1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The [`NetworkGraph`] stores the network gossip and [`P2PGossipSync`] fetches it from peers
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::hashes::hex::FromHex;
20 use bitcoin::hash_types::BlockHash;
22 use bitcoin::network::constants::Network;
23 use bitcoin::blockdata::constants::genesis_block;
25 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
26 use crate::ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
27 use crate::ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
29 use crate::ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
31 use crate::routing::utxo::{self, UtxoLookup};
32 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
33 use crate::util::logger::{Logger, Level};
34 use crate::util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35 use crate::util::string::PrintableString;
36 use crate::util::indexed_map::{IndexedMap, Entry as IndexedMapEntry};
39 use crate::io_extras::{copy, sink};
40 use crate::prelude::*;
42 use core::convert::TryFrom;
43 use crate::sync::{RwLock, RwLockReadGuard};
44 #[cfg(feature = "std")]
45 use core::sync::atomic::{AtomicUsize, Ordering};
46 use crate::sync::Mutex;
47 use core::ops::{Bound, Deref};
48 use core::str::FromStr;
50 #[cfg(feature = "std")]
51 use std::time::{SystemTime, UNIX_EPOCH};
53 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
55 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
57 /// We stop tracking the removal of permanently failed nodes and channels one week after removal
58 const REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 7;
60 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
61 /// refuse to relay the message.
62 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
64 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
65 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
66 const MAX_SCIDS_PER_REPLY: usize = 8000;
68 /// Represents the compressed public key of a node
69 #[derive(Clone, Copy)]
70 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
73 /// Create a new NodeId from a public key
74 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
75 NodeId(pubkey.serialize())
78 /// Get the public key slice from this NodeId
79 pub fn as_slice(&self) -> &[u8] {
83 /// Get the public key from this NodeId
84 pub fn as_pubkey(&self) -> Result<PublicKey, secp256k1::Error> {
85 PublicKey::from_slice(&self.0)
89 impl fmt::Debug for NodeId {
90 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
91 write!(f, "NodeId({})", log_bytes!(self.0))
94 impl fmt::Display for NodeId {
95 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
96 write!(f, "{}", log_bytes!(self.0))
100 impl core::hash::Hash for NodeId {
101 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
106 impl Eq for NodeId {}
108 impl PartialEq for NodeId {
109 fn eq(&self, other: &Self) -> bool {
110 self.0[..] == other.0[..]
114 impl cmp::PartialOrd for NodeId {
115 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
116 Some(self.cmp(other))
120 impl Ord for NodeId {
121 fn cmp(&self, other: &Self) -> cmp::Ordering {
122 self.0[..].cmp(&other.0[..])
126 impl Writeable for NodeId {
127 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
128 writer.write_all(&self.0)?;
133 impl Readable for NodeId {
134 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
135 let mut buf = [0; PUBLIC_KEY_SIZE];
136 reader.read_exact(&mut buf)?;
141 impl From<PublicKey> for NodeId {
142 fn from(pubkey: PublicKey) -> Self {
143 Self::from_pubkey(&pubkey)
147 impl TryFrom<NodeId> for PublicKey {
148 type Error = secp256k1::Error;
150 fn try_from(node_id: NodeId) -> Result<Self, Self::Error> {
155 impl FromStr for NodeId {
156 type Err = bitcoin::hashes::hex::Error;
158 fn from_str(s: &str) -> Result<Self, Self::Err> {
159 let data: [u8; PUBLIC_KEY_SIZE] = FromHex::from_hex(s)?;
164 /// Represents the network as nodes and channels between them
165 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
166 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
167 last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
168 genesis_hash: BlockHash,
170 // Lock order: channels -> nodes
171 channels: RwLock<IndexedMap<u64, ChannelInfo>>,
172 nodes: RwLock<IndexedMap<NodeId, NodeInfo>>,
173 // Lock order: removed_channels -> removed_nodes
175 // NOTE: In the following `removed_*` maps, we use seconds since UNIX epoch to track time instead
176 // of `std::time::Instant`s for a few reasons:
177 // * We want it to be possible to do tracking in no-std environments where we can compare
178 // a provided current UNIX timestamp with the time at which we started tracking.
179 // * In the future, if we decide to persist these maps, they will already be serializable.
180 // * Although we lose out on the platform's monotonic clock, the system clock in a std
181 // environment should be practical over the time period we are considering (on the order of a
184 /// Keeps track of short channel IDs for channels we have explicitly removed due to permanent
185 /// failure so that we don't resync them from gossip. Each SCID is mapped to the time (in seconds)
186 /// it was removed so that once some time passes, we can potentially resync it from gossip again.
187 removed_channels: Mutex<HashMap<u64, Option<u64>>>,
188 /// Keeps track of `NodeId`s we have explicitly removed due to permanent failure so that we don't
189 /// resync them from gossip. Each `NodeId` is mapped to the time (in seconds) it was removed so
190 /// that once some time passes, we can potentially resync it from gossip again.
191 removed_nodes: Mutex<HashMap<NodeId, Option<u64>>>,
192 /// Announcement messages which are awaiting an on-chain lookup to be processed.
193 pub(super) pending_checks: utxo::PendingChecks,
196 /// A read-only view of [`NetworkGraph`].
197 pub struct ReadOnlyNetworkGraph<'a> {
198 channels: RwLockReadGuard<'a, IndexedMap<u64, ChannelInfo>>,
199 nodes: RwLockReadGuard<'a, IndexedMap<NodeId, NodeInfo>>,
202 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
203 /// return packet by a node along the route. See [BOLT #4] for details.
205 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
206 #[derive(Clone, Debug, PartialEq, Eq)]
207 pub enum NetworkUpdate {
208 /// An error indicating a `channel_update` messages should be applied via
209 /// [`NetworkGraph::update_channel`].
210 ChannelUpdateMessage {
211 /// The update to apply via [`NetworkGraph::update_channel`].
214 /// An error indicating that a channel failed to route a payment, which should be applied via
215 /// [`NetworkGraph::channel_failed`].
217 /// The short channel id of the closed channel.
218 short_channel_id: u64,
219 /// Whether the channel should be permanently removed or temporarily disabled until a new
220 /// `channel_update` message is received.
223 /// An error indicating that a node failed to route a payment, which should be applied via
224 /// [`NetworkGraph::node_failed_permanent`] if permanent.
226 /// The node id of the failed node.
228 /// Whether the node should be permanently removed from consideration or can be restored
229 /// when a new `channel_update` message is received.
234 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
235 (0, ChannelUpdateMessage) => {
238 (2, ChannelFailure) => {
239 (0, short_channel_id, required),
240 (2, is_permanent, required),
242 (4, NodeFailure) => {
243 (0, node_id, required),
244 (2, is_permanent, required),
248 /// Receives and validates network updates from peers,
249 /// stores authentic and relevant data as a network graph.
250 /// This network graph is then used for routing payments.
251 /// Provides interface to help with initial routing sync by
252 /// serving historical announcements.
253 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref>
254 where U::Target: UtxoLookup, L::Target: Logger
257 utxo_lookup: Option<U>,
258 #[cfg(feature = "std")]
259 full_syncs_requested: AtomicUsize,
260 pending_events: Mutex<Vec<MessageSendEvent>>,
264 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> P2PGossipSync<G, U, L>
265 where U::Target: UtxoLookup, L::Target: Logger
267 /// Creates a new tracker of the actual state of the network of channels and nodes,
268 /// assuming an existing [`NetworkGraph`].
269 /// UTXO lookup is used to make sure announced channels exist on-chain, channel data is
270 /// correct, and the announcement is signed with channel owners' keys.
271 pub fn new(network_graph: G, utxo_lookup: Option<U>, logger: L) -> Self {
274 #[cfg(feature = "std")]
275 full_syncs_requested: AtomicUsize::new(0),
277 pending_events: Mutex::new(vec![]),
282 /// Adds a provider used to check new announcements. Does not affect
283 /// existing announcements unless they are updated.
284 /// Add, update or remove the provider would replace the current one.
285 pub fn add_utxo_lookup(&mut self, utxo_lookup: Option<U>) {
286 self.utxo_lookup = utxo_lookup;
289 /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
290 /// [`P2PGossipSync::new`].
292 /// This is not exported to bindings users as bindings don't support a reference-to-a-reference yet
293 pub fn network_graph(&self) -> &G {
297 #[cfg(feature = "std")]
298 /// Returns true when a full routing table sync should be performed with a peer.
299 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
300 //TODO: Determine whether to request a full sync based on the network map.
301 const FULL_SYNCS_TO_REQUEST: usize = 5;
302 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
303 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
310 /// Used to broadcast forward gossip messages which were validated async.
312 /// Note that this will ignore events other than `Broadcast*` or messages with too much excess
314 pub(super) fn forward_gossip_msg(&self, mut ev: MessageSendEvent) {
316 MessageSendEvent::BroadcastChannelAnnouncement { msg, ref mut update_msg } => {
317 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
318 if update_msg.as_ref()
319 .map(|msg| msg.contents.excess_data.len()).unwrap_or(0) > MAX_EXCESS_BYTES_FOR_RELAY
324 MessageSendEvent::BroadcastChannelUpdate { msg } => {
325 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY { return; }
327 MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
328 if msg.contents.excess_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
329 msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY ||
330 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() > MAX_EXCESS_BYTES_FOR_RELAY
337 self.pending_events.lock().unwrap().push(ev);
341 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
342 /// Handles any network updates originating from [`Event`]s.
344 /// [`Event`]: crate::events::Event
345 pub fn handle_network_update(&self, network_update: &NetworkUpdate) {
346 match *network_update {
347 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
348 let short_channel_id = msg.contents.short_channel_id;
349 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
350 let status = if is_enabled { "enabled" } else { "disabled" };
351 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
352 let _ = self.update_channel(msg);
354 NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
355 let action = if is_permanent { "Removing" } else { "Disabling" };
356 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
357 self.channel_failed(short_channel_id, is_permanent);
359 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
361 log_debug!(self.logger,
362 "Removed node graph entry for {} due to a payment failure.", log_pubkey!(node_id));
363 self.node_failed_permanent(node_id);
370 macro_rules! secp_verify_sig {
371 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
372 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
375 return Err(LightningError {
376 err: format!("Invalid signature on {} message", $msg_type),
377 action: ErrorAction::SendWarningMessage {
378 msg: msgs::WarningMessage {
380 data: format!("Invalid signature on {} message", $msg_type),
382 log_level: Level::Trace,
390 macro_rules! get_pubkey_from_node_id {
391 ( $node_id: expr, $msg_type: expr ) => {
392 PublicKey::from_slice($node_id.as_slice())
393 .map_err(|_| LightningError {
394 err: format!("Invalid public key on {} message", $msg_type),
395 action: ErrorAction::SendWarningMessage {
396 msg: msgs::WarningMessage {
398 data: format!("Invalid public key on {} message", $msg_type),
400 log_level: Level::Trace
406 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, U, L>
407 where U::Target: UtxoLookup, L::Target: Logger
409 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
410 self.network_graph.update_node_from_announcement(msg)?;
411 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
412 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
413 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
416 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
417 self.network_graph.update_channel_from_announcement(msg, &self.utxo_lookup)?;
418 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
421 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
422 self.network_graph.update_channel(msg)?;
423 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
426 fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
427 let mut channels = self.network_graph.channels.write().unwrap();
428 for (_, ref chan) in channels.range(starting_point..) {
429 if chan.announcement_message.is_some() {
430 let chan_announcement = chan.announcement_message.clone().unwrap();
431 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
432 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
433 if let Some(one_to_two) = chan.one_to_two.as_ref() {
434 one_to_two_announcement = one_to_two.last_update_message.clone();
436 if let Some(two_to_one) = chan.two_to_one.as_ref() {
437 two_to_one_announcement = two_to_one.last_update_message.clone();
439 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
441 // TODO: We may end up sending un-announced channel_updates if we are sending
442 // initial sync data while receiving announce/updates for this channel.
448 fn get_next_node_announcement(&self, starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> {
449 let mut nodes = self.network_graph.nodes.write().unwrap();
450 let iter = if let Some(node_id) = starting_point {
451 nodes.range((Bound::Excluded(node_id), Bound::Unbounded))
455 for (_, ref node) in iter {
456 if let Some(node_info) = node.announcement_info.as_ref() {
457 if let Some(msg) = node_info.announcement_message.clone() {
465 /// Initiates a stateless sync of routing gossip information with a peer
466 /// using [`gossip_queries`]. The default strategy used by this implementation
467 /// is to sync the full block range with several peers.
469 /// We should expect one or more [`reply_channel_range`] messages in response
470 /// to our [`query_channel_range`]. Each reply will enqueue a [`query_scid`] message
471 /// to request gossip messages for each channel. The sync is considered complete
472 /// when the final [`reply_scids_end`] message is received, though we are not
473 /// tracking this directly.
475 /// [`gossip_queries`]: https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#query-messages
476 /// [`reply_channel_range`]: msgs::ReplyChannelRange
477 /// [`query_channel_range`]: msgs::QueryChannelRange
478 /// [`query_scid`]: msgs::QueryShortChannelIds
479 /// [`reply_scids_end`]: msgs::ReplyShortChannelIdsEnd
480 fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init, _inbound: bool) -> Result<(), ()> {
481 // We will only perform a sync with peers that support gossip_queries.
482 if !init_msg.features.supports_gossip_queries() {
483 // Don't disconnect peers for not supporting gossip queries. We may wish to have
484 // channels with peers even without being able to exchange gossip.
488 // The lightning network's gossip sync system is completely broken in numerous ways.
490 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
491 // to do a full sync from the first few peers we connect to, and then receive gossip
492 // updates from all our peers normally.
494 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
495 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
496 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
499 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
500 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
501 // channel data which you are missing. Except there was no way at all to identify which
502 // `channel_update`s you were missing, so you still had to request everything, just in a
503 // very complicated way with some queries instead of just getting the dump.
505 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
506 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
507 // relying on it useless.
509 // After gossip queries were introduced, support for receiving a full gossip table dump on
510 // connection was removed from several nodes, making it impossible to get a full sync
511 // without using the "gossip queries" messages.
513 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
514 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
515 // message, as the name implies, tells the peer to not forward any gossip messages with a
516 // timestamp older than a given value (not the time the peer received the filter, but the
517 // timestamp in the update message, which is often hours behind when the peer received the
520 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
521 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
522 // tell a peer to send you any updates as it sees them, you have to also ask for the full
523 // routing graph to be synced. If you set a timestamp filter near the current time, peers
524 // will simply not forward any new updates they see to you which were generated some time
525 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
526 // ago), you will always get the full routing graph from all your peers.
528 // Most lightning nodes today opt to simply turn off receiving gossip data which only
529 // propagated some time after it was generated, and, worse, often disable gossiping with
530 // several peers after their first connection. The second behavior can cause gossip to not
531 // propagate fully if there are cuts in the gossiping subgraph.
533 // In an attempt to cut a middle ground between always fetching the full graph from all of
534 // our peers and never receiving gossip from peers at all, we send all of our peers a
535 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
537 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
538 #[allow(unused_mut, unused_assignments)]
539 let mut gossip_start_time = 0;
540 #[cfg(feature = "std")]
542 gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
543 if self.should_request_full_sync(&their_node_id) {
544 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
546 gossip_start_time -= 60 * 60; // an hour ago
550 let mut pending_events = self.pending_events.lock().unwrap();
551 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
552 node_id: their_node_id.clone(),
553 msg: GossipTimestampFilter {
554 chain_hash: self.network_graph.genesis_hash,
555 first_timestamp: gossip_start_time as u32, // 2106 issue!
556 timestamp_range: u32::max_value(),
562 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
563 // We don't make queries, so should never receive replies. If, in the future, the set
564 // reconciliation extensions to gossip queries become broadly supported, we should revert
565 // this code to its state pre-0.0.106.
569 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
570 // We don't make queries, so should never receive replies. If, in the future, the set
571 // reconciliation extensions to gossip queries become broadly supported, we should revert
572 // this code to its state pre-0.0.106.
576 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
577 /// are in the specified block range. Due to message size limits, large range
578 /// queries may result in several reply messages. This implementation enqueues
579 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
580 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
581 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
582 /// memory constrained systems.
583 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
584 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
586 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
588 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
589 // If so, we manually cap the ending block to avoid this overflow.
590 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
592 // Per spec, we must reply to a query. Send an empty message when things are invalid.
593 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
594 let mut pending_events = self.pending_events.lock().unwrap();
595 pending_events.push(MessageSendEvent::SendReplyChannelRange {
596 node_id: their_node_id.clone(),
597 msg: ReplyChannelRange {
598 chain_hash: msg.chain_hash.clone(),
599 first_blocknum: msg.first_blocknum,
600 number_of_blocks: msg.number_of_blocks,
602 short_channel_ids: vec![],
605 return Err(LightningError {
606 err: String::from("query_channel_range could not be processed"),
607 action: ErrorAction::IgnoreError,
611 // Creates channel batches. We are not checking if the channel is routable
612 // (has at least one update). A peer may still want to know the channel
613 // exists even if its not yet routable.
614 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
615 let mut channels = self.network_graph.channels.write().unwrap();
616 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
617 if let Some(chan_announcement) = &chan.announcement_message {
618 // Construct a new batch if last one is full
619 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
620 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
623 let batch = batches.last_mut().unwrap();
624 batch.push(chan_announcement.contents.short_channel_id);
629 let mut pending_events = self.pending_events.lock().unwrap();
630 let batch_count = batches.len();
631 let mut prev_batch_endblock = msg.first_blocknum;
632 for (batch_index, batch) in batches.into_iter().enumerate() {
633 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
634 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
636 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
637 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
638 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
639 // significant diversion from the requirements set by the spec, and, in case of blocks
640 // with no channel opens (e.g. empty blocks), requires that we use the previous value
641 // and *not* derive the first_blocknum from the actual first block of the reply.
642 let first_blocknum = prev_batch_endblock;
644 // Each message carries the number of blocks (from the `first_blocknum`) its contents
645 // fit in. Though there is no requirement that we use exactly the number of blocks its
646 // contents are from, except for the bogus requirements c-lightning enforces, above.
648 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
649 // >= the query's end block. Thus, for the last reply, we calculate the difference
650 // between the query's end block and the start of the reply.
652 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
653 // first_blocknum will be either msg.first_blocknum or a higher block height.
654 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
655 (true, msg.end_blocknum() - first_blocknum)
657 // Prior replies should use the number of blocks that fit into the reply. Overflow
658 // safe since first_blocknum is always <= last SCID's block.
660 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
663 prev_batch_endblock = first_blocknum + number_of_blocks;
665 pending_events.push(MessageSendEvent::SendReplyChannelRange {
666 node_id: their_node_id.clone(),
667 msg: ReplyChannelRange {
668 chain_hash: msg.chain_hash.clone(),
672 short_channel_ids: batch,
680 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
683 err: String::from("Not implemented"),
684 action: ErrorAction::IgnoreError,
688 fn provided_node_features(&self) -> NodeFeatures {
689 let mut features = NodeFeatures::empty();
690 features.set_gossip_queries_optional();
694 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
695 let mut features = InitFeatures::empty();
696 features.set_gossip_queries_optional();
700 fn processing_queue_high(&self) -> bool {
701 self.network_graph.pending_checks.too_many_checks_pending()
705 impl<G: Deref<Target=NetworkGraph<L>>, U: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, U, L>
707 U::Target: UtxoLookup,
710 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
711 let mut ret = Vec::new();
712 let mut pending_events = self.pending_events.lock().unwrap();
713 core::mem::swap(&mut ret, &mut pending_events);
718 #[derive(Clone, Debug, PartialEq, Eq)]
719 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
720 pub struct ChannelUpdateInfo {
721 /// When the last update to the channel direction was issued.
722 /// Value is opaque, as set in the announcement.
723 pub last_update: u32,
724 /// Whether the channel can be currently used for payments (in this one direction).
726 /// The difference in CLTV values that you must have when routing through this channel.
727 pub cltv_expiry_delta: u16,
728 /// The minimum value, which must be relayed to the next hop via the channel
729 pub htlc_minimum_msat: u64,
730 /// The maximum value which may be relayed to the next hop via the channel.
731 pub htlc_maximum_msat: u64,
732 /// Fees charged when the channel is used for routing
733 pub fees: RoutingFees,
734 /// Most recent update for the channel received from the network
735 /// Mostly redundant with the data we store in fields explicitly.
736 /// Everything else is useful only for sending out for initial routing sync.
737 /// Not stored if contains excess data to prevent DoS.
738 pub last_update_message: Option<ChannelUpdate>,
741 impl fmt::Display for ChannelUpdateInfo {
742 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
743 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
748 impl Writeable for ChannelUpdateInfo {
749 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
750 write_tlv_fields!(writer, {
751 (0, self.last_update, required),
752 (2, self.enabled, required),
753 (4, self.cltv_expiry_delta, required),
754 (6, self.htlc_minimum_msat, required),
755 // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
756 // compatibility with LDK versions prior to v0.0.110.
757 (8, Some(self.htlc_maximum_msat), required),
758 (10, self.fees, required),
759 (12, self.last_update_message, required),
765 impl Readable for ChannelUpdateInfo {
766 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
767 _init_tlv_field_var!(last_update, required);
768 _init_tlv_field_var!(enabled, required);
769 _init_tlv_field_var!(cltv_expiry_delta, required);
770 _init_tlv_field_var!(htlc_minimum_msat, required);
771 _init_tlv_field_var!(htlc_maximum_msat, option);
772 _init_tlv_field_var!(fees, required);
773 _init_tlv_field_var!(last_update_message, required);
775 read_tlv_fields!(reader, {
776 (0, last_update, required),
777 (2, enabled, required),
778 (4, cltv_expiry_delta, required),
779 (6, htlc_minimum_msat, required),
780 (8, htlc_maximum_msat, required),
781 (10, fees, required),
782 (12, last_update_message, required)
785 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
786 Ok(ChannelUpdateInfo {
787 last_update: _init_tlv_based_struct_field!(last_update, required),
788 enabled: _init_tlv_based_struct_field!(enabled, required),
789 cltv_expiry_delta: _init_tlv_based_struct_field!(cltv_expiry_delta, required),
790 htlc_minimum_msat: _init_tlv_based_struct_field!(htlc_minimum_msat, required),
792 fees: _init_tlv_based_struct_field!(fees, required),
793 last_update_message: _init_tlv_based_struct_field!(last_update_message, required),
796 Err(DecodeError::InvalidValue)
801 #[derive(Clone, Debug, PartialEq, Eq)]
802 /// Details about a channel (both directions).
803 /// Received within a channel announcement.
804 pub struct ChannelInfo {
805 /// Protocol features of a channel communicated during its announcement
806 pub features: ChannelFeatures,
807 /// Source node of the first direction of a channel
808 pub node_one: NodeId,
809 /// Details about the first direction of a channel
810 pub one_to_two: Option<ChannelUpdateInfo>,
811 /// Source node of the second direction of a channel
812 pub node_two: NodeId,
813 /// Details about the second direction of a channel
814 pub two_to_one: Option<ChannelUpdateInfo>,
815 /// The channel capacity as seen on-chain, if chain lookup is available.
816 pub capacity_sats: Option<u64>,
817 /// An initial announcement of the channel
818 /// Mostly redundant with the data we store in fields explicitly.
819 /// Everything else is useful only for sending out for initial routing sync.
820 /// Not stored if contains excess data to prevent DoS.
821 pub announcement_message: Option<ChannelAnnouncement>,
822 /// The timestamp when we received the announcement, if we are running with feature = "std"
823 /// (which we can probably assume we are - no-std environments probably won't have a full
824 /// network graph in memory!).
825 announcement_received_time: u64,
829 /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
830 /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
831 pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
832 let (direction, source) = {
833 if target == &self.node_one {
834 (self.two_to_one.as_ref(), &self.node_two)
835 } else if target == &self.node_two {
836 (self.one_to_two.as_ref(), &self.node_one)
841 direction.map(|dir| (DirectedChannelInfo::new(self, dir), source))
844 /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
845 /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
846 pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
847 let (direction, target) = {
848 if source == &self.node_one {
849 (self.one_to_two.as_ref(), &self.node_two)
850 } else if source == &self.node_two {
851 (self.two_to_one.as_ref(), &self.node_one)
856 direction.map(|dir| (DirectedChannelInfo::new(self, dir), target))
859 /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
860 pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
861 let direction = channel_flags & 1u8;
863 self.one_to_two.as_ref()
865 self.two_to_one.as_ref()
870 impl fmt::Display for ChannelInfo {
871 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
872 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
873 log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
878 impl Writeable for ChannelInfo {
879 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
880 write_tlv_fields!(writer, {
881 (0, self.features, required),
882 (1, self.announcement_received_time, (default_value, 0)),
883 (2, self.node_one, required),
884 (4, self.one_to_two, required),
885 (6, self.node_two, required),
886 (8, self.two_to_one, required),
887 (10, self.capacity_sats, required),
888 (12, self.announcement_message, required),
894 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
895 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
896 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
897 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
898 // channel updates via the gossip network.
899 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
901 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
902 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
903 match crate::util::ser::Readable::read(reader) {
904 Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
905 Err(DecodeError::ShortRead) => Ok(None),
906 Err(DecodeError::InvalidValue) => Ok(None),
907 Err(err) => Err(err),
912 impl Readable for ChannelInfo {
913 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
914 _init_tlv_field_var!(features, required);
915 _init_tlv_field_var!(announcement_received_time, (default_value, 0));
916 _init_tlv_field_var!(node_one, required);
917 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
918 _init_tlv_field_var!(node_two, required);
919 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
920 _init_tlv_field_var!(capacity_sats, required);
921 _init_tlv_field_var!(announcement_message, required);
922 read_tlv_fields!(reader, {
923 (0, features, required),
924 (1, announcement_received_time, (default_value, 0)),
925 (2, node_one, required),
926 (4, one_to_two_wrap, upgradable_option),
927 (6, node_two, required),
928 (8, two_to_one_wrap, upgradable_option),
929 (10, capacity_sats, required),
930 (12, announcement_message, required),
934 features: _init_tlv_based_struct_field!(features, required),
935 node_one: _init_tlv_based_struct_field!(node_one, required),
936 one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
937 node_two: _init_tlv_based_struct_field!(node_two, required),
938 two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
939 capacity_sats: _init_tlv_based_struct_field!(capacity_sats, required),
940 announcement_message: _init_tlv_based_struct_field!(announcement_message, required),
941 announcement_received_time: _init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
946 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
947 /// source node to a target node.
949 pub struct DirectedChannelInfo<'a> {
950 channel: &'a ChannelInfo,
951 direction: &'a ChannelUpdateInfo,
952 htlc_maximum_msat: u64,
953 effective_capacity: EffectiveCapacity,
956 impl<'a> DirectedChannelInfo<'a> {
958 fn new(channel: &'a ChannelInfo, direction: &'a ChannelUpdateInfo) -> Self {
959 let mut htlc_maximum_msat = direction.htlc_maximum_msat;
960 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
962 let effective_capacity = match capacity_msat {
963 Some(capacity_msat) => {
964 htlc_maximum_msat = cmp::min(htlc_maximum_msat, capacity_msat);
965 EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: htlc_maximum_msat }
967 None => EffectiveCapacity::MaximumHTLC { amount_msat: htlc_maximum_msat },
971 channel, direction, htlc_maximum_msat, effective_capacity
975 /// Returns information for the channel.
977 pub fn channel(&self) -> &'a ChannelInfo { self.channel }
979 /// Returns the maximum HTLC amount allowed over the channel in the direction.
981 pub fn htlc_maximum_msat(&self) -> u64 {
982 self.htlc_maximum_msat
985 /// Returns the [`EffectiveCapacity`] of the channel in the direction.
987 /// This is either the total capacity from the funding transaction, if known, or the
988 /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
990 pub fn effective_capacity(&self) -> EffectiveCapacity {
991 self.effective_capacity
994 /// Returns information for the direction.
996 pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.direction }
999 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
1000 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1001 f.debug_struct("DirectedChannelInfo")
1002 .field("channel", &self.channel)
1007 /// The effective capacity of a channel for routing purposes.
1009 /// While this may be smaller than the actual channel capacity, amounts greater than
1010 /// [`Self::as_msat`] should not be routed through the channel.
1011 #[derive(Clone, Copy, Debug, PartialEq)]
1012 pub enum EffectiveCapacity {
1013 /// The available liquidity in the channel known from being a channel counterparty, and thus a
1016 /// Either the inbound or outbound liquidity depending on the direction, denominated in
1018 liquidity_msat: u64,
1020 /// The maximum HTLC amount in one direction as advertised on the gossip network.
1022 /// The maximum HTLC amount denominated in millisatoshi.
1025 /// The total capacity of the channel as determined by the funding transaction.
1027 /// The funding amount denominated in millisatoshi.
1029 /// The maximum HTLC amount denominated in millisatoshi.
1030 htlc_maximum_msat: u64
1032 /// A capacity sufficient to route any payment, typically used for private channels provided by
1035 /// A capacity that is unknown possibly because either the chain state is unavailable to know
1036 /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
1040 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
1041 /// use when making routing decisions.
1042 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
1044 impl EffectiveCapacity {
1045 /// Returns the effective capacity denominated in millisatoshi.
1046 pub fn as_msat(&self) -> u64 {
1048 EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
1049 EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
1050 EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
1051 EffectiveCapacity::Infinite => u64::max_value(),
1052 EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
1057 /// Fees for routing via a given channel or a node
1058 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
1059 pub struct RoutingFees {
1060 /// Flat routing fee in millisatoshis.
1062 /// Liquidity-based routing fee in millionths of a routed amount.
1063 /// In other words, 10000 is 1%.
1064 pub proportional_millionths: u32,
1067 impl_writeable_tlv_based!(RoutingFees, {
1068 (0, base_msat, required),
1069 (2, proportional_millionths, required)
1072 #[derive(Clone, Debug, PartialEq, Eq)]
1073 /// Information received in the latest node_announcement from this node.
1074 pub struct NodeAnnouncementInfo {
1075 /// Protocol features the node announced support for
1076 pub features: NodeFeatures,
1077 /// When the last known update to the node state was issued.
1078 /// Value is opaque, as set in the announcement.
1079 pub last_update: u32,
1080 /// Color assigned to the node
1082 /// Moniker assigned to the node.
1083 /// May be invalid or malicious (eg control chars),
1084 /// should not be exposed to the user.
1085 pub alias: NodeAlias,
1086 /// An initial announcement of the node
1087 /// Mostly redundant with the data we store in fields explicitly.
1088 /// Everything else is useful only for sending out for initial routing sync.
1089 /// Not stored if contains excess data to prevent DoS.
1090 pub announcement_message: Option<NodeAnnouncement>
1093 impl NodeAnnouncementInfo {
1094 /// Internet-level addresses via which one can connect to the node
1095 pub fn addresses(&self) -> &[NetAddress] {
1096 self.announcement_message.as_ref()
1097 .map(|msg| msg.contents.addresses.as_slice())
1098 .unwrap_or_default()
1102 impl Writeable for NodeAnnouncementInfo {
1103 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1104 let empty_addresses = Vec::<NetAddress>::new();
1105 write_tlv_fields!(writer, {
1106 (0, self.features, required),
1107 (2, self.last_update, required),
1108 (4, self.rgb, required),
1109 (6, self.alias, required),
1110 (8, self.announcement_message, option),
1111 (10, empty_addresses, vec_type), // Versions prior to 0.0.115 require this field
1117 impl Readable for NodeAnnouncementInfo {
1118 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1119 _init_and_read_tlv_fields!(reader, {
1120 (0, features, required),
1121 (2, last_update, required),
1123 (6, alias, required),
1124 (8, announcement_message, option),
1125 (10, _addresses, vec_type), // deprecated, not used anymore
1127 let _: Option<Vec<NetAddress>> = _addresses;
1128 Ok(Self { features: features.0.unwrap(), last_update: last_update.0.unwrap(), rgb: rgb.0.unwrap(),
1129 alias: alias.0.unwrap(), announcement_message })
1133 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1135 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1136 /// attacks. Care must be taken when processing.
1137 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1138 pub struct NodeAlias(pub [u8; 32]);
1140 impl fmt::Display for NodeAlias {
1141 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1142 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1143 let bytes = self.0.split_at(first_null).0;
1144 match core::str::from_utf8(bytes) {
1145 Ok(alias) => PrintableString(alias).fmt(f)?,
1147 use core::fmt::Write;
1148 for c in bytes.iter().map(|b| *b as char) {
1149 // Display printable ASCII characters
1150 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1151 let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1160 impl Writeable for NodeAlias {
1161 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1166 impl Readable for NodeAlias {
1167 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1168 Ok(NodeAlias(Readable::read(r)?))
1172 #[derive(Clone, Debug, PartialEq, Eq)]
1173 /// Details about a node in the network, known from the network announcement.
1174 pub struct NodeInfo {
1175 /// All valid channels a node has announced
1176 pub channels: Vec<u64>,
1177 /// More information about a node from node_announcement.
1178 /// Optional because we store a Node entry after learning about it from
1179 /// a channel announcement, but before receiving a node announcement.
1180 pub announcement_info: Option<NodeAnnouncementInfo>
1183 impl fmt::Display for NodeInfo {
1184 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1185 write!(f, " channels: {:?}, announcement_info: {:?}",
1186 &self.channels[..], self.announcement_info)?;
1191 impl Writeable for NodeInfo {
1192 fn write<W: crate::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1193 write_tlv_fields!(writer, {
1194 // Note that older versions of LDK wrote the lowest inbound fees here at type 0
1195 (2, self.announcement_info, option),
1196 (4, self.channels, vec_type),
1202 // A wrapper allowing for the optional deserialization of `NodeAnnouncementInfo`. Utilizing this is
1203 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1204 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1205 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1206 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1208 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1209 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1210 match crate::util::ser::Readable::read(reader) {
1211 Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1213 copy(reader, &mut sink()).unwrap();
1220 impl Readable for NodeInfo {
1221 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1222 // Historically, we tracked the lowest inbound fees for any node in order to use it as an
1223 // A* heuristic when routing. Sadly, these days many, many nodes have at least one channel
1224 // with zero inbound fees, causing that heuristic to provide little gain. Worse, because it
1225 // requires additional complexity and lookups during routing, it ends up being a
1226 // performance loss. Thus, we simply ignore the old field here and no longer track it.
1227 let mut _lowest_inbound_channel_fees: Option<RoutingFees> = None;
1228 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1229 _init_tlv_field_var!(channels, vec_type);
1231 read_tlv_fields!(reader, {
1232 (0, _lowest_inbound_channel_fees, option),
1233 (2, announcement_info_wrap, upgradable_option),
1234 (4, channels, vec_type),
1238 announcement_info: announcement_info_wrap.map(|w| w.0),
1239 channels: _init_tlv_based_struct_field!(channels, vec_type),
1244 const SERIALIZATION_VERSION: u8 = 1;
1245 const MIN_SERIALIZATION_VERSION: u8 = 1;
1247 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1248 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1249 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1251 self.genesis_hash.write(writer)?;
1252 let channels = self.channels.read().unwrap();
1253 (channels.len() as u64).write(writer)?;
1254 for (ref chan_id, ref chan_info) in channels.unordered_iter() {
1255 (*chan_id).write(writer)?;
1256 chan_info.write(writer)?;
1258 let nodes = self.nodes.read().unwrap();
1259 (nodes.len() as u64).write(writer)?;
1260 for (ref node_id, ref node_info) in nodes.unordered_iter() {
1261 node_id.write(writer)?;
1262 node_info.write(writer)?;
1265 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1266 write_tlv_fields!(writer, {
1267 (1, last_rapid_gossip_sync_timestamp, option),
1273 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1274 fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1275 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1277 let genesis_hash: BlockHash = Readable::read(reader)?;
1278 let channels_count: u64 = Readable::read(reader)?;
1279 let mut channels = IndexedMap::new();
1280 for _ in 0..channels_count {
1281 let chan_id: u64 = Readable::read(reader)?;
1282 let chan_info = Readable::read(reader)?;
1283 channels.insert(chan_id, chan_info);
1285 let nodes_count: u64 = Readable::read(reader)?;
1286 let mut nodes = IndexedMap::new();
1287 for _ in 0..nodes_count {
1288 let node_id = Readable::read(reader)?;
1289 let node_info = Readable::read(reader)?;
1290 nodes.insert(node_id, node_info);
1293 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1294 read_tlv_fields!(reader, {
1295 (1, last_rapid_gossip_sync_timestamp, option),
1299 secp_ctx: Secp256k1::verification_only(),
1302 channels: RwLock::new(channels),
1303 nodes: RwLock::new(nodes),
1304 last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1305 removed_nodes: Mutex::new(HashMap::new()),
1306 removed_channels: Mutex::new(HashMap::new()),
1307 pending_checks: utxo::PendingChecks::new(),
1312 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1313 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1314 writeln!(f, "Network map\n[Channels]")?;
1315 for (key, val) in self.channels.read().unwrap().unordered_iter() {
1316 writeln!(f, " {}: {}", key, val)?;
1318 writeln!(f, "[Nodes]")?;
1319 for (&node_id, val) in self.nodes.read().unwrap().unordered_iter() {
1320 writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1326 impl<L: Deref> Eq for NetworkGraph<L> where L::Target: Logger {}
1327 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1328 fn eq(&self, other: &Self) -> bool {
1329 self.genesis_hash == other.genesis_hash &&
1330 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1331 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1335 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1336 /// Creates a new, empty, network graph.
1337 pub fn new(network: Network, logger: L) -> NetworkGraph<L> {
1339 secp_ctx: Secp256k1::verification_only(),
1340 genesis_hash: genesis_block(network).header.block_hash(),
1342 channels: RwLock::new(IndexedMap::new()),
1343 nodes: RwLock::new(IndexedMap::new()),
1344 last_rapid_gossip_sync_timestamp: Mutex::new(None),
1345 removed_channels: Mutex::new(HashMap::new()),
1346 removed_nodes: Mutex::new(HashMap::new()),
1347 pending_checks: utxo::PendingChecks::new(),
1351 /// Returns a read-only view of the network graph.
1352 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1353 let channels = self.channels.read().unwrap();
1354 let nodes = self.nodes.read().unwrap();
1355 ReadOnlyNetworkGraph {
1361 /// The unix timestamp provided by the most recent rapid gossip sync.
1362 /// It will be set by the rapid sync process after every sync completion.
1363 pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1364 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1367 /// Update the unix timestamp provided by the most recent rapid gossip sync.
1368 /// This should be done automatically by the rapid sync process after every sync completion.
1369 pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1370 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1373 /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1376 pub fn clear_nodes_announcement_info(&self) {
1377 for node in self.nodes.write().unwrap().unordered_iter_mut() {
1378 node.1.announcement_info = None;
1382 /// For an already known node (from channel announcements), update its stored properties from a
1383 /// given node announcement.
1385 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1386 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1387 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1388 pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1389 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1390 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &get_pubkey_from_node_id!(msg.contents.node_id, "node_announcement"), "node_announcement");
1391 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1394 /// For an already known node (from channel announcements), update its stored properties from a
1395 /// given node announcement without verifying the associated signatures. Because we aren't
1396 /// given the associated signatures here we cannot relay the node announcement to any of our
1398 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1399 self.update_node_from_announcement_intern(msg, None)
1402 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1403 let mut nodes = self.nodes.write().unwrap();
1404 match nodes.get_mut(&msg.node_id) {
1406 core::mem::drop(nodes);
1407 self.pending_checks.check_hold_pending_node_announcement(msg, full_msg)?;
1408 Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError})
1411 if let Some(node_info) = node.announcement_info.as_ref() {
1412 // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1413 // updates to ensure you always have the latest one, only vaguely suggesting
1414 // that it be at least the current time.
1415 if node_info.last_update > msg.timestamp {
1416 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1417 } else if node_info.last_update == msg.timestamp {
1418 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1423 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1424 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1425 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1426 node.announcement_info = Some(NodeAnnouncementInfo {
1427 features: msg.features.clone(),
1428 last_update: msg.timestamp,
1431 announcement_message: if should_relay { full_msg.cloned() } else { None },
1439 /// Store or update channel info from a channel announcement.
1441 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1442 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1443 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1445 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1446 /// the corresponding UTXO exists on chain and is correctly-formatted.
1447 pub fn update_channel_from_announcement<U: Deref>(
1448 &self, msg: &msgs::ChannelAnnouncement, utxo_lookup: &Option<U>,
1449 ) -> Result<(), LightningError>
1451 U::Target: UtxoLookup,
1453 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1454 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &get_pubkey_from_node_id!(msg.contents.node_id_1, "channel_announcement"), "channel_announcement");
1455 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &get_pubkey_from_node_id!(msg.contents.node_id_2, "channel_announcement"), "channel_announcement");
1456 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_1, "channel_announcement"), "channel_announcement");
1457 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &get_pubkey_from_node_id!(msg.contents.bitcoin_key_2, "channel_announcement"), "channel_announcement");
1458 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), utxo_lookup)
1461 /// Store or update channel info from a channel announcement without verifying the associated
1462 /// signatures. Because we aren't given the associated signatures here we cannot relay the
1463 /// channel announcement to any of our peers.
1465 /// If a [`UtxoLookup`] object is provided via `utxo_lookup`, it will be called to verify
1466 /// the corresponding UTXO exists on chain and is correctly-formatted.
1467 pub fn update_channel_from_unsigned_announcement<U: Deref>(
1468 &self, msg: &msgs::UnsignedChannelAnnouncement, utxo_lookup: &Option<U>
1469 ) -> Result<(), LightningError>
1471 U::Target: UtxoLookup,
1473 self.update_channel_from_unsigned_announcement_intern(msg, None, utxo_lookup)
1476 /// Update channel from partial announcement data received via rapid gossip sync
1478 /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1479 /// rapid gossip sync server)
1481 /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1482 pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1483 if node_id_1 == node_id_2 {
1484 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1487 let node_1 = NodeId::from_pubkey(&node_id_1);
1488 let node_2 = NodeId::from_pubkey(&node_id_2);
1489 let channel_info = ChannelInfo {
1491 node_one: node_1.clone(),
1493 node_two: node_2.clone(),
1495 capacity_sats: None,
1496 announcement_message: None,
1497 announcement_received_time: timestamp,
1500 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1503 fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1504 let mut channels = self.channels.write().unwrap();
1505 let mut nodes = self.nodes.write().unwrap();
1507 let node_id_a = channel_info.node_one.clone();
1508 let node_id_b = channel_info.node_two.clone();
1510 match channels.entry(short_channel_id) {
1511 IndexedMapEntry::Occupied(mut entry) => {
1512 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1513 //in the blockchain API, we need to handle it smartly here, though it's unclear
1515 if utxo_value.is_some() {
1516 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1517 // only sometimes returns results. In any case remove the previous entry. Note
1518 // that the spec expects us to "blacklist" the node_ids involved, but we can't
1520 // a) we don't *require* a UTXO provider that always returns results.
1521 // b) we don't track UTXOs of channels we know about and remove them if they
1523 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1524 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1525 *entry.get_mut() = channel_info;
1527 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1530 IndexedMapEntry::Vacant(entry) => {
1531 entry.insert(channel_info);
1535 for current_node_id in [node_id_a, node_id_b].iter() {
1536 match nodes.entry(current_node_id.clone()) {
1537 IndexedMapEntry::Occupied(node_entry) => {
1538 node_entry.into_mut().channels.push(short_channel_id);
1540 IndexedMapEntry::Vacant(node_entry) => {
1541 node_entry.insert(NodeInfo {
1542 channels: vec!(short_channel_id),
1543 announcement_info: None,
1552 fn update_channel_from_unsigned_announcement_intern<U: Deref>(
1553 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, utxo_lookup: &Option<U>
1554 ) -> Result<(), LightningError>
1556 U::Target: UtxoLookup,
1558 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1559 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1563 let channels = self.channels.read().unwrap();
1565 if let Some(chan) = channels.get(&msg.short_channel_id) {
1566 if chan.capacity_sats.is_some() {
1567 // If we'd previously looked up the channel on-chain and checked the script
1568 // against what appears on-chain, ignore the duplicate announcement.
1570 // Because a reorg could replace one channel with another at the same SCID, if
1571 // the channel appears to be different, we re-validate. This doesn't expose us
1572 // to any more DoS risk than not, as a peer can always flood us with
1573 // randomly-generated SCID values anyway.
1575 // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1576 // as we didn't (necessarily) store the bitcoin keys, and we only really care
1577 // if the peers on the channel changed anyway.
1578 if msg.node_id_1 == chan.node_one && msg.node_id_2 == chan.node_two {
1579 return Err(LightningError {
1580 err: "Already have chain-validated channel".to_owned(),
1581 action: ErrorAction::IgnoreDuplicateGossip
1584 } else if utxo_lookup.is_none() {
1585 // Similarly, if we can't check the chain right now anyway, ignore the
1586 // duplicate announcement without bothering to take the channels write lock.
1587 return Err(LightningError {
1588 err: "Already have non-chain-validated channel".to_owned(),
1589 action: ErrorAction::IgnoreDuplicateGossip
1596 let removed_channels = self.removed_channels.lock().unwrap();
1597 let removed_nodes = self.removed_nodes.lock().unwrap();
1598 if removed_channels.contains_key(&msg.short_channel_id) ||
1599 removed_nodes.contains_key(&msg.node_id_1) ||
1600 removed_nodes.contains_key(&msg.node_id_2) {
1601 return Err(LightningError{
1602 err: format!("Channel with SCID {} or one of its nodes was removed from our network graph recently", &msg.short_channel_id),
1603 action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1607 let utxo_value = self.pending_checks.check_channel_announcement(
1608 utxo_lookup, msg, full_msg)?;
1610 #[allow(unused_mut, unused_assignments)]
1611 let mut announcement_received_time = 0;
1612 #[cfg(feature = "std")]
1614 announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1617 let chan_info = ChannelInfo {
1618 features: msg.features.clone(),
1619 node_one: msg.node_id_1,
1621 node_two: msg.node_id_2,
1623 capacity_sats: utxo_value,
1624 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1625 { full_msg.cloned() } else { None },
1626 announcement_received_time,
1629 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)?;
1631 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.short_channel_id, if !msg.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
1635 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1636 /// If permanent, removes a channel from the local storage.
1637 /// May cause the removal of nodes too, if this was their last channel.
1638 /// If not permanent, makes channels unavailable for routing.
1639 pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1640 #[cfg(feature = "std")]
1641 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1642 #[cfg(not(feature = "std"))]
1643 let current_time_unix = None;
1645 self.channel_failed_with_time(short_channel_id, is_permanent, current_time_unix)
1648 /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1649 /// If permanent, removes a channel from the local storage.
1650 /// May cause the removal of nodes too, if this was their last channel.
1651 /// If not permanent, makes channels unavailable for routing.
1652 fn channel_failed_with_time(&self, short_channel_id: u64, is_permanent: bool, current_time_unix: Option<u64>) {
1653 let mut channels = self.channels.write().unwrap();
1655 if let Some(chan) = channels.remove(&short_channel_id) {
1656 let mut nodes = self.nodes.write().unwrap();
1657 self.removed_channels.lock().unwrap().insert(short_channel_id, current_time_unix);
1658 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1661 if let Some(chan) = channels.get_mut(&short_channel_id) {
1662 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1663 one_to_two.enabled = false;
1665 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1666 two_to_one.enabled = false;
1672 /// Marks a node in the graph as permanently failed, effectively removing it and its channels
1673 /// from local storage.
1674 pub fn node_failed_permanent(&self, node_id: &PublicKey) {
1675 #[cfg(feature = "std")]
1676 let current_time_unix = Some(SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs());
1677 #[cfg(not(feature = "std"))]
1678 let current_time_unix = None;
1680 let node_id = NodeId::from_pubkey(node_id);
1681 let mut channels = self.channels.write().unwrap();
1682 let mut nodes = self.nodes.write().unwrap();
1683 let mut removed_channels = self.removed_channels.lock().unwrap();
1684 let mut removed_nodes = self.removed_nodes.lock().unwrap();
1686 if let Some(node) = nodes.remove(&node_id) {
1687 for scid in node.channels.iter() {
1688 if let Some(chan_info) = channels.remove(scid) {
1689 let other_node_id = if node_id == chan_info.node_one { chan_info.node_two } else { chan_info.node_one };
1690 if let IndexedMapEntry::Occupied(mut other_node_entry) = nodes.entry(other_node_id) {
1691 other_node_entry.get_mut().channels.retain(|chan_id| {
1694 if other_node_entry.get().channels.is_empty() {
1695 other_node_entry.remove_entry();
1698 removed_channels.insert(*scid, current_time_unix);
1701 removed_nodes.insert(node_id, current_time_unix);
1705 #[cfg(feature = "std")]
1706 /// Removes information about channels that we haven't heard any updates about in some time.
1707 /// This can be used regularly to prune the network graph of channels that likely no longer
1710 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1711 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1712 /// pruning occur for updates which are at least two weeks old, which we implement here.
1714 /// Note that for users of the `lightning-background-processor` crate this method may be
1715 /// automatically called regularly for you.
1717 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1718 /// in the map for a while so that these can be resynced from gossip in the future.
1720 /// This method is only available with the `std` feature. See
1721 /// [`NetworkGraph::remove_stale_channels_and_tracking_with_time`] for `no-std` use.
1722 pub fn remove_stale_channels_and_tracking(&self) {
1723 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1724 self.remove_stale_channels_and_tracking_with_time(time);
1727 /// Removes information about channels that we haven't heard any updates about in some time.
1728 /// This can be used regularly to prune the network graph of channels that likely no longer
1731 /// While there is no formal requirement that nodes regularly re-broadcast their channel
1732 /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1733 /// pruning occur for updates which are at least two weeks old, which we implement here.
1735 /// This method will also cause us to stop tracking removed nodes and channels if they have been
1736 /// in the map for a while so that these can be resynced from gossip in the future.
1738 /// This function takes the current unix time as an argument. For users with the `std` feature
1739 /// enabled, [`NetworkGraph::remove_stale_channels_and_tracking`] may be preferable.
1740 pub fn remove_stale_channels_and_tracking_with_time(&self, current_time_unix: u64) {
1741 let mut channels = self.channels.write().unwrap();
1742 // Time out if we haven't received an update in at least 14 days.
1743 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1744 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1745 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1746 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1748 let mut scids_to_remove = Vec::new();
1749 for (scid, info) in channels.unordered_iter_mut() {
1750 if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1751 info.one_to_two = None;
1753 if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1754 info.two_to_one = None;
1756 if info.one_to_two.is_none() || info.two_to_one.is_none() {
1757 // We check the announcement_received_time here to ensure we don't drop
1758 // announcements that we just received and are just waiting for our peer to send a
1759 // channel_update for.
1760 if info.announcement_received_time < min_time_unix as u64 {
1761 scids_to_remove.push(*scid);
1765 if !scids_to_remove.is_empty() {
1766 let mut nodes = self.nodes.write().unwrap();
1767 for scid in scids_to_remove {
1768 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1769 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1770 self.removed_channels.lock().unwrap().insert(scid, Some(current_time_unix));
1774 let should_keep_tracking = |time: &mut Option<u64>| {
1775 if let Some(time) = time {
1776 current_time_unix.saturating_sub(*time) < REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS
1778 // NOTE: In the case of no-std, we won't have access to the current UNIX time at the time of removal,
1779 // so we'll just set the removal time here to the current UNIX time on the very next invocation
1780 // of this function.
1781 #[cfg(feature = "no-std")]
1783 let mut tracked_time = Some(current_time_unix);
1784 core::mem::swap(time, &mut tracked_time);
1787 #[allow(unreachable_code)]
1791 self.removed_channels.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1792 self.removed_nodes.lock().unwrap().retain(|_, time| should_keep_tracking(time));
1795 /// For an already known (from announcement) channel, update info about one of the directions
1798 /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1799 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1800 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1802 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1803 /// materially in the future will be rejected.
1804 pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1805 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1808 /// For an already known (from announcement) channel, update info about one of the directions
1809 /// of the channel without verifying the associated signatures. Because we aren't given the
1810 /// associated signatures here we cannot relay the channel update to any of our peers.
1812 /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1813 /// materially in the future will be rejected.
1814 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1815 self.update_channel_intern(msg, None, None)
1818 fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1819 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1821 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1823 // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1824 // disable this check during tests!
1825 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1826 if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1827 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1829 if msg.timestamp as u64 > time + 60 * 60 * 24 {
1830 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1834 let mut channels = self.channels.write().unwrap();
1835 match channels.get_mut(&msg.short_channel_id) {
1837 core::mem::drop(channels);
1838 self.pending_checks.check_hold_pending_channel_update(msg, full_msg)?;
1839 return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError});
1842 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1843 return Err(LightningError{err:
1844 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1845 action: ErrorAction::IgnoreError});
1848 if let Some(capacity_sats) = channel.capacity_sats {
1849 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1850 // Don't query UTXO set here to reduce DoS risks.
1851 if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1852 return Err(LightningError{err:
1853 "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1854 action: ErrorAction::IgnoreError});
1857 macro_rules! check_update_latest {
1858 ($target: expr) => {
1859 if let Some(existing_chan_info) = $target.as_ref() {
1860 // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1861 // order updates to ensure you always have the latest one, only
1862 // suggesting that it be at least the current time. For
1863 // channel_updates specifically, the BOLTs discuss the possibility of
1864 // pruning based on the timestamp field being more than two weeks old,
1865 // but only in the non-normative section.
1866 if existing_chan_info.last_update > msg.timestamp {
1867 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1868 } else if existing_chan_info.last_update == msg.timestamp {
1869 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1875 macro_rules! get_new_channel_info {
1877 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1878 { full_msg.cloned() } else { None };
1880 let updated_channel_update_info = ChannelUpdateInfo {
1881 enabled: chan_enabled,
1882 last_update: msg.timestamp,
1883 cltv_expiry_delta: msg.cltv_expiry_delta,
1884 htlc_minimum_msat: msg.htlc_minimum_msat,
1885 htlc_maximum_msat: msg.htlc_maximum_msat,
1887 base_msat: msg.fee_base_msat,
1888 proportional_millionths: msg.fee_proportional_millionths,
1892 Some(updated_channel_update_info)
1896 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1897 if msg.flags & 1 == 1 {
1898 check_update_latest!(channel.two_to_one);
1899 if let Some(sig) = sig {
1900 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1901 err: "Couldn't parse source node pubkey".to_owned(),
1902 action: ErrorAction::IgnoreAndLog(Level::Debug)
1903 })?, "channel_update");
1905 channel.two_to_one = get_new_channel_info!();
1907 check_update_latest!(channel.one_to_two);
1908 if let Some(sig) = sig {
1909 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1910 err: "Couldn't parse destination node pubkey".to_owned(),
1911 action: ErrorAction::IgnoreAndLog(Level::Debug)
1912 })?, "channel_update");
1914 channel.one_to_two = get_new_channel_info!();
1922 fn remove_channel_in_nodes(nodes: &mut IndexedMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1923 macro_rules! remove_from_node {
1924 ($node_id: expr) => {
1925 if let IndexedMapEntry::Occupied(mut entry) = nodes.entry($node_id) {
1926 entry.get_mut().channels.retain(|chan_id| {
1927 short_channel_id != *chan_id
1929 if entry.get().channels.is_empty() {
1930 entry.remove_entry();
1933 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1938 remove_from_node!(chan.node_one);
1939 remove_from_node!(chan.node_two);
1943 impl ReadOnlyNetworkGraph<'_> {
1944 /// Returns all known valid channels' short ids along with announced channel info.
1946 /// This is not exported to bindings users because we don't want to return lifetime'd references
1947 pub fn channels(&self) -> &IndexedMap<u64, ChannelInfo> {
1951 /// Returns information on a channel with the given id.
1952 pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1953 self.channels.get(&short_channel_id)
1956 #[cfg(c_bindings)] // Non-bindings users should use `channels`
1957 /// Returns the list of channels in the graph
1958 pub fn list_channels(&self) -> Vec<u64> {
1959 self.channels.unordered_keys().map(|c| *c).collect()
1962 /// Returns all known nodes' public keys along with announced node info.
1964 /// This is not exported to bindings users because we don't want to return lifetime'd references
1965 pub fn nodes(&self) -> &IndexedMap<NodeId, NodeInfo> {
1969 /// Returns information on a node with the given id.
1970 pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1971 self.nodes.get(node_id)
1974 #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1975 /// Returns the list of nodes in the graph
1976 pub fn list_nodes(&self) -> Vec<NodeId> {
1977 self.nodes.unordered_keys().map(|n| *n).collect()
1980 /// Get network addresses by node id.
1981 /// Returns None if the requested node is completely unknown,
1982 /// or if node announcement for the node was never received.
1983 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1984 self.nodes.get(&NodeId::from_pubkey(&pubkey))
1985 .and_then(|node| node.announcement_info.as_ref().map(|ann| ann.addresses().to_vec()))
1990 pub(crate) mod tests {
1991 use crate::events::{MessageSendEvent, MessageSendEventsProvider};
1992 use crate::ln::channelmanager;
1993 use crate::ln::chan_utils::make_funding_redeemscript;
1994 #[cfg(feature = "std")]
1995 use crate::ln::features::InitFeatures;
1996 use crate::routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1997 use crate::routing::utxo::{UtxoLookupError, UtxoResult};
1998 use crate::ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1999 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
2000 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
2001 use crate::util::config::UserConfig;
2002 use crate::util::test_utils;
2003 use crate::util::ser::{ReadableArgs, Readable, Writeable};
2004 use crate::util::scid_utils::scid_from_parts;
2006 use crate::routing::gossip::REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS;
2007 use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
2009 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
2010 use bitcoin::hashes::Hash;
2011 use bitcoin::network::constants::Network;
2012 use bitcoin::blockdata::constants::genesis_block;
2013 use bitcoin::blockdata::script::Script;
2014 use bitcoin::blockdata::transaction::TxOut;
2018 use bitcoin::secp256k1::{PublicKey, SecretKey};
2019 use bitcoin::secp256k1::{All, Secp256k1};
2022 use bitcoin::secp256k1;
2023 use crate::prelude::*;
2024 use crate::sync::Arc;
2026 fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
2027 let logger = Arc::new(test_utils::TestLogger::new());
2028 NetworkGraph::new(Network::Testnet, logger)
2031 fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
2032 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
2033 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
2035 let secp_ctx = Secp256k1::new();
2036 let logger = Arc::new(test_utils::TestLogger::new());
2037 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
2038 (secp_ctx, gossip_sync)
2042 #[cfg(feature = "std")]
2043 fn request_full_sync_finite_times() {
2044 let network_graph = create_network_graph();
2045 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2046 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
2048 assert!(gossip_sync.should_request_full_sync(&node_id));
2049 assert!(gossip_sync.should_request_full_sync(&node_id));
2050 assert!(gossip_sync.should_request_full_sync(&node_id));
2051 assert!(gossip_sync.should_request_full_sync(&node_id));
2052 assert!(gossip_sync.should_request_full_sync(&node_id));
2053 assert!(!gossip_sync.should_request_full_sync(&node_id));
2056 pub(crate) fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
2057 let node_id = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_key));
2058 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2059 features: channelmanager::provided_node_features(&UserConfig::default()),
2063 alias: NodeAlias([0; 32]),
2064 addresses: Vec::new(),
2065 excess_address_data: Vec::new(),
2066 excess_data: Vec::new(),
2068 f(&mut unsigned_announcement);
2069 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2071 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2072 contents: unsigned_announcement
2076 pub(crate) fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
2077 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
2078 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
2079 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2080 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2082 let mut unsigned_announcement = UnsignedChannelAnnouncement {
2083 features: channelmanager::provided_channel_features(&UserConfig::default()),
2084 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2085 short_channel_id: 0,
2086 node_id_1: NodeId::from_pubkey(&node_id_1),
2087 node_id_2: NodeId::from_pubkey(&node_id_2),
2088 bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey)),
2089 bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey)),
2090 excess_data: Vec::new(),
2092 f(&mut unsigned_announcement);
2093 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2094 ChannelAnnouncement {
2095 node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
2096 node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
2097 bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
2098 bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
2099 contents: unsigned_announcement,
2103 pub(crate) fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
2104 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
2105 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
2106 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
2107 &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
2110 pub(crate) fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
2111 let mut unsigned_channel_update = UnsignedChannelUpdate {
2112 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2113 short_channel_id: 0,
2116 cltv_expiry_delta: 144,
2117 htlc_minimum_msat: 1_000_000,
2118 htlc_maximum_msat: 1_000_000,
2119 fee_base_msat: 10_000,
2120 fee_proportional_millionths: 20,
2121 excess_data: Vec::new()
2123 f(&mut unsigned_channel_update);
2124 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
2126 signature: secp_ctx.sign_ecdsa(&msghash, node_key),
2127 contents: unsigned_channel_update
2132 fn handling_node_announcements() {
2133 let network_graph = create_network_graph();
2134 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2136 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2137 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2138 let zero_hash = Sha256dHash::hash(&[0; 32]);
2140 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2141 match gossip_sync.handle_node_announcement(&valid_announcement) {
2143 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2147 // Announce a channel to add a corresponding node.
2148 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2149 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2150 Ok(res) => assert!(res),
2155 match gossip_sync.handle_node_announcement(&valid_announcement) {
2156 Ok(res) => assert!(res),
2160 let fake_msghash = hash_to_message!(&zero_hash);
2161 match gossip_sync.handle_node_announcement(
2163 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2164 contents: valid_announcement.contents.clone()
2167 Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2170 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2171 unsigned_announcement.timestamp += 1000;
2172 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2173 }, node_1_privkey, &secp_ctx);
2174 // Return false because contains excess data.
2175 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2176 Ok(res) => assert!(!res),
2180 // Even though previous announcement was not relayed further, we still accepted it,
2181 // so we now won't accept announcements before the previous one.
2182 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2183 unsigned_announcement.timestamp += 1000 - 10;
2184 }, node_1_privkey, &secp_ctx);
2185 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2187 Err(e) => assert_eq!(e.err, "Update older than last processed update")
2192 fn handling_channel_announcements() {
2193 let secp_ctx = Secp256k1::new();
2194 let logger = test_utils::TestLogger::new();
2196 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2197 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2199 let good_script = get_channel_script(&secp_ctx);
2200 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2202 // Test if the UTXO lookups were not supported
2203 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2204 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2205 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2206 Ok(res) => assert!(res),
2211 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2217 // If we receive announcement for the same channel (with UTXO lookups disabled),
2218 // drop new one on the floor, since we can't see any changes.
2219 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2221 Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2224 // Test if an associated transaction were not on-chain (or not confirmed).
2225 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2226 *chain_source.utxo_ret.lock().unwrap() = UtxoResult::Sync(Err(UtxoLookupError::UnknownTx));
2227 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2228 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2230 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2231 unsigned_announcement.short_channel_id += 1;
2232 }, node_1_privkey, node_2_privkey, &secp_ctx);
2233 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2235 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2238 // Now test if the transaction is found in the UTXO set and the script is correct.
2239 *chain_source.utxo_ret.lock().unwrap() =
2240 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script.clone() }));
2241 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2242 unsigned_announcement.short_channel_id += 2;
2243 }, node_1_privkey, node_2_privkey, &secp_ctx);
2244 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2245 Ok(res) => assert!(res),
2250 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2256 // If we receive announcement for the same channel, once we've validated it against the
2257 // chain, we simply ignore all new (duplicate) announcements.
2258 *chain_source.utxo_ret.lock().unwrap() =
2259 UtxoResult::Sync(Ok(TxOut { value: 0, script_pubkey: good_script }));
2260 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2262 Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2265 #[cfg(feature = "std")]
2267 use std::time::{SystemTime, UNIX_EPOCH};
2269 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2270 // Mark a node as permanently failed so it's tracked as removed.
2271 gossip_sync.network_graph().node_failed_permanent(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2273 // Return error and ignore valid channel announcement if one of the nodes has been tracked as removed.
2274 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2275 unsigned_announcement.short_channel_id += 3;
2276 }, node_1_privkey, node_2_privkey, &secp_ctx);
2277 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2279 Err(e) => assert_eq!(e.err, "Channel with SCID 3 or one of its nodes was removed from our network graph recently")
2282 gossip_sync.network_graph().remove_stale_channels_and_tracking_with_time(tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2284 // The above channel announcement should be handled as per normal now.
2285 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2286 Ok(res) => assert!(res),
2291 // Don't relay valid channels with excess data
2292 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2293 unsigned_announcement.short_channel_id += 4;
2294 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2295 }, node_1_privkey, node_2_privkey, &secp_ctx);
2296 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2297 Ok(res) => assert!(!res),
2301 let mut invalid_sig_announcement = valid_announcement.clone();
2302 invalid_sig_announcement.contents.excess_data = Vec::new();
2303 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2305 Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2308 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2309 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2311 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2316 fn handling_channel_update() {
2317 let secp_ctx = Secp256k1::new();
2318 let logger = test_utils::TestLogger::new();
2319 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2320 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2321 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2323 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2324 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2326 let amount_sats = 1000_000;
2327 let short_channel_id;
2330 // Announce a channel we will update
2331 let good_script = get_channel_script(&secp_ctx);
2332 *chain_source.utxo_ret.lock().unwrap() =
2333 UtxoResult::Sync(Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() }));
2335 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2336 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2337 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2344 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2345 match gossip_sync.handle_channel_update(&valid_channel_update) {
2346 Ok(res) => assert!(res),
2351 match network_graph.read_only().channels().get(&short_channel_id) {
2353 Some(channel_info) => {
2354 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2355 assert!(channel_info.two_to_one.is_none());
2360 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2361 unsigned_channel_update.timestamp += 100;
2362 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2363 }, node_1_privkey, &secp_ctx);
2364 // Return false because contains excess data
2365 match gossip_sync.handle_channel_update(&valid_channel_update) {
2366 Ok(res) => assert!(!res),
2370 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2371 unsigned_channel_update.timestamp += 110;
2372 unsigned_channel_update.short_channel_id += 1;
2373 }, node_1_privkey, &secp_ctx);
2374 match gossip_sync.handle_channel_update(&valid_channel_update) {
2376 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2379 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2380 unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2381 unsigned_channel_update.timestamp += 110;
2382 }, node_1_privkey, &secp_ctx);
2383 match gossip_sync.handle_channel_update(&valid_channel_update) {
2385 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2388 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2389 unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2390 unsigned_channel_update.timestamp += 110;
2391 }, node_1_privkey, &secp_ctx);
2392 match gossip_sync.handle_channel_update(&valid_channel_update) {
2394 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2397 // Even though previous update was not relayed further, we still accepted it,
2398 // so we now won't accept update before the previous one.
2399 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2400 unsigned_channel_update.timestamp += 100;
2401 }, node_1_privkey, &secp_ctx);
2402 match gossip_sync.handle_channel_update(&valid_channel_update) {
2404 Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2407 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2408 unsigned_channel_update.timestamp += 500;
2409 }, node_1_privkey, &secp_ctx);
2410 let zero_hash = Sha256dHash::hash(&[0; 32]);
2411 let fake_msghash = hash_to_message!(&zero_hash);
2412 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2413 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2415 Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2420 fn handling_network_update() {
2421 let logger = test_utils::TestLogger::new();
2422 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2423 let secp_ctx = Secp256k1::new();
2425 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2426 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2427 let node_2_id = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2430 // There is no nodes in the table at the beginning.
2431 assert_eq!(network_graph.read_only().nodes().len(), 0);
2434 let short_channel_id;
2436 // Announce a channel we will update
2437 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2438 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2439 let chain_source: Option<&test_utils::TestChainSource> = None;
2440 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2441 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2443 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2444 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2446 network_graph.handle_network_update(&NetworkUpdate::ChannelUpdateMessage {
2447 msg: valid_channel_update,
2450 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2453 // Non-permanent closing just disables a channel
2455 match network_graph.read_only().channels().get(&short_channel_id) {
2457 Some(channel_info) => {
2458 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2462 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2464 is_permanent: false,
2467 match network_graph.read_only().channels().get(&short_channel_id) {
2469 Some(channel_info) => {
2470 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2475 // Permanent closing deletes a channel
2476 network_graph.handle_network_update(&NetworkUpdate::ChannelFailure {
2481 assert_eq!(network_graph.read_only().channels().len(), 0);
2482 // Nodes are also deleted because there are no associated channels anymore
2483 assert_eq!(network_graph.read_only().nodes().len(), 0);
2486 // Get a new network graph since we don't want to track removed nodes in this test with "std"
2487 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2489 // Announce a channel to test permanent node failure
2490 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2491 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2492 let chain_source: Option<&test_utils::TestChainSource> = None;
2493 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2494 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2496 // Non-permanent node failure does not delete any nodes or channels
2497 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2499 is_permanent: false,
2502 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2503 assert!(network_graph.read_only().nodes().get(&NodeId::from_pubkey(&node_2_id)).is_some());
2505 // Permanent node failure deletes node and its channels
2506 network_graph.handle_network_update(&NetworkUpdate::NodeFailure {
2511 assert_eq!(network_graph.read_only().nodes().len(), 0);
2512 // Channels are also deleted because the associated node has been deleted
2513 assert_eq!(network_graph.read_only().channels().len(), 0);
2518 fn test_channel_timeouts() {
2519 // Test the removal of channels with `remove_stale_channels_and_tracking`.
2520 let logger = test_utils::TestLogger::new();
2521 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2522 let network_graph = NetworkGraph::new(Network::Testnet, &logger);
2523 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2524 let secp_ctx = Secp256k1::new();
2526 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2527 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2529 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2530 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2531 let chain_source: Option<&test_utils::TestChainSource> = None;
2532 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2533 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2535 // Submit two channel updates for each channel direction (update.flags bit).
2536 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2537 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2538 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2540 let valid_channel_update_2 = get_signed_channel_update(|update| {update.flags |=1;}, node_2_privkey, &secp_ctx);
2541 gossip_sync.handle_channel_update(&valid_channel_update_2).unwrap();
2542 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().two_to_one.is_some());
2544 network_graph.remove_stale_channels_and_tracking_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2545 assert_eq!(network_graph.read_only().channels().len(), 1);
2546 assert_eq!(network_graph.read_only().nodes().len(), 2);
2548 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2549 #[cfg(not(feature = "std"))] {
2550 // Make sure removed channels are tracked.
2551 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2553 network_graph.remove_stale_channels_and_tracking_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2554 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2556 #[cfg(feature = "std")]
2558 // In std mode, a further check is performed before fully removing the channel -
2559 // the channel_announcement must have been received at least two weeks ago. We
2560 // fudge that here by indicating the time has jumped two weeks.
2561 assert_eq!(network_graph.read_only().channels().len(), 1);
2562 assert_eq!(network_graph.read_only().nodes().len(), 2);
2564 // Note that the directional channel information will have been removed already..
2565 // We want to check that this will work even if *one* of the channel updates is recent,
2566 // so we should add it with a recent timestamp.
2567 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2568 use std::time::{SystemTime, UNIX_EPOCH};
2569 let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2570 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2571 unsigned_channel_update.timestamp = (announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
2572 }, node_1_privkey, &secp_ctx);
2573 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2574 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2575 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2576 // Make sure removed channels are tracked.
2577 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2578 // Provide a later time so that sufficient time has passed
2579 network_graph.remove_stale_channels_and_tracking_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS +
2580 REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2583 assert_eq!(network_graph.read_only().channels().len(), 0);
2584 assert_eq!(network_graph.read_only().nodes().len(), 0);
2585 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2587 #[cfg(feature = "std")]
2589 use std::time::{SystemTime, UNIX_EPOCH};
2591 let tracking_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2593 // Clear tracked nodes and channels for clean slate
2594 network_graph.removed_channels.lock().unwrap().clear();
2595 network_graph.removed_nodes.lock().unwrap().clear();
2597 // Add a channel and nodes from channel announcement. So our network graph will
2598 // now only consist of two nodes and one channel between them.
2599 assert!(network_graph.update_channel_from_announcement(
2600 &valid_channel_announcement, &chain_source).is_ok());
2602 // Mark the channel as permanently failed. This will also remove the two nodes
2603 // and all of the entries will be tracked as removed.
2604 network_graph.channel_failed_with_time(short_channel_id, true, Some(tracking_time));
2606 // Should not remove from tracking if insufficient time has passed
2607 network_graph.remove_stale_channels_and_tracking_with_time(
2608 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS - 1);
2609 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1, "Removed channel count ≠1 with tracking_time {}", tracking_time);
2611 // Provide a later time so that sufficient time has passed
2612 network_graph.remove_stale_channels_and_tracking_with_time(
2613 tracking_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2614 assert!(network_graph.removed_channels.lock().unwrap().is_empty(), "Unexpectedly removed channels with tracking_time {}", tracking_time);
2615 assert!(network_graph.removed_nodes.lock().unwrap().is_empty(), "Unexpectedly removed nodes with tracking_time {}", tracking_time);
2618 #[cfg(not(feature = "std"))]
2620 // When we don't have access to the system clock, the time we started tracking removal will only
2621 // be that provided by the first call to `remove_stale_channels_and_tracking_with_time`. Hence,
2622 // only if sufficient time has passed after that first call, will the next call remove it from
2624 let removal_time = 1664619654;
2626 // Clear removed nodes and channels for clean slate
2627 network_graph.removed_channels.lock().unwrap().clear();
2628 network_graph.removed_nodes.lock().unwrap().clear();
2630 // Add a channel and nodes from channel announcement. So our network graph will
2631 // now only consist of two nodes and one channel between them.
2632 assert!(network_graph.update_channel_from_announcement(
2633 &valid_channel_announcement, &chain_source).is_ok());
2635 // Mark the channel as permanently failed. This will also remove the two nodes
2636 // and all of the entries will be tracked as removed.
2637 network_graph.channel_failed(short_channel_id, true);
2639 // The first time we call the following, the channel will have a removal time assigned.
2640 network_graph.remove_stale_channels_and_tracking_with_time(removal_time);
2641 assert_eq!(network_graph.removed_channels.lock().unwrap().len(), 1);
2643 // Provide a later time so that sufficient time has passed
2644 network_graph.remove_stale_channels_and_tracking_with_time(
2645 removal_time + REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS);
2646 assert!(network_graph.removed_channels.lock().unwrap().is_empty());
2647 assert!(network_graph.removed_nodes.lock().unwrap().is_empty());
2652 fn getting_next_channel_announcements() {
2653 let network_graph = create_network_graph();
2654 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2655 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2656 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2658 // Channels were not announced yet.
2659 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2660 assert!(channels_with_announcements.is_none());
2662 let short_channel_id;
2664 // Announce a channel we will update
2665 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2666 short_channel_id = valid_channel_announcement.contents.short_channel_id;
2667 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2673 // Contains initial channel announcement now.
2674 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2675 if let Some(channel_announcements) = channels_with_announcements {
2676 let (_, ref update_1, ref update_2) = channel_announcements;
2677 assert_eq!(update_1, &None);
2678 assert_eq!(update_2, &None);
2684 // Valid channel update
2685 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2686 unsigned_channel_update.timestamp = 101;
2687 }, node_1_privkey, &secp_ctx);
2688 match gossip_sync.handle_channel_update(&valid_channel_update) {
2694 // Now contains an initial announcement and an update.
2695 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2696 if let Some(channel_announcements) = channels_with_announcements {
2697 let (_, ref update_1, ref update_2) = channel_announcements;
2698 assert_ne!(update_1, &None);
2699 assert_eq!(update_2, &None);
2705 // Channel update with excess data.
2706 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2707 unsigned_channel_update.timestamp = 102;
2708 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2709 }, node_1_privkey, &secp_ctx);
2710 match gossip_sync.handle_channel_update(&valid_channel_update) {
2716 // Test that announcements with excess data won't be returned
2717 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2718 if let Some(channel_announcements) = channels_with_announcements {
2719 let (_, ref update_1, ref update_2) = channel_announcements;
2720 assert_eq!(update_1, &None);
2721 assert_eq!(update_2, &None);
2726 // Further starting point have no channels after it
2727 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2728 assert!(channels_with_announcements.is_none());
2732 fn getting_next_node_announcements() {
2733 let network_graph = create_network_graph();
2734 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2735 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2736 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2737 let node_id_1 = NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, node_1_privkey));
2740 let next_announcements = gossip_sync.get_next_node_announcement(None);
2741 assert!(next_announcements.is_none());
2744 // Announce a channel to add 2 nodes
2745 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2746 match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2752 // Nodes were never announced
2753 let next_announcements = gossip_sync.get_next_node_announcement(None);
2754 assert!(next_announcements.is_none());
2757 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2758 match gossip_sync.handle_node_announcement(&valid_announcement) {
2763 let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2764 match gossip_sync.handle_node_announcement(&valid_announcement) {
2770 let next_announcements = gossip_sync.get_next_node_announcement(None);
2771 assert!(next_announcements.is_some());
2773 // Skip the first node.
2774 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2775 assert!(next_announcements.is_some());
2778 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2779 let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2780 unsigned_announcement.timestamp += 10;
2781 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2782 }, node_2_privkey, &secp_ctx);
2783 match gossip_sync.handle_node_announcement(&valid_announcement) {
2784 Ok(res) => assert!(!res),
2789 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2790 assert!(next_announcements.is_none());
2794 fn network_graph_serialization() {
2795 let network_graph = create_network_graph();
2796 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2798 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2799 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2801 // Announce a channel to add a corresponding node.
2802 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2803 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2804 Ok(res) => assert!(res),
2808 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2809 match gossip_sync.handle_node_announcement(&valid_announcement) {
2814 let mut w = test_utils::TestVecWriter(Vec::new());
2815 assert!(!network_graph.read_only().nodes().is_empty());
2816 assert!(!network_graph.read_only().channels().is_empty());
2817 network_graph.write(&mut w).unwrap();
2819 let logger = Arc::new(test_utils::TestLogger::new());
2820 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2824 fn network_graph_tlv_serialization() {
2825 let network_graph = create_network_graph();
2826 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2828 let mut w = test_utils::TestVecWriter(Vec::new());
2829 network_graph.write(&mut w).unwrap();
2831 let logger = Arc::new(test_utils::TestLogger::new());
2832 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2833 assert!(reassembled_network_graph == network_graph);
2834 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2838 #[cfg(feature = "std")]
2839 fn calling_sync_routing_table() {
2840 use std::time::{SystemTime, UNIX_EPOCH};
2841 use crate::ln::msgs::Init;
2843 let network_graph = create_network_graph();
2844 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2845 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2846 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2848 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2850 // It should ignore if gossip_queries feature is not enabled
2852 let init_msg = Init { features: InitFeatures::empty(), remote_network_address: None };
2853 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2854 let events = gossip_sync.get_and_clear_pending_msg_events();
2855 assert_eq!(events.len(), 0);
2858 // It should send a gossip_timestamp_filter with the correct information
2860 let mut features = InitFeatures::empty();
2861 features.set_gossip_queries_optional();
2862 let init_msg = Init { features, remote_network_address: None };
2863 gossip_sync.peer_connected(&node_id_1, &init_msg, true).unwrap();
2864 let events = gossip_sync.get_and_clear_pending_msg_events();
2865 assert_eq!(events.len(), 1);
2867 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2868 assert_eq!(node_id, &node_id_1);
2869 assert_eq!(msg.chain_hash, chain_hash);
2870 let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2871 assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2872 assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2873 assert_eq!(msg.timestamp_range, u32::max_value());
2875 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2881 fn handling_query_channel_range() {
2882 let network_graph = create_network_graph();
2883 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2885 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2886 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2887 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2888 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2890 let mut scids: Vec<u64> = vec![
2891 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2892 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2895 // used for testing multipart reply across blocks
2896 for block in 100000..=108001 {
2897 scids.push(scid_from_parts(block, 0, 0).unwrap());
2900 // used for testing resumption on same block
2901 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2904 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2905 unsigned_announcement.short_channel_id = scid;
2906 }, node_1_privkey, node_2_privkey, &secp_ctx);
2907 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2913 // Error when number_of_blocks=0
2914 do_handling_query_channel_range(
2918 chain_hash: chain_hash.clone(),
2920 number_of_blocks: 0,
2923 vec![ReplyChannelRange {
2924 chain_hash: chain_hash.clone(),
2926 number_of_blocks: 0,
2927 sync_complete: true,
2928 short_channel_ids: vec![]
2932 // Error when wrong chain
2933 do_handling_query_channel_range(
2937 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2939 number_of_blocks: 0xffff_ffff,
2942 vec![ReplyChannelRange {
2943 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2945 number_of_blocks: 0xffff_ffff,
2946 sync_complete: true,
2947 short_channel_ids: vec![],
2951 // Error when first_blocknum > 0xffffff
2952 do_handling_query_channel_range(
2956 chain_hash: chain_hash.clone(),
2957 first_blocknum: 0x01000000,
2958 number_of_blocks: 0xffff_ffff,
2961 vec![ReplyChannelRange {
2962 chain_hash: chain_hash.clone(),
2963 first_blocknum: 0x01000000,
2964 number_of_blocks: 0xffff_ffff,
2965 sync_complete: true,
2966 short_channel_ids: vec![]
2970 // Empty reply when max valid SCID block num
2971 do_handling_query_channel_range(
2975 chain_hash: chain_hash.clone(),
2976 first_blocknum: 0xffffff,
2977 number_of_blocks: 1,
2982 chain_hash: chain_hash.clone(),
2983 first_blocknum: 0xffffff,
2984 number_of_blocks: 1,
2985 sync_complete: true,
2986 short_channel_ids: vec![]
2991 // No results in valid query range
2992 do_handling_query_channel_range(
2996 chain_hash: chain_hash.clone(),
2997 first_blocknum: 1000,
2998 number_of_blocks: 1000,
3003 chain_hash: chain_hash.clone(),
3004 first_blocknum: 1000,
3005 number_of_blocks: 1000,
3006 sync_complete: true,
3007 short_channel_ids: vec![],
3012 // Overflow first_blocknum + number_of_blocks
3013 do_handling_query_channel_range(
3017 chain_hash: chain_hash.clone(),
3018 first_blocknum: 0xfe0000,
3019 number_of_blocks: 0xffffffff,
3024 chain_hash: chain_hash.clone(),
3025 first_blocknum: 0xfe0000,
3026 number_of_blocks: 0xffffffff - 0xfe0000,
3027 sync_complete: true,
3028 short_channel_ids: vec![
3029 0xfffffe_ffffff_ffff, // max
3035 // Single block exactly full
3036 do_handling_query_channel_range(
3040 chain_hash: chain_hash.clone(),
3041 first_blocknum: 100000,
3042 number_of_blocks: 8000,
3047 chain_hash: chain_hash.clone(),
3048 first_blocknum: 100000,
3049 number_of_blocks: 8000,
3050 sync_complete: true,
3051 short_channel_ids: (100000..=107999)
3052 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3058 // Multiple split on new block
3059 do_handling_query_channel_range(
3063 chain_hash: chain_hash.clone(),
3064 first_blocknum: 100000,
3065 number_of_blocks: 8001,
3070 chain_hash: chain_hash.clone(),
3071 first_blocknum: 100000,
3072 number_of_blocks: 7999,
3073 sync_complete: false,
3074 short_channel_ids: (100000..=107999)
3075 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3079 chain_hash: chain_hash.clone(),
3080 first_blocknum: 107999,
3081 number_of_blocks: 2,
3082 sync_complete: true,
3083 short_channel_ids: vec![
3084 scid_from_parts(108000, 0, 0).unwrap(),
3090 // Multiple split on same block
3091 do_handling_query_channel_range(
3095 chain_hash: chain_hash.clone(),
3096 first_blocknum: 100002,
3097 number_of_blocks: 8000,
3102 chain_hash: chain_hash.clone(),
3103 first_blocknum: 100002,
3104 number_of_blocks: 7999,
3105 sync_complete: false,
3106 short_channel_ids: (100002..=108001)
3107 .map(|block| scid_from_parts(block, 0, 0).unwrap())
3111 chain_hash: chain_hash.clone(),
3112 first_blocknum: 108001,
3113 number_of_blocks: 1,
3114 sync_complete: true,
3115 short_channel_ids: vec![
3116 scid_from_parts(108001, 1, 0).unwrap(),
3123 fn do_handling_query_channel_range(
3124 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
3125 test_node_id: &PublicKey,
3126 msg: QueryChannelRange,
3128 expected_replies: Vec<ReplyChannelRange>
3130 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
3131 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
3132 let query_end_blocknum = msg.end_blocknum();
3133 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
3136 assert!(result.is_ok());
3138 assert!(result.is_err());
3141 let events = gossip_sync.get_and_clear_pending_msg_events();
3142 assert_eq!(events.len(), expected_replies.len());
3144 for i in 0..events.len() {
3145 let expected_reply = &expected_replies[i];
3147 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
3148 assert_eq!(node_id, test_node_id);
3149 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
3150 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
3151 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
3152 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
3153 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
3155 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
3156 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
3157 assert!(msg.first_blocknum >= max_firstblocknum);
3158 max_firstblocknum = msg.first_blocknum;
3159 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
3161 // Check that the last block count is >= the query's end_blocknum
3162 if i == events.len() - 1 {
3163 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
3166 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
3172 fn handling_query_short_channel_ids() {
3173 let network_graph = create_network_graph();
3174 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
3175 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
3176 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
3178 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
3180 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
3182 short_channel_ids: vec![0x0003e8_000000_0000],
3184 assert!(result.is_err());
3188 fn displays_node_alias() {
3189 let format_str_alias = |alias: &str| {
3190 let mut bytes = [0u8; 32];
3191 bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
3192 format!("{}", NodeAlias(bytes))
3195 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
3196 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
3197 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
3199 let format_bytes_alias = |alias: &[u8]| {
3200 let mut bytes = [0u8; 32];
3201 bytes[..alias.len()].copy_from_slice(alias);
3202 format!("{}", NodeAlias(bytes))
3205 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
3206 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
3207 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
3211 fn channel_info_is_readable() {
3212 let chanmon_cfgs = crate::ln::functional_test_utils::create_chanmon_cfgs(2);
3213 let node_cfgs = crate::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
3214 let node_chanmgrs = crate::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
3215 let nodes = crate::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
3216 let config = crate::ln::functional_test_utils::test_default_channel_config();
3218 // 1. Test encoding/decoding of ChannelUpdateInfo
3219 let chan_update_info = ChannelUpdateInfo {
3222 cltv_expiry_delta: 42,
3223 htlc_minimum_msat: 1234,
3224 htlc_maximum_msat: 5678,
3225 fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
3226 last_update_message: None,
3229 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
3230 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
3232 // First make sure we can read ChannelUpdateInfos we just wrote
3233 let read_chan_update_info: ChannelUpdateInfo = crate::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
3234 assert_eq!(chan_update_info, read_chan_update_info);
3236 // Check the serialization hasn't changed.
3237 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
3238 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
3240 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
3241 // or the ChannelUpdate enclosed with `last_update_message`.
3242 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
3243 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
3244 assert!(read_chan_update_info_res.is_err());
3246 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3247 let read_chan_update_info_res: Result<ChannelUpdateInfo, crate::ln::msgs::DecodeError> = crate::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3248 assert!(read_chan_update_info_res.is_err());
3250 // 2. Test encoding/decoding of ChannelInfo
3251 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3252 let chan_info_none_updates = ChannelInfo {
3253 features: channelmanager::provided_channel_features(&config),
3254 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3256 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3258 capacity_sats: None,
3259 announcement_message: None,
3260 announcement_received_time: 87654,
3263 let mut encoded_chan_info: Vec<u8> = Vec::new();
3264 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3266 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3267 assert_eq!(chan_info_none_updates, read_chan_info);
3269 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3270 let chan_info_some_updates = ChannelInfo {
3271 features: channelmanager::provided_channel_features(&config),
3272 node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3273 one_to_two: Some(chan_update_info.clone()),
3274 node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3275 two_to_one: Some(chan_update_info.clone()),
3276 capacity_sats: None,
3277 announcement_message: None,
3278 announcement_received_time: 87654,
3281 let mut encoded_chan_info: Vec<u8> = Vec::new();
3282 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3284 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3285 assert_eq!(chan_info_some_updates, read_chan_info);
3287 // Check the serialization hasn't changed.
3288 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3289 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3291 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3292 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3293 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3294 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3295 assert_eq!(read_chan_info.announcement_received_time, 87654);
3296 assert_eq!(read_chan_info.one_to_two, None);
3297 assert_eq!(read_chan_info.two_to_one, None);
3299 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3300 let read_chan_info: ChannelInfo = crate::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3301 assert_eq!(read_chan_info.announcement_received_time, 87654);
3302 assert_eq!(read_chan_info.one_to_two, None);
3303 assert_eq!(read_chan_info.two_to_one, None);
3307 fn node_info_is_readable() {
3308 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3309 let announcement_message = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000122013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010000701fffefdfc2607").unwrap();
3310 let announcement_message = NodeAnnouncement::read(&mut announcement_message.as_slice()).unwrap();
3311 let valid_node_ann_info = NodeAnnouncementInfo {
3312 features: channelmanager::provided_node_features(&UserConfig::default()),
3315 alias: NodeAlias([0u8; 32]),
3316 announcement_message: Some(announcement_message)
3319 let mut encoded_valid_node_ann_info = Vec::new();
3320 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3321 let read_valid_node_ann_info = NodeAnnouncementInfo::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3322 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3323 assert_eq!(read_valid_node_ann_info.addresses().len(), 1);
3325 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3326 let read_invalid_node_ann_info_res = NodeAnnouncementInfo::read(&mut encoded_invalid_node_ann_info.as_slice());
3327 assert!(read_invalid_node_ann_info_res.is_err());
3329 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3330 let valid_node_info = NodeInfo {
3331 channels: Vec::new(),
3332 announcement_info: Some(valid_node_ann_info),
3335 let mut encoded_valid_node_info = Vec::new();
3336 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3337 let read_valid_node_info = NodeInfo::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3338 assert_eq!(read_valid_node_info, valid_node_info);
3340 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3341 let read_invalid_node_info = NodeInfo::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3342 assert_eq!(read_invalid_node_info.announcement_info, None);
3346 fn test_node_info_keeps_compatibility() {
3347 let old_ann_info_with_addresses = hex::decode("3f0009000708a000080a51220204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014104d2").unwrap();
3348 let ann_info_with_addresses = NodeAnnouncementInfo::read(&mut old_ann_info_with_addresses.as_slice())
3349 .expect("to be able to read an old NodeAnnouncementInfo with addresses");
3350 // This serialized info has an address field but no announcement_message, therefore the addresses returned by our function will still be empty
3351 assert!(ann_info_with_addresses.addresses().is_empty());
3355 #[cfg(all(test, feature = "_bench_unstable"))]
3363 fn read_network_graph(bench: &mut Bencher) {
3364 let logger = crate::util::test_utils::TestLogger::new();
3365 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3366 let mut v = Vec::new();
3367 d.read_to_end(&mut v).unwrap();
3369 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3374 fn write_network_graph(bench: &mut Bencher) {
3375 let logger = crate::util::test_utils::TestLogger::new();
3376 let mut d = crate::routing::router::bench_utils::get_route_file().unwrap();
3377 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3379 let _ = net_graph.encode();