Merge pull request #2034 from wpaulino/anchor-revoked-aggregate-claim
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hash_types::BlockHash;
20
21 use bitcoin::network::constants::Network;
22 use bitcoin::blockdata::constants::genesis_block;
23
24 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
25 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
26 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
27 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
28 use crate::ln::msgs;
29 use crate::routing::utxo::{self, UtxoLookup};
30 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use crate::util::logger::{Logger, Level};
32 use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34 use crate::util::string::PrintableString;
35 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
36
37 use crate::io;
38 use crate::io_extras::{copy, sink};
39 use crate::prelude::*;
40 use core::{cmp, fmt};
41 use crate::sync::{RwLock, RwLockReadGuard};
42 #[cfg(feature = "std")]
43 use core::sync::atomic::{AtomicUsize, Ordering};
44 use crate::sync::Mutex;
45 use core::ops::{Bound, Deref};
46
47 #[cfg(feature = "std")]
48 use std::time::{SystemTime, UNIX_EPOCH};
49
50 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
51 /// suggestion.
52 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
53
54 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
55 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
56
57 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
58 /// refuse to relay the message.
59 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
60
61 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
62 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
63 const MAX_SCIDS_PER_REPLY: usize = 8000;
64
65 /// Represents the compressed public key of a node
66 #[derive(Clone, Copy)]
67 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
68
69 impl NodeId {
70         /// Create a new NodeId from a public key
71         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
72                 NodeId(pubkey.serialize())
73         }
74
75         /// Get the public key slice from this NodeId
76         pub fn as_slice(&self) -> &[u8] {
77                 &self.0
78         }
79 }
80
81 impl fmt::Debug for NodeId {
82         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83                 write!(f, "NodeId({})", log_bytes!(self.0))
84         }
85 }
86 impl fmt::Display for NodeId {
87         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
88                 write!(f, "{}", log_bytes!(self.0))
89         }
90 }
91
92 impl core::hash::Hash for NodeId {
93         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
94                 self.0.hash(hasher);
95         }
96 }
97
98 impl Eq for NodeId {}
99
100 impl PartialEq for NodeId {
101         fn eq(&self, other: &Self) -> bool {
102                 self.0[..] == other.0[..]
103         }
104 }
105
106 impl cmp::PartialOrd for NodeId {
107         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
108                 Some(self.cmp(other))
109         }
110 }
111
112 impl Ord for NodeId {
113         fn cmp(&self, other: &Self) -> cmp::Ordering {
114                 self.0[..].cmp(&other.0[..])
115         }
116 }
117
118 impl Writeable for NodeId {
119         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
120                 writer.write_all(&self.0)?;
121                 Ok(())
122         }
123 }
124
125 impl Readable for NodeId {
126         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
127                 let mut buf = [0; PUBLIC_KEY_SIZE];
128                 reader.read_exact(&mut buf)?;
129                 Ok(Self(buf))
130         }
131 }
132
133 /// Represents the network as nodes and channels between them
134 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
135         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
136         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
137         genesis_hash: BlockHash,
138         logger: L,
139         // Lock order: channels -> nodes
140         channels: RwLock<IndexedMap<u64, ChannelInfo>>,
141         nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
142         // Lock order: removed_channels -> removed_nodes
143         //
144         // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
145         // of `std::time::Instant`s for a few reasons:
146         //   * We want it to be possible to do tracking in no-std environments where we can compare
147         //     a provided current UNIX timestamp with the time at which we started tracking.
148         //   * In the future, if we decide to persist these maps, they will already be serializable.
149         //   * Although we lose out on the platform's monotonic clock, the system clock in a std
150         //     environment should be practical over the time period we are considering (on the order of a
151         //     week).
152         //
153         /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
154         /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
155         /// it was removed so that once some time passes, we can potentially resync it from gossip again.
156         removed_channels: Mutex<HashMap<u64, Option<u64>>>,
157         /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
158         /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
159         /// that once some time passes, we can potentially resync it from gossip again.
160         removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
161         /// Announcement messages which are awaiting an on-chain lookup to be processed.
162         pub(super) pending_checks: utxo::PendingChecks,
163 }
164
165 /// A read-only view of [`NetworkGraph`].
166 pub struct ReadOnlyNetworkGraph<'a> {
167         channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
168         nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
169 }
170
171 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
172 /// return packet by a node along the route. See [BOLT #4] for details.
173 ///
174 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
175 #[derive(Clone, Debug, PartialEq, Eq)]
176 pub enum NetworkUpdate {
177         /// An error indicating a `channel_update` messages should be applied via
178         /// [`NetworkGraph::update_channel`].
179         ChannelUpdateMessage {
180                 /// The update to apply via [`NetworkGraph::update_channel`].
181                 msg: ChannelUpdate,
182         },
183         /// An error indicating that a channel failed to route a payment, which should be applied via
184         /// [`NetworkGraph::channel_failed`].
185         ChannelFailure {
186                 /// The short channel id of the closed channel.
187                 short_channel_id: u64,
188                 /// Whether the channel should be permanently removed or temporarily disabled until a new
189                 /// `channel_update` message is received.
190                 is_permanent: bool,
191         },
192         /// An error indicating that a node failed to route a payment, which should be applied via
193         /// [`NetworkGraph::node_failed_permanent`] if permanent.
194         NodeFailure {
195                 /// The node id of the failed node.
196                 node_id: PublicKey,
197                 /// Whether the node should be permanently removed from consideration or can be restored
198                 /// when a new `channel_update` message is received.
199                 is_permanent: bool,
200         }
201 }
202
203 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
204         (0, ChannelUpdateMessage) => {
205                 (0, msg, required),
206         },
207         (2, ChannelFailure) => {
208                 (0, short_channel_id, required),
209                 (2, is_permanent, required),
210         },
211         (4, NodeFailure) => {
212                 (0, node_id, required),
213                 (2, is_permanent, required),
214         },
215 );
216
217 /// Receives and validates network updates from peers,
218 /// stores authentic and relevant data as a network graph.
219 /// This network graph is then used for routing payments.
220 /// Provides interface to help with initial routing sync by
221 /// serving historical announcements.
222 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
223 where U::Target: UtxoLookup, L::Target: Logger
224 {
225         network_graph: G,
226         utxo_lookup: Option<U>,
227         #[cfg(feature = "std")]
228         full_syncs_requested: AtomicUsize,
229         pending_events: Mutex<Vec<MessageSendEvent>>,
230         logger: L,
231 }
232
233 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
234 where U::Target: UtxoLookup, L::Target: Logger
235 {
236         /// Creates a new tracker of the actual state of the network of channels and nodes,
237         /// assuming an existing [`NetworkGraph`].
238         /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
239         /// correct, and the announcement is signed with channel owners' keys.
240         pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
241                 P2PGossipSync {
242                         network_graph,
243                         #[cfg(feature = "std")]
244                         full_syncs_requested: AtomicUsize::new(0),
245                         utxo_lookup,
246                         pending_events: Mutex::new(vec![]),
247                         logger,
248                 }
249         }
250
251         /// Adds a provider used to check new announcements. Does not affect
252         /// existing announcements unless they are updated.
253         /// Add, update or remove the provider would replace the current one.
254         pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
255                 self.utxo_lookup = utxo_lookup;
256         }
257
258         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
259         /// [`P2PGossipSync::new`].
260         ///
261         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
262         pub fn network_graph(&self) -> &G {
263                 &self.network_graph
264         }
265
266         #[cfg(feature = "std")]
267         /// Returns true when a full routing table sync should be performed with a peer.
268         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
269                 //TODO: Determine whether to request a full sync based on the network map.
270                 const FULL_SYNCS_TO_REQUEST: usize = 5;
271                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
272                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
273                         true
274                 } else {
275                         false
276                 }
277         }
278
279         /// Used to broadcast forward gossip messages which were validated async.
280         ///
281         /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
282         /// data.
283         pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
284                 match &mut ev {
285                         MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
286                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
287                                 if update_msg.as_ref()
288                                         .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
289                                 {
290                                         *update_msg = None;
291                                 }
292                         },
293                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
294                                 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
295                         },
296                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
297                                 if msg.contents.excess_data.len() >  MAX_EXCESS_BYTES_FOR_RELAY ||
298                                    msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
299                                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
300                                 {
301                                         return;
302                                 }
303                         },
304                         _ => return,
305                 }
306                 self.pending_events.lock().unwrap().push(ev);
307         }
308 }
309
310 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
311         /// Handles any network updates originating from [`Event`]s.
312         ///
313         /// [`Event`]: crate::util::events::Event
314         pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
315                 match *network_update {
316                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
317                                 let short_channel_id = msg.contents.short_channel_id;
318                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
319                                 let status = if is_enabled { "enabled" } else { "disabled" };
320                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
321                                 let _ = self.update_channel(msg);
322                         },
323                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
324                                 let action = if is_permanent { "Removing" } else { "Disabling" };
325                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
326                                 self.channel_failed(short_channel_id, is_permanent);
327                         },
328                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
329                                 if is_permanent {
330                                         log_debug!(self.logger,
331                                                 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
332                                         self.node_failed_permanent(node_id);
333                                 };
334                         },
335                 }
336         }
337 }
338
339 macro_rules! secp_verify_sig {
340         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
341                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
342                         Ok(_) => {},
343                         Err(_) => {
344                                 return Err(LightningError {
345                                         err: format!("Invalid signature on {} message", $msg_type),
346                                         action: ErrorAction::SendWarningMessage {
347                                                 msg: msgs::WarningMessage {
348                                                         channel_id: [0; 32],
349                                                         data: format!("Invalid signature on {} message", $msg_type),
350                                                 },
351                                                 log_level: Level::Trace,
352                                         },
353                                 });
354                         },
355                 }
356         };
357 }
358
359 macro_rules! get_pubkey_from_node_id {
360         ( $node_id: expr, $msg_type: expr ) => {
361                 PublicKey::from_slice($node_id.as_slice())
362                         .map_err(|_| LightningError {
363                                 err: format!("Invalid public key on {} message", $msg_type),
364                                 action: ErrorAction::SendWarningMessage {
365                                         msg: msgs::WarningMessage {
366                                                 channel_id: [0; 32],
367                                                 data: format!("Invalid public key on {} message", $msg_type),
368                                         },
369                                         log_level: Level::Trace
370                                 }
371                         })?
372         }
373 }
374
375 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
376 where U::Target: UtxoLookup, L::Target: Logger
377 {
378         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
379                 self.network_graph.update_node_from_announcement(msg)?;
380                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
381                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
382                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
383         }
384
385         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
386                 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
387                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
388         }
389
390         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
391                 self.network_graph.update_channel(msg)?;
392                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
393         }
394
395         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
396                 let mut channels = self.network_graph.channels.write().unwrap();
397                 for (_, ref chan) in channels.range(starting_point..) {
398                         if chan.announcement_message.is_some() {
399                                 let chan_announcement = chan.announcement_message.clone().unwrap();
400                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
401                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
402                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
403                                         one_to_two_announcement = one_to_two.last_update_message.clone();
404                                 }
405                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
406                                         two_to_one_announcement = two_to_one.last_update_message.clone();
407                                 }
408                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
409                         } else {
410                                 // TODO: We may end up sending un-announced channel_updates if we are sending
411                                 // initial sync data while receiving announce/updates for this channel.
412                         }
413                 }
414                 None
415         }
416
417         fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
418                 let mut nodes = self.network_graph.nodes.write().unwrap();
419                 let iter = if let Some(node_id) = starting_point {
420                                 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
421                         } else {
422                                 nodes.range(..)
423                         };
424                 for (_, ref node) in iter {
425                         if let Some(node_info) = node.announcement_info.as_ref() {
426                                 if let Some(msg) = node_info.announcement_message.clone() {
427                                         return Some(msg);
428                                 }
429                         }
430                 }
431                 None
432         }
433
434         /// Initiates a stateless sync of routing gossip information with a peer
435         /// using [`gossip_queries`]. The default strategy used by this implementation
436         /// is to sync the full block range with several peers.
437         ///
438         /// We should expect one or more [`reply_channel_range`] messages in response
439         /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
440         /// to request gossip messages for each channel. The sync is considered complete
441         /// when the final [`reply_scids_end`] message is received, though we are not
442         /// tracking this directly.
443         ///
444         /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
445         /// [`reply_channel_range`]: msgs::ReplyChannelRange
446         /// [`query_channel_range`]: msgs::QueryChannelRange
447         /// [`query_scid`]: msgs::QueryShortChannelIds
448         /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
449         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
450                 // We will only perform a sync with peers that support gossip_queries.
451                 if !init_msg.features.supports_gossip_queries() {
452                         // Don't disconnect peers for not supporting gossip queries. We may wish to have
453                         // channels with peers even without being able to exchange gossip.
454                         return Ok(());
455                 }
456
457                 // The lightning network's gossip sync system is completely broken in numerous ways.
458                 //
459                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
460                 // to do a full sync from the first few peers we connect to, and then receive gossip
461                 // updates from all our peers normally.
462                 //
463                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
464                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
465                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
466                 // seen.
467                 //
468                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
469                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
470                 // channel data which you are missing. Except there was no way at all to identify which
471                 // `channel_update`s you were missing, so you still had to request everything, just in a
472                 // very complicated way with some queries instead of just getting the dump.
473                 //
474                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
475                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
476                 // relying on it useless.
477                 //
478                 // After gossip queries were introduced, support for receiving a full gossip table dump on
479                 // connection was removed from several nodes, making it impossible to get a full sync
480                 // without using the "gossip queries" messages.
481                 //
482                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
483                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
484                 // message, as the name implies, tells the peer to not forward any gossip messages with a
485                 // timestamp older than a given value (not the time the peer received the filter, but the
486                 // timestamp in the update message, which is often hours behind when the peer received the
487                 // message).
488                 //
489                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
490                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
491                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
492                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
493                 // will simply not forward any new updates they see to you which were generated some time
494                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
495                 // ago), you will always get the full routing graph from all your peers.
496                 //
497                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
498                 // propagated some time after it was generated, and, worse, often disable gossiping with
499                 // several peers after their first connection. The second behavior can cause gossip to not
500                 // propagate fully if there are cuts in the gossiping subgraph.
501                 //
502                 // In an attempt to cut a middle ground between always fetching the full graph from all of
503                 // our peers and never receiving gossip from peers at all, we send all of our peers a
504                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
505                 //
506                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
507                 #[allow(unused_mut, unused_assignments)]
508                 let mut gossip_start_time = 0;
509                 #[cfg(feature = "std")]
510                 {
511                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
512                         if self.should_request_full_sync(&their_node_id) {
513                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
514                         } else {
515                                 gossip_start_time -= 60 * 60; // an hour ago
516                         }
517                 }
518
519                 let mut pending_events = self.pending_events.lock().unwrap();
520                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
521                         node_id: their_node_id.clone(),
522                         msg: GossipTimestampFilter {
523                                 chain_hash: self.network_graph.genesis_hash,
524                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
525                                 timestamp_range: u32::max_value(),
526                         },
527                 });
528                 Ok(())
529         }
530
531         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
532                 // We don't make queries, so should never receive replies. If, in the future, the set
533                 // reconciliation extensions to gossip queries become broadly supported, we should revert
534                 // this code to its state pre-0.0.106.
535                 Ok(())
536         }
537
538         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
539                 // We don't make queries, so should never receive replies. If, in the future, the set
540                 // reconciliation extensions to gossip queries become broadly supported, we should revert
541                 // this code to its state pre-0.0.106.
542                 Ok(())
543         }
544
545         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
546         /// are in the specified block range. Due to message size limits, large range
547         /// queries may result in several reply messages. This implementation enqueues
548         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
549         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
550         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
551         /// memory constrained systems.
552         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
553                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
554
555                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
556
557                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
558                 // If so, we manually cap the ending block to avoid this overflow.
559                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
560
561                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
562                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
563                         let mut pending_events = self.pending_events.lock().unwrap();
564                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
565                                 node_id: their_node_id.clone(),
566                                 msg: ReplyChannelRange {
567                                         chain_hash: msg.chain_hash.clone(),
568                                         first_blocknum: msg.first_blocknum,
569                                         number_of_blocks: msg.number_of_blocks,
570                                         sync_complete: true,
571                                         short_channel_ids: vec![],
572                                 }
573                         });
574                         return Err(LightningError {
575                                 err: String::from("query_channel_range could not be processed"),
576                                 action: ErrorAction::IgnoreError,
577                         });
578                 }
579
580                 // Creates channel batches. We are not checking if the channel is routable
581                 // (has at least one update). A peer may still want to know the channel
582                 // exists even if its not yet routable.
583                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
584                 let mut channels = self.network_graph.channels.write().unwrap();
585                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
586                         if let Some(chan_announcement) = &chan.announcement_message {
587                                 // Construct a new batch if last one is full
588                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
589                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
590                                 }
591
592                                 let batch = batches.last_mut().unwrap();
593                                 batch.push(chan_announcement.contents.short_channel_id);
594                         }
595                 }
596                 drop(channels);
597
598                 let mut pending_events = self.pending_events.lock().unwrap();
599                 let batch_count = batches.len();
600                 let mut prev_batch_endblock = msg.first_blocknum;
601                 for (batch_index, batch) in batches.into_iter().enumerate() {
602                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
603                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
604                         //
605                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
606                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
607                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
608                         // significant diversion from the requirements set by the spec, and, in case of blocks
609                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
610                         // and *not* derive the first_blocknum from the actual first block of the reply.
611                         let first_blocknum = prev_batch_endblock;
612
613                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
614                         // fit in. Though there is no requirement that we use exactly the number of blocks its
615                         // contents are from, except for the bogus requirements c-lightning enforces, above.
616                         //
617                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
618                         // >= the query's end block. Thus, for the last reply, we calculate the difference
619                         // between the query's end block and the start of the reply.
620                         //
621                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
622                         // first_blocknum will be either msg.first_blocknum or a higher block height.
623                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
624                                 (true, msg.end_blocknum() - first_blocknum)
625                         }
626                         // Prior replies should use the number of blocks that fit into the reply. Overflow
627                         // safe since first_blocknum is always <= last SCID's block.
628                         else {
629                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
630                         };
631
632                         prev_batch_endblock = first_blocknum + number_of_blocks;
633
634                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
635                                 node_id: their_node_id.clone(),
636                                 msg: ReplyChannelRange {
637                                         chain_hash: msg.chain_hash.clone(),
638                                         first_blocknum,
639                                         number_of_blocks,
640                                         sync_complete,
641                                         short_channel_ids: batch,
642                                 }
643                         });
644                 }
645
646                 Ok(())
647         }
648
649         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
650                 // TODO
651                 Err(LightningError {
652                         err: String::from("Not implemented"),
653                         action: ErrorAction::IgnoreError,
654                 })
655         }
656
657         fn provided_node_features(&self) -> NodeFeatures {
658                 let mut features = NodeFeatures::empty();
659                 features.set_gossip_queries_optional();
660                 features
661         }
662
663         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
664                 let mut features = InitFeatures::empty();
665                 features.set_gossip_queries_optional();
666                 features
667         }
668
669         fn processing_queue_high(&self) -> bool {
670                 self.network_graph.pending_checks.too_many_checks_pending()
671         }
672 }
673
674 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
675 where
676         U::Target: UtxoLookup,
677         L::Target: Logger,
678 {
679         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
680                 let mut ret = Vec::new();
681                 let mut pending_events = self.pending_events.lock().unwrap();
682                 core::mem::swap(&mut ret, &mut pending_events);
683                 ret
684         }
685 }
686
687 #[derive(Clone, Debug, PartialEq, Eq)]
688 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
689 pub struct ChannelUpdateInfo {
690         /// When the last update to the channel direction was issued.
691         /// Value is opaque, as set in the announcement.
692         pub last_update: u32,
693         /// Whether the channel can be currently used for payments (in this one direction).
694         pub enabled: bool,
695         /// The difference in CLTV values that you must have when routing through this channel.
696         pub cltv_expiry_delta: u16,
697         /// The minimum value, which must be relayed to the next hop via the channel
698         pub htlc_minimum_msat: u64,
699         /// The maximum value which may be relayed to the next hop via the channel.
700         pub htlc_maximum_msat: u64,
701         /// Fees charged when the channel is used for routing
702         pub fees: RoutingFees,
703         /// Most recent update for the channel received from the network
704         /// Mostly redundant with the data we store in fields explicitly.
705         /// Everything else is useful only for sending out for initial routing sync.
706         /// Not stored if contains excess data to prevent DoS.
707         pub last_update_message: Option<ChannelUpdate>,
708 }
709
710 impl fmt::Display for ChannelUpdateInfo {
711         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
712                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
713                 Ok(())
714         }
715 }
716
717 impl Writeable for ChannelUpdateInfo {
718         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
719                 write_tlv_fields!(writer, {
720                         (0, self.last_update, required),
721                         (2, self.enabled, required),
722                         (4, self.cltv_expiry_delta, required),
723                         (6, self.htlc_minimum_msat, required),
724                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
725                         // compatibility with LDK versions prior to v0.0.110.
726                         (8, Some(self.htlc_maximum_msat), required),
727                         (10, self.fees, required),
728                         (12, self.last_update_message, required),
729                 });
730                 Ok(())
731         }
732 }
733
734 impl Readable for ChannelUpdateInfo {
735         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
736                 _init_tlv_field_var!(last_update, required);
737                 _init_tlv_field_var!(enabled, required);
738                 _init_tlv_field_var!(cltv_expiry_delta, required);
739                 _init_tlv_field_var!(htlc_minimum_msat, required);
740                 _init_tlv_field_var!(htlc_maximum_msat, option);
741                 _init_tlv_field_var!(fees, required);
742                 _init_tlv_field_var!(last_update_message, required);
743
744                 read_tlv_fields!(reader, {
745                         (0, last_update, required),
746                         (2, enabled, required),
747                         (4, cltv_expiry_delta, required),
748                         (6, htlc_minimum_msat, required),
749                         (8, htlc_maximum_msat, required),
750                         (10, fees, required),
751                         (12, last_update_message, required)
752                 });
753
754                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
755                         Ok(ChannelUpdateInfo {
756                                 last_update: _init_tlv_based_struct_field!(last_update, required),
757                                 enabled: _init_tlv_based_struct_field!(enabled, required),
758                                 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
759                                 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
760                                 htlc_maximum_msat,
761                                 fees: _init_tlv_based_struct_field!(fees, required),
762                                 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
763                         })
764                 } else {
765                         Err(DecodeError::InvalidValue)
766                 }
767         }
768 }
769
770 #[derive(Clone, Debug, PartialEq, Eq)]
771 /// Details about a channel (both directions).
772 /// Received within a channel announcement.
773 pub struct ChannelInfo {
774         /// Protocol features of a channel communicated during its announcement
775         pub features: ChannelFeatures,
776         /// Source node of the first direction of a channel
777         pub node_one: NodeId,
778         /// Details about the first direction of a channel
779         pub one_to_two: Option<ChannelUpdateInfo>,
780         /// Source node of the second direction of a channel
781         pub node_two: NodeId,
782         /// Details about the second direction of a channel
783         pub two_to_one: Option<ChannelUpdateInfo>,
784         /// The channel capacity as seen on-chain, if chain lookup is available.
785         pub capacity_sats: Option<u64>,
786         /// An initial announcement of the channel
787         /// Mostly redundant with the data we store in fields explicitly.
788         /// Everything else is useful only for sending out for initial routing sync.
789         /// Not stored if contains excess data to prevent DoS.
790         pub announcement_message: Option<ChannelAnnouncement>,
791         /// The timestamp when we received the announcement, if we are running with feature = "std"
792         /// (which we can probably assume we are - no-std environments probably won't have a full
793         /// network graph in memory!).
794         announcement_received_time: u64,
795 }
796
797 impl ChannelInfo {
798         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
799         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
800         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
801                 let (direction, source) = {
802                         if target == &self.node_one {
803                                 (self.two_to_one.as_ref(), &self.node_two)
804                         } else if target == &self.node_two {
805                                 (self.one_to_two.as_ref(), &self.node_one)
806                         } else {
807                                 return None;
808                         }
809                 };
810                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
811         }
812
813         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
814         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
815         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
816                 let (direction, target) = {
817                         if source == &self.node_one {
818                                 (self.one_to_two.as_ref(), &self.node_two)
819                         } else if source == &self.node_two {
820                                 (self.two_to_one.as_ref(), &self.node_one)
821                         } else {
822                                 return None;
823                         }
824                 };
825                 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
826         }
827
828         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
829         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
830                 let direction = channel_flags & 1u8;
831                 if direction == 0 {
832                         self.one_to_two.as_ref()
833                 } else {
834                         self.two_to_one.as_ref()
835                 }
836         }
837 }
838
839 impl fmt::Display for ChannelInfo {
840         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
841                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
842                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
843                 Ok(())
844         }
845 }
846
847 impl Writeable for ChannelInfo {
848         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
849                 write_tlv_fields!(writer, {
850                         (0, self.features, required),
851                         (1, self.announcement_received_time, (default_value, 0)),
852                         (2, self.node_one, required),
853                         (4, self.one_to_two, required),
854                         (6, self.node_two, required),
855                         (8, self.two_to_one, required),
856                         (10, self.capacity_sats, required),
857                         (12, self.announcement_message, required),
858                 });
859                 Ok(())
860         }
861 }
862
863 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
864 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
865 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
866 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
867 // channel updates via the gossip network.
868 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
869
870 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
871         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
872                 match crate::util::ser::Readable::read(reader) {
873                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
874                         Err(DecodeError::ShortRead) => Ok(None),
875                         Err(DecodeError::InvalidValue) => Ok(None),
876                         Err(err) => Err(err),
877                 }
878         }
879 }
880
881 impl Readable for ChannelInfo {
882         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
883                 _init_tlv_field_var!(features, required);
884                 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
885                 _init_tlv_field_var!(node_one, required);
886                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
887                 _init_tlv_field_var!(node_two, required);
888                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
889                 _init_tlv_field_var!(capacity_sats, required);
890                 _init_tlv_field_var!(announcement_message, required);
891                 read_tlv_fields!(reader, {
892                         (0, features, required),
893                         (1, announcement_received_time, (default_value, 0)),
894                         (2, node_one, required),
895                         (4, one_to_two_wrap, upgradable_option),
896                         (6, node_two, required),
897                         (8, two_to_one_wrap, upgradable_option),
898                         (10, capacity_sats, required),
899                         (12, announcement_message, required),
900                 });
901
902                 Ok(ChannelInfo {
903                         features: _init_tlv_based_struct_field!(features, required),
904                         node_one: _init_tlv_based_struct_field!(node_one, required),
905                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
906                         node_two: _init_tlv_based_struct_field!(node_two, required),
907                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
908                         capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
909                         announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
910                         announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
911                 })
912         }
913 }
914
915 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
916 /// source node to a target node.
917 #[derive(Clone)]
918 pub struct DirectedChannelInfo<'a> {
919         channel: &'a ChannelInfo,
920         direction: &'a ChannelUpdateInfo,
921         htlc_maximum_msat: u64,
922         effective_capacity: EffectiveCapacity,
923 }
924
925 impl<'a> DirectedChannelInfo<'a> {
926         #[inline]
927         fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
928                 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
929                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
930
931                 let effective_capacity = match capacity_msat {
932                         Some(capacity_msat) => {
933                                 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
934                                 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
935                         },
936                         None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
937                 };
938
939                 Self {
940                         channel, direction, htlc_maximum_msat, effective_capacity
941                 }
942         }
943
944         /// Returns information for the channel.
945         #[inline]
946         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
947
948         /// Returns the maximum HTLC amount allowed over the channel in the direction.
949         #[inline]
950         pub fn htlc_maximum_msat(&self) -> u64 {
951                 self.htlc_maximum_msat
952         }
953
954         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
955         ///
956         /// This is either the total capacity from the funding transaction, if known, or the
957         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
958         /// otherwise.
959         pub fn effective_capacity(&self) -> EffectiveCapacity {
960                 self.effective_capacity
961         }
962
963         /// Returns information for the direction.
964         #[inline]
965         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
966 }
967
968 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
969         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
970                 f.debug_struct("DirectedChannelInfo")
971                         .field("channel", &self.channel)
972                         .finish()
973         }
974 }
975
976 /// The effective capacity of a channel for routing purposes.
977 ///
978 /// While this may be smaller than the actual channel capacity, amounts greater than
979 /// [`Self::as_msat`] should not be routed through the channel.
980 #[derive(Clone, Copy, Debug, PartialEq)]
981 pub enum EffectiveCapacity {
982         /// The available liquidity in the channel known from being a channel counterparty, and thus a
983         /// direct hop.
984         ExactLiquidity {
985                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
986                 /// millisatoshi.
987                 liquidity_msat: u64,
988         },
989         /// The maximum HTLC amount in one direction as advertised on the gossip network.
990         MaximumHTLC {
991                 /// The maximum HTLC amount denominated in millisatoshi.
992                 amount_msat: u64,
993         },
994         /// The total capacity of the channel as determined by the funding transaction.
995         Total {
996                 /// The funding amount denominated in millisatoshi.
997                 capacity_msat: u64,
998                 /// The maximum HTLC amount denominated in millisatoshi.
999                 htlc_maximum_msat: u64
1000         },
1001         /// A capacity sufficient to route any payment, typically used for private channels provided by
1002         /// an invoice.
1003         Infinite,
1004         /// A capacity that is unknown possibly because either the chain state is unavailable to know
1005         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1006         Unknown,
1007 }
1008
1009 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1010 /// use when making routing decisions.
1011 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1012
1013 impl EffectiveCapacity {
1014         /// Returns the effective capacity denominated in millisatoshi.
1015         pub fn as_msat(&self) -> u64 {
1016                 match self {
1017                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1018                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1019                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1020                         EffectiveCapacity::Infinite => u64::max_value(),
1021                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1022                 }
1023         }
1024 }
1025
1026 /// Fees for routing via a given channel or a node
1027 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1028 pub struct RoutingFees {
1029         /// Flat routing fee in millisatoshis.
1030         pub base_msat: u32,
1031         /// Liquidity-based routing fee in millionths of a routed amount.
1032         /// In other words, 10000 is 1%.
1033         pub proportional_millionths: u32,
1034 }
1035
1036 impl_writeable_tlv_based!(RoutingFees, {
1037         (0, base_msat, required),
1038         (2, proportional_millionths, required)
1039 });
1040
1041 #[derive(Clone, Debug, PartialEq, Eq)]
1042 /// Information received in the latest node_announcement from this node.
1043 pub struct NodeAnnouncementInfo {
1044         /// Protocol features the node announced support for
1045         pub features: NodeFeatures,
1046         /// When the last known update to the node state was issued.
1047         /// Value is opaque, as set in the announcement.
1048         pub last_update: u32,
1049         /// Color assigned to the node
1050         pub rgb: [u8; 3],
1051         /// Moniker assigned to the node.
1052         /// May be invalid or malicious (eg control chars),
1053         /// should not be exposed to the user.
1054         pub alias: NodeAlias,
1055         /// Internet-level addresses via which one can connect to the node
1056         pub addresses: Vec<NetAddress>,
1057         /// An initial announcement of the node
1058         /// Mostly redundant with the data we store in fields explicitly.
1059         /// Everything else is useful only for sending out for initial routing sync.
1060         /// Not stored if contains excess data to prevent DoS.
1061         pub announcement_message: Option<NodeAnnouncement>
1062 }
1063
1064 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1065         (0, features, required),
1066         (2, last_update, required),
1067         (4, rgb, required),
1068         (6, alias, required),
1069         (8, announcement_message, option),
1070         (10, addresses, vec_type),
1071 });
1072
1073 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1074 ///
1075 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1076 /// attacks. Care must be taken when processing.
1077 #[derive(Clone, Debug, PartialEq, Eq)]
1078 pub struct NodeAlias(pub [u8; 32]);
1079
1080 impl fmt::Display for NodeAlias {
1081         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1082                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1083                 let bytes = self.0.split_at(first_null).0;
1084                 match core::str::from_utf8(bytes) {
1085                         Ok(alias) => PrintableString(alias).fmt(f)?,
1086                         Err(_) => {
1087                                 use core::fmt::Write;
1088                                 for c in bytes.iter().map(|b| *b as char) {
1089                                         // Display printable ASCII characters
1090                                         let control_symbol = core::char::REPLACEMENT_CHARACTER;
1091                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1092                                         f.write_char(c)?;
1093                                 }
1094                         },
1095                 };
1096                 Ok(())
1097         }
1098 }
1099
1100 impl Writeable for NodeAlias {
1101         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1102                 self.0.write(w)
1103         }
1104 }
1105
1106 impl Readable for NodeAlias {
1107         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1108                 Ok(NodeAlias(Readable::read(r)?))
1109         }
1110 }
1111
1112 #[derive(Clone, Debug, PartialEq, Eq)]
1113 /// Details about a node in the network, known from the network announcement.
1114 pub struct NodeInfo {
1115         /// All valid channels a node has announced
1116         pub channels: Vec<u64>,
1117         /// More information about a node from node_announcement.
1118         /// Optional because we store a Node entry after learning about it from
1119         /// a channel announcement, but before receiving a node announcement.
1120         pub announcement_info: Option<NodeAnnouncementInfo>
1121 }
1122
1123 impl fmt::Display for NodeInfo {
1124         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1125                 write!(f, " channels: {:?}, announcement_info: {:?}",
1126                         &self.channels[..], self.announcement_info)?;
1127                 Ok(())
1128         }
1129 }
1130
1131 impl Writeable for NodeInfo {
1132         fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1133                 write_tlv_fields!(writer, {
1134                         // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1135                         (2, self.announcement_info, option),
1136                         (4, self.channels, vec_type),
1137                 });
1138                 Ok(())
1139         }
1140 }
1141
1142 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1143 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1144 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1145 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1146 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1147
1148 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1149         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1150                 match crate::util::ser::Readable::read(reader) {
1151                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1152                         Err(_) => {
1153                                 copy(reader, &mut sink()).unwrap();
1154                                 return Ok(None)
1155                         },
1156                 };
1157         }
1158 }
1159
1160 impl Readable for NodeInfo {
1161         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1162                 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1163                 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1164                 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1165                 // requires additional complexity and lookups during routing, it ends up being a
1166                 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1167                 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1168                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1169                 _init_tlv_field_var!(channels, vec_type);
1170
1171                 read_tlv_fields!(reader, {
1172                         (0, _lowest_inbound_channel_fees, option),
1173                         (2, announcement_info_wrap, upgradable_option),
1174                         (4, channels, vec_type),
1175                 });
1176
1177                 Ok(NodeInfo {
1178                         announcement_info: announcement_info_wrap.map(|w| w.0),
1179                         channels: _init_tlv_based_struct_field!(channels, vec_type),
1180                 })
1181         }
1182 }
1183
1184 const SERIALIZATION_VERSION: u8 = 1;
1185 const MIN_SERIALIZATION_VERSION: u8 = 1;
1186
1187 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1188         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1189                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1190
1191                 self.genesis_hash.write(writer)?;
1192                 let channels = self.channels.read().unwrap();
1193                 (channels.len() as u64).write(writer)?;
1194                 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1195                         (*chan_id).write(writer)?;
1196                         chan_info.write(writer)?;
1197                 }
1198                 let nodes = self.nodes.read().unwrap();
1199                 (nodes.len() as u64).write(writer)?;
1200                 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1201                         node_id.write(writer)?;
1202                         node_info.write(writer)?;
1203                 }
1204
1205                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1206                 write_tlv_fields!(writer, {
1207                         (1, last_rapid_gossip_sync_timestamp, option),
1208                 });
1209                 Ok(())
1210         }
1211 }
1212
1213 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1214         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1215                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1216
1217                 let genesis_hash: BlockHash = Readable::read(reader)?;
1218                 let channels_count: u64 = Readable::read(reader)?;
1219                 let mut channels = IndexedMap::new();
1220                 for _ in 0..channels_count {
1221                         let chan_id: u64 = Readable::read(reader)?;
1222                         let chan_info = Readable::read(reader)?;
1223                         channels.insert(chan_id, chan_info);
1224                 }
1225                 let nodes_count: u64 = Readable::read(reader)?;
1226                 let mut nodes = IndexedMap::new();
1227                 for _ in 0..nodes_count {
1228                         let node_id = Readable::read(reader)?;
1229                         let node_info = Readable::read(reader)?;
1230                         nodes.insert(node_id, node_info);
1231                 }
1232
1233                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1234                 read_tlv_fields!(reader, {
1235                         (1, last_rapid_gossip_sync_timestamp, option),
1236                 });
1237
1238                 Ok(NetworkGraph {
1239                         secp_ctx: Secp256k1::verification_only(),
1240                         genesis_hash,
1241                         logger,
1242                         channels: RwLock::new(channels),
1243                         nodes: RwLock::new(nodes),
1244                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1245                         removed_nodes: Mutex::new(HashMap::new()),
1246                         removed_channels: Mutex::new(HashMap::new()),
1247                         pending_checks: utxo::PendingChecks::new(),
1248                 })
1249         }
1250 }
1251
1252 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1253         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1254                 writeln!(f, "Network map\n[Channels]")?;
1255                 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1256                         writeln!(f, " {}: {}", key, val)?;
1257                 }
1258                 writeln!(f, "[Nodes]")?;
1259                 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1260                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1261                 }
1262                 Ok(())
1263         }
1264 }
1265
1266 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1267 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1268         fn eq(&self, other: &Self) -> bool {
1269                 self.genesis_hash == other.genesis_hash &&
1270                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1271                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1272         }
1273 }
1274
1275 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1276         /// Creates a new, empty, network graph.
1277         pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1278                 Self {
1279                         secp_ctx: Secp256k1::verification_only(),
1280                         genesis_hash: genesis_block(network).header.block_hash(),
1281                         logger,
1282                         channels: RwLock::new(IndexedMap::new()),
1283                         nodes: RwLock::new(IndexedMap::new()),
1284                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1285                         removed_channels: Mutex::new(HashMap::new()),
1286                         removed_nodes: Mutex::new(HashMap::new()),
1287                         pending_checks: utxo::PendingChecks::new(),
1288                 }
1289         }
1290
1291         /// Returns a read-only view of the network graph.
1292         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1293                 let channels = self.channels.read().unwrap();
1294                 let nodes = self.nodes.read().unwrap();
1295                 ReadOnlyNetworkGraph {
1296                         channels,
1297                         nodes,
1298                 }
1299         }
1300
1301         /// The unix timestamp provided by the most recent rapid gossip sync.
1302         /// It will be set by the rapid sync process after every sync completion.
1303         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1304                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1305         }
1306
1307         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1308         /// This should be done automatically by the rapid sync process after every sync completion.
1309         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1310                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1311         }
1312
1313         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1314         /// purposes.
1315         #[cfg(test)]
1316         pub fn clear_nodes_announcement_info(&self) {
1317                 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1318                         node.1.announcement_info = None;
1319                 }
1320         }
1321
1322         /// For an already known node (from channel announcements), update its stored properties from a
1323         /// given node announcement.
1324         ///
1325         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1326         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1327         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1328         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1329                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1330                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1331                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1332         }
1333
1334         /// For an already known node (from channel announcements), update its stored properties from a
1335         /// given node announcement without verifying the associated signatures. Because we aren't
1336         /// given the associated signatures here we cannot relay the node announcement to any of our
1337         /// peers.
1338         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1339                 self.update_node_from_announcement_intern(msg, None)
1340         }
1341
1342         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1343                 let mut nodes = self.nodes.write().unwrap();
1344                 match nodes.get_mut(&msg.node_id) {
1345                         None => {
1346                                 core::mem::drop(nodes);
1347                                 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1348                                 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1349                         },
1350                         Some(node) => {
1351                                 if let Some(node_info) = node.announcement_info.as_ref() {
1352                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1353                                         // updates to ensure you always have the latest one, only vaguely suggesting
1354                                         // that it be at least the current time.
1355                                         if node_info.last_update  > msg.timestamp {
1356                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1357                                         } else if node_info.last_update  == msg.timestamp {
1358                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1359                                         }
1360                                 }
1361
1362                                 let should_relay =
1363                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1364                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1365                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1366                                 node.announcement_info = Some(NodeAnnouncementInfo {
1367                                         features: msg.features.clone(),
1368                                         last_update: msg.timestamp,
1369                                         rgb: msg.rgb,
1370                                         alias: NodeAlias(msg.alias),
1371                                         addresses: msg.addresses.clone(),
1372                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1373                                 });
1374
1375                                 Ok(())
1376                         }
1377                 }
1378         }
1379
1380         /// Store or update channel info from a channel announcement.
1381         ///
1382         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1383         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1384         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1385         ///
1386         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1387         /// the corresponding UTXO exists on chain and is correctly-formatted.
1388         pub fn update_channel_from_announcement<U: Deref>(
1389                 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1390         ) -> Result<(), LightningError>
1391         where
1392                 U::Target: UtxoLookup,
1393         {
1394                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1395                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1396                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1397                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1398                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1399                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1400         }
1401
1402         /// Store or update channel info from a channel announcement without verifying the associated
1403         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1404         /// channel announcement to any of our peers.
1405         ///
1406         /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1407         /// the corresponding UTXO exists on chain and is correctly-formatted.
1408         pub fn update_channel_from_unsigned_announcement<U: Deref>(
1409                 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1410         ) -> Result<(), LightningError>
1411         where
1412                 U::Target: UtxoLookup,
1413         {
1414                 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1415         }
1416
1417         /// Update channel from partial announcement data received via rapid gossip sync
1418         ///
1419         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1420         /// rapid gossip sync server)
1421         ///
1422         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1423         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1424                 if node_id_1 == node_id_2 {
1425                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1426                 };
1427
1428                 let node_1 = NodeId::from_pubkey(&node_id_1);
1429                 let node_2 = NodeId::from_pubkey(&node_id_2);
1430                 let channel_info = ChannelInfo {
1431                         features,
1432                         node_one: node_1.clone(),
1433                         one_to_two: None,
1434                         node_two: node_2.clone(),
1435                         two_to_one: None,
1436                         capacity_sats: None,
1437                         announcement_message: None,
1438                         announcement_received_time: timestamp,
1439                 };
1440
1441                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1442         }
1443
1444         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1445                 let mut channels = self.channels.write().unwrap();
1446                 let mut nodes = self.nodes.write().unwrap();
1447
1448                 let node_id_a = channel_info.node_one.clone();
1449                 let node_id_b = channel_info.node_two.clone();
1450
1451                 match channels.entry(short_channel_id) {
1452                         IndexedMapEntry::Occupied(mut entry) => {
1453                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1454                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1455                                 //exactly how...
1456                                 if utxo_value.is_some() {
1457                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1458                                         // only sometimes returns results. In any case remove the previous entry. Note
1459                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1460                                         // do that because
1461                                         // a) we don't *require* a UTXO provider that always returns results.
1462                                         // b) we don't track UTXOs of channels we know about and remove them if they
1463                                         //    get reorg'd out.
1464                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1465                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1466                                         *entry.get_mut() = channel_info;
1467                                 } else {
1468                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1469                                 }
1470                         },
1471                         IndexedMapEntry::Vacant(entry) => {
1472                                 entry.insert(channel_info);
1473                         }
1474                 };
1475
1476                 for current_node_id in [node_id_a, node_id_b].iter() {
1477                         match nodes.entry(current_node_id.clone()) {
1478                                 IndexedMapEntry::Occupied(node_entry) => {
1479                                         node_entry.into_mut().channels.push(short_channel_id);
1480                                 },
1481                                 IndexedMapEntry::Vacant(node_entry) => {
1482                                         node_entry.insert(NodeInfo {
1483                                                 channels: vec!(short_channel_id),
1484                                                 announcement_info: None,
1485                                         });
1486                                 }
1487                         };
1488                 };
1489
1490                 Ok(())
1491         }
1492
1493         fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1494                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1495         ) -> Result<(), LightningError>
1496         where
1497                 U::Target: UtxoLookup,
1498         {
1499                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1500                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1501                 }
1502
1503                 {
1504                         let channels = self.channels.read().unwrap();
1505
1506                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1507                                 if chan.capacity_sats.is_some() {
1508                                         // If we'd previously looked up the channel on-chain and checked the script
1509                                         // against what appears on-chain, ignore the duplicate announcement.
1510                                         //
1511                                         // Because a reorg could replace one channel with another at the same SCID, if
1512                                         // the channel appears to be different, we re-validate. This doesn't expose us
1513                                         // to any more DoS risk than not, as a peer can always flood us with
1514                                         // randomly-generated SCID values anyway.
1515                                         //
1516                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1517                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1518                                         // if the peers on the channel changed anyway.
1519                                         if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1520                                                 return Err(LightningError {
1521                                                         err: "Already have chain-validated channel".to_owned(),
1522                                                         action: ErrorAction::IgnoreDuplicateGossip
1523                                                 });
1524                                         }
1525                                 } else if utxo_lookup.is_none() {
1526                                         // Similarly, if we can't check the chain right now anyway, ignore the
1527                                         // duplicate announcement without bothering to take the channels write lock.
1528                                         return Err(LightningError {
1529                                                 err: "Already have non-chain-validated channel".to_owned(),
1530                                                 action: ErrorAction::IgnoreDuplicateGossip
1531                                         });
1532                                 }
1533                         }
1534                 }
1535
1536                 {
1537                         let removed_channels = self.removed_channels.lock().unwrap();
1538                         let removed_nodes = self.removed_nodes.lock().unwrap();
1539                         if removed_channels.contains_key(&msg.short_channel_id) ||
1540                                 removed_nodes.contains_key(&msg.node_id_1) ||
1541                                 removed_nodes.contains_key(&msg.node_id_2) {
1542                                 return Err(LightningError{
1543                                         err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1544                                         action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1545                         }
1546                 }
1547
1548                 let utxo_value = self.pending_checks.check_channel_announcement(
1549                         utxo_lookup, msg, full_msg)?;
1550
1551                 #[allow(unused_mut, unused_assignments)]
1552                 let mut announcement_received_time = 0;
1553                 #[cfg(feature = "std")]
1554                 {
1555                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1556                 }
1557
1558                 let chan_info = ChannelInfo {
1559                         features: msg.features.clone(),
1560                         node_one: msg.node_id_1,
1561                         one_to_two: None,
1562                         node_two: msg.node_id_2,
1563                         two_to_one: None,
1564                         capacity_sats: utxo_value,
1565                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1566                                 { full_msg.cloned() } else { None },
1567                         announcement_received_time,
1568                 };
1569
1570                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1571
1572                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1573                 Ok(())
1574         }
1575
1576         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1577         /// If permanent, removes a channel from the local storage.
1578         /// May cause the removal of nodes too, if this was their last channel.
1579         /// If not permanent, makes channels unavailable for routing.
1580         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1581                 #[cfg(feature = "std")]
1582                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1583                 #[cfg(not(feature = "std"))]
1584                 let current_time_unix = None;
1585
1586                 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1587         }
1588
1589         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1590         /// If permanent, removes a channel from the local storage.
1591         /// May cause the removal of nodes too, if this was their last channel.
1592         /// If not permanent, makes channels unavailable for routing.
1593         fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1594                 let mut channels = self.channels.write().unwrap();
1595                 if is_permanent {
1596                         if let Some(chan) = channels.remove(&short_channel_id) {
1597                                 let mut nodes = self.nodes.write().unwrap();
1598                                 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1599                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1600                         }
1601                 } else {
1602                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1603                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1604                                         one_to_two.enabled = false;
1605                                 }
1606                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1607                                         two_to_one.enabled = false;
1608                                 }
1609                         }
1610                 }
1611         }
1612
1613         /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1614         /// from local storage.
1615         pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1616                 #[cfg(feature = "std")]
1617                 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1618                 #[cfg(not(feature = "std"))]
1619                 let current_time_unix = None;
1620
1621                 let node_id = NodeId::from_pubkey(node_id);
1622                 let mut channels = self.channels.write().unwrap();
1623                 let mut nodes = self.nodes.write().unwrap();
1624                 let mut removed_channels = self.removed_channels.lock().unwrap();
1625                 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1626
1627                 if let Some(node) = nodes.remove(&node_id) {
1628                         for scid in node.channels.iter() {
1629                                 if let Some(chan_info) = channels.remove(scid) {
1630                                         let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1631                                         if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1632                                                 other_node_entry.get_mut().channels.retain(|chan_id| {
1633                                                         *scid != *chan_id
1634                                                 });
1635                                                 if other_node_entry.get().channels.is_empty() {
1636                                                         other_node_entry.remove_entry();
1637                                                 }
1638                                         }
1639                                         removed_channels.insert(*scid, current_time_unix);
1640                                 }
1641                         }
1642                         removed_nodes.insert(node_id, current_time_unix);
1643                 }
1644         }
1645
1646         #[cfg(feature = "std")]
1647         /// Removes information about channels that we haven't heard any updates about in some time.
1648         /// This can be used regularly to prune the network graph of channels that likely no longer
1649         /// exist.
1650         ///
1651         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1652         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1653         /// pruning occur for updates which are at least two weeks old, which we implement here.
1654         ///
1655         /// Note that for users of the `lightning-background-processor` crate this method may be
1656         /// automatically called regularly for you.
1657         ///
1658         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1659         /// in the map for a while so that these can be resynced from gossip in the future.
1660         ///
1661         /// This method is only available with the `std` feature. See
1662         /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1663         pub fn remove_stale_channels_and_tracking(&self) {
1664                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1665                 self.remove_stale_channels_and_tracking_with_time(time);
1666         }
1667
1668         /// Removes information about channels that we haven't heard any updates about in some time.
1669         /// This can be used regularly to prune the network graph of channels that likely no longer
1670         /// exist.
1671         ///
1672         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1673         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1674         /// pruning occur for updates which are at least two weeks old, which we implement here.
1675         ///
1676         /// This method will also cause us to stop tracking removed nodes and channels if they have been
1677         /// in the map for a while so that these can be resynced from gossip in the future.
1678         ///
1679         /// This function takes the current unix time as an argument. For users with the `std` feature
1680         /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1681         pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1682                 let mut channels = self.channels.write().unwrap();
1683                 // Time out if we haven't received an update in at least 14 days.
1684                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1685                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1686                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1687                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1688                 // time.
1689                 let mut scids_to_remove = Vec::new();
1690                 for (scid, info) in channels.unordered_iter_mut() {
1691                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1692                                 info.one_to_two = None;
1693                         }
1694                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1695                                 info.two_to_one = None;
1696                         }
1697                         if info.one_to_two.is_none() || info.two_to_one.is_none() {
1698                                 // We check the announcement_received_time here to ensure we don't drop
1699                                 // announcements that we just received and are just waiting for our peer to send a
1700                                 // channel_update for.
1701                                 if info.announcement_received_time < min_time_unix as u64 {
1702                                         scids_to_remove.push(*scid);
1703                                 }
1704                         }
1705                 }
1706                 if !scids_to_remove.is_empty() {
1707                         let mut nodes = self.nodes.write().unwrap();
1708                         for scid in scids_to_remove {
1709                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1710                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1711                                 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1712                         }
1713                 }
1714
1715                 let should_keep_tracking = |time: &mut Option<u64>| {
1716                         if let Some(time) = time {
1717                                 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1718                         } else {
1719                                 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1720                                 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1721                                 // of this function.
1722                                 #[cfg(feature = "no-std")]
1723                                 {
1724                                         let mut tracked_time = Some(current_time_unix);
1725                                         core::mem::swap(time, &mut tracked_time);
1726                                         return true;
1727                                 }
1728                                 #[allow(unreachable_code)]
1729                                 false
1730                         }};
1731
1732                 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1733                 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1734         }
1735
1736         /// For an already known (from announcement) channel, update info about one of the directions
1737         /// of the channel.
1738         ///
1739         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1740         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1741         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1742         ///
1743         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1744         /// materially in the future will be rejected.
1745         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1746                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1747         }
1748
1749         /// For an already known (from announcement) channel, update info about one of the directions
1750         /// of the channel without verifying the associated signatures. Because we aren't given the
1751         /// associated signatures here we cannot relay the channel update to any of our peers.
1752         ///
1753         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1754         /// materially in the future will be rejected.
1755         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1756                 self.update_channel_intern(msg, None, None)
1757         }
1758
1759         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1760                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1761
1762                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1763                 {
1764                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1765                         // disable this check during tests!
1766                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1767                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1768                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1769                         }
1770                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1771                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1772                         }
1773                 }
1774
1775                 let mut channels = self.channels.write().unwrap();
1776                 match channels.get_mut(&msg.short_channel_id) {
1777                         None => {
1778                                 core::mem::drop(channels);
1779                                 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1780                                 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1781                         },
1782                         Some(channel) => {
1783                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1784                                         return Err(LightningError{err:
1785                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1786                                                 action: ErrorAction::IgnoreError});
1787                                 }
1788
1789                                 if let Some(capacity_sats) = channel.capacity_sats {
1790                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1791                                         // Don't query UTXO set here to reduce DoS risks.
1792                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1793                                                 return Err(LightningError{err:
1794                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1795                                                         action: ErrorAction::IgnoreError});
1796                                         }
1797                                 }
1798                                 macro_rules! check_update_latest {
1799                                         ($target: expr) => {
1800                                                 if let Some(existing_chan_info) = $target.as_ref() {
1801                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1802                                                         // order updates to ensure you always have the latest one, only
1803                                                         // suggesting  that it be at least the current time. For
1804                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1805                                                         // pruning based on the timestamp field being more than two weeks old,
1806                                                         // but only in the non-normative section.
1807                                                         if existing_chan_info.last_update > msg.timestamp {
1808                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1809                                                         } else if existing_chan_info.last_update == msg.timestamp {
1810                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1811                                                         }
1812                                                 }
1813                                         }
1814                                 }
1815
1816                                 macro_rules! get_new_channel_info {
1817                                         () => { {
1818                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1819                                                         { full_msg.cloned() } else { None };
1820
1821                                                 let updated_channel_update_info = ChannelUpdateInfo {
1822                                                         enabled: chan_enabled,
1823                                                         last_update: msg.timestamp,
1824                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1825                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1826                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1827                                                         fees: RoutingFees {
1828                                                                 base_msat: msg.fee_base_msat,
1829                                                                 proportional_millionths: msg.fee_proportional_millionths,
1830                                                         },
1831                                                         last_update_message
1832                                                 };
1833                                                 Some(updated_channel_update_info)
1834                                         } }
1835                                 }
1836
1837                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1838                                 if msg.flags & 1 == 1 {
1839                                         check_update_latest!(channel.two_to_one);
1840                                         if let Some(sig) = sig {
1841                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1842                                                         err: "Couldn't parse source node pubkey".to_owned(),
1843                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1844                                                 })?, "channel_update");
1845                                         }
1846                                         channel.two_to_one = get_new_channel_info!();
1847                                 } else {
1848                                         check_update_latest!(channel.one_to_two);
1849                                         if let Some(sig) = sig {
1850                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1851                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1852                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1853                                                 })?, "channel_update");
1854                                         }
1855                                         channel.one_to_two = get_new_channel_info!();
1856                                 }
1857                         }
1858                 }
1859
1860                 Ok(())
1861         }
1862
1863         fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1864                 macro_rules! remove_from_node {
1865                         ($node_id: expr) => {
1866                                 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1867                                         entry.get_mut().channels.retain(|chan_id| {
1868                                                 short_channel_id != *chan_id
1869                                         });
1870                                         if entry.get().channels.is_empty() {
1871                                                 entry.remove_entry();
1872                                         }
1873                                 } else {
1874                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1875                                 }
1876                         }
1877                 }
1878
1879                 remove_from_node!(chan.node_one);
1880                 remove_from_node!(chan.node_two);
1881         }
1882 }
1883
1884 impl ReadOnlyNetworkGraph<'_> {
1885         /// Returns all known valid channels' short ids along with announced channel info.
1886         ///
1887         /// (C-not exported) because we don't want to return lifetime'd references
1888         pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1889                 &*self.channels
1890         }
1891
1892         /// Returns information on a channel with the given id.
1893         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1894                 self.channels.get(&short_channel_id)
1895         }
1896
1897         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1898         /// Returns the list of channels in the graph
1899         pub fn list_channels(&self) -> Vec<u64> {
1900                 self.channels.unordered_keys().map(|c| *c).collect()
1901         }
1902
1903         /// Returns all known nodes' public keys along with announced node info.
1904         ///
1905         /// (C-not exported) because we don't want to return lifetime'd references
1906         pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1907                 &*self.nodes
1908         }
1909
1910         /// Returns information on a node with the given id.
1911         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1912                 self.nodes.get(node_id)
1913         }
1914
1915         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1916         /// Returns the list of nodes in the graph
1917         pub fn list_nodes(&self) -> Vec<NodeId> {
1918                 self.nodes.unordered_keys().map(|n| *n).collect()
1919         }
1920
1921         /// Get network addresses by node id.
1922         /// Returns None if the requested node is completely unknown,
1923         /// or if node announcement for the node was never received.
1924         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1925                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1926                         if let Some(node_info) = node.announcement_info.as_ref() {
1927                                 return Some(node_info.addresses.clone())
1928                         }
1929                 }
1930                 None
1931         }
1932 }
1933
1934 #[cfg(test)]
1935 pub(crate) mod tests {
1936         use crate::ln::channelmanager;
1937         use crate::ln::chan_utils::make_funding_redeemscript;
1938         #[cfg(feature = "std")]
1939         use crate::ln::features::InitFeatures;
1940         use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1941         use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1942         use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1943                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1944                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1945         use crate::util::config::UserConfig;
1946         use crate::util::test_utils;
1947         use crate::util::ser::{ReadableArgs, Writeable};
1948         use crate::util::events::{MessageSendEvent, MessageSendEventsProvider};
1949         use crate::util::scid_utils::scid_from_parts;
1950
1951         use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
1952         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1953
1954         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1955         use bitcoin::hashes::Hash;
1956         use bitcoin::network::constants::Network;
1957         use bitcoin::blockdata::constants::genesis_block;
1958         use bitcoin::blockdata::script::Script;
1959         use bitcoin::blockdata::transaction::TxOut;
1960
1961         use hex;
1962
1963         use bitcoin::secp256k1::{PublicKey, SecretKey};
1964         use bitcoin::secp256k1::{All, Secp256k1};
1965
1966         use crate::io;
1967         use bitcoin::secp256k1;
1968         use crate::prelude::*;
1969         use crate::sync::Arc;
1970
1971         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1972                 let logger = Arc::new(test_utils::TestLogger::new());
1973                 NetworkGraph::new(Network::Testnet, logger)
1974         }
1975
1976         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1977                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1978                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1979         ) {
1980                 let secp_ctx = Secp256k1::new();
1981                 let logger = Arc::new(test_utils::TestLogger::new());
1982                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1983                 (secp_ctx, gossip_sync)
1984         }
1985
1986         #[test]
1987         #[cfg(feature = "std")]
1988         fn request_full_sync_finite_times() {
1989                 let network_graph = create_network_graph();
1990                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1991                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1992
1993                 assert!(gossip_sync.should_request_full_sync(&node_id));
1994                 assert!(gossip_sync.should_request_full_sync(&node_id));
1995                 assert!(gossip_sync.should_request_full_sync(&node_id));
1996                 assert!(gossip_sync.should_request_full_sync(&node_id));
1997                 assert!(gossip_sync.should_request_full_sync(&node_id));
1998                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1999         }
2000
2001         pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2002                 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2003                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2004                         features: channelmanager::provided_node_features(&UserConfig::default()),
2005                         timestamp: 100,
2006                         node_id,
2007                         rgb: [0; 3],
2008                         alias: [0; 32],
2009                         addresses: Vec::new(),
2010                         excess_address_data: Vec::new(),
2011                         excess_data: Vec::new(),
2012                 };
2013                 f(&mut unsigned_announcement);
2014                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2015                 NodeAnnouncement {
2016                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2017                         contents: unsigned_announcement
2018                 }
2019         }
2020
2021         pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2022                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2023                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2024                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2025                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2026
2027                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2028                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2029                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2030                         short_channel_id: 0,
2031                         node_id_1: NodeId::from_pubkey(&node_id_1),
2032                         node_id_2: NodeId::from_pubkey(&node_id_2),
2033                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2034                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2035                         excess_data: Vec::new(),
2036                 };
2037                 f(&mut unsigned_announcement);
2038                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2039                 ChannelAnnouncement {
2040                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2041                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2042                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2043                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2044                         contents: unsigned_announcement,
2045                 }
2046         }
2047
2048         pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2049                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2050                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2051                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2052                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2053         }
2054
2055         pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2056                 let mut unsigned_channel_update = UnsignedChannelUpdate {
2057                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2058                         short_channel_id: 0,
2059                         timestamp: 100,
2060                         flags: 0,
2061                         cltv_expiry_delta: 144,
2062                         htlc_minimum_msat: 1_000_000,
2063                         htlc_maximum_msat: 1_000_000,
2064                         fee_base_msat: 10_000,
2065                         fee_proportional_millionths: 20,
2066                         excess_data: Vec::new()
2067                 };
2068                 f(&mut unsigned_channel_update);
2069                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2070                 ChannelUpdate {
2071                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2072                         contents: unsigned_channel_update
2073                 }
2074         }
2075
2076         #[test]
2077         fn handling_node_announcements() {
2078                 let network_graph = create_network_graph();
2079                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2080
2081                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2082                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2083                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2084
2085                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2086                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2087                         Ok(_) => panic!(),
2088                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2089                 };
2090
2091                 {
2092                         // Announce a channel to add a corresponding node.
2093                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2094                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2095                                 Ok(res) => assert!(res),
2096                                 _ => panic!()
2097                         };
2098                 }
2099
2100                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2101                         Ok(res) => assert!(res),
2102                         Err(_) => panic!()
2103                 };
2104
2105                 let fake_msghash = hash_to_message!(&zero_hash);
2106                 match gossip_sync.handle_node_announcement(
2107                         &NodeAnnouncement {
2108                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2109                                 contents: valid_announcement.contents.clone()
2110                 }) {
2111                         Ok(_) => panic!(),
2112                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2113                 };
2114
2115                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2116                         unsigned_announcement.timestamp += 1000;
2117                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2118                 }, node_1_privkey, &secp_ctx);
2119                 // Return false because contains excess data.
2120                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2121                         Ok(res) => assert!(!res),
2122                         Err(_) => panic!()
2123                 };
2124
2125                 // Even though previous announcement was not relayed further, we still accepted it,
2126                 // so we now won't accept announcements before the previous one.
2127                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2128                         unsigned_announcement.timestamp += 1000 - 10;
2129                 }, node_1_privkey, &secp_ctx);
2130                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2131                         Ok(_) => panic!(),
2132                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2133                 };
2134         }
2135
2136         #[test]
2137         fn handling_channel_announcements() {
2138                 let secp_ctx = Secp256k1::new();
2139                 let logger = test_utils::TestLogger::new();
2140
2141                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2142                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2143
2144                 let good_script = get_channel_script(&secp_ctx);
2145                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2146
2147                 // Test if the UTXO lookups were not supported
2148                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2149                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2150                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2151                         Ok(res) => assert!(res),
2152                         _ => panic!()
2153                 };
2154
2155                 {
2156                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2157                                 None => panic!(),
2158                                 Some(_) => ()
2159                         };
2160                 }
2161
2162                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2163                 // drop new one on the floor, since we can't see any changes.
2164                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2165                         Ok(_) => panic!(),
2166                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2167                 };
2168
2169                 // Test if an associated transaction were not on-chain (or not confirmed).
2170                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2171                 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2172                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2173                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2174
2175                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2176                         unsigned_announcement.short_channel_id += 1;
2177                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2178                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2179                         Ok(_) => panic!(),
2180                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2181                 };
2182
2183                 // Now test if the transaction is found in the UTXO set and the script is correct.
2184                 *chain_source.utxo_ret.lock().unwrap() =
2185                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2186                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2187                         unsigned_announcement.short_channel_id += 2;
2188                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2189                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2190                         Ok(res) => assert!(res),
2191                         _ => panic!()
2192                 };
2193
2194                 {
2195                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2196                                 None => panic!(),
2197                                 Some(_) => ()
2198                         };
2199                 }
2200
2201                 // If we receive announcement for the same channel, once we've validated it against the
2202                 // chain, we simply ignore all new (duplicate) announcements.
2203                 *chain_source.utxo_ret.lock().unwrap() =
2204                         UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2205                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2206                         Ok(_) => panic!(),
2207                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2208                 };
2209
2210                 #[cfg(feature = "std")]
2211                 {
2212                         use std::time::{SystemTime, UNIX_EPOCH};
2213
2214                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2215                         // Mark a node as permanently failed so it's tracked as removed.
2216                         gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2217
2218                         // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2219                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2220                                 unsigned_announcement.short_channel_id += 3;
2221                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2222                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2223                                 Ok(_) => panic!(),
2224                                 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2225                         }
2226
2227                         gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2228
2229                         // The above channel announcement should be handled as per normal now.
2230                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2231                                 Ok(res) => assert!(res),
2232                                 _ => panic!()
2233                         }
2234                 }
2235
2236                 // Don't relay valid channels with excess data
2237                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2238                         unsigned_announcement.short_channel_id += 4;
2239                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2240                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2241                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2242                         Ok(res) => assert!(!res),
2243                         _ => panic!()
2244                 };
2245
2246                 let mut invalid_sig_announcement = valid_announcement.clone();
2247                 invalid_sig_announcement.contents.excess_data = Vec::new();
2248                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2249                         Ok(_) => panic!(),
2250                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2251                 };
2252
2253                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2254                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2255                         Ok(_) => panic!(),
2256                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2257                 };
2258         }
2259
2260         #[test]
2261         fn handling_channel_update() {
2262                 let secp_ctx = Secp256k1::new();
2263                 let logger = test_utils::TestLogger::new();
2264                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2265                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2266                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2267
2268                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2269                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2270
2271                 let amount_sats = 1000_000;
2272                 let short_channel_id;
2273
2274                 {
2275                         // Announce a channel we will update
2276                         let good_script = get_channel_script(&secp_ctx);
2277                         *chain_source.utxo_ret.lock().unwrap() =
2278                                 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2279
2280                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2281                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2282                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2283                                 Ok(_) => (),
2284                                 Err(_) => panic!()
2285                         };
2286
2287                 }
2288
2289                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2290                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2291                         Ok(res) => assert!(res),
2292                         _ => panic!(),
2293                 };
2294
2295                 {
2296                         match network_graph.read_only().channels().get(&short_channel_id) {
2297                                 None => panic!(),
2298                                 Some(channel_info) => {
2299                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2300                                         assert!(channel_info.two_to_one.is_none());
2301                                 }
2302                         };
2303                 }
2304
2305                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2306                         unsigned_channel_update.timestamp += 100;
2307                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2308                 }, node_1_privkey, &secp_ctx);
2309                 // Return false because contains excess data
2310                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2311                         Ok(res) => assert!(!res),
2312                         _ => panic!()
2313                 };
2314
2315                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2316                         unsigned_channel_update.timestamp += 110;
2317                         unsigned_channel_update.short_channel_id += 1;
2318                 }, node_1_privkey, &secp_ctx);
2319                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2320                         Ok(_) => panic!(),
2321                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2322                 };
2323
2324                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2325                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2326                         unsigned_channel_update.timestamp += 110;
2327                 }, node_1_privkey, &secp_ctx);
2328                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2329                         Ok(_) => panic!(),
2330                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2331                 };
2332
2333                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2334                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2335                         unsigned_channel_update.timestamp += 110;
2336                 }, node_1_privkey, &secp_ctx);
2337                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2338                         Ok(_) => panic!(),
2339                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2340                 };
2341
2342                 // Even though previous update was not relayed further, we still accepted it,
2343                 // so we now won't accept update before the previous one.
2344                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2345                         unsigned_channel_update.timestamp += 100;
2346                 }, node_1_privkey, &secp_ctx);
2347                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2348                         Ok(_) => panic!(),
2349                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2350                 };
2351
2352                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2353                         unsigned_channel_update.timestamp += 500;
2354                 }, node_1_privkey, &secp_ctx);
2355                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2356                 let fake_msghash = hash_to_message!(&zero_hash);
2357                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2358                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2359                         Ok(_) => panic!(),
2360                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2361                 };
2362         }
2363
2364         #[test]
2365         fn handling_network_update() {
2366                 let logger = test_utils::TestLogger::new();
2367                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2368                 let secp_ctx = Secp256k1::new();
2369
2370                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2371                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2372                 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2373
2374                 {
2375                         // There is no nodes in the table at the beginning.
2376                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2377                 }
2378
2379                 let short_channel_id;
2380                 {
2381                         // Announce a channel we will update
2382                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2383                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2384                         let chain_source: Option<&test_utils::TestChainSource> = None;
2385                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2386                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2387
2388                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2389                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2390
2391                         network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2392                                 msg: valid_channel_update,
2393                         });
2394
2395                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2396                 }
2397
2398                 // Non-permanent closing just disables a channel
2399                 {
2400                         match network_graph.read_only().channels().get(&short_channel_id) {
2401                                 None => panic!(),
2402                                 Some(channel_info) => {
2403                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2404                                 }
2405                         };
2406
2407                         network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2408                                 short_channel_id,
2409                                 is_permanent: false,
2410                         });
2411
2412                         match network_graph.read_only().channels().get(&short_channel_id) {
2413                                 None => panic!(),
2414                                 Some(channel_info) => {
2415                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2416                                 }
2417                         };
2418                 }
2419
2420                 // Permanent closing deletes a channel
2421                 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2422                         short_channel_id,
2423                         is_permanent: true,
2424                 });
2425
2426                 assert_eq!(network_graph.read_only().channels().len(), 0);
2427                 // Nodes are also deleted because there are no associated channels anymore
2428                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2429
2430                 {
2431                         // Get a new network graph since we don't want to track removed nodes in this test with "std"
2432                         let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2433
2434                         // Announce a channel to test permanent node failure
2435                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2436                         let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2437                         let chain_source: Option<&test_utils::TestChainSource> = None;
2438                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2439                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2440
2441                         // Non-permanent node failure does not delete any nodes or channels
2442                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2443                                 node_id: node_2_id,
2444                                 is_permanent: false,
2445                         });
2446
2447                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2448                         assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2449
2450                         // Permanent node failure deletes node and its channels
2451                         network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2452                                 node_id: node_2_id,
2453                                 is_permanent: true,
2454                         });
2455
2456                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2457                         // Channels are also deleted because the associated node has been deleted
2458                         assert_eq!(network_graph.read_only().channels().len(), 0);
2459                 }
2460         }
2461
2462         #[test]
2463         fn test_channel_timeouts() {
2464                 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2465                 let logger = test_utils::TestLogger::new();
2466                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2467                 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2468                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2469                 let secp_ctx = Secp256k1::new();
2470
2471                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2472                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2473
2474                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2475                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2476                 let chain_source: Option<&test_utils::TestChainSource> = None;
2477                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2478                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2479
2480                 // Submit two channel updates for each channel direction (update.flags bit).
2481                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2482                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2483                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2484
2485                 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2486                 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2487                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2488
2489                 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2490                 assert_eq!(network_graph.read_only().channels().len(), 1);
2491                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2492
2493                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2494                 #[cfg(not(feature = "std"))] {
2495                         // Make sure removed channels are tracked.
2496                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2497                 }
2498                 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2499                         REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2500
2501                 #[cfg(feature = "std")]
2502                 {
2503                         // In std mode, a further check is performed before fully removing the channel -
2504                         // the channel_announcement must have been received at least two weeks ago. We
2505                         // fudge that here by indicating the time has jumped two weeks.
2506                         assert_eq!(network_graph.read_only().channels().len(), 1);
2507                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2508
2509                         // Note that the directional channel information will have been removed already..
2510                         // We want to check that this will work even if *one* of the channel updates is recent,
2511                         // so we should add it with a recent timestamp.
2512                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2513                         use std::time::{SystemTime, UNIX_EPOCH};
2514                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2515                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2516                                 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2517                         }, node_1_privkey, &secp_ctx);
2518                         assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2519                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2520                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2521                         // Make sure removed channels are tracked.
2522                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2523                         // Provide a later time so that sufficient time has passed
2524                         network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2525                                 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2526                 }
2527
2528                 assert_eq!(network_graph.read_only().channels().len(), 0);
2529                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2530                 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2531
2532                 #[cfg(feature = "std")]
2533                 {
2534                         use std::time::{SystemTime, UNIX_EPOCH};
2535
2536                         let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2537
2538                         // Clear tracked nodes and channels for clean slate
2539                         network_graph.removed_channels.lock().unwrap().clear();
2540                         network_graph.removed_nodes.lock().unwrap().clear();
2541
2542                         // Add a channel and nodes from channel announcement. So our network graph will
2543                         // now only consist of two nodes and one channel between them.
2544                         assert!(network_graph.update_channel_from_announcement(
2545                                 &valid_channel_announcement, &chain_source).is_ok());
2546
2547                         // Mark the channel as permanently failed. This will also remove the two nodes
2548                         // and all of the entries will be tracked as removed.
2549                         network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2550
2551                         // Should not remove from tracking if insufficient time has passed
2552                         network_graph.remove_stale_channels_and_tracking_with_time(
2553                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2554                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count â‰  1 with tracking_time {}", tracking_time);
2555
2556                         // Provide a later time so that sufficient time has passed
2557                         network_graph.remove_stale_channels_and_tracking_with_time(
2558                                 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2559                         assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2560                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2561                 }
2562
2563                 #[cfg(not(feature = "std"))]
2564                 {
2565                         // When we don't have access to the system clock, the time we started tracking removal will only
2566                         // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2567                         // only if sufficient time has passed after that first call, will the next call remove it from
2568                         // tracking.
2569                         let removal_time = 1664619654;
2570
2571                         // Clear removed nodes and channels for clean slate
2572                         network_graph.removed_channels.lock().unwrap().clear();
2573                         network_graph.removed_nodes.lock().unwrap().clear();
2574
2575                         // Add a channel and nodes from channel announcement. So our network graph will
2576                         // now only consist of two nodes and one channel between them.
2577                         assert!(network_graph.update_channel_from_announcement(
2578                                 &valid_channel_announcement, &chain_source).is_ok());
2579
2580                         // Mark the channel as permanently failed. This will also remove the two nodes
2581                         // and all of the entries will be tracked as removed.
2582                         network_graph.channel_failed(short_channel_id, true);
2583
2584                         // The first time we call the following, the channel will have a removal time assigned.
2585                         network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2586                         assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2587
2588                         // Provide a later time so that sufficient time has passed
2589                         network_graph.remove_stale_channels_and_tracking_with_time(
2590                                 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2591                         assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2592                         assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2593                 }
2594         }
2595
2596         #[test]
2597         fn getting_next_channel_announcements() {
2598                 let network_graph = create_network_graph();
2599                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2600                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2601                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2602
2603                 // Channels were not announced yet.
2604                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2605                 assert!(channels_with_announcements.is_none());
2606
2607                 let short_channel_id;
2608                 {
2609                         // Announce a channel we will update
2610                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2611                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2612                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2613                                 Ok(_) => (),
2614                                 Err(_) => panic!()
2615                         };
2616                 }
2617
2618                 // Contains initial channel announcement now.
2619                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2620                 if let Some(channel_announcements) = channels_with_announcements {
2621                         let (_, ref update_1, ref update_2) = channel_announcements;
2622                         assert_eq!(update_1, &None);
2623                         assert_eq!(update_2, &None);
2624                 } else {
2625                         panic!();
2626                 }
2627
2628                 {
2629                         // Valid channel update
2630                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2631                                 unsigned_channel_update.timestamp = 101;
2632                         }, node_1_privkey, &secp_ctx);
2633                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2634                                 Ok(_) => (),
2635                                 Err(_) => panic!()
2636                         };
2637                 }
2638
2639                 // Now contains an initial announcement and an update.
2640                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2641                 if let Some(channel_announcements) = channels_with_announcements {
2642                         let (_, ref update_1, ref update_2) = channel_announcements;
2643                         assert_ne!(update_1, &None);
2644                         assert_eq!(update_2, &None);
2645                 } else {
2646                         panic!();
2647                 }
2648
2649                 {
2650                         // Channel update with excess data.
2651                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2652                                 unsigned_channel_update.timestamp = 102;
2653                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2654                         }, node_1_privkey, &secp_ctx);
2655                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2656                                 Ok(_) => (),
2657                                 Err(_) => panic!()
2658                         };
2659                 }
2660
2661                 // Test that announcements with excess data won't be returned
2662                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2663                 if let Some(channel_announcements) = channels_with_announcements {
2664                         let (_, ref update_1, ref update_2) = channel_announcements;
2665                         assert_eq!(update_1, &None);
2666                         assert_eq!(update_2, &None);
2667                 } else {
2668                         panic!();
2669                 }
2670
2671                 // Further starting point have no channels after it
2672                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2673                 assert!(channels_with_announcements.is_none());
2674         }
2675
2676         #[test]
2677         fn getting_next_node_announcements() {
2678                 let network_graph = create_network_graph();
2679                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2680                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2681                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2682                 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2683
2684                 // No nodes yet.
2685                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2686                 assert!(next_announcements.is_none());
2687
2688                 {
2689                         // Announce a channel to add 2 nodes
2690                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2691                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2692                                 Ok(_) => (),
2693                                 Err(_) => panic!()
2694                         };
2695                 }
2696
2697                 // Nodes were never announced
2698                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2699                 assert!(next_announcements.is_none());
2700
2701                 {
2702                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2703                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2704                                 Ok(_) => (),
2705                                 Err(_) => panic!()
2706                         };
2707
2708                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2709                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2710                                 Ok(_) => (),
2711                                 Err(_) => panic!()
2712                         };
2713                 }
2714
2715                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2716                 assert!(next_announcements.is_some());
2717
2718                 // Skip the first node.
2719                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2720                 assert!(next_announcements.is_some());
2721
2722                 {
2723                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2724                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2725                                 unsigned_announcement.timestamp += 10;
2726                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2727                         }, node_2_privkey, &secp_ctx);
2728                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2729                                 Ok(res) => assert!(!res),
2730                                 Err(_) => panic!()
2731                         };
2732                 }
2733
2734                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2735                 assert!(next_announcements.is_none());
2736         }
2737
2738         #[test]
2739         fn network_graph_serialization() {
2740                 let network_graph = create_network_graph();
2741                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2742
2743                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2744                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2745
2746                 // Announce a channel to add a corresponding node.
2747                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2748                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2749                         Ok(res) => assert!(res),
2750                         _ => panic!()
2751                 };
2752
2753                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2754                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2755                         Ok(_) => (),
2756                         Err(_) => panic!()
2757                 };
2758
2759                 let mut w = test_utils::TestVecWriter(Vec::new());
2760                 assert!(!network_graph.read_only().nodes().is_empty());
2761                 assert!(!network_graph.read_only().channels().is_empty());
2762                 network_graph.write(&mut w).unwrap();
2763
2764                 let logger = Arc::new(test_utils::TestLogger::new());
2765                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2766         }
2767
2768         #[test]
2769         fn network_graph_tlv_serialization() {
2770                 let network_graph = create_network_graph();
2771                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2772
2773                 let mut w = test_utils::TestVecWriter(Vec::new());
2774                 network_graph.write(&mut w).unwrap();
2775
2776                 let logger = Arc::new(test_utils::TestLogger::new());
2777                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2778                 assert!(reassembled_network_graph == network_graph);
2779                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2780         }
2781
2782         #[test]
2783         #[cfg(feature = "std")]
2784         fn calling_sync_routing_table() {
2785                 use std::time::{SystemTime, UNIX_EPOCH};
2786                 use crate::ln::msgs::Init;
2787
2788                 let network_graph = create_network_graph();
2789                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2790                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2791                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2792
2793                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2794
2795                 // It should ignore if gossip_queries feature is not enabled
2796                 {
2797                         let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2798                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2799                         let events = gossip_sync.get_and_clear_pending_msg_events();
2800                         assert_eq!(events.len(), 0);
2801                 }
2802
2803                 // It should send a gossip_timestamp_filter with the correct information
2804                 {
2805                         let mut features = InitFeatures::empty();
2806                         features.set_gossip_queries_optional();
2807                         let init_msg = Init { features, remote_network_address: None };
2808                         gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2809                         let events = gossip_sync.get_and_clear_pending_msg_events();
2810                         assert_eq!(events.len(), 1);
2811                         match &events[0] {
2812                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2813                                         assert_eq!(node_id, &node_id_1);
2814                                         assert_eq!(msg.chain_hash, chain_hash);
2815                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2816                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2817                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2818                                         assert_eq!(msg.timestamp_range, u32::max_value());
2819                                 },
2820                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2821                         };
2822                 }
2823         }
2824
2825         #[test]
2826         fn handling_query_channel_range() {
2827                 let network_graph = create_network_graph();
2828                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2829
2830                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2831                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2832                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2833                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2834
2835                 let mut scids: Vec<u64> = vec![
2836                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2837                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2838                 ];
2839
2840                 // used for testing multipart reply across blocks
2841                 for block in 100000..=108001 {
2842                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2843                 }
2844
2845                 // used for testing resumption on same block
2846                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2847
2848                 for scid in scids {
2849                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2850                                 unsigned_announcement.short_channel_id = scid;
2851                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2852                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2853                                 Ok(_) => (),
2854                                 _ => panic!()
2855                         };
2856                 }
2857
2858                 // Error when number_of_blocks=0
2859                 do_handling_query_channel_range(
2860                         &gossip_sync,
2861                         &node_id_2,
2862                         QueryChannelRange {
2863                                 chain_hash: chain_hash.clone(),
2864                                 first_blocknum: 0,
2865                                 number_of_blocks: 0,
2866                         },
2867                         false,
2868                         vec![ReplyChannelRange {
2869                                 chain_hash: chain_hash.clone(),
2870                                 first_blocknum: 0,
2871                                 number_of_blocks: 0,
2872                                 sync_complete: true,
2873                                 short_channel_ids: vec![]
2874                         }]
2875                 );
2876
2877                 // Error when wrong chain
2878                 do_handling_query_channel_range(
2879                         &gossip_sync,
2880                         &node_id_2,
2881                         QueryChannelRange {
2882                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2883                                 first_blocknum: 0,
2884                                 number_of_blocks: 0xffff_ffff,
2885                         },
2886                         false,
2887                         vec![ReplyChannelRange {
2888                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2889                                 first_blocknum: 0,
2890                                 number_of_blocks: 0xffff_ffff,
2891                                 sync_complete: true,
2892                                 short_channel_ids: vec![],
2893                         }]
2894                 );
2895
2896                 // Error when first_blocknum > 0xffffff
2897                 do_handling_query_channel_range(
2898                         &gossip_sync,
2899                         &node_id_2,
2900                         QueryChannelRange {
2901                                 chain_hash: chain_hash.clone(),
2902                                 first_blocknum: 0x01000000,
2903                                 number_of_blocks: 0xffff_ffff,
2904                         },
2905                         false,
2906                         vec![ReplyChannelRange {
2907                                 chain_hash: chain_hash.clone(),
2908                                 first_blocknum: 0x01000000,
2909                                 number_of_blocks: 0xffff_ffff,
2910                                 sync_complete: true,
2911                                 short_channel_ids: vec![]
2912                         }]
2913                 );
2914
2915                 // Empty reply when max valid SCID block num
2916                 do_handling_query_channel_range(
2917                         &gossip_sync,
2918                         &node_id_2,
2919                         QueryChannelRange {
2920                                 chain_hash: chain_hash.clone(),
2921                                 first_blocknum: 0xffffff,
2922                                 number_of_blocks: 1,
2923                         },
2924                         true,
2925                         vec![
2926                                 ReplyChannelRange {
2927                                         chain_hash: chain_hash.clone(),
2928                                         first_blocknum: 0xffffff,
2929                                         number_of_blocks: 1,
2930                                         sync_complete: true,
2931                                         short_channel_ids: vec![]
2932                                 },
2933                         ]
2934                 );
2935
2936                 // No results in valid query range
2937                 do_handling_query_channel_range(
2938                         &gossip_sync,
2939                         &node_id_2,
2940                         QueryChannelRange {
2941                                 chain_hash: chain_hash.clone(),
2942                                 first_blocknum: 1000,
2943                                 number_of_blocks: 1000,
2944                         },
2945                         true,
2946                         vec![
2947                                 ReplyChannelRange {
2948                                         chain_hash: chain_hash.clone(),
2949                                         first_blocknum: 1000,
2950                                         number_of_blocks: 1000,
2951                                         sync_complete: true,
2952                                         short_channel_ids: vec![],
2953                                 }
2954                         ]
2955                 );
2956
2957                 // Overflow first_blocknum + number_of_blocks
2958                 do_handling_query_channel_range(
2959                         &gossip_sync,
2960                         &node_id_2,
2961                         QueryChannelRange {
2962                                 chain_hash: chain_hash.clone(),
2963                                 first_blocknum: 0xfe0000,
2964                                 number_of_blocks: 0xffffffff,
2965                         },
2966                         true,
2967                         vec![
2968                                 ReplyChannelRange {
2969                                         chain_hash: chain_hash.clone(),
2970                                         first_blocknum: 0xfe0000,
2971                                         number_of_blocks: 0xffffffff - 0xfe0000,
2972                                         sync_complete: true,
2973                                         short_channel_ids: vec![
2974                                                 0xfffffe_ffffff_ffff, // max
2975                                         ]
2976                                 }
2977                         ]
2978                 );
2979
2980                 // Single block exactly full
2981                 do_handling_query_channel_range(
2982                         &gossip_sync,
2983                         &node_id_2,
2984                         QueryChannelRange {
2985                                 chain_hash: chain_hash.clone(),
2986                                 first_blocknum: 100000,
2987                                 number_of_blocks: 8000,
2988                         },
2989                         true,
2990                         vec![
2991                                 ReplyChannelRange {
2992                                         chain_hash: chain_hash.clone(),
2993                                         first_blocknum: 100000,
2994                                         number_of_blocks: 8000,
2995                                         sync_complete: true,
2996                                         short_channel_ids: (100000..=107999)
2997                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2998                                                 .collect(),
2999                                 },
3000                         ]
3001                 );
3002
3003                 // Multiple split on new block
3004                 do_handling_query_channel_range(
3005                         &gossip_sync,
3006                         &node_id_2,
3007                         QueryChannelRange {
3008                                 chain_hash: chain_hash.clone(),
3009                                 first_blocknum: 100000,
3010                                 number_of_blocks: 8001,
3011                         },
3012                         true,
3013                         vec![
3014                                 ReplyChannelRange {
3015                                         chain_hash: chain_hash.clone(),
3016                                         first_blocknum: 100000,
3017                                         number_of_blocks: 7999,
3018                                         sync_complete: false,
3019                                         short_channel_ids: (100000..=107999)
3020                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3021                                                 .collect(),
3022                                 },
3023                                 ReplyChannelRange {
3024                                         chain_hash: chain_hash.clone(),
3025                                         first_blocknum: 107999,
3026                                         number_of_blocks: 2,
3027                                         sync_complete: true,
3028                                         short_channel_ids: vec![
3029                                                 scid_from_parts(108000, 0, 0).unwrap(),
3030                                         ],
3031                                 }
3032                         ]
3033                 );
3034
3035                 // Multiple split on same block
3036                 do_handling_query_channel_range(
3037                         &gossip_sync,
3038                         &node_id_2,
3039                         QueryChannelRange {
3040                                 chain_hash: chain_hash.clone(),
3041                                 first_blocknum: 100002,
3042                                 number_of_blocks: 8000,
3043                         },
3044                         true,
3045                         vec![
3046                                 ReplyChannelRange {
3047                                         chain_hash: chain_hash.clone(),
3048                                         first_blocknum: 100002,
3049                                         number_of_blocks: 7999,
3050                                         sync_complete: false,
3051                                         short_channel_ids: (100002..=108001)
3052                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3053                                                 .collect(),
3054                                 },
3055                                 ReplyChannelRange {
3056                                         chain_hash: chain_hash.clone(),
3057                                         first_blocknum: 108001,
3058                                         number_of_blocks: 1,
3059                                         sync_complete: true,
3060                                         short_channel_ids: vec![
3061                                                 scid_from_parts(108001, 1, 0).unwrap(),
3062                                         ],
3063                                 }
3064                         ]
3065                 );
3066         }
3067
3068         fn do_handling_query_channel_range(
3069                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3070                 test_node_id: &PublicKey,
3071                 msg: QueryChannelRange,
3072                 expected_ok: bool,
3073                 expected_replies: Vec<ReplyChannelRange>
3074         ) {
3075                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3076                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3077                 let query_end_blocknum = msg.end_blocknum();
3078                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3079
3080                 if expected_ok {
3081                         assert!(result.is_ok());
3082                 } else {
3083                         assert!(result.is_err());
3084                 }
3085
3086                 let events = gossip_sync.get_and_clear_pending_msg_events();
3087                 assert_eq!(events.len(), expected_replies.len());
3088
3089                 for i in 0..events.len() {
3090                         let expected_reply = &expected_replies[i];
3091                         match &events[i] {
3092                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3093                                         assert_eq!(node_id, test_node_id);
3094                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3095                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3096                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3097                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3098                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3099
3100                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3101                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3102                                         assert!(msg.first_blocknum >= max_firstblocknum);
3103                                         max_firstblocknum = msg.first_blocknum;
3104                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3105
3106                                         // Check that the last block count is >= the query's end_blocknum
3107                                         if i == events.len() - 1 {
3108                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3109                                         }
3110                                 },
3111                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3112                         }
3113                 }
3114         }
3115
3116         #[test]
3117         fn handling_query_short_channel_ids() {
3118                 let network_graph = create_network_graph();
3119                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3120                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3121                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3122
3123                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3124
3125                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3126                         chain_hash,
3127                         short_channel_ids: vec![0x0003e8_000000_0000],
3128                 });
3129                 assert!(result.is_err());
3130         }
3131
3132         #[test]
3133         fn displays_node_alias() {
3134                 let format_str_alias = |alias: &str| {
3135                         let mut bytes = [0u8; 32];
3136                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3137                         format!("{}", NodeAlias(bytes))
3138                 };
3139
3140                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3141                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3142                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3143
3144                 let format_bytes_alias = |alias: &[u8]| {
3145                         let mut bytes = [0u8; 32];
3146                         bytes[..alias.len()].copy_from_slice(alias);
3147                         format!("{}", NodeAlias(bytes))
3148                 };
3149
3150                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3151                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3152                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3153         }
3154
3155         #[test]
3156         fn channel_info_is_readable() {
3157                 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3158                 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3159                 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3160                 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3161                 let config = crate::ln::functional_test_utils::test_default_channel_config();
3162
3163                 // 1. Test encoding/decoding of ChannelUpdateInfo
3164                 let chan_update_info = ChannelUpdateInfo {
3165                         last_update: 23,
3166                         enabled: true,
3167                         cltv_expiry_delta: 42,
3168                         htlc_minimum_msat: 1234,
3169                         htlc_maximum_msat: 5678,
3170                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3171                         last_update_message: None,
3172                 };
3173
3174                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3175                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3176
3177                 // First make sure we can read ChannelUpdateInfos we just wrote
3178                 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3179                 assert_eq!(chan_update_info, read_chan_update_info);
3180
3181                 // Check the serialization hasn't changed.
3182                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3183                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3184
3185                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3186                 // or the ChannelUpdate enclosed with `last_update_message`.
3187                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3188                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3189                 assert!(read_chan_update_info_res.is_err());
3190
3191                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3192                 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3193                 assert!(read_chan_update_info_res.is_err());
3194
3195                 // 2. Test encoding/decoding of ChannelInfo
3196                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3197                 let chan_info_none_updates = ChannelInfo {
3198                         features: channelmanager::provided_channel_features(&config),
3199                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3200                         one_to_two: None,
3201                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3202                         two_to_one: None,
3203                         capacity_sats: None,
3204                         announcement_message: None,
3205                         announcement_received_time: 87654,
3206                 };
3207
3208                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3209                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3210
3211                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3212                 assert_eq!(chan_info_none_updates, read_chan_info);
3213
3214                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3215                 let chan_info_some_updates = ChannelInfo {
3216                         features: channelmanager::provided_channel_features(&config),
3217                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3218                         one_to_two: Some(chan_update_info.clone()),
3219                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3220                         two_to_one: Some(chan_update_info.clone()),
3221                         capacity_sats: None,
3222                         announcement_message: None,
3223                         announcement_received_time: 87654,
3224                 };
3225
3226                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3227                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3228
3229                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3230                 assert_eq!(chan_info_some_updates, read_chan_info);
3231
3232                 // Check the serialization hasn't changed.
3233                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3234                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3235
3236                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3237                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3238                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3239                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3240                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3241                 assert_eq!(read_chan_info.one_to_two, None);
3242                 assert_eq!(read_chan_info.two_to_one, None);
3243
3244                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3245                 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3246                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3247                 assert_eq!(read_chan_info.one_to_two, None);
3248                 assert_eq!(read_chan_info.two_to_one, None);
3249         }
3250
3251         #[test]
3252         fn node_info_is_readable() {
3253                 use std::convert::TryFrom;
3254
3255                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3256                 let valid_netaddr = crate::ln::msgs::NetAddress::Hostname { hostname: crate::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3257                 let valid_node_ann_info = NodeAnnouncementInfo {
3258                         features: channelmanager::provided_node_features(&UserConfig::default()),
3259                         last_update: 0,
3260                         rgb: [0u8; 3],
3261                         alias: NodeAlias([0u8; 32]),
3262                         addresses: vec![valid_netaddr],
3263                         announcement_message: None,
3264                 };
3265
3266                 let mut encoded_valid_node_ann_info = Vec::new();
3267                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3268                 let read_valid_node_ann_info: NodeAnnouncementInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3269                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3270
3271                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3272                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3273                 assert!(read_invalid_node_ann_info_res.is_err());
3274
3275                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3276                 let valid_node_info = NodeInfo {
3277                         channels: Vec::new(),
3278                         announcement_info: Some(valid_node_ann_info),
3279                 };
3280
3281                 let mut encoded_valid_node_info = Vec::new();
3282                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3283                 let read_valid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3284                 assert_eq!(read_valid_node_info, valid_node_info);
3285
3286                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3287                 let read_invalid_node_info: NodeInfo = crate::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3288                 assert_eq!(read_invalid_node_info.announcement_info, None);
3289         }
3290 }
3291
3292 #[cfg(all(test, feature = "_bench_unstable"))]
3293 mod benches {
3294         use super::*;
3295
3296         use test::Bencher;
3297         use std::io::Read;
3298
3299         #[bench]
3300         fn read_network_graph(bench: &mut Bencher) {
3301                 let logger = crate::util::test_utils::TestLogger::new();
3302                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3303                 let mut v = Vec::new();
3304                 d.read_to_end(&mut v).unwrap();
3305                 bench.iter(|| {
3306                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3307                 });
3308         }
3309
3310         #[bench]
3311         fn write_network_graph(bench: &mut Bencher) {
3312                 let logger = crate::util::test_utils::TestLogger::new();
3313                 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3314                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3315                 bench.iter(|| {
3316                         let _ = net_graph.encode();
3317                 });
3318         }
3319 }