Make peers sending gossip out of order logging less scary
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::blockdata::constants::ChainHash;
13
14 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
15 use bitcoin::secp256k1::{PublicKey, Verification};
16 use bitcoin::secp256k1::Secp256k1;
17 use bitcoin::secp256k1;
18
19 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
20 use bitcoin::hashes::Hash;
21 use bitcoin::network::constants::Network;
22
23 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
24 use crate::ln::ChannelId;
25 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, SocketAddress, MAX_VALUE_MSAT};
27 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use crate::ln::msgs;
30 use crate::routing::utxo::{self, UtxoLookup, UtxoResolver};
31 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
32 use crate::util::logger::{Logger, Level};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use core::convert::TryFrom;
42 use crate::sync::{RwLock, RwLockReadGuard, LockTestExt};
43 #[cfg(feature = "std")]
44 use core::sync::atomic::{AtomicUsize, Ordering};
45 use crate::sync::Mutex;
46 use core::ops::{Bound, Deref};
47 use core::str::FromStr;
48
49 #[cfg(feature = "std")]
50 use std::time::{SystemTime, UNIX_EPOCH};
51
52 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
53 /// suggestion.
54 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
55
56 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
57 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
58
59 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
60 /// refuse to relay the message.
61 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
62
63 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
64 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
65 const MAX_SCIDS_PER_REPLY: usize = 8000;
66
67 /// Represents the compressed public key of a node
68 #[derive(Clone, Copy)]
69 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
70
71 impl NodeId {
72         /// Create a new NodeId from a public key
73         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
74                 NodeId(pubkey.serialize())
75         }
76
77         /// Get the public key slice from this NodeId
78         pub fn as_slice(&self) -> &[u8] {
79                 &self.0
80         }
81
82         /// Get the public key as an array from this NodeId
83         pub fn as_array(&self) -> &[u8; PUBLIC_KEY_SIZE] {
84                 &self.0
85         }
86
87         /// Get the public key from this NodeId
88         pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
89                 PublicKey::from_slice(&self.0)
90         }
91 }
92
93 impl fmt::Debug for NodeId {
94         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
95                 write!(f, "NodeId({})", crate::util::logger::DebugBytes(&self.0))
96         }
97 }
98 impl fmt::Display for NodeId {
99         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
100                 crate::util::logger::DebugBytes(&self.0).fmt(f)
101         }
102 }
103
104 impl core::hash::Hash for NodeId {
105         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
106                 self.0.hash(hasher);
107         }
108 }
109
110 impl Eq for NodeId {}
111
112 impl PartialEq for NodeId {
113         fn eq(&self, other: &Self) -> bool {
114                 self.0[..] == other.0[..]
115         }
116 }
117
118 impl cmp::PartialOrd for NodeId {
119         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
120                 Some(self.cmp(other))
121         }
122 }
123
124 impl Ord for NodeId {
125         fn cmp(&self, other: &Self) -> cmp::Ordering {
126                 self.0[..].cmp(&other.0[..])
127         }
128 }
129
130 impl Writeable for NodeId {
131         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
132                 writer.write_all(&self.0)?;
133                 Ok(())
134         }
135 }
136
137 impl Readable for NodeId {
138         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
139                 let mut buf = [0; PUBLIC_KEY_SIZE];
140                 reader.read_exact(&mut buf)?;
141                 Ok(Self(buf))
142         }
143 }
144
145 impl From<PublicKey> for NodeId {
146         fn from(pubkey: PublicKey) -> Self {
147                 Self::from_pubkey(&pubkey)
148         }
149 }
150
151 impl TryFrom<NodeId> for PublicKey {
152         type Error = secp256k1::Error;
153
154         fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
155                 node_id.as_pubkey()
156         }
157 }
158
159 impl FromStr for NodeId {
160         type Err = hex::parse::HexToArrayError;
161
162         fn from_str(s: &str) -> Result<Self, Self::Err> {
163                 let data: [u8; PUBLIC_KEY_SIZE] = hex::FromHex::from_hex(s)?;
164                 Ok(NodeId(data))
165         }
166 }
167
168 /// Represents the network as nodes and channels between them
169 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
170         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
171         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
172         chain_hash: ChainHash,
173         logger: L,
174         // Lock order: channels -> nodes
175         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
176         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
177         // Lock order: removed_channels -> removed_nodes
178         //
179         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
180         // of `std::time::Instant`s for a few reasons:
181         //   * We want it to be possible to do tracking in no-std environments where we can compare
182         //     a provided current UNIX timestamp with the time at which we started tracking.
183         //   * In the future, if we decide to persist these maps, they will already be serializable.
184         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
185         //     environment should be practical over the time period we are considering (on the order of a
186         //     week).
187         //
188         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
189         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
190         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
191         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
192         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
193         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
194         /// that once some time passes, we can potentially resync it from gossip again.
195         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
196         /// Announcement messages which are awaiting an on-chain lookup to be processed.
197         pub(super) pending_checks: utxo::PendingChecks,
198 }
199
200 /// A read-only view of [`NetworkGraph`].
201 pub struct ReadOnlyNetworkGraph<'a> {
202         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
203         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
204 }
205
206 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
207 /// return packet by a node along the route. See [BOLT #4] for details.
208 ///
209 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
210 #[derive(Clone, Debug, PartialEq, Eq)]
211 pub enum NetworkUpdate {
212         /// An error indicating a `channel_update` messages should be applied via
213         /// [`NetworkGraph::update_channel`].
214         ChannelUpdateMessage {
215                 /// The update to apply via [`NetworkGraph::update_channel`].
216                 msg: ChannelUpdate,
217         },
218         /// An error indicating that a channel failed to route a payment, which should be applied via
219         /// [`NetworkGraph::channel_failed_permanent`] if permanent.
220         ChannelFailure {
221                 /// The short channel id of the closed channel.
222                 short_channel_id: u64,
223                 /// Whether the channel should be permanently removed or temporarily disabled until a new
224                 /// `channel_update` message is received.
225                 is_permanent: bool,
226         },
227         /// An error indicating that a node failed to route a payment, which should be applied via
228         /// [`NetworkGraph::node_failed_permanent`] if permanent.
229         NodeFailure {
230                 /// The node id of the failed node.
231                 node_id: PublicKey,
232                 /// Whether the node should be permanently removed from consideration or can be restored
233                 /// when a new `channel_update` message is received.
234                 is_permanent: bool,
235         }
236 }
237
238 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
239         (0, ChannelUpdateMessage) => {
240                 (0, msg, required),
241         },
242         (2, ChannelFailure) => {
243                 (0, short_channel_id, required),
244                 (2, is_permanent, required),
245         },
246         (4, NodeFailure) => {
247                 (0, node_id, required),
248                 (2, is_permanent, required),
249         },
250 );
251
252 /// Receives and validates network updates from peers,
253 /// stores authentic and relevant data as a network graph.
254 /// This network graph is then used for routing payments.
255 /// Provides interface to help with initial routing sync by
256 /// serving historical announcements.
257 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
258 where U::Target: UtxoLookup, L::Target: Logger
259 {
260         network_graph: G,
261         utxo_lookup: RwLock<Option<U>>,
262         #[cfg(feature = "std")]
263         full_syncs_requested: AtomicUsize,
264         pending_events: Mutex<Vec<MessageSendEvent>>,
265         logger: L,
266 }
267
268 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
269 where U::Target: UtxoLookup, L::Target: Logger
270 {
271         /// Creates a new tracker of the actual state of the network of channels and nodes,
272         /// assuming an existing [`NetworkGraph`].
273         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
274         /// correct, and the announcement is signed with channel owners' keys.
275         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
276                 P2PGossipSync {
277                         network_graph,
278                         #[cfg(feature = "std")]
279                         full_syncs_requested: AtomicUsize::new(0),
280                         utxo_lookup: RwLock::new(utxo_lookup),
281                         pending_events: Mutex::new(vec![]),
282                         logger,
283                 }
284         }
285
286         /// Adds a provider used to check new announcements. Does not affect
287         /// existing announcements unless they are updated.
288         /// Add, update or remove the provider would replace the current one.
289         pub fn add_utxo_lookup(&self, utxo_lookup: Option<U>) {
290                 *self.utxo_lookup.write().unwrap() = utxo_lookup;
291         }
292
293         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
294         /// [`P2PGossipSync::new`].
295         ///
296         /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
297         pub fn network_graph(&self) -> &G {
298                 &self.network_graph
299         }
300
301         #[cfg(feature = "std")]
302         /// Returns true when a full routing table sync should be performed with a peer.
303         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
304                 //TODO: Determine whether to request a full sync based on the network map.
305                 const FULL_SYNCS_TO_REQUEST: usize = 5;
306                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
307                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
308                         true
309                 } else {
310                         false
311                 }
312         }
313
314         /// Used to broadcast forward gossip messages which were validated async.
315         ///
316         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
317         /// data.
318         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
319                 match &mut ev {
320                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
321                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
322                                 if update_msg.as_ref()
323                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
324                                 {
325                                         *update_msg = None;
326                                 }
327                         },
328                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
329                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
330                         },
331                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
332                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
333                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
334                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
335                                 {
336                                         return;
337                                 }
338                         },
339                         _ => return,
340                 }
341                 self.pending_events.lock().unwrap().push(ev);
342         }
343 }
344
345 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
346         /// Handles any network updates originating from [`Event`]s.
347         //
348         /// Note that this will skip applying any [`NetworkUpdate::ChannelUpdateMessage`] to avoid
349         /// leaking possibly identifying information of the sender to the public network.
350         ///
351         /// [`Event`]: crate::events::Event
352         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
353                 match *network_update {
354                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
355                                 let short_channel_id = msg.contents.short_channel_id;
356                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
357                                 let status = if is_enabled { "enabled" } else { "disabled" };
358                                 log_debug!(self.logger, "Skipping application of a channel update from a payment failure. Channel {} is {}.", short_channel_id, status);
359                         },
360                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
361                                 if is_permanent {
362                                         log_debug!(self.logger, "Removing channel graph entry for {} due to a payment failure.", short_channel_id);
363                                         self.channel_failed_permanent(short_channel_id);
364                                 }
365                         },
366                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
367                                 if is_permanent {
368                                         log_debug!(self.logger,
369                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
370                                         self.node_failed_permanent(node_id);
371                                 };
372                         },
373                 }
374         }
375
376         /// Gets the chain hash for this network graph.
377         pub fn get_chain_hash(&self) -> ChainHash {
378                 self.chain_hash
379         }
380 }
381
382 macro_rules! secp_verify_sig {
383         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
384                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
385                         Ok(_) => {},
386                         Err(_) => {
387                                 return Err(LightningError {
388                                         err: format!("Invalid signature on {} message", $msg_type),
389                                         action: ErrorAction::SendWarningMessage {
390                                                 msg: msgs::WarningMessage {
391                                                         channel_id: ChannelId::new_zero(),
392                                                         data: format!("Invalid signature on {} message", $msg_type),
393                                                 },
394                                                 log_level: Level::Trace,
395                                         },
396                                 });
397                         },
398                 }
399         };
400 }
401
402 macro_rules! get_pubkey_from_node_id {
403         ( $node_id: expr, $msg_type: expr ) => {
404                 PublicKey::from_slice($node_id.as_slice())
405                         .map_err(|_| LightningError {
406                                 err: format!("Invalid public key on {} message", $msg_type),
407                                 action: ErrorAction::SendWarningMessage {
408                                         msg: msgs::WarningMessage {
409                                                 channel_id: ChannelId::new_zero(),
410                                                 data: format!("Invalid public key on {} message", $msg_type),
411                                         },
412                                         log_level: Level::Trace
413                                 }
414                         })?
415         }
416 }
417
418 fn message_sha256d_hash<M: Writeable>(msg: &M) -> Sha256dHash {
419         let mut engine = Sha256dHash::engine();
420         msg.write(&mut engine).expect("In-memory structs should not fail to serialize");
421         Sha256dHash::from_engine(engine)
422 }
423
424 /// Verifies the signature of a [`NodeAnnouncement`].
425 ///
426 /// Returns an error if it is invalid.
427 pub fn verify_node_announcement<C: Verification>(msg: &NodeAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
428         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
429         secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
430
431         Ok(())
432 }
433
434 /// Verifies all signatures included in a [`ChannelAnnouncement`].
435 ///
436 /// Returns an error if one of the signatures is invalid.
437 pub fn verify_channel_announcement<C: Verification>(msg: &ChannelAnnouncement, secp_ctx: &Secp256k1<C>) -> Result<(), LightningError> {
438         let msg_hash = hash_to_message!(&message_sha256d_hash(&msg.contents)[..]);
439         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
440         secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
441         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
442         secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
443
444         Ok(())
445 }
446
447 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
448 where U::Target: UtxoLookup, L::Target: Logger
449 {
450         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
451                 self.network_graph.update_node_from_announcement(msg)?;
452                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
453                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
454                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
455         }
456
457         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
458                 self.network_graph.update_channel_from_announcement(msg, &*self.utxo_lookup.read().unwrap())?;
459                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
460         }
461
462         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
463                 self.network_graph.update_channel(msg)?;
464                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
465         }
466
467         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
468                 let mut channels = self.network_graph.channels.write().unwrap();
469                 for (_, ref chan) in channels.range(starting_point..) {
470                         if chan.announcement_message.is_some() {
471                                 let chan_announcement = chan.announcement_message.clone().unwrap();
472                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
473                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
474                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
475                                         one_to_two_announcement = one_to_two.last_update_message.clone();
476                                 }
477                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
478                                         two_to_one_announcement = two_to_one.last_update_message.clone();
479                                 }
480                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
481                         } else {
482                                 // TODO: We may end up sending un-announced channel_updates if we are sending
483                                 // initial sync data while receiving announce/updates for this channel.
484                         }
485                 }
486                 None
487         }
488
489         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
490                 let mut nodes = self.network_graph.nodes.write().unwrap();
491                 let iter = if let Some(node_id) = starting_point {
492                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
493                         } else {
494                                 nodes.range(..)
495                         };
496                 for (_, ref node) in iter {
497                         if let Some(node_info) = node.announcement_info.as_ref() {
498                                 if let Some(msg) = node_info.announcement_message.clone() {
499                                         return Some(msg);
500                                 }
501                         }
502                 }
503                 None
504         }
505
506         /// Initiates a stateless sync of routing gossip information with a peer
507         /// using [`gossip_queries`]. The default strategy used by this implementation
508         /// is to sync the full block range with several peers.
509         ///
510         /// We should expect one or more [`reply_channel_range`] messages in response
511         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
512         /// to request gossip messages for each channel. The sync is considered complete
513         /// when the final [`reply_scids_end`] message is received, though we are not
514         /// tracking this directly.
515         ///
516         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
517         /// [`reply_channel_range`]: msgs::ReplyChannelRange
518         /// [`query_channel_range`]: msgs::QueryChannelRange
519         /// [`query_scid`]: msgs::QueryShortChannelIds
520         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
521         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
522                 // We will only perform a sync with peers that support gossip_queries.
523                 if !init_msg.features.supports_gossip_queries() {
524                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
525                         // channels with peers even without being able to exchange gossip.
526                         return Ok(());
527                 }
528
529                 // The lightning network's gossip sync system is completely broken in numerous ways.
530                 //
531                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
532                 // to do a full sync from the first few peers we connect to, and then receive gossip
533                 // updates from all our peers normally.
534                 //
535                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
536                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
537                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
538                 // seen.
539                 //
540                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
541                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
542                 // channel data which you are missing. Except there was no way at all to identify which
543                 // `channel_update`s you were missing, so you still had to request everything, just in a
544                 // very complicated way with some queries instead of just getting the dump.
545                 //
546                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
547                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
548                 // relying on it useless.
549                 //
550                 // After gossip queries were introduced, support for receiving a full gossip table dump on
551                 // connection was removed from several nodes, making it impossible to get a full sync
552                 // without using the "gossip queries" messages.
553                 //
554                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
555                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
556                 // message, as the name implies, tells the peer to not forward any gossip messages with a
557                 // timestamp older than a given value (not the time the peer received the filter, but the
558                 // timestamp in the update message, which is often hours behind when the peer received the
559                 // message).
560                 //
561                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
562                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
563                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
564                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
565                 // will simply not forward any new updates they see to you which were generated some time
566                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
567                 // ago), you will always get the full routing graph from all your peers.
568                 //
569                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
570                 // propagated some time after it was generated, and, worse, often disable gossiping with
571                 // several peers after their first connection. The second behavior can cause gossip to not
572                 // propagate fully if there are cuts in the gossiping subgraph.
573                 //
574                 // In an attempt to cut a middle ground between always fetching the full graph from all of
575                 // our peers and never receiving gossip from peers at all, we send all of our peers a
576                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
577                 //
578                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
579                 #[allow(unused_mut, unused_assignments)]
580                 let mut gossip_start_time = 0;
581                 #[cfg(feature = "std")]
582                 {
583                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
584                         if self.should_request_full_sync(&their_node_id) {
585                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
586                         } else {
587                                 gossip_start_time -= 60 * 60; // an hour ago
588                         }
589                 }
590
591                 let mut pending_events = self.pending_events.lock().unwrap();
592                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
593                         node_id: their_node_id.clone(),
594                         msg: GossipTimestampFilter {
595                                 chain_hash: self.network_graph.chain_hash,
596                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
597                                 timestamp_range: u32::max_value(),
598                         },
599                 });
600                 Ok(())
601         }
602
603         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
604                 // We don't make queries, so should never receive replies. If, in the future, the set
605                 // reconciliation extensions to gossip queries become broadly supported, we should revert
606                 // this code to its state pre-0.0.106.
607                 Ok(())
608         }
609
610         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
611                 // We don't make queries, so should never receive replies. If, in the future, the set
612                 // reconciliation extensions to gossip queries become broadly supported, we should revert
613                 // this code to its state pre-0.0.106.
614                 Ok(())
615         }
616
617         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
618         /// are in the specified block range. Due to message size limits, large range
619         /// queries may result in several reply messages. This implementation enqueues
620         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
621         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
622         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
623         /// memory constrained systems.
624         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
625                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
626
627                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
628
629                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
630                 // If so, we manually cap the ending block to avoid this overflow.
631                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
632
633                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
634                 if msg.chain_hash != self.network_graph.chain_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
635                         let mut pending_events = self.pending_events.lock().unwrap();
636                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
637                                 node_id: their_node_id.clone(),
638                                 msg: ReplyChannelRange {
639                                         chain_hash: msg.chain_hash.clone(),
640                                         first_blocknum: msg.first_blocknum,
641                                         number_of_blocks: msg.number_of_blocks,
642                                         sync_complete: true,
643                                         short_channel_ids: vec![],
644                                 }
645                         });
646                         return Err(LightningError {
647                                 err: String::from("query_channel_range could not be processed"),
648                                 action: ErrorAction::IgnoreError,
649                         });
650                 }
651
652                 // Creates channel batches. We are not checking if the channel is routable
653                 // (has at least one update). A peer may still want to know the channel
654                 // exists even if its not yet routable.
655                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
656                 let mut channels = self.network_graph.channels.write().unwrap();
657                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
658                         if let Some(chan_announcement) = &chan.announcement_message {
659                                 // Construct a new batch if last one is full
660                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
661                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
662                                 }
663
664                                 let batch = batches.last_mut().unwrap();
665                                 batch.push(chan_announcement.contents.short_channel_id);
666                         }
667                 }
668                 drop(channels);
669
670                 let mut pending_events = self.pending_events.lock().unwrap();
671                 let batch_count = batches.len();
672                 let mut prev_batch_endblock = msg.first_blocknum;
673                 for (batch_index, batch) in batches.into_iter().enumerate() {
674                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
675                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
676                         //
677                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
678                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
679                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
680                         // significant diversion from the requirements set by the spec, and, in case of blocks
681                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
682                         // and *not* derive the first_blocknum from the actual first block of the reply.
683                         let first_blocknum = prev_batch_endblock;
684
685                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
686                         // fit in. Though there is no requirement that we use exactly the number of blocks its
687                         // contents are from, except for the bogus requirements c-lightning enforces, above.
688                         //
689                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
690                         // >= the query's end block. Thus, for the last reply, we calculate the difference
691                         // between the query's end block and the start of the reply.
692                         //
693                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
694                         // first_blocknum will be either msg.first_blocknum or a higher block height.
695                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
696                                 (true, msg.end_blocknum() - first_blocknum)
697                         }
698                         // Prior replies should use the number of blocks that fit into the reply. Overflow
699                         // safe since first_blocknum is always <= last SCID's block.
700                         else {
701                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
702                         };
703
704                         prev_batch_endblock = first_blocknum + number_of_blocks;
705
706                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
707                                 node_id: their_node_id.clone(),
708                                 msg: ReplyChannelRange {
709                                         chain_hash: msg.chain_hash.clone(),
710                                         first_blocknum,
711                                         number_of_blocks,
712                                         sync_complete,
713                                         short_channel_ids: batch,
714                                 }
715                         });
716                 }
717
718                 Ok(())
719         }
720
721         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
722                 // TODO
723                 Err(LightningError {
724                         err: String::from("Not implemented"),
725                         action: ErrorAction::IgnoreError,
726                 })
727         }
728
729         fn provided_node_features(&self) -> NodeFeatures {
730                 let mut features = NodeFeatures::empty();
731                 features.set_gossip_queries_optional();
732                 features
733         }
734
735         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
736                 let mut features = InitFeatures::empty();
737                 features.set_gossip_queries_optional();
738                 features
739         }
740
741         fn processing_queue_high(&self) -> bool {
742                 self.network_graph.pending_checks.too_many_checks_pending()
743         }
744 }
745
746 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
747 where
748         U::Target: UtxoLookup,
749         L::Target: Logger,
750 {
751         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
752                 let mut ret = Vec::new();
753                 let mut pending_events = self.pending_events.lock().unwrap();
754                 core::mem::swap(&mut ret, &mut pending_events);
755                 ret
756         }
757 }
758
759 #[derive(Clone, Debug, PartialEq, Eq)]
760 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
761 pub struct ChannelUpdateInfo {
762         /// When the last update to the channel direction was issued.
763         /// Value is opaque, as set in the announcement.
764         pub last_update: u32,
765         /// Whether the channel can be currently used for payments (in this one direction).
766         pub enabled: bool,
767         /// The difference in CLTV values that you must have when routing through this channel.
768         pub cltv_expiry_delta: u16,
769         /// The minimum value, which must be relayed to the next hop via the channel
770         pub htlc_minimum_msat: u64,
771         /// The maximum value which may be relayed to the next hop via the channel.
772         pub htlc_maximum_msat: u64,
773         /// Fees charged when the channel is used for routing
774         pub fees: RoutingFees,
775         /// Most recent update for the channel received from the network
776         /// Mostly redundant with the data we store in fields explicitly.
777         /// Everything else is useful only for sending out for initial routing sync.
778         /// Not stored if contains excess data to prevent DoS.
779         pub last_update_message: Option<ChannelUpdate>,
780 }
781
782 impl fmt::Display for ChannelUpdateInfo {
783         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
784                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
785                 Ok(())
786         }
787 }
788
789 impl Writeable for ChannelUpdateInfo {
790         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
791                 write_tlv_fields!(writer, {
792                         (0, self.last_update, required),
793                         (2, self.enabled, required),
794                         (4, self.cltv_expiry_delta, required),
795                         (6, self.htlc_minimum_msat, required),
796                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
797                         // compatibility with LDK versions prior to v0.0.110.
798                         (8, Some(self.htlc_maximum_msat), required),
799                         (10, self.fees, required),
800                         (12, self.last_update_message, required),
801                 });
802                 Ok(())
803         }
804 }
805
806 impl Readable for ChannelUpdateInfo {
807         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
808                 _init_tlv_field_var!(last_update, required);
809                 _init_tlv_field_var!(enabled, required);
810                 _init_tlv_field_var!(cltv_expiry_delta, required);
811                 _init_tlv_field_var!(htlc_minimum_msat, required);
812                 _init_tlv_field_var!(htlc_maximum_msat, option);
813                 _init_tlv_field_var!(fees, required);
814                 _init_tlv_field_var!(last_update_message, required);
815
816                 read_tlv_fields!(reader, {
817                         (0, last_update, required),
818                         (2, enabled, required),
819                         (4, cltv_expiry_delta, required),
820                         (6, htlc_minimum_msat, required),
821                         (8, htlc_maximum_msat, required),
822                         (10, fees, required),
823                         (12, last_update_message, required)
824                 });
825
826                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
827                         Ok(ChannelUpdateInfo {
828                                 last_update: _init_tlv_based_struct_field!(last_update, required),
829                                 enabled: _init_tlv_based_struct_field!(enabled, required),
830                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
831                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
832                                 htlc_maximum_msat,
833                                 fees: _init_tlv_based_struct_field!(fees, required),
834                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
835                         })
836                 } else {
837                         Err(DecodeError::InvalidValue)
838                 }
839         }
840 }
841
842 #[derive(Clone, Debug, PartialEq, Eq)]
843 /// Details about a channel (both directions).
844 /// Received within a channel announcement.
845 pub struct ChannelInfo {
846         /// Protocol features of a channel communicated during its announcement
847         pub features: ChannelFeatures,
848         /// Source node of the first direction of a channel
849         pub node_one: NodeId,
850         /// Details about the first direction of a channel
851         pub one_to_two: Option<ChannelUpdateInfo>,
852         /// Source node of the second direction of a channel
853         pub node_two: NodeId,
854         /// Details about the second direction of a channel
855         pub two_to_one: Option<ChannelUpdateInfo>,
856         /// The channel capacity as seen on-chain, if chain lookup is available.
857         pub capacity_sats: Option<u64>,
858         /// An initial announcement of the channel
859         /// Mostly redundant with the data we store in fields explicitly.
860         /// Everything else is useful only for sending out for initial routing sync.
861         /// Not stored if contains excess data to prevent DoS.
862         pub announcement_message: Option<ChannelAnnouncement>,
863         /// The timestamp when we received the announcement, if we are running with feature = "std"
864         /// (which we can probably assume we are - no-std environments probably won't have a full
865         /// network graph in memory!).
866         announcement_received_time: u64,
867 }
868
869 impl ChannelInfo {
870         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
871         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
872         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
873                 let (direction, source, outbound) = {
874                         if target == &self.node_one {
875                                 (self.two_to_one.as_ref(), &self.node_two, false)
876                         } else if target == &self.node_two {
877                                 (self.one_to_two.as_ref(), &self.node_one, true)
878                         } else {
879                                 return None;
880                         }
881                 };
882                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), source))
883         }
884
885         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
886         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
887         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
888                 let (direction, target, outbound) = {
889                         if source == &self.node_one {
890                                 (self.one_to_two.as_ref(), &self.node_two, true)
891                         } else if source == &self.node_two {
892                                 (self.two_to_one.as_ref(), &self.node_one, false)
893                         } else {
894                                 return None;
895                         }
896                 };
897                 direction.map(|dir| (DirectedChannelInfo::new(self, dir, outbound), target))
898         }
899
900         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
901         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
902                 let direction = channel_flags & 1u8;
903                 if direction == 0 {
904                         self.one_to_two.as_ref()
905                 } else {
906                         self.two_to_one.as_ref()
907                 }
908         }
909 }
910
911 impl fmt::Display for ChannelInfo {
912         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
913                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
914                    log_bytes!(self.features.encode()), &self.node_one, self.one_to_two, &self.node_two, self.two_to_one)?;
915                 Ok(())
916         }
917 }
918
919 impl Writeable for ChannelInfo {
920         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
921                 write_tlv_fields!(writer, {
922                         (0, self.features, required),
923                         (1, self.announcement_received_time, (default_value, 0)),
924                         (2, self.node_one, required),
925                         (4, self.one_to_two, required),
926                         (6, self.node_two, required),
927                         (8, self.two_to_one, required),
928                         (10, self.capacity_sats, required),
929                         (12, self.announcement_message, required),
930                 });
931                 Ok(())
932         }
933 }
934
935 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
936 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
937 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
938 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
939 // channel updates via the gossip network.
940 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
941
942 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
943         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
944                 match crate::util::ser::Readable::read(reader) {
945                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
946                         Err(DecodeError::ShortRead) => Ok(None),
947                         Err(DecodeError::InvalidValue) => Ok(None),
948                         Err(err) => Err(err),
949                 }
950         }
951 }
952
953 impl Readable for ChannelInfo {
954         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
955                 _init_tlv_field_var!(features, required);
956                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
957                 _init_tlv_field_var!(node_one, required);
958                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
959                 _init_tlv_field_var!(node_two, required);
960                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
961                 _init_tlv_field_var!(capacity_sats, required);
962                 _init_tlv_field_var!(announcement_message, required);
963                 read_tlv_fields!(reader, {
964                         (0, features, required),
965                         (1, announcement_received_time, (default_value, 0)),
966                         (2, node_one, required),
967                         (4, one_to_two_wrap, upgradable_option),
968                         (6, node_two, required),
969                         (8, two_to_one_wrap, upgradable_option),
970                         (10, capacity_sats, required),
971                         (12, announcement_message, required),
972                 });
973
974                 Ok(ChannelInfo {
975                         features: _init_tlv_based_struct_field!(features, required),
976                         node_one: _init_tlv_based_struct_field!(node_one, required),
977                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
978                         node_two: _init_tlv_based_struct_field!(node_two, required),
979                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
980                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
981                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
982                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
983                 })
984         }
985 }
986
987 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
988 /// source node to a target node.
989 #[derive(Clone)]
990 pub struct DirectedChannelInfo<'a> {
991         channel: &'a ChannelInfo,
992         direction: &'a ChannelUpdateInfo,
993         /// The direction this channel is in - if set, it indicates that we're traversing the channel
994         /// from [`ChannelInfo::node_one`] to [`ChannelInfo::node_two`].
995         from_node_one: bool,
996 }
997
998 impl<'a> DirectedChannelInfo<'a> {
999         #[inline]
1000         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo, from_node_one: bool) -> Self {
1001                 Self { channel, direction, from_node_one }
1002         }
1003
1004         /// Returns information for the channel.
1005         #[inline]
1006         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
1007
1008         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
1009         ///
1010         /// This is either the total capacity from the funding transaction, if known, or the
1011         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
1012         /// otherwise.
1013         #[inline]
1014         pub fn effective_capacity(&self) -> EffectiveCapacity {
1015                 let mut htlc_maximum_msat = self.direction().htlc_maximum_msat;
1016                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
1017
1018                 match capacity_msat {
1019                         Some(capacity_msat) => {
1020                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
1021                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat }
1022                         },
1023                         None => EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: htlc_maximum_msat },
1024                 }
1025         }
1026
1027         /// Returns information for the direction.
1028         #[inline]
1029         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
1030
1031         /// Returns the `node_id` of the source hop.
1032         ///
1033         /// Refers to the `node_id` forwarding the payment to the next hop.
1034         #[inline]
1035         pub fn source(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_one } else { &self.channel.node_two } }
1036
1037         /// Returns the `node_id` of the target hop.
1038         ///
1039         /// Refers to the `node_id` receiving the payment from the previous hop.
1040         #[inline]
1041         pub fn target(&self) -> &'a NodeId { if self.from_node_one { &self.channel.node_two } else { &self.channel.node_one } }
1042 }
1043
1044 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1045         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1046                 f.debug_struct("DirectedChannelInfo")
1047                         .field("channel", &self.channel)
1048                         .finish()
1049         }
1050 }
1051
1052 /// The effective capacity of a channel for routing purposes.
1053 ///
1054 /// While this may be smaller than the actual channel capacity, amounts greater than
1055 /// [`Self::as_msat`] should not be routed through the channel.
1056 #[derive(Clone, Copy, Debug, PartialEq)]
1057 pub enum EffectiveCapacity {
1058         /// The available liquidity in the channel known from being a channel counterparty, and thus a
1059         /// direct hop.
1060         ExactLiquidity {
1061                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1062                 /// millisatoshi.
1063                 liquidity_msat: u64,
1064         },
1065         /// The maximum HTLC amount in one direction as advertised on the gossip network.
1066         AdvertisedMaxHTLC {
1067                 /// The maximum HTLC amount denominated in millisatoshi.
1068                 amount_msat: u64,
1069         },
1070         /// The total capacity of the channel as determined by the funding transaction.
1071         Total {
1072                 /// The funding amount denominated in millisatoshi.
1073                 capacity_msat: u64,
1074                 /// The maximum HTLC amount denominated in millisatoshi.
1075                 htlc_maximum_msat: u64
1076         },
1077         /// A capacity sufficient to route any payment, typically used for private channels provided by
1078         /// an invoice.
1079         Infinite,
1080         /// The maximum HTLC amount as provided by an invoice route hint.
1081         HintMaxHTLC {
1082                 /// The maximum HTLC amount denominated in millisatoshi.
1083                 amount_msat: u64,
1084         },
1085         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1086         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1087         Unknown,
1088 }
1089
1090 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1091 /// use when making routing decisions.
1092 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1093
1094 impl EffectiveCapacity {
1095         /// Returns the effective capacity denominated in millisatoshi.
1096         pub fn as_msat(&self) -> u64 {
1097                 match self {
1098                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1099                         EffectiveCapacity::AdvertisedMaxHTLC { amount_msat } => *amount_msat,
1100                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1101                         EffectiveCapacity::HintMaxHTLC { amount_msat } => *amount_msat,
1102                         EffectiveCapacity::Infinite => u64::max_value(),
1103                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1104                 }
1105         }
1106 }
1107
1108 /// Fees for routing via a given channel or a node
1109 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash, Ord, PartialOrd)]
1110 pub struct RoutingFees {
1111         /// Flat routing fee in millisatoshis.
1112         pub base_msat: u32,
1113         /// Liquidity-based routing fee in millionths of a routed amount.
1114         /// In other words, 10000 is 1%.
1115         pub proportional_millionths: u32,
1116 }
1117
1118 impl_writeable_tlv_based!(RoutingFees, {
1119         (0, base_msat, required),
1120         (2, proportional_millionths, required)
1121 });
1122
1123 #[derive(Clone, Debug, PartialEq, Eq)]
1124 /// Information received in the latest node_announcement from this node.
1125 pub struct NodeAnnouncementInfo {
1126         /// Protocol features the node announced support for
1127         pub features: NodeFeatures,
1128         /// When the last known update to the node state was issued.
1129         /// Value is opaque, as set in the announcement.
1130         pub last_update: u32,
1131         /// Color assigned to the node
1132         pub rgb: [u8; 3],
1133         /// Moniker assigned to the node.
1134         /// May be invalid or malicious (eg control chars),
1135         /// should not be exposed to the user.
1136         pub alias: NodeAlias,
1137         /// An initial announcement of the node
1138         /// Mostly redundant with the data we store in fields explicitly.
1139         /// Everything else is useful only for sending out for initial routing sync.
1140         /// Not stored if contains excess data to prevent DoS.
1141         pub announcement_message: Option<NodeAnnouncement>
1142 }
1143
1144 impl NodeAnnouncementInfo {
1145         /// Internet-level addresses via which one can connect to the node
1146         pub fn addresses(&self) -> &[SocketAddress] {
1147                 self.announcement_message.as_ref()
1148                         .map(|msg| msg.contents.addresses.as_slice())
1149                         .unwrap_or_default()
1150         }
1151 }
1152
1153 impl Writeable for NodeAnnouncementInfo {
1154         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1155                 let empty_addresses = Vec::<SocketAddress>::new();
1156                 write_tlv_fields!(writer, {
1157                         (0, self.features, required),
1158                         (2, self.last_update, required),
1159                         (4, self.rgb, required),
1160                         (6, self.alias, required),
1161                         (8, self.announcement_message, option),
1162                         (10, empty_addresses, required_vec), // Versions prior to 0.0.115 require this field
1163                 });
1164                 Ok(())
1165         }
1166 }
1167
1168 impl Readable for NodeAnnouncementInfo {
1169         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1170                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1171                         (0, features, required),
1172                         (2, last_update, required),
1173                         (4, rgb, required),
1174                         (6, alias, required),
1175                         (8, announcement_message, option),
1176                         (10, _addresses, optional_vec), // deprecated, not used anymore
1177                 });
1178                 let _: Option<Vec<SocketAddress>> = _addresses;
1179                 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1180                         alias: alias.0.unwrap(), announcement_message })
1181         }
1182 }
1183
1184 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1185 ///
1186 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1187 /// attacks. Care must be taken when processing.
1188 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
1189 pub struct NodeAlias(pub [u8; 32]);
1190
1191 impl fmt::Display for NodeAlias {
1192         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1193                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1194                 let bytes = self.0.split_at(first_null).0;
1195                 match core::str::from_utf8(bytes) {
1196                         Ok(alias) => PrintableString(alias).fmt(f)?,
1197                         Err(_) => {
1198                                 use core::fmt::Write;
1199                                 for c in bytes.iter().map(|b| *b as char) {
1200                                         // Display printable ASCII characters
1201                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1202                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1203                                         f.write_char(c)?;
1204                                 }
1205                         },
1206                 };
1207                 Ok(())
1208         }
1209 }
1210
1211 impl Writeable for NodeAlias {
1212         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1213                 self.0.write(w)
1214         }
1215 }
1216
1217 impl Readable for NodeAlias {
1218         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1219                 Ok(NodeAlias(Readable::read(r)?))
1220         }
1221 }
1222
1223 #[derive(Clone, Debug, PartialEq, Eq)]
1224 /// Details about a node in the network, known from the network announcement.
1225 pub struct NodeInfo {
1226         /// All valid channels a node has announced
1227         pub channels: Vec<u64>,
1228         /// More information about a node from node_announcement.
1229         /// Optional because we store a Node entry after learning about it from
1230         /// a channel announcement, but before receiving a node announcement.
1231         pub announcement_info: Option<NodeAnnouncementInfo>
1232 }
1233
1234 impl fmt::Display for NodeInfo {
1235         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1236                 write!(f, " channels: {:?}, announcement_info: {:?}",
1237                         &self.channels[..], self.announcement_info)?;
1238                 Ok(())
1239         }
1240 }
1241
1242 impl Writeable for NodeInfo {
1243         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1244                 write_tlv_fields!(writer, {
1245                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1246                         (2, self.announcement_info, option),
1247                         (4, self.channels, required_vec),
1248                 });
1249                 Ok(())
1250         }
1251 }
1252
1253 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1254 // necessary to maintain compatibility with previous serializations of `SocketAddress` that have an
1255 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1256 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1257 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1258
1259 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1260         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1261                 match crate::util::ser::Readable::read(reader) {
1262                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1263                         Err(_) => {
1264                                 copy(reader, &mut sink()).unwrap();
1265                                 return Ok(None)
1266                         },
1267                 };
1268         }
1269 }
1270
1271 impl Readable for NodeInfo {
1272         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1273                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1274                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1275                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1276                 // requires additional complexity and lookups during routing, it ends up being a
1277                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1278                 _init_and_read_len_prefixed_tlv_fields!(reader, {
1279                         (0, _lowest_inbound_channel_fees, option),
1280                         (2, announcement_info_wrap, upgradable_option),
1281                         (4, channels, required_vec),
1282                 });
1283                 let _: Option<RoutingFees> = _lowest_inbound_channel_fees;
1284                 let announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = announcement_info_wrap;
1285
1286                 Ok(NodeInfo {
1287                         announcement_info: announcement_info_wrap.map(|w| w.0),
1288                         channels,
1289                 })
1290         }
1291 }
1292
1293 const SERIALIZATION_VERSION: u8 = 1;
1294 const MIN_SERIALIZATION_VERSION: u8 = 1;
1295
1296 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1297         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1298                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1299
1300                 self.chain_hash.write(writer)?;
1301                 let channels = self.channels.read().unwrap();
1302                 (channels.len() as u64).write(writer)?;
1303                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1304                         (*chan_id).write(writer)?;
1305                         chan_info.write(writer)?;
1306                 }
1307                 let nodes = self.nodes.read().unwrap();
1308                 (nodes.len() as u64).write(writer)?;
1309                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1310                         node_id.write(writer)?;
1311                         node_info.write(writer)?;
1312                 }
1313
1314                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1315                 write_tlv_fields!(writer, {
1316                         (1, last_rapid_gossip_sync_timestamp, option),
1317                 });
1318                 Ok(())
1319         }
1320 }
1321
1322 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1323         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1324                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1325
1326                 let chain_hash: ChainHash = Readable::read(reader)?;
1327                 let channels_count: u64 = Readable::read(reader)?;
1328                 // In Nov, 2023 there were about 15,000 nodes; we cap allocations to 1.5x that.
1329                 let mut channels = IndexedMap::with_capacity(cmp::min(channels_count as usize, 22500));
1330                 for _ in 0..channels_count {
1331                         let chan_id: u64 = Readable::read(reader)?;
1332                         let chan_info = Readable::read(reader)?;
1333                         channels.insert(chan_id, chan_info);
1334                 }
1335                 let nodes_count: u64 = Readable::read(reader)?;
1336                 // In Nov, 2023 there were about 69K channels; we cap allocations to 1.5x that.
1337                 let mut nodes = IndexedMap::with_capacity(cmp::min(nodes_count as usize, 103500));
1338                 for _ in 0..nodes_count {
1339                         let node_id = Readable::read(reader)?;
1340                         let node_info = Readable::read(reader)?;
1341                         nodes.insert(node_id, node_info);
1342                 }
1343
1344                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1345                 read_tlv_fields!(reader, {
1346                         (1, last_rapid_gossip_sync_timestamp, option),
1347                 });
1348
1349                 Ok(NetworkGraph {
1350                         secp_ctx: Secp256k1::verification_only(),
1351                         chain_hash,
1352                         logger,
1353                         channels: RwLock::new(channels),
1354                         nodes: RwLock::new(nodes),
1355                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1356                         removed_nodes: Mutex::new(new_hash_map()),
1357                         removed_channels: Mutex::new(new_hash_map()),
1358                         pending_checks: utxo::PendingChecks::new(),
1359                 })
1360         }
1361 }
1362
1363 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1364         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1365                 writeln!(f, "Network map\n[Channels]")?;
1366                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1367                         writeln!(f, " {}: {}", key, val)?;
1368                 }
1369                 writeln!(f, "[Nodes]")?;
1370                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1371                         writeln!(f, " {}: {}", &node_id, val)?;
1372                 }
1373                 Ok(())
1374         }
1375 }
1376
1377 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1378 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1379         fn eq(&self, other: &Self) -> bool {
1380                 // For a total lockorder, sort by position in memory and take the inner locks in that order.
1381                 // (Assumes that we can't move within memory while a lock is held).
1382                 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
1383                 let a = if ord { (&self.channels, &self.nodes) } else { (&other.channels, &other.nodes) };
1384                 let b = if ord { (&other.channels, &other.nodes) } else { (&self.channels, &self.nodes) };
1385                 let (channels_a, channels_b) = (a.0.unsafe_well_ordered_double_lock_self(), b.0.unsafe_well_ordered_double_lock_self());
1386                 let (nodes_a, nodes_b) = (a.1.unsafe_well_ordered_double_lock_self(), b.1.unsafe_well_ordered_double_lock_self());
1387                 self.chain_hash.eq(&other.chain_hash) && channels_a.eq(&channels_b) && nodes_a.eq(&nodes_b)
1388         }
1389 }
1390
1391 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1392         /// Creates a new, empty, network graph.
1393         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1394                 Self {
1395                         secp_ctx: Secp256k1::verification_only(),
1396                         chain_hash: ChainHash::using_genesis_block(network),
1397                         logger,
1398                         channels: RwLock::new(IndexedMap::new()),
1399                         nodes: RwLock::new(IndexedMap::new()),
1400                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1401                         removed_channels: Mutex::new(new_hash_map()),
1402                         removed_nodes: Mutex::new(new_hash_map()),
1403                         pending_checks: utxo::PendingChecks::new(),
1404                 }
1405         }
1406
1407         /// Returns a read-only view of the network graph.
1408         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1409                 let channels = self.channels.read().unwrap();
1410                 let nodes = self.nodes.read().unwrap();
1411                 ReadOnlyNetworkGraph {
1412                         channels,
1413                         nodes,
1414                 }
1415         }
1416
1417         /// The unix timestamp provided by the most recent rapid gossip sync.
1418         /// It will be set by the rapid sync process after every sync completion.
1419         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1420                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1421         }
1422
1423         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1424         /// This should be done automatically by the rapid sync process after every sync completion.
1425         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1426                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1427         }
1428
1429         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1430         /// purposes.
1431         #[cfg(test)]
1432         pub fn clear_nodes_announcement_info(&self) {
1433                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1434                         node.1.announcement_info = None;
1435                 }
1436         }
1437
1438         /// For an already known node (from channel announcements), update its stored properties from a
1439         /// given node announcement.
1440         ///
1441         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1442         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1443         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1444         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1445                 verify_node_announcement(msg, &self.secp_ctx)?;
1446                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1447         }
1448
1449         /// For an already known node (from channel announcements), update its stored properties from a
1450         /// given node announcement without verifying the associated signatures. Because we aren't
1451         /// given the associated signatures here we cannot relay the node announcement to any of our
1452         /// peers.
1453         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1454                 self.update_node_from_announcement_intern(msg, None)
1455         }
1456
1457         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1458                 let mut nodes = self.nodes.write().unwrap();
1459                 match nodes.get_mut(&msg.node_id) {
1460                         None => {
1461                                 core::mem::drop(nodes);
1462                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1463                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1464                         },
1465                         Some(node) => {
1466                                 if let Some(node_info) = node.announcement_info.as_ref() {
1467                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1468                                         // updates to ensure you always have the latest one, only vaguely suggesting
1469                                         // that it be at least the current time.
1470                                         if node_info.last_update  > msg.timestamp {
1471                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1472                                         } else if node_info.last_update  == msg.timestamp {
1473                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1474                                         }
1475                                 }
1476
1477                                 let should_relay =
1478                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1479                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1480                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1481                                 node.announcement_info = Some(NodeAnnouncementInfo {
1482                                         features: msg.features.clone(),
1483                                         last_update: msg.timestamp,
1484                                         rgb: msg.rgb,
1485                                         alias: msg.alias,
1486                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1487                                 });
1488
1489                                 Ok(())
1490                         }
1491                 }
1492         }
1493
1494         /// Store or update channel info from a channel announcement.
1495         ///
1496         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1497         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1498         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1499         ///
1500         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1501         /// the corresponding UTXO exists on chain and is correctly-formatted.
1502         pub fn update_channel_from_announcement<U: Deref>(
1503                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1504         ) -> Result<(), LightningError>
1505         where
1506                 U::Target: UtxoLookup,
1507         {
1508                 verify_channel_announcement(msg, &self.secp_ctx)?;
1509                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1510         }
1511
1512         /// Store or update channel info from a channel announcement.
1513         ///
1514         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1515         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1516         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1517         ///
1518         /// This will skip verification of if the channel is actually on-chain.
1519         pub fn update_channel_from_announcement_no_lookup(
1520                 &self, msg: &ChannelAnnouncement
1521         ) -> Result<(), LightningError> {
1522                 self.update_channel_from_announcement::<&UtxoResolver>(msg, &None)
1523         }
1524
1525         /// Store or update channel info from a channel announcement without verifying the associated
1526         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1527         /// channel announcement to any of our peers.
1528         ///
1529         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1530         /// the corresponding UTXO exists on chain and is correctly-formatted.
1531         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1532                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1533         ) -> Result<(), LightningError>
1534         where
1535                 U::Target: UtxoLookup,
1536         {
1537                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1538         }
1539
1540         /// Update channel from partial announcement data received via rapid gossip sync
1541         ///
1542         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1543         /// rapid gossip sync server)
1544         ///
1545         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1546         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1547                 if node_id_1 == node_id_2 {
1548                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1549                 };
1550
1551                 let node_1 = NodeId::from_pubkey(&node_id_1);
1552                 let node_2 = NodeId::from_pubkey(&node_id_2);
1553                 let channel_info = ChannelInfo {
1554                         features,
1555                         node_one: node_1.clone(),
1556                         one_to_two: None,
1557                         node_two: node_2.clone(),
1558                         two_to_one: None,
1559                         capacity_sats: None,
1560                         announcement_message: None,
1561                         announcement_received_time: timestamp,
1562                 };
1563
1564                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1565         }
1566
1567         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1568                 let mut channels = self.channels.write().unwrap();
1569                 let mut nodes = self.nodes.write().unwrap();
1570
1571                 let node_id_a = channel_info.node_one.clone();
1572                 let node_id_b = channel_info.node_two.clone();
1573
1574                 log_gossip!(self.logger, "Adding channel {} between nodes {} and {}", short_channel_id, node_id_a, node_id_b);
1575
1576                 match channels.entry(short_channel_id) {
1577                         IndexedMapEntry::Occupied(mut entry) => {
1578                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1579                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1580                                 //exactly how...
1581                                 if utxo_value.is_some() {
1582                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1583                                         // only sometimes returns results. In any case remove the previous entry. Note
1584                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1585                                         // do that because
1586                                         // a) we don't *require* a UTXO provider that always returns results.
1587                                         // b) we don't track UTXOs of channels we know about and remove them if they
1588                                         //    get reorg'd out.
1589                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1590                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1591                                         *entry.get_mut() = channel_info;
1592                                 } else {
1593                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1594                                 }
1595                         },
1596                         IndexedMapEntry::Vacant(entry) => {
1597                                 entry.insert(channel_info);
1598                         }
1599                 };
1600
1601                 for current_node_id in [node_id_a, node_id_b].iter() {
1602                         match nodes.entry(current_node_id.clone()) {
1603                                 IndexedMapEntry::Occupied(node_entry) => {
1604                                         node_entry.into_mut().channels.push(short_channel_id);
1605                                 },
1606                                 IndexedMapEntry::Vacant(node_entry) => {
1607                                         node_entry.insert(NodeInfo {
1608                                                 channels: vec!(short_channel_id),
1609                                                 announcement_info: None,
1610                                         });
1611                                 }
1612                         };
1613                 };
1614
1615                 Ok(())
1616         }
1617
1618         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1619                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1620         ) -> Result<(), LightningError>
1621         where
1622                 U::Target: UtxoLookup,
1623         {
1624                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1625                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1626                 }
1627
1628                 if msg.chain_hash != self.chain_hash {
1629                         return Err(LightningError {
1630                                 err: "Channel announcement chain hash does not match genesis hash".to_owned(),
1631                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1632                         });
1633                 }
1634
1635                 {
1636                         let channels = self.channels.read().unwrap();
1637
1638                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1639                                 if chan.capacity_sats.is_some() {
1640                                         // If we'd previously looked up the channel on-chain and checked the script
1641                                         // against what appears on-chain, ignore the duplicate announcement.
1642                                         //
1643                                         // Because a reorg could replace one channel with another at the same SCID, if
1644                                         // the channel appears to be different, we re-validate. This doesn't expose us
1645                                         // to any more DoS risk than not, as a peer can always flood us with
1646                                         // randomly-generated SCID values anyway.
1647                                         //
1648                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1649                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1650                                         // if the peers on the channel changed anyway.
1651                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1652                                                 return Err(LightningError {
1653                                                         err: "Already have chain-validated channel".to_owned(),
1654                                                         action: ErrorAction::IgnoreDuplicateGossip
1655                                                 });
1656                                         }
1657                                 } else if utxo_lookup.is_none() {
1658                                         // Similarly, if we can't check the chain right now anyway, ignore the
1659                                         // duplicate announcement without bothering to take the channels write lock.
1660                                         return Err(LightningError {
1661                                                 err: "Already have non-chain-validated channel".to_owned(),
1662                                                 action: ErrorAction::IgnoreDuplicateGossip
1663                                         });
1664                                 }
1665                         }
1666                 }
1667
1668                 {
1669                         let removed_channels = self.removed_channels.lock().unwrap();
1670                         let removed_nodes = self.removed_nodes.lock().unwrap();
1671                         if removed_channels.contains_key(&msg.short_channel_id) ||
1672                                 removed_nodes.contains_key(&msg.node_id_1) ||
1673                                 removed_nodes.contains_key(&msg.node_id_2) {
1674                                 return Err(LightningError{
1675                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1676                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1677                         }
1678                 }
1679
1680                 let utxo_value = self.pending_checks.check_channel_announcement(
1681                         utxo_lookup, msg, full_msg)?;
1682
1683                 #[allow(unused_mut, unused_assignments)]
1684                 let mut announcement_received_time = 0;
1685                 #[cfg(feature = "std")]
1686                 {
1687                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1688                 }
1689
1690                 let chan_info = ChannelInfo {
1691                         features: msg.features.clone(),
1692                         node_one: msg.node_id_1,
1693                         one_to_two: None,
1694                         node_two: msg.node_id_2,
1695                         two_to_one: None,
1696                         capacity_sats: utxo_value,
1697                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1698                                 { full_msg.cloned() } else { None },
1699                         announcement_received_time,
1700                 };
1701
1702                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1703
1704                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1705                 Ok(())
1706         }
1707
1708         /// Marks a channel in the graph as failed permanently.
1709         ///
1710         /// The channel and any node for which this was their last channel are removed from the graph.
1711         pub fn channel_failed_permanent(&self, short_channel_id: u64) {
1712                 #[cfg(feature = "std")]
1713                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1714                 #[cfg(not(feature = "std"))]
1715                 let current_time_unix = None;
1716
1717                 self.channel_failed_permanent_with_time(short_channel_id, current_time_unix)
1718         }
1719
1720         /// Marks a channel in the graph as failed permanently.
1721         ///
1722         /// The channel and any node for which this was their last channel are removed from the graph.
1723         fn channel_failed_permanent_with_time(&self, short_channel_id: u64, current_time_unix: Option<u64>) {
1724                 let mut channels = self.channels.write().unwrap();
1725                 if let Some(chan) = channels.remove(&short_channel_id) {
1726                         let mut nodes = self.nodes.write().unwrap();
1727                         self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1728                         Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1729                 }
1730         }
1731
1732         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1733         /// from local storage.
1734         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1735                 #[cfg(feature = "std")]
1736                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1737                 #[cfg(not(feature = "std"))]
1738                 let current_time_unix = None;
1739
1740                 let node_id = NodeId::from_pubkey(node_id);
1741                 let mut channels = self.channels.write().unwrap();
1742                 let mut nodes = self.nodes.write().unwrap();
1743                 let mut removed_channels = self.removed_channels.lock().unwrap();
1744                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1745
1746                 if let Some(node) = nodes.remove(&node_id) {
1747                         for scid in node.channels.iter() {
1748                                 if let Some(chan_info) = channels.remove(scid) {
1749                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1750                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1751                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1752                                                         *scid != *chan_id
1753                                                 });
1754                                                 if other_node_entry.get().channels.is_empty() {
1755                                                         other_node_entry.remove_entry();
1756                                                 }
1757                                         }
1758                                         removed_channels.insert(*scid, current_time_unix);
1759                                 }
1760                         }
1761                         removed_nodes.insert(node_id, current_time_unix);
1762                 }
1763         }
1764
1765         #[cfg(feature = "std")]
1766         /// Removes information about channels that we haven't heard any updates about in some time.
1767         /// This can be used regularly to prune the network graph of channels that likely no longer
1768         /// exist.
1769         ///
1770         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1771         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1772         /// pruning occur for updates which are at least two weeks old, which we implement here.
1773         ///
1774         /// Note that for users of the `lightning-background-processor` crate this method may be
1775         /// automatically called regularly for you.
1776         ///
1777         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1778         /// in the map for a while so that these can be resynced from gossip in the future.
1779         ///
1780         /// This method is only available with the `std` feature. See
1781         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1782         pub fn remove_stale_channels_and_tracking(&self) {
1783                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1784                 self.remove_stale_channels_and_tracking_with_time(time);
1785         }
1786
1787         /// Removes information about channels that we haven't heard any updates about in some time.
1788         /// This can be used regularly to prune the network graph of channels that likely no longer
1789         /// exist.
1790         ///
1791         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1792         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1793         /// pruning occur for updates which are at least two weeks old, which we implement here.
1794         ///
1795         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1796         /// in the map for a while so that these can be resynced from gossip in the future.
1797         ///
1798         /// This function takes the current unix time as an argument. For users with the `std` feature
1799         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1800         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1801                 let mut channels = self.channels.write().unwrap();
1802                 // Time out if we haven't received an update in at least 14 days.
1803                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1804                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1805                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1806                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1807                 // time.
1808                 let mut scids_to_remove = Vec::new();
1809                 for (scid, info) in channels.unordered_iter_mut() {
1810                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1811                                 log_gossip!(self.logger, "Removing directional update one_to_two (0) for channel {} due to its timestamp {} being below {}",
1812                                         scid, info.one_to_two.as_ref().unwrap().last_update, min_time_unix);
1813                                 info.one_to_two = None;
1814                         }
1815                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1816                                 log_gossip!(self.logger, "Removing directional update two_to_one (1) for channel {} due to its timestamp {} being below {}",
1817                                         scid, info.two_to_one.as_ref().unwrap().last_update, min_time_unix);
1818                                 info.two_to_one = None;
1819                         }
1820                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1821                                 // We check the announcement_received_time here to ensure we don't drop
1822                                 // announcements that we just received and are just waiting for our peer to send a
1823                                 // channel_update for.
1824                                 let announcement_received_timestamp = info.announcement_received_time;
1825                                 if announcement_received_timestamp < min_time_unix as u64 {
1826                                         log_gossip!(self.logger, "Removing channel {} because both directional updates are missing and its announcement timestamp {} being below {}",
1827                                                 scid, announcement_received_timestamp, min_time_unix);
1828                                         scids_to_remove.push(*scid);
1829                                 }
1830                         }
1831                 }
1832                 if !scids_to_remove.is_empty() {
1833                         let mut nodes = self.nodes.write().unwrap();
1834                         for scid in scids_to_remove {
1835                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1836                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1837                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1838                         }
1839                 }
1840
1841                 let should_keep_tracking = |time: &mut Option<u64>| {
1842                         if let Some(time) = time {
1843                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1844                         } else {
1845                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1846                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1847                                 // of this function.
1848                                 #[cfg(not(feature = "std"))]
1849                                 {
1850                                         let mut tracked_time = Some(current_time_unix);
1851                                         core::mem::swap(time, &mut tracked_time);
1852                                         return true;
1853                                 }
1854                                 #[allow(unreachable_code)]
1855                                 false
1856                         }};
1857
1858                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1859                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1860         }
1861
1862         /// For an already known (from announcement) channel, update info about one of the directions
1863         /// of the channel.
1864         ///
1865         /// You probably don't want to call this directly, instead relying on a [`P2PGossipSync`]'s
1866         /// [`RoutingMessageHandler`] implementation to call it indirectly. This may be useful to accept
1867         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1868         ///
1869         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1870         /// materially in the future will be rejected.
1871         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1872                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), false)
1873         }
1874
1875         /// For an already known (from announcement) channel, update info about one of the directions
1876         /// of the channel without verifying the associated signatures. Because we aren't given the
1877         /// associated signatures here we cannot relay the channel update to any of our peers.
1878         ///
1879         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1880         /// materially in the future will be rejected.
1881         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1882                 self.update_channel_internal(msg, None, None, false)
1883         }
1884
1885         /// For an already known (from announcement) channel, verify the given [`ChannelUpdate`].
1886         ///
1887         /// This checks whether the update currently is applicable by [`Self::update_channel`].
1888         ///
1889         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1890         /// materially in the future will be rejected.
1891         pub fn verify_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1892                 self.update_channel_internal(&msg.contents, Some(&msg), Some(&msg.signature), true)
1893         }
1894
1895         fn update_channel_internal(&self, msg: &msgs::UnsignedChannelUpdate,
1896                 full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>,
1897                 only_verify: bool) -> Result<(), LightningError>
1898         {
1899                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1900
1901                 if msg.chain_hash != self.chain_hash {
1902                         return Err(LightningError {
1903                                 err: "Channel update chain hash does not match genesis hash".to_owned(),
1904                                 action: ErrorAction::IgnoreAndLog(Level::Debug),
1905                         });
1906                 }
1907
1908                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1909                 {
1910                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1911                         // disable this check during tests!
1912                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1913                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1914                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1915                         }
1916                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1917                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1918                         }
1919                 }
1920
1921                 log_gossip!(self.logger, "Updating channel {} in direction {} with timestamp {}", msg.short_channel_id, msg.flags & 1, msg.timestamp);
1922
1923                 let mut channels = self.channels.write().unwrap();
1924                 match channels.get_mut(&msg.short_channel_id) {
1925                         None => {
1926                                 core::mem::drop(channels);
1927                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1928                                 return Err(LightningError {
1929                                         err: "Couldn't find channel for update".to_owned(),
1930                                         action: ErrorAction::IgnoreAndLog(Level::Gossip),
1931                                 });
1932                         },
1933                         Some(channel) => {
1934                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1935                                         return Err(LightningError{err:
1936                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1937                                                 action: ErrorAction::IgnoreError});
1938                                 }
1939
1940                                 if let Some(capacity_sats) = channel.capacity_sats {
1941                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1942                                         // Don't query UTXO set here to reduce DoS risks.
1943                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1944                                                 return Err(LightningError{err:
1945                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1946                                                         action: ErrorAction::IgnoreError});
1947                                         }
1948                                 }
1949                                 macro_rules! check_update_latest {
1950                                         ($target: expr) => {
1951                                                 if let Some(existing_chan_info) = $target.as_ref() {
1952                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1953                                                         // order updates to ensure you always have the latest one, only
1954                                                         // suggesting  that it be at least the current time. For
1955                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1956                                                         // pruning based on the timestamp field being more than two weeks old,
1957                                                         // but only in the non-normative section.
1958                                                         if existing_chan_info.last_update > msg.timestamp {
1959                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1960                                                         } else if existing_chan_info.last_update == msg.timestamp {
1961                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1962                                                         }
1963                                                 }
1964                                         }
1965                                 }
1966
1967                                 macro_rules! get_new_channel_info {
1968                                         () => { {
1969                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1970                                                         { full_msg.cloned() } else { None };
1971
1972                                                 let updated_channel_update_info = ChannelUpdateInfo {
1973                                                         enabled: chan_enabled,
1974                                                         last_update: msg.timestamp,
1975                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1976                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1977                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1978                                                         fees: RoutingFees {
1979                                                                 base_msat: msg.fee_base_msat,
1980                                                                 proportional_millionths: msg.fee_proportional_millionths,
1981                                                         },
1982                                                         last_update_message
1983                                                 };
1984                                                 Some(updated_channel_update_info)
1985                                         } }
1986                                 }
1987
1988                                 let msg_hash = hash_to_message!(&message_sha256d_hash(&msg)[..]);
1989                                 if msg.flags & 1 == 1 {
1990                                         check_update_latest!(channel.two_to_one);
1991                                         if let Some(sig) = sig {
1992                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1993                                                         err: "Couldn't parse source node pubkey".to_owned(),
1994                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1995                                                 })?, "channel_update");
1996                                         }
1997                                         if !only_verify {
1998                                                 channel.two_to_one = get_new_channel_info!();
1999                                         }
2000                                 } else {
2001                                         check_update_latest!(channel.one_to_two);
2002                                         if let Some(sig) = sig {
2003                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
2004                                                         err: "Couldn't parse destination node pubkey".to_owned(),
2005                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
2006                                                 })?, "channel_update");
2007                                         }
2008                                         if !only_verify {
2009                                                 channel.one_to_two = get_new_channel_info!();
2010                                         }
2011                                 }
2012                         }
2013                 }
2014
2015                 Ok(())
2016         }
2017
2018         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
2019                 macro_rules! remove_from_node {
2020                         ($node_id: expr) => {
2021                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
2022                                         entry.get_mut().channels.retain(|chan_id| {
2023                                                 short_channel_id != *chan_id
2024                                         });
2025                                         if entry.get().channels.is_empty() {
2026                                                 entry.remove_entry();
2027                                         }
2028                                 } else {
2029                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
2030                                 }
2031                         }
2032                 }
2033
2034                 remove_from_node!(chan.node_one);
2035                 remove_from_node!(chan.node_two);
2036         }
2037 }
2038
2039 impl ReadOnlyNetworkGraph<'_> {
2040         /// Returns all known valid channels' short ids along with announced channel info.
2041         ///
2042         /// This is not exported to bindings users because we don't want to return lifetime'd references
2043         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
2044                 &*self.channels
2045         }
2046
2047         /// Returns information on a channel with the given id.
2048         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
2049                 self.channels.get(&short_channel_id)
2050         }
2051
2052         #[cfg(c_bindings)] // Non-bindings users should use `channels`
2053         /// Returns the list of channels in the graph
2054         pub fn list_channels(&self) -> Vec<u64> {
2055                 self.channels.unordered_keys().map(|c| *c).collect()
2056         }
2057
2058         /// Returns all known nodes' public keys along with announced node info.
2059         ///
2060         /// This is not exported to bindings users because we don't want to return lifetime'd references
2061         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
2062                 &*self.nodes
2063         }
2064
2065         /// Returns information on a node with the given id.
2066         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
2067                 self.nodes.get(node_id)
2068         }
2069
2070         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
2071         /// Returns the list of nodes in the graph
2072         pub fn list_nodes(&self) -> Vec<NodeId> {
2073                 self.nodes.unordered_keys().map(|n| *n).collect()
2074         }
2075
2076         /// Get network addresses by node id.
2077         /// Returns None if the requested node is completely unknown,
2078         /// or if node announcement for the node was never received.
2079         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<SocketAddress>> {
2080                 self.nodes.get(&NodeId::from_pubkey(&pubkey))
2081                         .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
2082         }
2083 }
2084
2085 #[cfg(test)]
2086 pub(crate) mod tests {
2087         use crate::events::{MessageSendEvent, MessageSendEventsProvider};
2088         use crate::ln::channelmanager;
2089         use crate::ln::chan_utils::make_funding_redeemscript;
2090         #[cfg(feature = "std")]
2091         use crate::ln::features::InitFeatures;
2092         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
2093         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
2094         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
2095                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2096                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2097         use crate::util::config::UserConfig;
2098         use crate::util::test_utils;
2099         use crate::util::ser::{ReadableArgs, Readable, Writeable};
2100         use crate::util::scid_utils::scid_from_parts;
2101
2102         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2103         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2104
2105         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2106         use bitcoin::hashes::Hash;
2107         use bitcoin::hashes::hex::FromHex;
2108         use bitcoin::network::constants::Network;
2109         use bitcoin::blockdata::constants::ChainHash;
2110         use bitcoin::blockdata::script::ScriptBuf;
2111         use bitcoin::blockdata::transaction::TxOut;
2112         use bitcoin::secp256k1::{PublicKey, SecretKey};
2113         use bitcoin::secp256k1::{All, Secp256k1};
2114
2115         use crate::io;
2116         use bitcoin::secp256k1;
2117         use crate::prelude::*;
2118         use crate::sync::Arc;
2119
2120         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2121                 let logger = Arc::new(test_utils::TestLogger::new());
2122                 NetworkGraph::new(Network::Testnet, logger)
2123         }
2124
2125         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2126                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2127                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2128         ) {
2129                 let secp_ctx = Secp256k1::new();
2130                 let logger = Arc::new(test_utils::TestLogger::new());
2131                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2132                 (secp_ctx, gossip_sync)
2133         }
2134
2135         #[test]
2136         #[cfg(feature = "std")]
2137         fn request_full_sync_finite_times() {
2138                 let network_graph = create_network_graph();
2139                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2140                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&<Vec<u8>>::from_hex("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2141
2142                 assert!(gossip_sync.should_request_full_sync(&node_id));
2143                 assert!(gossip_sync.should_request_full_sync(&node_id));
2144                 assert!(gossip_sync.should_request_full_sync(&node_id));
2145                 assert!(gossip_sync.should_request_full_sync(&node_id));
2146                 assert!(gossip_sync.should_request_full_sync(&node_id));
2147                 assert!(!gossip_sync.should_request_full_sync(&node_id));
2148         }
2149
2150         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2151                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2152                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2153                         features: channelmanager::provided_node_features(&UserConfig::default()),
2154                         timestamp: 100,
2155                         node_id,
2156                         rgb: [0; 3],
2157                         alias: NodeAlias([0; 32]),
2158                         addresses: Vec::new(),
2159                         excess_address_data: Vec::new(),
2160                         excess_data: Vec::new(),
2161                 };
2162                 f(&mut unsigned_announcement);
2163                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2164                 NodeAnnouncement {
2165                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2166                         contents: unsigned_announcement
2167                 }
2168         }
2169
2170         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2171                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2172                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2173                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2174                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2175
2176                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2177                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2178                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2179                         short_channel_id: 0,
2180                         node_id_1: NodeId::from_pubkey(&node_id_1),
2181                         node_id_2: NodeId::from_pubkey(&node_id_2),
2182                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2183                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2184                         excess_data: Vec::new(),
2185                 };
2186                 f(&mut unsigned_announcement);
2187                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2188                 ChannelAnnouncement {
2189                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2190                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2191                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2192                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2193                         contents: unsigned_announcement,
2194                 }
2195         }
2196
2197         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> ScriptBuf {
2198                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2199                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2200                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2201                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2202         }
2203
2204         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2205                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2206                         chain_hash: ChainHash::using_genesis_block(Network::Testnet),
2207                         short_channel_id: 0,
2208                         timestamp: 100,
2209                         flags: 0,
2210                         cltv_expiry_delta: 144,
2211                         htlc_minimum_msat: 1_000_000,
2212                         htlc_maximum_msat: 1_000_000,
2213                         fee_base_msat: 10_000,
2214                         fee_proportional_millionths: 20,
2215                         excess_data: Vec::new()
2216                 };
2217                 f(&mut unsigned_channel_update);
2218                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2219                 ChannelUpdate {
2220                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2221                         contents: unsigned_channel_update
2222                 }
2223         }
2224
2225         #[test]
2226         fn handling_node_announcements() {
2227                 let network_graph = create_network_graph();
2228                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2229
2230                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2231                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2232                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2233
2234                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2235                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2236                         Ok(_) => panic!(),
2237                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2238                 };
2239
2240                 {
2241                         // Announce a channel to add a corresponding node.
2242                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2243                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2244                                 Ok(res) => assert!(res),
2245                                 _ => panic!()
2246                         };
2247                 }
2248
2249                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2250                         Ok(res) => assert!(res),
2251                         Err(_) => panic!()
2252                 };
2253
2254                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2255                 match gossip_sync.handle_node_announcement(
2256                         &NodeAnnouncement {
2257                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2258                                 contents: valid_announcement.contents.clone()
2259                 }) {
2260                         Ok(_) => panic!(),
2261                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2262                 };
2263
2264                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2265                         unsigned_announcement.timestamp += 1000;
2266                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2267                 }, node_1_privkey, &secp_ctx);
2268                 // Return false because contains excess data.
2269                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2270                         Ok(res) => assert!(!res),
2271                         Err(_) => panic!()
2272                 };
2273
2274                 // Even though previous announcement was not relayed further, we still accepted it,
2275                 // so we now won't accept announcements before the previous one.
2276                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2277                         unsigned_announcement.timestamp += 1000 - 10;
2278                 }, node_1_privkey, &secp_ctx);
2279                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2280                         Ok(_) => panic!(),
2281                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2282                 };
2283         }
2284
2285         #[test]
2286         fn handling_channel_announcements() {
2287                 let secp_ctx = Secp256k1::new();
2288                 let logger = test_utils::TestLogger::new();
2289
2290                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2291                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2292
2293                 let good_script = get_channel_script(&secp_ctx);
2294                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2295
2296                 // Test if the UTXO lookups were not supported
2297                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2298                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2299                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2300                         Ok(res) => assert!(res),
2301                         _ => panic!()
2302                 };
2303
2304                 {
2305                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2306                                 None => panic!(),
2307                                 Some(_) => ()
2308                         };
2309                 }
2310
2311                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2312                 // drop new one on the floor, since we can't see any changes.
2313                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2314                         Ok(_) => panic!(),
2315                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2316                 };
2317
2318                 // Test if an associated transaction were not on-chain (or not confirmed).
2319                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2320                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2321                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2322                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2323
2324                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2325                         unsigned_announcement.short_channel_id += 1;
2326                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2327                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2328                         Ok(_) => panic!(),
2329                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2330                 };
2331
2332                 // Now test if the transaction is found in the UTXO set and the script is correct.
2333                 *chain_source.utxo_ret.lock().unwrap() =
2334                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2335                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2336                         unsigned_announcement.short_channel_id += 2;
2337                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2338                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2339                         Ok(res) => assert!(res),
2340                         _ => panic!()
2341                 };
2342
2343                 {
2344                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2345                                 None => panic!(),
2346                                 Some(_) => ()
2347                         };
2348                 }
2349
2350                 // If we receive announcement for the same channel, once we've validated it against the
2351                 // chain, we simply ignore all new (duplicate) announcements.
2352                 *chain_source.utxo_ret.lock().unwrap() =
2353                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2354                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2355                         Ok(_) => panic!(),
2356                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2357                 };
2358
2359                 #[cfg(feature = "std")]
2360                 {
2361                         use std::time::{SystemTime, UNIX_EPOCH};
2362
2363                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2364                         // Mark a node as permanently failed so it's tracked as removed.
2365                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2366
2367                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2368                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2369                                 unsigned_announcement.short_channel_id += 3;
2370                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2371                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2372                                 Ok(_) => panic!(),
2373                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2374                         }
2375
2376                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2377
2378                         // The above channel announcement should be handled as per normal now.
2379                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2380                                 Ok(res) => assert!(res),
2381                                 _ => panic!()
2382                         }
2383                 }
2384
2385                 // Don't relay valid channels with excess data
2386                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2387                         unsigned_announcement.short_channel_id += 4;
2388                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2389                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2390                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2391                         Ok(res) => assert!(!res),
2392                         _ => panic!()
2393                 };
2394
2395                 let mut invalid_sig_announcement = valid_announcement.clone();
2396                 invalid_sig_announcement.contents.excess_data = Vec::new();
2397                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2398                         Ok(_) => panic!(),
2399                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2400                 };
2401
2402                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2403                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2404                         Ok(_) => panic!(),
2405                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2406                 };
2407
2408                 // Test that channel announcements with the wrong chain hash are ignored (network graph is testnet,
2409                 // announcement is mainnet).
2410                 let incorrect_chain_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2411                         unsigned_announcement.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2412                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2413                 match gossip_sync.handle_channel_announcement(&incorrect_chain_announcement) {
2414                         Ok(_) => panic!(),
2415                         Err(e) => assert_eq!(e.err, "Channel announcement chain hash does not match genesis hash")
2416                 };
2417         }
2418
2419         #[test]
2420         fn handling_channel_update() {
2421                 let secp_ctx = Secp256k1::new();
2422                 let logger = test_utils::TestLogger::new();
2423                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2424                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2425                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2426
2427                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2428                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2429
2430                 let amount_sats = 1000_000;
2431                 let short_channel_id;
2432
2433                 {
2434                         // Announce a channel we will update
2435                         let good_script = get_channel_script(&secp_ctx);
2436                         *chain_source.utxo_ret.lock().unwrap() =
2437                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2438
2439                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2440                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2441                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2442                                 Ok(_) => (),
2443                                 Err(_) => panic!()
2444                         };
2445
2446                 }
2447
2448                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2449                 network_graph.verify_channel_update(&valid_channel_update).unwrap();
2450                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2451                         Ok(res) => assert!(res),
2452                         _ => panic!(),
2453                 };
2454
2455                 {
2456                         match network_graph.read_only().channels().get(&short_channel_id) {
2457                                 None => panic!(),
2458                                 Some(channel_info) => {
2459                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2460                                         assert!(channel_info.two_to_one.is_none());
2461                                 }
2462                         };
2463                 }
2464
2465                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2466                         unsigned_channel_update.timestamp += 100;
2467                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2468                 }, node_1_privkey, &secp_ctx);
2469                 // Return false because contains excess data
2470                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2471                         Ok(res) => assert!(!res),
2472                         _ => panic!()
2473                 };
2474
2475                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2476                         unsigned_channel_update.timestamp += 110;
2477                         unsigned_channel_update.short_channel_id += 1;
2478                 }, node_1_privkey, &secp_ctx);
2479                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2480                         Ok(_) => panic!(),
2481                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2482                 };
2483
2484                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2485                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2486                         unsigned_channel_update.timestamp += 110;
2487                 }, node_1_privkey, &secp_ctx);
2488                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2489                         Ok(_) => panic!(),
2490                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2491                 };
2492
2493                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2494                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2495                         unsigned_channel_update.timestamp += 110;
2496                 }, node_1_privkey, &secp_ctx);
2497                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2498                         Ok(_) => panic!(),
2499                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2500                 };
2501
2502                 // Even though previous update was not relayed further, we still accepted it,
2503                 // so we now won't accept update before the previous one.
2504                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2505                         unsigned_channel_update.timestamp += 100;
2506                 }, node_1_privkey, &secp_ctx);
2507                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2508                         Ok(_) => panic!(),
2509                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2510                 };
2511
2512                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2513                         unsigned_channel_update.timestamp += 500;
2514                 }, node_1_privkey, &secp_ctx);
2515                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2516                 let fake_msghash = hash_to_message!(zero_hash.as_byte_array());
2517                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2518                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2519                         Ok(_) => panic!(),
2520                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2521                 };
2522
2523                 // Test that channel updates with the wrong chain hash are ignored (network graph is testnet, channel
2524                 // update is mainet).
2525                 let incorrect_chain_update = get_signed_channel_update(|unsigned_channel_update| {
2526                         unsigned_channel_update.chain_hash = ChainHash::using_genesis_block(Network::Bitcoin);
2527                 }, node_1_privkey, &secp_ctx);
2528
2529                 match gossip_sync.handle_channel_update(&incorrect_chain_update) {
2530                         Ok(_) => panic!(),
2531                         Err(e) => assert_eq!(e.err, "Channel update chain hash does not match genesis hash")
2532                 };
2533         }
2534
2535         #[test]
2536         fn handling_network_update() {
2537                 let logger = test_utils::TestLogger::new();
2538                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2539                 let secp_ctx = Secp256k1::new();
2540
2541                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2542                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2543                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2544
2545                 {
2546                         // There is no nodes in the table at the beginning.
2547                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2548                 }
2549
2550                 let short_channel_id;
2551                 {
2552                         // Check we won't apply an update via `handle_network_update` for privacy reasons, but
2553                         // can continue fine if we manually apply it.
2554                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2555                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2556                         let chain_source: Option<&test_utils::TestChainSource> = None;
2557                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2558                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2559
2560                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2561                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2562
2563                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2564                                 msg: valid_channel_update.clone(),
2565                         });
2566
2567                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2568                         network_graph.update_channel(&valid_channel_update).unwrap();
2569                 }
2570
2571                 // Non-permanent failure doesn't touch the channel at all
2572                 {
2573                         match network_graph.read_only().channels().get(&short_channel_id) {
2574                                 None => panic!(),
2575                                 Some(channel_info) => {
2576                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2577                                 }
2578                         };
2579
2580                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2581                                 short_channel_id,
2582                                 is_permanent: false,
2583                         });
2584
2585                         match network_graph.read_only().channels().get(&short_channel_id) {
2586                                 None => panic!(),
2587                                 Some(channel_info) => {
2588                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2589                                 }
2590                         };
2591                 }
2592
2593                 // Permanent closing deletes a channel
2594                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2595                         short_channel_id,
2596                         is_permanent: true,
2597                 });
2598
2599                 assert_eq!(network_graph.read_only().channels().len(), 0);
2600                 // Nodes are also deleted because there are no associated channels anymore
2601                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2602
2603                 {
2604                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2605                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2606
2607                         // Announce a channel to test permanent node failure
2608                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2609                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2610                         let chain_source: Option<&test_utils::TestChainSource> = None;
2611                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2612                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2613
2614                         // Non-permanent node failure does not delete any nodes or channels
2615                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2616                                 node_id: node_2_id,
2617                                 is_permanent: false,
2618                         });
2619
2620                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2621                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2622
2623                         // Permanent node failure deletes node and its channels
2624                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2625                                 node_id: node_2_id,
2626                                 is_permanent: true,
2627                         });
2628
2629                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2630                         // Channels are also deleted because the associated node has been deleted
2631                         assert_eq!(network_graph.read_only().channels().len(), 0);
2632                 }
2633         }
2634
2635         #[test]
2636         fn test_channel_timeouts() {
2637                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2638                 let logger = test_utils::TestLogger::new();
2639                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2640                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2641                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2642                 let secp_ctx = Secp256k1::new();
2643
2644                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2645                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2646
2647                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2648                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2649                 let chain_source: Option<&test_utils::TestChainSource> = None;
2650                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2651                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2652
2653                 // Submit two channel updates for each channel direction (update.flags bit).
2654                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2655                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2656                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2657
2658                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2659                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2660                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2661
2662                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2663                 assert_eq!(network_graph.read_only().channels().len(), 1);
2664                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2665
2666                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2667                 #[cfg(not(feature = "std"))] {
2668                         // Make sure removed channels are tracked.
2669                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2670                 }
2671                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2672                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2673
2674                 #[cfg(feature = "std")]
2675                 {
2676                         // In std mode, a further check is performed before fully removing the channel -
2677                         // the channel_announcement must have been received at least two weeks ago. We
2678                         // fudge that here by indicating the time has jumped two weeks.
2679                         assert_eq!(network_graph.read_only().channels().len(), 1);
2680                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2681
2682                         // Note that the directional channel information will have been removed already..
2683                         // We want to check that this will work even if *one* of the channel updates is recent,
2684                         // so we should add it with a recent timestamp.
2685                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2686                         use std::time::{SystemTime, UNIX_EPOCH};
2687                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2688                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2689                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2690                         }, node_1_privkey, &secp_ctx);
2691                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2692                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2693                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2694                         // Make sure removed channels are tracked.
2695                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2696                         // Provide a later time so that sufficient time has passed
2697                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2698                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2699                 }
2700
2701                 assert_eq!(network_graph.read_only().channels().len(), 0);
2702                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2703                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2704
2705                 #[cfg(feature = "std")]
2706                 {
2707                         use std::time::{SystemTime, UNIX_EPOCH};
2708
2709                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2710
2711                         // Clear tracked nodes and channels for clean slate
2712                         network_graph.removed_channels.lock().unwrap().clear();
2713                         network_graph.removed_nodes.lock().unwrap().clear();
2714
2715                         // Add a channel and nodes from channel announcement. So our network graph will
2716                         // now only consist of two nodes and one channel between them.
2717                         assert!(network_graph.update_channel_from_announcement(
2718                                 &valid_channel_announcement, &chain_source).is_ok());
2719
2720                         // Mark the channel as permanently failed. This will also remove the two nodes
2721                         // and all of the entries will be tracked as removed.
2722                         network_graph.channel_failed_permanent_with_time(short_channel_id, Some(tracking_time));
2723
2724                         // Should not remove from tracking if insufficient time has passed
2725                         network_graph.remove_stale_channels_and_tracking_with_time(
2726                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2727                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2728
2729                         // Provide a later time so that sufficient time has passed
2730                         network_graph.remove_stale_channels_and_tracking_with_time(
2731                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2732                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2733                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2734                 }
2735
2736                 #[cfg(not(feature = "std"))]
2737                 {
2738                         // When we don't have access to the system clock, the time we started tracking removal will only
2739                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2740                         // only if sufficient time has passed after that first call, will the next call remove it from
2741                         // tracking.
2742                         let removal_time = 1664619654;
2743
2744                         // Clear removed nodes and channels for clean slate
2745                         network_graph.removed_channels.lock().unwrap().clear();
2746                         network_graph.removed_nodes.lock().unwrap().clear();
2747
2748                         // Add a channel and nodes from channel announcement. So our network graph will
2749                         // now only consist of two nodes and one channel between them.
2750                         assert!(network_graph.update_channel_from_announcement(
2751                                 &valid_channel_announcement, &chain_source).is_ok());
2752
2753                         // Mark the channel as permanently failed. This will also remove the two nodes
2754                         // and all of the entries will be tracked as removed.
2755                         network_graph.channel_failed_permanent(short_channel_id);
2756
2757                         // The first time we call the following, the channel will have a removal time assigned.
2758                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2759                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2760
2761                         // Provide a later time so that sufficient time has passed
2762                         network_graph.remove_stale_channels_and_tracking_with_time(
2763                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2764                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2765                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2766                 }
2767         }
2768
2769         #[test]
2770         fn getting_next_channel_announcements() {
2771                 let network_graph = create_network_graph();
2772                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2773                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2774                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2775
2776                 // Channels were not announced yet.
2777                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2778                 assert!(channels_with_announcements.is_none());
2779
2780                 let short_channel_id;
2781                 {
2782                         // Announce a channel we will update
2783                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2784                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2785                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2786                                 Ok(_) => (),
2787                                 Err(_) => panic!()
2788                         };
2789                 }
2790
2791                 // Contains initial channel announcement now.
2792                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2793                 if let Some(channel_announcements) = channels_with_announcements {
2794                         let (_, ref update_1, ref update_2) = channel_announcements;
2795                         assert_eq!(update_1, &None);
2796                         assert_eq!(update_2, &None);
2797                 } else {
2798                         panic!();
2799                 }
2800
2801                 {
2802                         // Valid channel update
2803                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2804                                 unsigned_channel_update.timestamp = 101;
2805                         }, node_1_privkey, &secp_ctx);
2806                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2807                                 Ok(_) => (),
2808                                 Err(_) => panic!()
2809                         };
2810                 }
2811
2812                 // Now contains an initial announcement and an update.
2813                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2814                 if let Some(channel_announcements) = channels_with_announcements {
2815                         let (_, ref update_1, ref update_2) = channel_announcements;
2816                         assert_ne!(update_1, &None);
2817                         assert_eq!(update_2, &None);
2818                 } else {
2819                         panic!();
2820                 }
2821
2822                 {
2823                         // Channel update with excess data.
2824                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2825                                 unsigned_channel_update.timestamp = 102;
2826                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2827                         }, node_1_privkey, &secp_ctx);
2828                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2829                                 Ok(_) => (),
2830                                 Err(_) => panic!()
2831                         };
2832                 }
2833
2834                 // Test that announcements with excess data won't be returned
2835                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2836                 if let Some(channel_announcements) = channels_with_announcements {
2837                         let (_, ref update_1, ref update_2) = channel_announcements;
2838                         assert_eq!(update_1, &None);
2839                         assert_eq!(update_2, &None);
2840                 } else {
2841                         panic!();
2842                 }
2843
2844                 // Further starting point have no channels after it
2845                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2846                 assert!(channels_with_announcements.is_none());
2847         }
2848
2849         #[test]
2850         fn getting_next_node_announcements() {
2851                 let network_graph = create_network_graph();
2852                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2853                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2854                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2855                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2856
2857                 // No nodes yet.
2858                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2859                 assert!(next_announcements.is_none());
2860
2861                 {
2862                         // Announce a channel to add 2 nodes
2863                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2864                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2865                                 Ok(_) => (),
2866                                 Err(_) => panic!()
2867                         };
2868                 }
2869
2870                 // Nodes were never announced
2871                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2872                 assert!(next_announcements.is_none());
2873
2874                 {
2875                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2876                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2877                                 Ok(_) => (),
2878                                 Err(_) => panic!()
2879                         };
2880
2881                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2882                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2883                                 Ok(_) => (),
2884                                 Err(_) => panic!()
2885                         };
2886                 }
2887
2888                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2889                 assert!(next_announcements.is_some());
2890
2891                 // Skip the first node.
2892                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2893                 assert!(next_announcements.is_some());
2894
2895                 {
2896                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2897                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2898                                 unsigned_announcement.timestamp += 10;
2899                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2900                         }, node_2_privkey, &secp_ctx);
2901                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2902                                 Ok(res) => assert!(!res),
2903                                 Err(_) => panic!()
2904                         };
2905                 }
2906
2907                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2908                 assert!(next_announcements.is_none());
2909         }
2910
2911         #[test]
2912         fn network_graph_serialization() {
2913                 let network_graph = create_network_graph();
2914                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2915
2916                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2917                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2918
2919                 // Announce a channel to add a corresponding node.
2920                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2921                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2922                         Ok(res) => assert!(res),
2923                         _ => panic!()
2924                 };
2925
2926                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2927                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2928                         Ok(_) => (),
2929                         Err(_) => panic!()
2930                 };
2931
2932                 let mut w = test_utils::TestVecWriter(Vec::new());
2933                 assert!(!network_graph.read_only().nodes().is_empty());
2934                 assert!(!network_graph.read_only().channels().is_empty());
2935                 network_graph.write(&mut w).unwrap();
2936
2937                 let logger = Arc::new(test_utils::TestLogger::new());
2938                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2939         }
2940
2941         #[test]
2942         fn network_graph_tlv_serialization() {
2943                 let network_graph = create_network_graph();
2944                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2945
2946                 let mut w = test_utils::TestVecWriter(Vec::new());
2947                 network_graph.write(&mut w).unwrap();
2948
2949                 let logger = Arc::new(test_utils::TestLogger::new());
2950                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2951                 assert!(reassembled_network_graph == network_graph);
2952                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2953         }
2954
2955         #[test]
2956         #[cfg(feature = "std")]
2957         fn calling_sync_routing_table() {
2958                 use std::time::{SystemTime, UNIX_EPOCH};
2959                 use crate::ln::msgs::Init;
2960
2961                 let network_graph = create_network_graph();
2962                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2963                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2964                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2965
2966                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
2967
2968                 // It should ignore if gossip_queries feature is not enabled
2969                 {
2970                         let init_msg = Init { features: InitFeatures::empty(), networks: None, remote_network_address: None };
2971                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2972                         let events = gossip_sync.get_and_clear_pending_msg_events();
2973                         assert_eq!(events.len(), 0);
2974                 }
2975
2976                 // It should send a gossip_timestamp_filter with the correct information
2977                 {
2978                         let mut features = InitFeatures::empty();
2979                         features.set_gossip_queries_optional();
2980                         let init_msg = Init { features, networks: None, remote_network_address: None };
2981                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2982                         let events = gossip_sync.get_and_clear_pending_msg_events();
2983                         assert_eq!(events.len(), 1);
2984                         match &events[0] {
2985                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2986                                         assert_eq!(node_id, &node_id_1);
2987                                         assert_eq!(msg.chain_hash, chain_hash);
2988                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2989                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2990                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2991                                         assert_eq!(msg.timestamp_range, u32::max_value());
2992                                 },
2993                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2994                         };
2995                 }
2996         }
2997
2998         #[test]
2999         fn handling_query_channel_range() {
3000                 let network_graph = create_network_graph();
3001                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3002
3003                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3004                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
3005                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3006                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
3007
3008                 let mut scids: Vec<u64> = vec![
3009                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
3010                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
3011                 ];
3012
3013                 // used for testing multipart reply across blocks
3014                 for block in 100000..=108001 {
3015                         scids.push(scid_from_parts(block, 0, 0).unwrap());
3016                 }
3017
3018                 // used for testing resumption on same block
3019                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
3020
3021                 for scid in scids {
3022                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
3023                                 unsigned_announcement.short_channel_id = scid;
3024                         }, node_1_privkey, node_2_privkey, &secp_ctx);
3025                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
3026                                 Ok(_) => (),
3027                                 _ => panic!()
3028                         };
3029                 }
3030
3031                 // Error when number_of_blocks=0
3032                 do_handling_query_channel_range(
3033                         &gossip_sync,
3034                         &node_id_2,
3035                         QueryChannelRange {
3036                                 chain_hash: chain_hash.clone(),
3037                                 first_blocknum: 0,
3038                                 number_of_blocks: 0,
3039                         },
3040                         false,
3041                         vec![ReplyChannelRange {
3042                                 chain_hash: chain_hash.clone(),
3043                                 first_blocknum: 0,
3044                                 number_of_blocks: 0,
3045                                 sync_complete: true,
3046                                 short_channel_ids: vec![]
3047                         }]
3048                 );
3049
3050                 // Error when wrong chain
3051                 do_handling_query_channel_range(
3052                         &gossip_sync,
3053                         &node_id_2,
3054                         QueryChannelRange {
3055                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3056                                 first_blocknum: 0,
3057                                 number_of_blocks: 0xffff_ffff,
3058                         },
3059                         false,
3060                         vec![ReplyChannelRange {
3061                                 chain_hash: ChainHash::using_genesis_block(Network::Bitcoin),
3062                                 first_blocknum: 0,
3063                                 number_of_blocks: 0xffff_ffff,
3064                                 sync_complete: true,
3065                                 short_channel_ids: vec![],
3066                         }]
3067                 );
3068
3069                 // Error when first_blocknum > 0xffffff
3070                 do_handling_query_channel_range(
3071                         &gossip_sync,
3072                         &node_id_2,
3073                         QueryChannelRange {
3074                                 chain_hash: chain_hash.clone(),
3075                                 first_blocknum: 0x01000000,
3076                                 number_of_blocks: 0xffff_ffff,
3077                         },
3078                         false,
3079                         vec![ReplyChannelRange {
3080                                 chain_hash: chain_hash.clone(),
3081                                 first_blocknum: 0x01000000,
3082                                 number_of_blocks: 0xffff_ffff,
3083                                 sync_complete: true,
3084                                 short_channel_ids: vec![]
3085                         }]
3086                 );
3087
3088                 // Empty reply when max valid SCID block num
3089                 do_handling_query_channel_range(
3090                         &gossip_sync,
3091                         &node_id_2,
3092                         QueryChannelRange {
3093                                 chain_hash: chain_hash.clone(),
3094                                 first_blocknum: 0xffffff,
3095                                 number_of_blocks: 1,
3096                         },
3097                         true,
3098                         vec![
3099                                 ReplyChannelRange {
3100                                         chain_hash: chain_hash.clone(),
3101                                         first_blocknum: 0xffffff,
3102                                         number_of_blocks: 1,
3103                                         sync_complete: true,
3104                                         short_channel_ids: vec![]
3105                                 },
3106                         ]
3107                 );
3108
3109                 // No results in valid query range
3110                 do_handling_query_channel_range(
3111                         &gossip_sync,
3112                         &node_id_2,
3113                         QueryChannelRange {
3114                                 chain_hash: chain_hash.clone(),
3115                                 first_blocknum: 1000,
3116                                 number_of_blocks: 1000,
3117                         },
3118                         true,
3119                         vec![
3120                                 ReplyChannelRange {
3121                                         chain_hash: chain_hash.clone(),
3122                                         first_blocknum: 1000,
3123                                         number_of_blocks: 1000,
3124                                         sync_complete: true,
3125                                         short_channel_ids: vec![],
3126                                 }
3127                         ]
3128                 );
3129
3130                 // Overflow first_blocknum + number_of_blocks
3131                 do_handling_query_channel_range(
3132                         &gossip_sync,
3133                         &node_id_2,
3134                         QueryChannelRange {
3135                                 chain_hash: chain_hash.clone(),
3136                                 first_blocknum: 0xfe0000,
3137                                 number_of_blocks: 0xffffffff,
3138                         },
3139                         true,
3140                         vec![
3141                                 ReplyChannelRange {
3142                                         chain_hash: chain_hash.clone(),
3143                                         first_blocknum: 0xfe0000,
3144                                         number_of_blocks: 0xffffffff - 0xfe0000,
3145                                         sync_complete: true,
3146                                         short_channel_ids: vec![
3147                                                 0xfffffe_ffffff_ffff, // max
3148                                         ]
3149                                 }
3150                         ]
3151                 );
3152
3153                 // Single block exactly full
3154                 do_handling_query_channel_range(
3155                         &gossip_sync,
3156                         &node_id_2,
3157                         QueryChannelRange {
3158                                 chain_hash: chain_hash.clone(),
3159                                 first_blocknum: 100000,
3160                                 number_of_blocks: 8000,
3161                         },
3162                         true,
3163                         vec![
3164                                 ReplyChannelRange {
3165                                         chain_hash: chain_hash.clone(),
3166                                         first_blocknum: 100000,
3167                                         number_of_blocks: 8000,
3168                                         sync_complete: true,
3169                                         short_channel_ids: (100000..=107999)
3170                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3171                                                 .collect(),
3172                                 },
3173                         ]
3174                 );
3175
3176                 // Multiple split on new block
3177                 do_handling_query_channel_range(
3178                         &gossip_sync,
3179                         &node_id_2,
3180                         QueryChannelRange {
3181                                 chain_hash: chain_hash.clone(),
3182                                 first_blocknum: 100000,
3183                                 number_of_blocks: 8001,
3184                         },
3185                         true,
3186                         vec![
3187                                 ReplyChannelRange {
3188                                         chain_hash: chain_hash.clone(),
3189                                         first_blocknum: 100000,
3190                                         number_of_blocks: 7999,
3191                                         sync_complete: false,
3192                                         short_channel_ids: (100000..=107999)
3193                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3194                                                 .collect(),
3195                                 },
3196                                 ReplyChannelRange {
3197                                         chain_hash: chain_hash.clone(),
3198                                         first_blocknum: 107999,
3199                                         number_of_blocks: 2,
3200                                         sync_complete: true,
3201                                         short_channel_ids: vec![
3202                                                 scid_from_parts(108000, 0, 0).unwrap(),
3203                                         ],
3204                                 }
3205                         ]
3206                 );
3207
3208                 // Multiple split on same block
3209                 do_handling_query_channel_range(
3210                         &gossip_sync,
3211                         &node_id_2,
3212                         QueryChannelRange {
3213                                 chain_hash: chain_hash.clone(),
3214                                 first_blocknum: 100002,
3215                                 number_of_blocks: 8000,
3216                         },
3217                         true,
3218                         vec![
3219                                 ReplyChannelRange {
3220                                         chain_hash: chain_hash.clone(),
3221                                         first_blocknum: 100002,
3222                                         number_of_blocks: 7999,
3223                                         sync_complete: false,
3224                                         short_channel_ids: (100002..=108001)
3225                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3226                                                 .collect(),
3227                                 },
3228                                 ReplyChannelRange {
3229                                         chain_hash: chain_hash.clone(),
3230                                         first_blocknum: 108001,
3231                                         number_of_blocks: 1,
3232                                         sync_complete: true,
3233                                         short_channel_ids: vec![
3234                                                 scid_from_parts(108001, 1, 0).unwrap(),
3235                                         ],
3236                                 }
3237                         ]
3238                 );
3239         }
3240
3241         fn do_handling_query_channel_range(
3242                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3243                 test_node_id: &PublicKey,
3244                 msg: QueryChannelRange,
3245                 expected_ok: bool,
3246                 expected_replies: Vec<ReplyChannelRange>
3247         ) {
3248                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3249                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3250                 let query_end_blocknum = msg.end_blocknum();
3251                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3252
3253                 if expected_ok {
3254                         assert!(result.is_ok());
3255                 } else {
3256                         assert!(result.is_err());
3257                 }
3258
3259                 let events = gossip_sync.get_and_clear_pending_msg_events();
3260                 assert_eq!(events.len(), expected_replies.len());
3261
3262                 for i in 0..events.len() {
3263                         let expected_reply = &expected_replies[i];
3264                         match &events[i] {
3265                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3266                                         assert_eq!(node_id, test_node_id);
3267                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3268                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3269                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3270                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3271                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3272
3273                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3274                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3275                                         assert!(msg.first_blocknum >= max_firstblocknum);
3276                                         max_firstblocknum = msg.first_blocknum;
3277                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3278
3279                                         // Check that the last block count is >= the query's end_blocknum
3280                                         if i == events.len() - 1 {
3281                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3282                                         }
3283                                 },
3284                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3285                         }
3286                 }
3287         }
3288
3289         #[test]
3290         fn handling_query_short_channel_ids() {
3291                 let network_graph = create_network_graph();
3292                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3293                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3294                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3295
3296                 let chain_hash = ChainHash::using_genesis_block(Network::Testnet);
3297
3298                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3299                         chain_hash,
3300                         short_channel_ids: vec![0x0003e8_000000_0000],
3301                 });
3302                 assert!(result.is_err());
3303         }
3304
3305         #[test]
3306         fn displays_node_alias() {
3307                 let format_str_alias = |alias: &str| {
3308                         let mut bytes = [0u8; 32];
3309                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3310                         format!("{}", NodeAlias(bytes))
3311                 };
3312
3313                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3314                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3315                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3316
3317                 let format_bytes_alias = |alias: &[u8]| {
3318                         let mut bytes = [0u8; 32];
3319                         bytes[..alias.len()].copy_from_slice(alias);
3320                         format!("{}", NodeAlias(bytes))
3321                 };
3322
3323                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3324                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3325                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3326         }
3327
3328         #[test]
3329         fn channel_info_is_readable() {
3330                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3331                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3332                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3333                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3334                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3335
3336                 // 1. Test encoding/decoding of ChannelUpdateInfo
3337                 let chan_update_info = ChannelUpdateInfo {
3338                         last_update: 23,
3339                         enabled: true,
3340                         cltv_expiry_delta: 42,
3341                         htlc_minimum_msat: 1234,
3342                         htlc_maximum_msat: 5678,
3343                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3344                         last_update_message: None,
3345                 };
3346
3347                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3348                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3349
3350                 // First make sure we can read ChannelUpdateInfos we just wrote
3351                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3352                 assert_eq!(chan_update_info, read_chan_update_info);
3353
3354                 // Check the serialization hasn't changed.
3355                 let legacy_chan_update_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3356                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3357
3358                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3359                 // or the ChannelUpdate enclosed with `last_update_message`.
3360                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = <Vec<u8>>::from_hex("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3361                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3362                 assert!(read_chan_update_info_res.is_err());
3363
3364                 let legacy_chan_update_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3365                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3366                 assert!(read_chan_update_info_res.is_err());
3367
3368                 // 2. Test encoding/decoding of ChannelInfo
3369                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3370                 let chan_info_none_updates = ChannelInfo {
3371                         features: channelmanager::provided_channel_features(&config),
3372                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3373                         one_to_two: None,
3374                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3375                         two_to_one: None,
3376                         capacity_sats: None,
3377                         announcement_message: None,
3378                         announcement_received_time: 87654,
3379                 };
3380
3381                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3382                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3383
3384                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3385                 assert_eq!(chan_info_none_updates, read_chan_info);
3386
3387                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3388                 let chan_info_some_updates = ChannelInfo {
3389                         features: channelmanager::provided_channel_features(&config),
3390                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3391                         one_to_two: Some(chan_update_info.clone()),
3392                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3393                         two_to_one: Some(chan_update_info.clone()),
3394                         capacity_sats: None,
3395                         announcement_message: None,
3396                         announcement_received_time: 87654,
3397                 };
3398
3399                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3400                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3401
3402                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3403                 assert_eq!(chan_info_some_updates, read_chan_info);
3404
3405                 // Check the serialization hasn't changed.
3406                 let legacy_chan_info_with_some: Vec<u8> = <Vec<u8>>::from_hex("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3407                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3408
3409                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3410                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3411                 let legacy_chan_info_with_some_and_fail_update = <Vec<u8>>::from_hex("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3412                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3413                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3414                 assert_eq!(read_chan_info.one_to_two, None);
3415                 assert_eq!(read_chan_info.two_to_one, None);
3416
3417                 let legacy_chan_info_with_none: Vec<u8> = <Vec<u8>>::from_hex("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3418                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3419                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3420                 assert_eq!(read_chan_info.one_to_two, None);
3421                 assert_eq!(read_chan_info.two_to_one, None);
3422         }
3423
3424         #[test]
3425         fn node_info_is_readable() {
3426                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3427                 let announcement_message = <Vec<u8>>::from_hex("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3428                 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3429                 let valid_node_ann_info = NodeAnnouncementInfo {
3430                         features: channelmanager::provided_node_features(&UserConfig::default()),
3431                         last_update: 0,
3432                         rgb: [0u8; 3],
3433                         alias: NodeAlias([0u8; 32]),
3434                         announcement_message: Some(announcement_message)
3435                 };
3436
3437                 let mut encoded_valid_node_ann_info = Vec::new();
3438                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3439                 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3440                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3441                 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3442
3443                 let encoded_invalid_node_ann_info = <Vec<u8>>::from_hex("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3444                 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3445                 assert!(read_invalid_node_ann_info_res.is_err());
3446
3447                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3448                 let valid_node_info = NodeInfo {
3449                         channels: Vec::new(),
3450                         announcement_info: Some(valid_node_ann_info),
3451                 };
3452
3453                 let mut encoded_valid_node_info = Vec::new();
3454                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3455                 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3456                 assert_eq!(read_valid_node_info, valid_node_info);
3457
3458                 let encoded_invalid_node_info_hex = <Vec<u8>>::from_hex("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3459                 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3460                 assert_eq!(read_invalid_node_info.announcement_info, None);
3461         }
3462
3463         #[test]
3464         fn test_node_info_keeps_compatibility() {
3465                 let old_ann_info_with_addresses = <Vec<u8>>::from_hex("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3466                 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3467                                 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3468                 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3469                 assert!(ann_info_with_addresses.addresses().is_empty());
3470         }
3471
3472         #[test]
3473         fn test_node_id_display() {
3474                 let node_id = NodeId([42; 33]);
3475                 assert_eq!(format!("{}", &node_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
3476         }
3477 }
3478
3479 #[cfg(ldk_bench)]
3480 pub mod benches {
3481         use super::*;
3482         use std::io::Read;
3483         use criterion::{black_box, Criterion};
3484
3485         pub fn read_network_graph(bench: &mut Criterion) {
3486                 let logger = crate::util::test_utils::TestLogger::new();
3487                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3488                 let mut v = Vec::new();
3489                 d.read_to_end(&mut v).unwrap();
3490                 bench.bench_function("read_network_graph", |b| b.iter(||
3491                         NetworkGraph::read(&mut std::io::Cursor::new(black_box(&v)), &logger).unwrap()
3492                 ));
3493         }
3494
3495         pub fn write_network_graph(bench: &mut Criterion) {
3496                 let logger = crate::util::test_utils::TestLogger::new();
3497                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3498                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3499                 bench.bench_function("write_network_graph", |b| b.iter(||
3500                         black_box(&net_graph).encode()
3501                 ));
3502         }
3503 }