261                         Ok(_) => panic!(),
2262                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2263                 };
2264
2265                 #[cfg(feature = "std")]
2266                 {
2267                         use std::time::{SystemTime, UNIX_EPOCH};
2268
2269                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2270                         // Mark a node as permanently failed so it's tracked as removed.
2271                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2272
2273                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2274                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2275                                 unsigned_announcement.short_channel_id += 3;
2276                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2277                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2278                                 Ok(_) => panic!(),
2279                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2280                         }
2281
2282                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2283
2284                         // The above channel announcement should be handled as per normal now.
2285                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2286                                 Ok(res) => assert!(res),
2287                                 _ => panic!()
2288                         }
2289                 }
2290
2291                 // Don't relay valid channels with excess data
2292                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2293                         unsigned_announcement.short_channel_id += 4;
2294                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2295                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2296                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2297                         Ok(res) => assert!(!res),
2298                         _ => panic!()
2299                 };
2300
2301                 let mut invalid_sig_announcement = valid_announcement.clone();
2302                 invalid_sig_announcement.contents.excess_data = Vec::new();
2303                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2304                         Ok(_) => panic!(),
2305                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2306                 };
2307
2308                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2309                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2310                         Ok(_) => panic!(),
2311                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2312                 };
2313         }
2314
2315         #[test]
2316         fn handling_channel_update() {
2317                 let secp_ctx = Secp256k1::new();
2318                 let logger = test_utils::TestLogger::new();
2319                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2320                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2321                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2322
2323                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2324                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2325
2326                 let amount_sats = 1000_000;
2327                 let short_channel_id;
2328
2329                 {
2330                         // Announce a channel we will update
2331                         let good_script = get_channel_script(&secp_ctx);
2332                         *chain_source.utxo_ret.lock().unwrap() =
2333                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2334
2335                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2336                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2337                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2338                                 Ok(_) => (),
2339                                 Err(_) => panic!()
2340                         };
2341
2342                 }
2343
2344                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2345                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2346                         Ok(res) => assert!(res),
2347                         _ => panic!(),
2348                 };
2349
2350                 {
2351                         match network_graph.read_only().channels().get(&short_channel_id) {
2352                                 None => panic!(),
2353                                 Some(channel_info) => {
2354                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2355                                         assert!(channel_info.two_to_one.is_none());
2356                                 }
2357                         };
2358                 }
2359
2360                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2361                         unsigned_channel_update.timestamp += 100;
2362                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2363                 }, node_1_privkey, &secp_ctx);
2364                 // Return false because contains excess data
2365                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2366                         Ok(res) => assert!(!res),
2367                         _ => panic!()
2368                 };
2369
2370                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2371                         unsigned_channel_update.timestamp += 110;
2372                         unsigned_channel_update.short_channel_id += 1;
2373                 }, node_1_privkey, &secp_ctx);
2374                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2375                         Ok(_) => panic!(),
2376                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2377                 };
2378
2379                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2380                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2381                         unsigned_channel_update.timestamp += 110;
2382                 }, node_1_privkey, &secp_ctx);
2383                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2384                         Ok(_) => panic!(),
2385                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2386                 };
2387
2388                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2389                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2390                         unsigned_channel_update.timestamp += 110;
2391                 }, node_1_privkey, &secp_ctx);
2392                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2393                         Ok(_) => panic!(),
2394                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2395                 };
2396
2397                 // Even though previous update was not relayed further, we still accepted it,
2398                 // so we now won't accept update before the previous one.
2399                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2400                         unsigned_channel_update.timestamp += 100;
2401                 }, node_1_privkey, &secp_ctx);
2402                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2403                         Ok(_) => panic!(),
2404                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2405                 };
2406
2407                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2408                         unsigned_channel_update.timestamp += 500;
2409                 }, node_1_privkey, &secp_ctx);
2410                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2411                 let fake_msghash = hash_to_message!(&zero_hash);
2412                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2413                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2414                         Ok(_) => panic!(),
2415                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2416                 };
2417         }
2418
2419         #[test]
2420         fn handling_network_update() {
2421                 let logger = test_utils::TestLogger::new();
2422                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2423                 let secp_ctx = Secp256k1::new();
2424
2425                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2426                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2427                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2428
2429                 {
2430                         // There is no nodes in the table at the beginning.
2431                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2432                 }
2433
2434                 let short_channel_id;
2435                 {
2436                         // Announce a channel we will update
2437                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2438                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2439                         let chain_source: Option<&test_utils::TestChainSource> = None;
2440                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2441                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2442
2443                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2444                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2445
2446                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2447                                 msg: valid_channel_update,
2448                         });
2449
2450                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2451                 }
2452
2453                 // Non-permanent closing just disables a channel
2454                 {
2455                         match network_graph.read_only().channels().get(&short_channel_id) {
2456                                 None => panic!(),
2457                                 Some(channel_info) => {
2458                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2459                                 }
2460                         };
2461
2462                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2463                                 short_channel_id,
2464                                 is_permanent: false,
2465                         });
2466
2467                         match network_graph.read_only().channels().get(&short_channel_id) {
2468                                 None => panic!(),
2469                                 Some(channel_info) => {
2470                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2471                                 }
2472                         };
2473                 }
2474
2475                 // Permanent closing deletes a channel
2476                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2477                         short_channel_id,
2478                         is_permanent: true,
2479                 });
2480
2481                 assert_eq!(network_graph.read_only().channels().len(), 0);
2482                 // Nodes are also deleted because there are no associated channels anymore
2483                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2484
2485                 {
2486                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2487                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2488
2489                         // Announce a channel to test permanent node failure
2490                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2491                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2492                         let chain_source: Option<&test_utils::TestChainSource> = None;
2493                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2494                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2495
2496                         // Non-permanent node failure does not delete any nodes or channels
2497                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2498                                 node_id: node_2_id,
2499                                 is_permanent: false,
2500                         });
2501
2502                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2503                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2504
2505                         // Permanent node failure deletes node and its channels
2506                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2507                                 node_id: node_2_id,
2508                                 is_permanent: true,
2509                         });
2510
2511                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2512                         // Channels are also deleted because the associated node has been deleted
2513                         assert_eq!(network_graph.read_only().channels().len(), 0);
2514                 }
2515         }
2516
2517         #[test]
2518         fn test_channel_timeouts() {
2519                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2520                 let logger = test_utils::TestLogger::new();
2521                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2522                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2523                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2524                 let secp_ctx = Secp256k1::new();
2525
2526                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2527                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2528
2529                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2530                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2531                 let chain_source: Option<&test_utils::TestChainSource> = None;
2532                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2533                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2534
2535                 // Submit two channel updates for each channel direction (update.flags bit).
2536                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2537                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2538                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2539
2540                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2541                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2542                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2543
2544                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2545                 assert_eq!(network_graph.read_only().channels().len(), 1);
2546                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2547
2548                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2549                 #[cfg(not(feature = "std"))] {
2550                         // Make sure removed channels are tracked.
2551                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2552                 }
2553                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2554                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2555
2556                 #[cfg(feature = "std")]
2557                 {
2558                         // In std mode, a further check is performed before fully removing the channel -
2559                         // the channel_announcement must have been received at least two weeks ago. We
2560                         // fudge that here by indicating the time has jumped two weeks.
2561                         assert_eq!(network_graph.read_only().channels().len(), 1);
2562                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2563
2564                         // Note that the directional channel information will have been removed already..
2565                         // We want to check that this will work even if *one* of the channel updates is recent,
2566                         // so we should add it with a recent timestamp.
2567                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2568                         use std::time::{SystemTime, UNIX_EPOCH};
2569                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2570                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2571                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2572                         }, node_1_privkey, &secp_ctx);
2573                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2574                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2575                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2576                         // Make sure removed channels are tracked.
2577                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2578                         // Provide a later time so that sufficient time has passed
2579                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2580                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2581                 }
2582
2583                 assert_eq!(network_graph.read_only().channels().len(), 0);
2584                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2585                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2586
2587                 #[cfg(feature = "std")]
2588                 {
2589                         use std::time::{SystemTime, UNIX_EPOCH};
2590
2591                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2592
2593                         // Clear tracked nodes and channels for clean slate
2594                         network_graph.removed_channels.lock().unwrap().clear();
2595                         network_graph.removed_nodes.lock().unwrap().clear();
2596
2597                         // Add a channel and nodes from channel announcement. So our network graph will
2598                         // now only consist of two nodes and one channel between them.
2599                         assert!(network_graph.update_channel_from_announcement(
2600                                 &valid_channel_announcement, &chain_source).is_ok());
2601
2602                         // Mark the channel as permanently failed. This will also remove the two nodes
2603                         // and all of the entries will be tracked as removed.
2604                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2605
2606                         // Should not remove from tracking if insufficient time has passed
2607                         network_graph.remove_stale_channels_and_tracking_with_time(
2608                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2609                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2610
2611                         // Provide a later time so that sufficient time has passed
2612                         network_graph.remove_stale_channels_and_tracking_with_time(
2613                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2614                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2615                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2616                 }
2617
2618                 #[cfg(not(feature = "std"))]
2619                 {
2620                         // When we don't have access to the system clock, the time we started tracking removal will only
2621                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2622                         // only if sufficient time has passed after that first call, will the next call remove it from
2623                         // tracking.
2624                         let removal_time = 1664619654;
2625
2626                         // Clear removed nodes and channels for clean slate
2627                         network_graph.removed_channels.lock().unwrap().clear();
2628                         network_graph.removed_nodes.lock().unwrap().clear();
2629
2630                         // Add a channel and nodes from channel announcement. So our network graph will
2631                         // now only consist of two nodes and one channel between them.
2632                         assert!(network_graph.update_channel_from_announcement(
2633                                 &valid_channel_announcement, &chain_source).is_ok());
2634
2635                         // Mark the channel as permanently failed. This will also remove the two nodes
2636                         // and all of the entries will be tracked as removed.
2637                         network_graph.channel_failed(short_channel_id, true);
2638
2639                         // The first time we call the following, the channel will have a removal time assigned.
2640                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2641                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2642
2643                         // Provide a later time so that sufficient time has passed
2644                         network_graph.remove_stale_channels_and_tracking_with_time(
2645                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2646                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2647                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2648                 }
2649         }
2650
2651         #[test]
2652         fn getting_next_channel_announcements() {
2653                 let network_graph = create_network_graph();
2654                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2655                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2656                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2657
2658                 // Channels were not announced yet.
2659                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2660                 assert!(channels_with_announcements.is_none());
2661
2662                 let short_channel_id;
2663                 {
2664                         // Announce a channel we will update
2665                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2666                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2667                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2668                                 Ok(_) => (),
2669                                 Err(_) => panic!()
2670                         };
2671                 }
2672
2673                 // Contains initial channel announcement now.
2674                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2675                 if let Some(channel_announcements) = channels_with_announcements {
2676                         let (_, ref update_1, ref update_2) = channel_announcements;
2677                         assert_eq!(update_1, &None);
2678                         assert_eq!(update_2, &None);
2679                 } else {
2680                         panic!();
2681                 }
2682
2683                 {
2684                         // Valid channel update
2685                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2686                                 unsigned_channel_update.timestamp = 101;
2687                         }, node_1_privkey, &secp_ctx);
2688                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2689                                 Ok(_) => (),
2690                                 Err(_) => panic!()
2691                         };
2692                 }
2693
2694                 // Now contains an initial announcement and an update.
2695                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2696                 if let Some(channel_announcements) = channels_with_announcements {
2697                         let (_, ref update_1, ref update_2) = channel_announcements;
2698                         assert_ne!(update_1, &None);
2699                         assert_eq!(update_2, &None);
2700                 } else {
2701                         panic!();
2702                 }
2703
2704                 {
2705                         // Channel update with excess data.
2706                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2707                                 unsigned_channel_update.timestamp = 102;
2708                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2709                         }, node_1_privkey, &secp_ctx);
2710                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2711                                 Ok(_) => (),
2712                                 Err(_) => panic!()
2713                         };
2714                 }
2715
2716                 // Test that announcements with excess data won't be returned
2717                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2718                 if let Some(channel_announcements) = channels_with_announcements {
2719                         let (_, ref update_1, ref update_2) = channel_announcements;
2720                         assert_eq!(update_1, &None);
2721                         assert_eq!(update_2, &None);
2722                 } else {
2723                         panic!();
2724                 }
2725
2726                 // Further starting point have no channels after it
2727                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2728                 assert!(channels_with_announcements.is_none());
2729         }
2730
2731         #[test]
2732         fn getting_next_node_announcements() {
2733                 let network_graph = create_network_graph();
2734                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2735                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2736                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2737                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2738
2739                 // No nodes yet.
2740                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2741                 assert!(next_announcements.is_none());
2742
2743                 {
2744                         // Announce a channel to add 2 nodes
2745                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2746                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2747                                 Ok(_) => (),
2748                                 Err(_) => panic!()
2749                         };
2750                 }
2751
2752                 // Nodes were never announced
2753                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2754                 assert!(next_announcements.is_none());
2755
2756                 {
2757                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2758                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2759                                 Ok(_) => (),
2760                                 Err(_) => panic!()
2761                         };
2762
2763                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2764                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2765                                 Ok(_) => (),
2766                                 Err(_) => panic!()
2767                         };
2768                 }
2769
2770                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2771                 assert!(next_announcements.is_some());
2772
2773                 // Skip the first node.
2774                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2775                 assert!(next_announcements.is_some());
2776
2777                 {
2778                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2779                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2780                                 unsigned_announcement.timestamp += 10;
2781                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2782                         }, node_2_privkey, &secp_ctx);
2783                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2784                                 Ok(res) => assert!(!res),
2785                                 Err(_) => panic!()
2786                         };
2787                 }
2788
2789                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2790                 assert!(next_announcements.is_none());
2791         }
2792
2793         #[test]
2794         fn network_graph_serialization() {
2795                 let network_graph = create_network_graph();
2796                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2797
2798                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2799                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2800
2801                 // Announce a channel to add a corresponding node.
2802                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2803                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2804                         Ok(res) => assert!(res),
2805                         _ => panic!()
2806                 };
2807
2808                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2809                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2810                         Ok(_) => (),
2811                         Err(_) => panic!()
2812                 };
2813
2814                 let mut w = test_utils::TestVecWriter(Vec::new());
2815                 assert!(!network_graph.read_only().nodes().is_empty());
2816                 assert!(!network_graph.read_only().channels().is_empty());
2817                 network_graph.write(&mut w).unwrap();
2818
2819                 let logger = Arc::new(test_utils::TestLogger::new());
2820                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2821         }
2822
2823         #[test]
2824         fn network_graph_tlv_serialization() {
2825                 let network_graph = create_network_graph();
2826                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2827
2828                 let mut w = test_utils::TestVecWriter(Vec::new());
2829                 network_graph.write(&mut w).unwrap();
2830
2831                 let logger = Arc::new(test_utils::TestLogger::new());
2832                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2833                 assert!(reassembled_network_graph == network_graph);
2834                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2835         }
2836
2837         #[test]
2838         #[cfg(feature = "std")]
2839         fn calling_sync_routing_table() {
2840                 use std::time::{SystemTime, UNIX_EPOCH};
2841                 use crate::ln::msgs::Init;
2842
2843                 let network_graph = create_network_graph();
2844                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2845                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2846                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2847
2848                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2849
2850                 // It should ignore if gossip_queries feature is not enabled
2851                 {
2852                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2853                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2854                         let events = gossip_sync.get_and_clear_pending_msg_events();
2855                         assert_eq!(events.len(), 0);
2856                 }
2857
2858                 // It should send a gossip_timestamp_filter with the correct information
2859                 {
2860                         let mut features = InitFeatures::empty();
2861                         features.set_gossip_queries_optional();
2862                         let init_msg = Init { features, remote_network_address: None };
2863                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2864                         let events = gossip_sync.get_and_clear_pending_msg_events();
2865                         assert_eq!(events.len(), 1);
2866                         match &events[0] {
2867                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2868                                         assert_eq!(node_id, &node_id_1);
2869                                         assert_eq!(msg.chain_hash, chain_hash);
2870                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2871                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2872                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2873                                         assert_eq!(msg.timestamp_range, u32::max_value());
2874                                 },
2875                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2876                         };
2877                 }
2878         }
2879
2880         #[test]
2881         fn handling_query_channel_range() {
2882                 let network_graph = create_network_graph();
2883                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2884
2885                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2886                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2887                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2888                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2889
2890                 let mut scids: Vec<u64> = vec![
2891                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2892                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2893                 ];
2894
2895                 // used for testing multipart reply across blocks
2896                 for block in 100000..=108001 {
2897                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2898                 }
2899
2900                 // used for testing resumption on same block
2901                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2902
2903                 for scid in scids {
2904                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2905                                 unsigned_announcement.short_channel_id = scid;
2906                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2907                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2908                                 Ok(_) => (),
2909                                 _ => panic!()
2910                         };
2911                 }
2912
2913                 // Error when number_of_blocks=0
2914                 do_handling_query_channel_range(
2915                         &gossip_sync,
2916                         &node_id_2,
2917                         QueryChannelRange {
2918                                 chain_hash: chain_hash.clone(),
2919                                 first_blocknum: 0,
2920                                 number_of_blocks: 0,
2921                         },
2922                         false,
2923                         vec![ReplyChannelRange {
2924                                 chain_hash: chain_hash.clone(),
2925                                 first_blocknum: 0,
2926                                 number_of_blocks: 0,
2927                                 sync_complete: true,
2928                                 short_channel_ids: vec![]
2929                         }]
2930                 );
2931
2932                 // Error when wrong chain
2933                 do_handling_query_channel_range(
2934                         &gossip_sync,
2935                         &node_id_2,
2936                         QueryChannelRange {
2937                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2938                                 first_blocknum: 0,
2939                                 number_of_blocks: 0xffff_ffff,
2940                         },
2941                         false,
2942                         vec![ReplyChannelRange {
2943                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2944                                 first_blocknum: 0,
2945                                 number_of_blocks: 0xffff_ffff,
2946                                 sync_complete: true,
2947                                 short_channel_ids: vec![],
2948                         }]
2949                 );
2950
2951                 // Error when first_blocknum > 0xffffff
2952                 do_handling_query_channel_range(
2953                         &gossip_sync,
2954                         &node_id_2,
2955                         QueryChannelRange {
2956                                 chain_hash: chain_hash.clone(),
2957                                 first_blocknum: 0x01000000,
2958                                 number_of_blocks: 0xffff_ffff,
2959                         },
2960                         false,
2961                         vec![ReplyChannelRange {
2962                                 chain_hash: chain_hash.clone(),
2963                                 first_blocknum: 0x01000000,
2964                                 number_of_blocks: 0xffff_ffff,
2965                                 sync_complete: true,
2966                                 short_channel_ids: vec![]
2967                         }]
2968                 );
2969
2970                 // Empty reply when max valid SCID block num
2971                 do_handling_query_channel_range(
2972                         &gossip_sync,
2973                         &node_id_2,
2974                         QueryChannelRange {
2975                                 chain_hash: chain_hash.clone(),
2976                                 first_blocknum: 0xffffff,
2977                                 number_of_blocks: 1,
2978                         },
2979                         true,
2980                         vec![
2981                                 ReplyChannelRange {
2982                                         chain_hash: chain_hash.clone(),
2983                                         first_blocknum: 0xffffff,
2984                                         number_of_blocks: 1,
2985                                         sync_complete: true,
2986                                         short_channel_ids: vec![]
2987                                 },
2988                         ]
2989                 );
2990
2991                 // No results in valid query range
2992                 do_handling_query_channel_range(
2993                         &gossip_sync,
2994                         &node_id_2,
2995                         QueryChannelRange {
2996                                 chain_hash: chain_hash.clone(),
2997                                 first_blocknum: 1000,
2998                                 number_of_blocks: 1000,
2999                         },
3000                         true,
3001                         vec![
3002                                 ReplyChannelRange {
3003                                         chain_hash: chain_hash.clone(),
3004                                         first_blocknum: 1000,
3005                                         number_of_blocks: 1000,
3006                                         sync_complete: true,
3007                                         short_channel_ids: vec![],
3008                                 }
3009                         ]
3010                 );
3011
3012                 // Overflow first_blocknum + number_of_blocks
3013                 do_handling_query_channel_range(
3014                         &gossip_sync,
3015                         &node_id_2,
3016                         QueryChannelRange {
3017                                 chain_hash: chain_hash.clone(),
3018                                 first_blocknum: 0xfe0000,
3019                                 number_of_blocks: 0xffffffff,
3020                         },
3021                         true,
3022                         vec![
3023                                 ReplyChannelRange {
3024                                         chain_hash: chain_hash.clone(),
3025                                         first_blocknum: 0xfe0000,
3026                                         number_of_blocks: 0xffffffff - 0xfe0000,
3027                                         sync_complete: true,
3028                                         short_channel_ids: vec![
3029                                                 0xfffffe_ffffff_ffff, // max
3030                                         ]
3031                                 }
3032                         ]
3033                 );
3034
3035                 // Single block exactly full
3036                 do_handling_query_channel_range(
3037                         &gossip_sync,
3038                         &node_id_2,
3039                         QueryChannelRange {
3040                                 chain_hash: chain_hash.clone(),
3041                                 first_blocknum: 100000,
3042                                 number_of_blocks: 8000,
3043                         },
3044                         true,
3045                         vec![
3046                                 ReplyChannelRange {
3047                                         chain_hash: chain_hash.clone(),
3048                                         first_blocknum: 100000,
3049                                         number_of_blocks: 8000,
3050                                         sync_complete: true,
3051                                         short_channel_ids: (100000..=107999)
3052                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3053                                                 .collect(),
3054                                 },
3055                         ]
3056                 );
3057
3058                 // Multiple split on new block
3059                 do_handling_query_channel_range(
3060                         &gossip_sync,
3061                         &node_id_2,
3062                         QueryChannelRange {
3063                                 chain_hash: chain_hash.clone(),
3064                                 first_blocknum: 100000,
3065                                 number_of_blocks: 8001,
3066                         },
3067                         true,
3068                         vec![
3069                                 ReplyChannelRange {
3070                                         chain_hash: chain_hash.clone(),
3071                                         first_blocknum: 100000,
3072                                         number_of_blocks: 7999,
3073                                         sync_complete: false,
3074                                         short_channel_ids: (100000..=107999)
3075                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3076                                                 .collect(),
3077                                 },
3078                                 ReplyChannelRange {
3079                                         chain_hash: chain_hash.clone(),
3080                                         first_blocknum: 107999,
3081                                         number_of_blocks: 2,
3082                                         sync_complete: true,
3083                                         short_channel_ids: vec![
3084                                                 scid_from_parts(108000, 0, 0).unwrap(),
3085                                         ],
3086                                 }
3087                         ]
3088                 );
3089
3090                 // Multiple split on same block
3091                 do_handling_query_channel_range(
3092                         &gossip_sync,
3093                         &node_id_2,
3094                         QueryChannelRange {
3095                                 chain_hash: chain_hash.clone(),
3096                                 first_blocknum: 100002,
3097                                 number_of_blocks: 8000,
3098                         },
3099                         true,
3100                         vec![
3101                                 ReplyChannelRange {
3102                                         chain_hash: chain_hash.clone(),
3103                                         first_blocknum: 100002,
3104                                         number_of_blocks: 7999,
3105                                         sync_complete: false,
3106                                         short_channel_ids: (100002..=108001)
3107                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3108                                                 .collect(),
3109                                 },
3110                                 ReplyChannelRange {
3111                                         chain_hash: chain_hash.clone(),
3112                                         first_blocknum: 108001,
3113                                         number_of_blocks: 1,
3114                                         sync_complete: true,
3115                                         short_channel_ids: vec![
3116                                                 scid_from_parts(108001, 1, 0).unwrap(),
3117                                         ],
3118                                 }
3119                         ]
3120                 );
3121         }
3122
3123         fn do_handling_query_channel_range(
3124                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3125                 test_node_id: &PublicKey,
3126                 msg: QueryChannelRange,
3127                 expected_ok: bool,
3128                 expected_replies: Vec<ReplyChannelRange>
3129         ) {
3130                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3131                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3132                 let query_end_blocknum = msg.end_blocknum();
3133                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3134
3135                 if expected_ok {
3136                         assert!(result.is_ok());
3137                 } else {
3138                         assert!(result.is_err());
3139                 }
3140
3141                 let events = gossip_sync.get_and_clear_pending_msg_events();
3142                 assert_eq!(events.len(), expected_replies.len());
3143
3144                 for i in 0..events.len() {
3145                         let expected_reply = &expected_replies[i];
3146                         match &events[i] {
3147                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3148                                         assert_eq!(node_id, test_node_id);
3149                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3150                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3151                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3152                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3153                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3154
3155                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3156                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3157                                         assert!(msg.first_blocknum >= max_firstblocknum);
3158                                         max_firstblocknum = msg.first_blocknum;
3159                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3160
3161                                         // Check that the last block count is >= the query's end_blocknum
3162                                         if i == events.len() - 1 {
3163                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3164                                         }
3165                                 },
3166                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3167                         }
3168                 }
3169         }
3170
3171         #[test]
3172         fn handling_query_short_channel_ids() {
3173                 let network_graph = create_network_graph();
3174                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3175                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3176                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3177
3178                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3179
3180                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3181                         chain_hash,
3182                         short_channel_ids: vec![0x0003e8_000000_0000],
3183                 });
3184                 assert!(result.is_err());
3185         }
3186
3187         #[test]
3188         fn displays_node_alias() {
3189                 let format_str_alias = |alias: &str| {
3190                         let mut bytes = [0u8; 32];
3191                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3192                         format!("{}", NodeAlias(bytes))
3193                 };
3194
3195                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3196                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3197                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3198
3199                 let format_bytes_alias = |alias: &[u8]| {
3200                         let mut bytes = [0u8; 32];
3201                         bytes[..alias.len()].copy_from_slice(alias);
3202                         format!("{}", NodeAlias(bytes))
3203                 };
3204
3205                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3206                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3207                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3208         }
3209
3210         #[test]
3211         fn channel_info_is_readable() {
3212                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3213                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3214                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3215                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3216                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3217
3218                 // 1. Test encoding/decoding of ChannelUpdateInfo
3219                 let chan_update_info = ChannelUpdateInfo {
3220                         last_update: 23,
3221                         enabled: true,
3222                         cltv_expiry_delta: 42,
3223                         htlc_minimum_msat: 1234,
3224                         htlc_maximum_msat: 5678,
3225                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3226                         last_update_message: None,
3227                 };
3228
3229                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3230                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3231
3232                 // First make sure we can read ChannelUpdateInfos we just wrote
3233                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3234                 assert_eq!(chan_update_info, read_chan_update_info);
3235
3236                 // Check the serialization hasn't changed.
3237                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3238                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3239
3240                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3241                 // or the ChannelUpdate enclosed with `last_update_message`.
3242                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3243                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3244                 assert!(read_chan_update_info_res.is_err());
3245
3246                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3247                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3248                 assert!(read_chan_update_info_res.is_err());
3249
3250                 // 2. Test encoding/decoding of ChannelInfo
3251                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3252                 let chan_info_none_updates = ChannelInfo {
3253                         features: channelmanager::provided_channel_features(&config),
3254                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3255                         one_to_two: None,
3256                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3257                         two_to_one: None,
3258                         capacity_sats: None,
3259                         announcement_message: None,
3260                         announcement_received_time: 87654,
3261                 };
3262
3263                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3264                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3265
3266                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3267                 assert_eq!(chan_info_none_updates, read_chan_info);
3268
3269                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3270                 let chan_info_some_updates = ChannelInfo {
3271                         features: channelmanager::provided_channel_features(&config),
3272                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3273                         one_to_two: Some(chan_update_info.clone()),
3274                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3275                         two_to_one: Some(chan_update_info.clone()),
3276                         capacity_sats: None,
3277                         announcement_message: None,
3278                         announcement_received_time: 87654,
3279                 };
3280
3281                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3282                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3283
3284                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3285                 assert_eq!(chan_info_some_updates, read_chan_info);
3286
3287                 // Check the serialization hasn't changed.
3288                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3289                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3290
3291                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3292                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3293                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3294                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3295                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3296                 assert_eq!(read_chan_info.one_to_two, None);
3297                 assert_eq!(read_chan_info.two_to_one, None);
3298
3299                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3300                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3301                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3302                 assert_eq!(read_chan_info.one_to_two, None);
3303                 assert_eq!(read_chan_info.two_to_one, None);
3304         }
3305
3306         #[test]
3307         fn node_info_is_readable() {
3308                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3309                 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3310                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3311                 let valid_node_ann_info = NodeAnnouncementInfo {
3312                         features: channelmanager::provided_node_features(&UserConfig::default()),
3313                         last_update: 0,
3314                         rgb: [0u8; 3],
3315                         alias: NodeAlias([0u8; 32]),
3316                         announcement_message: Some(announcement_message)
3317                 };
3318
3319                 let mut encoded_valid_node_ann_info = Vec::new();
3320                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3321                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3322                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3323                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3324
3325                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3326                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3327                 assert!(read_invalid_node_ann_info_res.is_err());
3328
3329                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3330                 let valid_node_info = NodeInfo {
3331                         channels: Vec::new(),
3332                         announcement_info: Some(valid_node_ann_info),
3333                 };
3334
3335                 let mut encoded_valid_node_info = Vec::new();
3336                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3337                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3338                 assert_eq!(read_valid_node_info, valid_node_info);
3339
3340                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3341                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3342                 assert_eq!(read_invalid_node_info.announcement_info, None);
3343         }
3344
3345         #[test]
3346         fn test_node_info_keeps_compatibility() {
3347                 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3348                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3349                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3350                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3351                 assert!(ann_info_with_addresses.addresses().is_empty());
3352         }
3353 }
3354
3355 #[cfg(all(test, feature = "_bench_unstable"))]
3356 mod benches {
3357         use super::*;
3358
3359         use test::Bencher;
3360         use std::io::Read;
3361
3362         #[bench]
3363         fn read_network_graph(bench: &mut Bencher) {
3364                 let logger = crate::util::test_utils::TestLogger::new();
3365                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3366                 let mut v = Vec::new();
3367                 d.read_to_end(&mut v).unwrap();
3368                 bench.iter(|| {
3369                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3370                 });
3371         }
3372
3373         #[bench]
3374         fn write_network_graph(bench: &mut Bencher) {
3375                 let logger = crate::util::test_utils::TestLogger::new();
3376                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3377                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3378                 bench.iter(|| {
3379                         let _ = net_graph.encode();
3380                 });
3381         }
3382 }