1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level network map tracking logic lives here.
12 use bitcoin::secp256k1::key::PublicKey;
13 use bitcoin::secp256k1::Secp256k1;
14 use bitcoin::secp256k1;
16 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
17 use bitcoin::hashes::Hash;
18 use bitcoin::blockdata::script::Builder;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::blockdata::opcodes;
21 use bitcoin::hash_types::BlockHash;
25 use ln::features::{ChannelFeatures, NodeFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, OptionalField};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use util::ser::{Writeable, Readable, Writer};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
37 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use sync::{RwLock, RwLockReadGuard};
40 use core::sync::atomic::{AtomicUsize, Ordering};
43 use bitcoin::hashes::hex::ToHex;
45 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
46 /// refuse to relay the message.
47 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
49 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
50 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
51 const MAX_SCIDS_PER_REPLY: usize = 8000;
53 /// Represents the network as nodes and channels between them
54 pub struct NetworkGraph {
55 genesis_hash: BlockHash,
56 // Lock order: channels -> nodes
57 channels: RwLock<BTreeMap<u64, ChannelInfo>>,
58 nodes: RwLock<BTreeMap<PublicKey, NodeInfo>>,
61 impl Clone for NetworkGraph {
62 fn clone(&self) -> Self {
63 let channels = self.channels.read().unwrap();
64 let nodes = self.nodes.read().unwrap();
66 genesis_hash: self.genesis_hash.clone(),
67 channels: RwLock::new(channels.clone()),
68 nodes: RwLock::new(nodes.clone()),
73 /// A read-only view of [`NetworkGraph`].
74 pub struct ReadOnlyNetworkGraph<'a> {
75 channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
76 nodes: RwLockReadGuard<'a, BTreeMap<PublicKey, NodeInfo>>,
79 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
80 /// return packet by a node along the route. See [BOLT #4] for details.
82 /// [BOLT #4]: https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
83 #[derive(Clone, Debug, PartialEq)]
84 pub enum NetworkUpdate {
85 /// An error indicating a `channel_update` messages should be applied via
86 /// [`NetworkGraph::update_channel`].
87 ChannelUpdateMessage {
88 /// The update to apply via [`NetworkGraph::update_channel`].
91 /// An error indicating only that a channel has been closed, which should be applied via
92 /// [`NetworkGraph::close_channel_from_update`].
94 /// The short channel id of the closed channel.
95 short_channel_id: u64,
96 /// Whether the channel should be permanently removed or temporarily disabled until a new
97 /// `channel_update` message is received.
100 /// An error indicating only that a node has failed, which should be applied via
101 /// [`NetworkGraph::fail_node`].
103 /// The node id of the failed node.
105 /// Whether the node should be permanently removed from consideration or can be restored
106 /// when a new `channel_update` message is received.
111 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
112 (0, ChannelUpdateMessage) => {
115 (2, ChannelClosed) => {
116 (0, short_channel_id, required),
117 (2, is_permanent, required),
119 (4, NodeFailure) => {
120 (0, node_id, required),
121 (2, is_permanent, required),
125 impl<C: Deref, L: Deref> EventHandler for NetGraphMsgHandler<C, L>
126 where C::Target: chain::Access, L::Target: Logger {
127 fn handle_event(&self, event: &Event) {
128 if let Event::PaymentPathFailed { payment_hash: _, rejected_by_dest: _, network_update, .. } = event {
129 if let Some(network_update) = network_update {
130 self.handle_network_update(network_update);
136 /// Receives and validates network updates from peers,
137 /// stores authentic and relevant data as a network graph.
138 /// This network graph is then used for routing payments.
139 /// Provides interface to help with initial routing sync by
140 /// serving historical announcements.
142 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
143 /// [`NetworkGraph`].
144 pub struct NetGraphMsgHandler<C: Deref, L: Deref>
145 where C::Target: chain::Access, L::Target: Logger
147 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
148 /// Representation of the payment channel network
149 pub network_graph: NetworkGraph,
150 chain_access: Option<C>,
151 full_syncs_requested: AtomicUsize,
152 pending_events: Mutex<Vec<MessageSendEvent>>,
156 impl<C: Deref, L: Deref> NetGraphMsgHandler<C, L>
157 where C::Target: chain::Access, L::Target: Logger
159 /// Creates a new tracker of the actual state of the network of channels and nodes,
160 /// assuming an existing Network Graph.
161 /// Chain monitor is used to make sure announced channels exist on-chain,
162 /// channel data is correct, and that the announcement is signed with
163 /// channel owners' keys.
164 pub fn new(network_graph: NetworkGraph, chain_access: Option<C>, logger: L) -> Self {
166 secp_ctx: Secp256k1::verification_only(),
168 full_syncs_requested: AtomicUsize::new(0),
170 pending_events: Mutex::new(vec![]),
175 /// Adds a provider used to check new announcements. Does not affect
176 /// existing announcements unless they are updated.
177 /// Add, update or remove the provider would replace the current one.
178 pub fn add_chain_access(&mut self, chain_access: Option<C>) {
179 self.chain_access = chain_access;
182 /// Returns true when a full routing table sync should be performed with a peer.
183 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
184 //TODO: Determine whether to request a full sync based on the network map.
185 const FULL_SYNCS_TO_REQUEST: usize = 5;
186 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
187 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
194 /// Applies changes to the [`NetworkGraph`] from the given update.
195 fn handle_network_update(&self, update: &NetworkUpdate) {
197 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
198 let short_channel_id = msg.contents.short_channel_id;
199 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
200 let status = if is_enabled { "enabled" } else { "disabled" };
201 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
202 let _ = self.network_graph.update_channel(msg, &self.secp_ctx);
204 NetworkUpdate::ChannelClosed { short_channel_id, is_permanent } => {
205 let action = if is_permanent { "Removing" } else { "Disabling" };
206 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
207 self.network_graph.close_channel_from_update(short_channel_id, is_permanent);
209 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
210 let action = if is_permanent { "Removing" } else { "Disabling" };
211 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
212 self.network_graph.fail_node(node_id, is_permanent);
218 macro_rules! secp_verify_sig {
219 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr ) => {
220 match $secp_ctx.verify($msg, $sig, $pubkey) {
222 Err(_) => return Err(LightningError{err: "Invalid signature from remote node".to_owned(), action: ErrorAction::IgnoreError}),
227 impl<C: Deref, L: Deref> RoutingMessageHandler for NetGraphMsgHandler<C, L>
228 where C::Target: chain::Access, L::Target: Logger
230 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
231 self.network_graph.update_node_from_announcement(msg, &self.secp_ctx)?;
232 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
233 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
234 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
237 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
238 self.network_graph.update_channel_from_announcement(msg, &self.chain_access, &self.secp_ctx)?;
239 log_trace!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
240 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
243 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
244 self.network_graph.update_channel(msg, &self.secp_ctx)?;
245 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
248 fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
249 let mut result = Vec::with_capacity(batch_amount as usize);
250 let channels = self.network_graph.channels.read().unwrap();
251 let mut iter = channels.range(starting_point..);
252 while result.len() < batch_amount as usize {
253 if let Some((_, ref chan)) = iter.next() {
254 if chan.announcement_message.is_some() {
255 let chan_announcement = chan.announcement_message.clone().unwrap();
256 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
257 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
258 if let Some(one_to_two) = chan.one_to_two.as_ref() {
259 one_to_two_announcement = one_to_two.last_update_message.clone();
261 if let Some(two_to_one) = chan.two_to_one.as_ref() {
262 two_to_one_announcement = two_to_one.last_update_message.clone();
264 result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement));
266 // TODO: We may end up sending un-announced channel_updates if we are sending
267 // initial sync data while receiving announce/updates for this channel.
276 fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement> {
277 let mut result = Vec::with_capacity(batch_amount as usize);
278 let nodes = self.network_graph.nodes.read().unwrap();
279 let mut iter = if let Some(pubkey) = starting_point {
280 let mut iter = nodes.range((*pubkey)..);
286 while result.len() < batch_amount as usize {
287 if let Some((_, ref node)) = iter.next() {
288 if let Some(node_info) = node.announcement_info.as_ref() {
289 if node_info.announcement_message.is_some() {
290 result.push(node_info.announcement_message.clone().unwrap());
300 /// Initiates a stateless sync of routing gossip information with a peer
301 /// using gossip_queries. The default strategy used by this implementation
302 /// is to sync the full block range with several peers.
304 /// We should expect one or more reply_channel_range messages in response
305 /// to our query_channel_range. Each reply will enqueue a query_scid message
306 /// to request gossip messages for each channel. The sync is considered complete
307 /// when the final reply_scids_end message is received, though we are not
308 /// tracking this directly.
309 fn sync_routing_table(&self, their_node_id: &PublicKey, init_msg: &Init) {
311 // We will only perform a sync with peers that support gossip_queries.
312 if !init_msg.features.supports_gossip_queries() {
316 // Check if we need to perform a full synchronization with this peer
317 if !self.should_request_full_sync(their_node_id) {
321 let first_blocknum = 0;
322 let number_of_blocks = 0xffffffff;
323 log_debug!(self.logger, "Sending query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), first_blocknum, number_of_blocks);
324 let mut pending_events = self.pending_events.lock().unwrap();
325 pending_events.push(MessageSendEvent::SendChannelRangeQuery {
326 node_id: their_node_id.clone(),
327 msg: QueryChannelRange {
328 chain_hash: self.network_graph.genesis_hash,
335 /// Statelessly processes a reply to a channel range query by immediately
336 /// sending an SCID query with SCIDs in the reply. To keep this handler
337 /// stateless, it does not validate the sequencing of replies for multi-
338 /// reply ranges. It does not validate whether the reply(ies) cover the
339 /// queried range. It also does not filter SCIDs to only those in the
340 /// original query range. We also do not validate that the chain_hash
341 /// matches the chain_hash of the NetworkGraph. Any chan_ann message that
342 /// does not match our chain_hash will be rejected when the announcement is
344 fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError> {
345 log_debug!(self.logger, "Handling reply_channel_range peer={}, first_blocknum={}, number_of_blocks={}, sync_complete={}, scids={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks, msg.sync_complete, msg.short_channel_ids.len(),);
347 log_debug!(self.logger, "Sending query_short_channel_ids peer={}, batch_size={}", log_pubkey!(their_node_id), msg.short_channel_ids.len());
348 let mut pending_events = self.pending_events.lock().unwrap();
349 pending_events.push(MessageSendEvent::SendShortIdsQuery {
350 node_id: their_node_id.clone(),
351 msg: QueryShortChannelIds {
352 chain_hash: msg.chain_hash,
353 short_channel_ids: msg.short_channel_ids,
360 /// When an SCID query is initiated the remote peer will begin streaming
361 /// gossip messages. In the event of a failure, we may have received
362 /// some channel information. Before trying with another peer, the
363 /// caller should update its set of SCIDs that need to be queried.
364 fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
365 log_debug!(self.logger, "Handling reply_short_channel_ids_end peer={}, full_information={}", log_pubkey!(their_node_id), msg.full_information);
367 // If the remote node does not have up-to-date information for the
368 // chain_hash they will set full_information=false. We can fail
369 // the result and try again with a different peer.
370 if !msg.full_information {
371 return Err(LightningError {
372 err: String::from("Received reply_short_channel_ids_end with no information"),
373 action: ErrorAction::IgnoreError
380 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
381 /// are in the specified block range. Due to message size limits, large range
382 /// queries may result in several reply messages. This implementation enqueues
383 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
384 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
385 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
386 /// memory constrained systems.
387 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
388 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
390 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
392 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
393 // If so, we manually cap the ending block to avoid this overflow.
394 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
396 // Per spec, we must reply to a query. Send an empty message when things are invalid.
397 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
398 let mut pending_events = self.pending_events.lock().unwrap();
399 pending_events.push(MessageSendEvent::SendReplyChannelRange {
400 node_id: their_node_id.clone(),
401 msg: ReplyChannelRange {
402 chain_hash: msg.chain_hash.clone(),
403 first_blocknum: msg.first_blocknum,
404 number_of_blocks: msg.number_of_blocks,
406 short_channel_ids: vec![],
409 return Err(LightningError {
410 err: String::from("query_channel_range could not be processed"),
411 action: ErrorAction::IgnoreError,
415 // Creates channel batches. We are not checking if the channel is routable
416 // (has at least one update). A peer may still want to know the channel
417 // exists even if its not yet routable.
418 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
419 let channels = self.network_graph.channels.read().unwrap();
420 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
421 if let Some(chan_announcement) = &chan.announcement_message {
422 // Construct a new batch if last one is full
423 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
424 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
427 let batch = batches.last_mut().unwrap();
428 batch.push(chan_announcement.contents.short_channel_id);
433 let mut pending_events = self.pending_events.lock().unwrap();
434 let batch_count = batches.len();
435 let mut prev_batch_endblock = msg.first_blocknum;
436 for (batch_index, batch) in batches.into_iter().enumerate() {
437 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
438 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
440 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
441 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
442 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
443 // significant diversion from the requirements set by the spec, and, in case of blocks
444 // with no channel opens (e.g. empty blocks), requires that we use the previous value
445 // and *not* derive the first_blocknum from the actual first block of the reply.
446 let first_blocknum = prev_batch_endblock;
448 // Each message carries the number of blocks (from the `first_blocknum`) its contents
449 // fit in. Though there is no requirement that we use exactly the number of blocks its
450 // contents are from, except for the bogus requirements c-lightning enforces, above.
452 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
453 // >= the query's end block. Thus, for the last reply, we calculate the difference
454 // between the query's end block and the start of the reply.
456 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
457 // first_blocknum will be either msg.first_blocknum or a higher block height.
458 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
459 (true, msg.end_blocknum() - first_blocknum)
461 // Prior replies should use the number of blocks that fit into the reply. Overflow
462 // safe since first_blocknum is always <= last SCID's block.
464 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
467 prev_batch_endblock = first_blocknum + number_of_blocks;
469 pending_events.push(MessageSendEvent::SendReplyChannelRange {
470 node_id: their_node_id.clone(),
471 msg: ReplyChannelRange {
472 chain_hash: msg.chain_hash.clone(),
476 short_channel_ids: batch,
484 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
487 err: String::from("Not implemented"),
488 action: ErrorAction::IgnoreError,
493 impl<C: Deref, L: Deref> MessageSendEventsProvider for NetGraphMsgHandler<C, L>
495 C::Target: chain::Access,
498 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
499 let mut ret = Vec::new();
500 let mut pending_events = self.pending_events.lock().unwrap();
501 core::mem::swap(&mut ret, &mut pending_events);
506 #[derive(Clone, Debug, PartialEq)]
507 /// Details about one direction of a channel. Received
508 /// within a channel update.
509 pub struct DirectionalChannelInfo {
510 /// When the last update to the channel direction was issued.
511 /// Value is opaque, as set in the announcement.
512 pub last_update: u32,
513 /// Whether the channel can be currently used for payments (in this one direction).
515 /// The difference in CLTV values that you must have when routing through this channel.
516 pub cltv_expiry_delta: u16,
517 /// The minimum value, which must be relayed to the next hop via the channel
518 pub htlc_minimum_msat: u64,
519 /// The maximum value which may be relayed to the next hop via the channel.
520 pub htlc_maximum_msat: Option<u64>,
521 /// Fees charged when the channel is used for routing
522 pub fees: RoutingFees,
523 /// Most recent update for the channel received from the network
524 /// Mostly redundant with the data we store in fields explicitly.
525 /// Everything else is useful only for sending out for initial routing sync.
526 /// Not stored if contains excess data to prevent DoS.
527 pub last_update_message: Option<ChannelUpdate>,
530 impl fmt::Display for DirectionalChannelInfo {
531 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
532 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
537 impl_writeable_tlv_based!(DirectionalChannelInfo, {
538 (0, last_update, required),
539 (2, enabled, required),
540 (4, cltv_expiry_delta, required),
541 (6, htlc_minimum_msat, required),
542 (8, htlc_maximum_msat, required),
543 (10, fees, required),
544 (12, last_update_message, required),
547 #[derive(Clone, Debug, PartialEq)]
548 /// Details about a channel (both directions).
549 /// Received within a channel announcement.
550 pub struct ChannelInfo {
551 /// Protocol features of a channel communicated during its announcement
552 pub features: ChannelFeatures,
553 /// Source node of the first direction of a channel
554 pub node_one: PublicKey,
555 /// Details about the first direction of a channel
556 pub one_to_two: Option<DirectionalChannelInfo>,
557 /// Source node of the second direction of a channel
558 pub node_two: PublicKey,
559 /// Details about the second direction of a channel
560 pub two_to_one: Option<DirectionalChannelInfo>,
561 /// The channel capacity as seen on-chain, if chain lookup is available.
562 pub capacity_sats: Option<u64>,
563 /// An initial announcement of the channel
564 /// Mostly redundant with the data we store in fields explicitly.
565 /// Everything else is useful only for sending out for initial routing sync.
566 /// Not stored if contains excess data to prevent DoS.
567 pub announcement_message: Option<ChannelAnnouncement>,
570 impl fmt::Display for ChannelInfo {
571 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
572 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
573 log_bytes!(self.features.encode()), log_pubkey!(self.node_one), self.one_to_two, log_pubkey!(self.node_two), self.two_to_one)?;
578 impl_writeable_tlv_based!(ChannelInfo, {
579 (0, features, required),
580 (2, node_one, required),
581 (4, one_to_two, required),
582 (6, node_two, required),
583 (8, two_to_one, required),
584 (10, capacity_sats, required),
585 (12, announcement_message, required),
589 /// Fees for routing via a given channel or a node
590 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
591 pub struct RoutingFees {
592 /// Flat routing fee in satoshis
594 /// Liquidity-based routing fee in millionths of a routed amount.
595 /// In other words, 10000 is 1%.
596 pub proportional_millionths: u32,
599 impl_writeable_tlv_based!(RoutingFees, {
600 (0, base_msat, required),
601 (2, proportional_millionths, required)
604 #[derive(Clone, Debug, PartialEq)]
605 /// Information received in the latest node_announcement from this node.
606 pub struct NodeAnnouncementInfo {
607 /// Protocol features the node announced support for
608 pub features: NodeFeatures,
609 /// When the last known update to the node state was issued.
610 /// Value is opaque, as set in the announcement.
611 pub last_update: u32,
612 /// Color assigned to the node
614 /// Moniker assigned to the node.
615 /// May be invalid or malicious (eg control chars),
616 /// should not be exposed to the user.
618 /// Internet-level addresses via which one can connect to the node
619 pub addresses: Vec<NetAddress>,
620 /// An initial announcement of the node
621 /// Mostly redundant with the data we store in fields explicitly.
622 /// Everything else is useful only for sending out for initial routing sync.
623 /// Not stored if contains excess data to prevent DoS.
624 pub announcement_message: Option<NodeAnnouncement>
627 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
628 (0, features, required),
629 (2, last_update, required),
631 (6, alias, required),
632 (8, announcement_message, option),
633 (10, addresses, vec_type),
636 #[derive(Clone, Debug, PartialEq)]
637 /// Details about a node in the network, known from the network announcement.
638 pub struct NodeInfo {
639 /// All valid channels a node has announced
640 pub channels: Vec<u64>,
641 /// Lowest fees enabling routing via any of the enabled, known channels to a node.
642 /// The two fields (flat and proportional fee) are independent,
643 /// meaning they don't have to refer to the same channel.
644 pub lowest_inbound_channel_fees: Option<RoutingFees>,
645 /// More information about a node from node_announcement.
646 /// Optional because we store a Node entry after learning about it from
647 /// a channel announcement, but before receiving a node announcement.
648 pub announcement_info: Option<NodeAnnouncementInfo>
651 impl fmt::Display for NodeInfo {
652 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
653 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
654 self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
659 impl_writeable_tlv_based!(NodeInfo, {
660 (0, lowest_inbound_channel_fees, option),
661 (2, announcement_info, option),
662 (4, channels, vec_type),
665 const SERIALIZATION_VERSION: u8 = 1;
666 const MIN_SERIALIZATION_VERSION: u8 = 1;
668 impl Writeable for NetworkGraph {
669 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
670 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
672 self.genesis_hash.write(writer)?;
673 let channels = self.channels.read().unwrap();
674 (channels.len() as u64).write(writer)?;
675 for (ref chan_id, ref chan_info) in channels.iter() {
676 (*chan_id).write(writer)?;
677 chan_info.write(writer)?;
679 let nodes = self.nodes.read().unwrap();
680 (nodes.len() as u64).write(writer)?;
681 for (ref node_id, ref node_info) in nodes.iter() {
682 node_id.write(writer)?;
683 node_info.write(writer)?;
686 write_tlv_fields!(writer, {});
691 impl Readable for NetworkGraph {
692 fn read<R: io::Read>(reader: &mut R) -> Result<NetworkGraph, DecodeError> {
693 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
695 let genesis_hash: BlockHash = Readable::read(reader)?;
696 let channels_count: u64 = Readable::read(reader)?;
697 let mut channels = BTreeMap::new();
698 for _ in 0..channels_count {
699 let chan_id: u64 = Readable::read(reader)?;
700 let chan_info = Readable::read(reader)?;
701 channels.insert(chan_id, chan_info);
703 let nodes_count: u64 = Readable::read(reader)?;
704 let mut nodes = BTreeMap::new();
705 for _ in 0..nodes_count {
706 let node_id = Readable::read(reader)?;
707 let node_info = Readable::read(reader)?;
708 nodes.insert(node_id, node_info);
710 read_tlv_fields!(reader, {});
714 channels: RwLock::new(channels),
715 nodes: RwLock::new(nodes),
720 impl fmt::Display for NetworkGraph {
721 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
722 writeln!(f, "Network map\n[Channels]")?;
723 for (key, val) in self.channels.read().unwrap().iter() {
724 writeln!(f, " {}: {}", key, val)?;
726 writeln!(f, "[Nodes]")?;
727 for (key, val) in self.nodes.read().unwrap().iter() {
728 writeln!(f, " {}: {}", log_pubkey!(key), val)?;
734 impl PartialEq for NetworkGraph {
735 fn eq(&self, other: &Self) -> bool {
736 self.genesis_hash == other.genesis_hash &&
737 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
738 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
743 /// Creates a new, empty, network graph.
744 pub fn new(genesis_hash: BlockHash) -> NetworkGraph {
747 channels: RwLock::new(BTreeMap::new()),
748 nodes: RwLock::new(BTreeMap::new()),
752 /// Returns a read-only view of the network graph.
753 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
754 let channels = self.channels.read().unwrap();
755 let nodes = self.nodes.read().unwrap();
756 ReadOnlyNetworkGraph {
762 /// For an already known node (from channel announcements), update its stored properties from a
763 /// given node announcement.
765 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
766 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
767 /// routing messages from a source using a protocol other than the lightning P2P protocol.
768 pub fn update_node_from_announcement<T: secp256k1::Verification>(&self, msg: &msgs::NodeAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
769 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
770 secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id);
771 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
774 /// For an already known node (from channel announcements), update its stored properties from a
775 /// given node announcement without verifying the associated signatures. Because we aren't
776 /// given the associated signatures here we cannot relay the node announcement to any of our
778 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
779 self.update_node_from_announcement_intern(msg, None)
782 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
783 match self.nodes.write().unwrap().get_mut(&msg.node_id) {
784 None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
786 if let Some(node_info) = node.announcement_info.as_ref() {
787 if node_info.last_update >= msg.timestamp {
788 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Trace)});
793 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
794 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
795 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
796 node.announcement_info = Some(NodeAnnouncementInfo {
797 features: msg.features.clone(),
798 last_update: msg.timestamp,
801 addresses: msg.addresses.clone(),
802 announcement_message: if should_relay { full_msg.cloned() } else { None },
810 /// Store or update channel info from a channel announcement.
812 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
813 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
814 /// routing messages from a source using a protocol other than the lightning P2P protocol.
816 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
817 /// the corresponding UTXO exists on chain and is correctly-formatted.
818 pub fn update_channel_from_announcement<T: secp256k1::Verification, C: Deref>(
819 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>, secp_ctx: &Secp256k1<T>
820 ) -> Result<(), LightningError>
822 C::Target: chain::Access,
824 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
825 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1);
826 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2);
827 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1);
828 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2);
829 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
832 /// Store or update channel info from a channel announcement without verifying the associated
833 /// signatures. Because we aren't given the associated signatures here we cannot relay the
834 /// channel announcement to any of our peers.
836 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
837 /// the corresponding UTXO exists on chain and is correctly-formatted.
838 pub fn update_channel_from_unsigned_announcement<C: Deref>(
839 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
840 ) -> Result<(), LightningError>
842 C::Target: chain::Access,
844 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
847 fn update_channel_from_unsigned_announcement_intern<C: Deref>(
848 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
849 ) -> Result<(), LightningError>
851 C::Target: chain::Access,
853 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
854 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
857 let utxo_value = match &chain_access {
859 // Tentatively accept, potentially exposing us to DoS attacks
862 &Some(ref chain_access) => {
863 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
864 Ok(TxOut { value, script_pubkey }) => {
865 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
866 .push_slice(&msg.bitcoin_key_1.serialize())
867 .push_slice(&msg.bitcoin_key_2.serialize())
868 .push_opcode(opcodes::all::OP_PUSHNUM_2)
869 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
870 if script_pubkey != expected_script {
871 return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
873 //TODO: Check if value is worth storing, use it to inform routing, and compare it
874 //to the new HTLC max field in channel_update
877 Err(chain::AccessError::UnknownChain) => {
878 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
880 Err(chain::AccessError::UnknownTx) => {
881 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
887 let chan_info = ChannelInfo {
888 features: msg.features.clone(),
889 node_one: msg.node_id_1.clone(),
891 node_two: msg.node_id_2.clone(),
893 capacity_sats: utxo_value,
894 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
895 { full_msg.cloned() } else { None },
898 let mut channels = self.channels.write().unwrap();
899 let mut nodes = self.nodes.write().unwrap();
900 match channels.entry(msg.short_channel_id) {
901 BtreeEntry::Occupied(mut entry) => {
902 //TODO: because asking the blockchain if short_channel_id is valid is only optional
903 //in the blockchain API, we need to handle it smartly here, though it's unclear
905 if utxo_value.is_some() {
906 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
907 // only sometimes returns results. In any case remove the previous entry. Note
908 // that the spec expects us to "blacklist" the node_ids involved, but we can't
910 // a) we don't *require* a UTXO provider that always returns results.
911 // b) we don't track UTXOs of channels we know about and remove them if they
913 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
914 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), msg.short_channel_id);
915 *entry.get_mut() = chan_info;
917 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Trace)})
920 BtreeEntry::Vacant(entry) => {
921 entry.insert(chan_info);
925 macro_rules! add_channel_to_node {
926 ( $node_id: expr ) => {
927 match nodes.entry($node_id) {
928 BtreeEntry::Occupied(node_entry) => {
929 node_entry.into_mut().channels.push(msg.short_channel_id);
931 BtreeEntry::Vacant(node_entry) => {
932 node_entry.insert(NodeInfo {
933 channels: vec!(msg.short_channel_id),
934 lowest_inbound_channel_fees: None,
935 announcement_info: None,
942 add_channel_to_node!(msg.node_id_1);
943 add_channel_to_node!(msg.node_id_2);
948 /// Close a channel if a corresponding HTLC fail was sent.
949 /// If permanent, removes a channel from the local storage.
950 /// May cause the removal of nodes too, if this was their last channel.
951 /// If not permanent, makes channels unavailable for routing.
952 pub fn close_channel_from_update(&self, short_channel_id: u64, is_permanent: bool) {
953 let mut channels = self.channels.write().unwrap();
955 if let Some(chan) = channels.remove(&short_channel_id) {
956 let mut nodes = self.nodes.write().unwrap();
957 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
960 if let Some(chan) = channels.get_mut(&short_channel_id) {
961 if let Some(one_to_two) = chan.one_to_two.as_mut() {
962 one_to_two.enabled = false;
964 if let Some(two_to_one) = chan.two_to_one.as_mut() {
965 two_to_one.enabled = false;
971 /// Marks a node in the graph as failed.
972 pub fn fail_node(&self, _node_id: &PublicKey, is_permanent: bool) {
974 // TODO: Wholly remove the node
976 // TODO: downgrade the node
980 /// For an already known (from announcement) channel, update info about one of the directions
983 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
984 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
985 /// routing messages from a source using a protocol other than the lightning P2P protocol.
986 pub fn update_channel<T: secp256k1::Verification>(&self, msg: &msgs::ChannelUpdate, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
987 self.update_channel_intern(&msg.contents, Some(&msg), Some((&msg.signature, secp_ctx)))
990 /// For an already known (from announcement) channel, update info about one of the directions
991 /// of the channel without verifying the associated signatures. Because we aren't given the
992 /// associated signatures here we cannot relay the channel update to any of our peers.
993 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
994 self.update_channel_intern(msg, None, None::<(&secp256k1::Signature, &Secp256k1<secp256k1::VerifyOnly>)>)
997 fn update_channel_intern<T: secp256k1::Verification>(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig_info: Option<(&secp256k1::Signature, &Secp256k1<T>)>) -> Result<(), LightningError> {
999 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1000 let chan_was_enabled;
1002 let mut channels = self.channels.write().unwrap();
1003 match channels.get_mut(&msg.short_channel_id) {
1004 None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1006 if let OptionalField::Present(htlc_maximum_msat) = msg.htlc_maximum_msat {
1007 if htlc_maximum_msat > MAX_VALUE_MSAT {
1008 return Err(LightningError{err: "htlc_maximum_msat is larger than maximum possible msats".to_owned(), action: ErrorAction::IgnoreError});
1011 if let Some(capacity_sats) = channel.capacity_sats {
1012 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1013 // Don't query UTXO set here to reduce DoS risks.
1014 if capacity_sats > MAX_VALUE_MSAT / 1000 || htlc_maximum_msat > capacity_sats * 1000 {
1015 return Err(LightningError{err: "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(), action: ErrorAction::IgnoreError});
1019 macro_rules! maybe_update_channel_info {
1020 ( $target: expr, $src_node: expr) => {
1021 if let Some(existing_chan_info) = $target.as_ref() {
1022 if existing_chan_info.last_update >= msg.timestamp {
1023 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Trace)});
1025 chan_was_enabled = existing_chan_info.enabled;
1027 chan_was_enabled = false;
1030 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1031 { full_msg.cloned() } else { None };
1033 let updated_channel_dir_info = DirectionalChannelInfo {
1034 enabled: chan_enabled,
1035 last_update: msg.timestamp,
1036 cltv_expiry_delta: msg.cltv_expiry_delta,
1037 htlc_minimum_msat: msg.htlc_minimum_msat,
1038 htlc_maximum_msat: if let OptionalField::Present(max_value) = msg.htlc_maximum_msat { Some(max_value) } else { None },
1040 base_msat: msg.fee_base_msat,
1041 proportional_millionths: msg.fee_proportional_millionths,
1045 $target = Some(updated_channel_dir_info);
1049 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1050 if msg.flags & 1 == 1 {
1051 dest_node_id = channel.node_one.clone();
1052 if let Some((sig, ctx)) = sig_info {
1053 secp_verify_sig!(ctx, &msg_hash, &sig, &channel.node_two);
1055 maybe_update_channel_info!(channel.two_to_one, channel.node_two);
1057 dest_node_id = channel.node_two.clone();
1058 if let Some((sig, ctx)) = sig_info {
1059 secp_verify_sig!(ctx, &msg_hash, &sig, &channel.node_one);
1061 maybe_update_channel_info!(channel.one_to_two, channel.node_one);
1066 let mut nodes = self.nodes.write().unwrap();
1068 let node = nodes.get_mut(&dest_node_id).unwrap();
1069 let mut base_msat = msg.fee_base_msat;
1070 let mut proportional_millionths = msg.fee_proportional_millionths;
1071 if let Some(fees) = node.lowest_inbound_channel_fees {
1072 base_msat = cmp::min(base_msat, fees.base_msat);
1073 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1075 node.lowest_inbound_channel_fees = Some(RoutingFees {
1077 proportional_millionths
1079 } else if chan_was_enabled {
1080 let node = nodes.get_mut(&dest_node_id).unwrap();
1081 let mut lowest_inbound_channel_fees = None;
1083 for chan_id in node.channels.iter() {
1084 let chan = channels.get(chan_id).unwrap();
1086 if chan.node_one == dest_node_id {
1087 chan_info_opt = chan.two_to_one.as_ref();
1089 chan_info_opt = chan.one_to_two.as_ref();
1091 if let Some(chan_info) = chan_info_opt {
1092 if chan_info.enabled {
1093 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1094 base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1095 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1096 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1101 node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1107 fn remove_channel_in_nodes(nodes: &mut BTreeMap<PublicKey, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1108 macro_rules! remove_from_node {
1109 ($node_id: expr) => {
1110 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1111 entry.get_mut().channels.retain(|chan_id| {
1112 short_channel_id != *chan_id
1114 if entry.get().channels.is_empty() {
1115 entry.remove_entry();
1118 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1123 remove_from_node!(chan.node_one);
1124 remove_from_node!(chan.node_two);
1128 impl ReadOnlyNetworkGraph<'_> {
1129 /// Returns all known valid channels' short ids along with announced channel info.
1131 /// (C-not exported) because we have no mapping for `BTreeMap`s
1132 pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1136 /// Returns all known nodes' public keys along with announced node info.
1138 /// (C-not exported) because we have no mapping for `BTreeMap`s
1139 pub fn nodes(&self) -> &BTreeMap<PublicKey, NodeInfo> {
1143 /// Get network addresses by node id.
1144 /// Returns None if the requested node is completely unknown,
1145 /// or if node announcement for the node was never received.
1147 /// (C-not exported) as there is no practical way to track lifetimes of returned values.
1148 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<&Vec<NetAddress>> {
1149 if let Some(node) = self.nodes.get(pubkey) {
1150 if let Some(node_info) = node.announcement_info.as_ref() {
1151 return Some(&node_info.addresses)
1161 use ln::PaymentHash;
1162 use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1163 use routing::network_graph::{NetGraphMsgHandler, NetworkGraph, NetworkUpdate, MAX_EXCESS_BYTES_FOR_RELAY};
1164 use ln::msgs::{Init, OptionalField, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1165 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1166 ReplyChannelRange, ReplyShortChannelIdsEnd, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1167 use util::test_utils;
1168 use util::logger::Logger;
1169 use util::ser::{Readable, Writeable};
1170 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1171 use util::scid_utils::scid_from_parts;
1173 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1174 use bitcoin::hashes::Hash;
1175 use bitcoin::network::constants::Network;
1176 use bitcoin::blockdata::constants::genesis_block;
1177 use bitcoin::blockdata::script::Builder;
1178 use bitcoin::blockdata::transaction::TxOut;
1179 use bitcoin::blockdata::opcodes;
1183 use bitcoin::secp256k1::key::{PublicKey, SecretKey};
1184 use bitcoin::secp256k1::{All, Secp256k1};
1190 fn create_net_graph_msg_handler() -> (Secp256k1<All>, NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>) {
1191 let secp_ctx = Secp256k1::new();
1192 let logger = Arc::new(test_utils::TestLogger::new());
1193 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1194 let network_graph = NetworkGraph::new(genesis_hash);
1195 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger));
1196 (secp_ctx, net_graph_msg_handler)
1200 fn request_full_sync_finite_times() {
1201 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1202 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1204 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1205 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1206 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1207 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1208 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1209 assert!(!net_graph_msg_handler.should_request_full_sync(&node_id));
1213 fn handling_node_announcements() {
1214 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1216 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1217 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1218 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1219 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1220 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1221 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1222 let zero_hash = Sha256dHash::hash(&[0; 32]);
1223 let first_announcement_time = 500;
1225 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1226 features: NodeFeatures::known(),
1227 timestamp: first_announcement_time,
1231 addresses: Vec::new(),
1232 excess_address_data: Vec::new(),
1233 excess_data: Vec::new(),
1235 let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1236 let valid_announcement = NodeAnnouncement {
1237 signature: secp_ctx.sign(&msghash, node_1_privkey),
1238 contents: unsigned_announcement.clone()
1241 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1243 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1247 // Announce a channel to add a corresponding node.
1248 let unsigned_announcement = UnsignedChannelAnnouncement {
1249 features: ChannelFeatures::known(),
1250 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1251 short_channel_id: 0,
1254 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1255 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1256 excess_data: Vec::new(),
1259 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1260 let valid_announcement = ChannelAnnouncement {
1261 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1262 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1263 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1264 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1265 contents: unsigned_announcement.clone(),
1267 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1268 Ok(res) => assert!(res),
1273 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1274 Ok(res) => assert!(res),
1278 let fake_msghash = hash_to_message!(&zero_hash);
1279 match net_graph_msg_handler.handle_node_announcement(
1281 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1282 contents: unsigned_announcement.clone()
1285 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1288 unsigned_announcement.timestamp += 1000;
1289 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1290 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1291 let announcement_with_data = NodeAnnouncement {
1292 signature: secp_ctx.sign(&msghash, node_1_privkey),
1293 contents: unsigned_announcement.clone()
1295 // Return false because contains excess data.
1296 match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) {
1297 Ok(res) => assert!(!res),
1300 unsigned_announcement.excess_data = Vec::new();
1302 // Even though previous announcement was not relayed further, we still accepted it,
1303 // so we now won't accept announcements before the previous one.
1304 unsigned_announcement.timestamp -= 10;
1305 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1306 let outdated_announcement = NodeAnnouncement {
1307 signature: secp_ctx.sign(&msghash, node_1_privkey),
1308 contents: unsigned_announcement.clone()
1310 match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) {
1312 Err(e) => assert_eq!(e.err, "Update older than last processed update")
1317 fn handling_channel_announcements() {
1318 let secp_ctx = Secp256k1::new();
1319 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1321 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1322 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1323 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1324 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1325 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1326 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1328 let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1329 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1330 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1331 .push_opcode(opcodes::all::OP_PUSHNUM_2)
1332 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1335 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1336 features: ChannelFeatures::known(),
1337 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1338 short_channel_id: 0,
1341 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1342 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1343 excess_data: Vec::new(),
1346 let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1347 let valid_announcement = ChannelAnnouncement {
1348 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1349 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1350 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1351 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1352 contents: unsigned_announcement.clone(),
1355 // Test if the UTXO lookups were not supported
1356 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1357 let mut net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger));
1358 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1359 Ok(res) => assert!(res),
1364 let network = &net_graph_msg_handler.network_graph;
1365 match network.read_only().channels().get(&unsigned_announcement.short_channel_id) {
1371 // If we receive announcement for the same channel (with UTXO lookups disabled),
1372 // drop new one on the floor, since we can't see any changes.
1373 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1375 Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
1378 // Test if an associated transaction were not on-chain (or not confirmed).
1379 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1380 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1381 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1382 net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1383 unsigned_announcement.short_channel_id += 1;
1385 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1386 let valid_announcement = ChannelAnnouncement {
1387 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1388 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1389 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1390 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1391 contents: unsigned_announcement.clone(),
1394 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1396 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1399 // Now test if the transaction is found in the UTXO set and the script is correct.
1400 unsigned_announcement.short_channel_id += 1;
1401 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
1403 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1404 let valid_announcement = ChannelAnnouncement {
1405 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1406 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1407 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1408 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1409 contents: unsigned_announcement.clone(),
1411 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1412 Ok(res) => assert!(res),
1417 let network = &net_graph_msg_handler.network_graph;
1418 match network.read_only().channels().get(&unsigned_announcement.short_channel_id) {
1424 // If we receive announcement for the same channel (but TX is not confirmed),
1425 // drop new one on the floor, since we can't see any changes.
1426 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1427 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1429 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1432 // But if it is confirmed, replace the channel
1433 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
1434 unsigned_announcement.features = ChannelFeatures::empty();
1435 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1436 let valid_announcement = ChannelAnnouncement {
1437 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1438 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1439 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1440 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1441 contents: unsigned_announcement.clone(),
1443 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1444 Ok(res) => assert!(res),
1448 let network = &net_graph_msg_handler.network_graph;
1449 match network.read_only().channels().get(&unsigned_announcement.short_channel_id) {
1450 Some(channel_entry) => {
1451 assert_eq!(channel_entry.features, ChannelFeatures::empty());
1457 // Don't relay valid channels with excess data
1458 unsigned_announcement.short_channel_id += 1;
1459 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1460 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1461 let valid_announcement = ChannelAnnouncement {
1462 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1463 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1464 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1465 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1466 contents: unsigned_announcement.clone(),
1468 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1469 Ok(res) => assert!(!res),
1473 unsigned_announcement.excess_data = Vec::new();
1474 let invalid_sig_announcement = ChannelAnnouncement {
1475 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1476 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1477 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1478 bitcoin_signature_2: secp_ctx.sign(&msghash, node_1_btckey),
1479 contents: unsigned_announcement.clone(),
1481 match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) {
1483 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1486 unsigned_announcement.node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1487 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1488 let channel_to_itself_announcement = ChannelAnnouncement {
1489 node_signature_1: secp_ctx.sign(&msghash, node_2_privkey),
1490 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1491 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1492 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1493 contents: unsigned_announcement.clone(),
1495 match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) {
1497 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
1502 fn handling_channel_update() {
1503 let secp_ctx = Secp256k1::new();
1504 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1505 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1506 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1507 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1509 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1510 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1511 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1512 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1513 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1514 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1516 let zero_hash = Sha256dHash::hash(&[0; 32]);
1517 let short_channel_id = 0;
1518 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1519 let amount_sats = 1000_000;
1522 // Announce a channel we will update
1523 let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1524 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1525 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1526 .push_opcode(opcodes::all::OP_PUSHNUM_2)
1527 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1528 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
1529 let unsigned_announcement = UnsignedChannelAnnouncement {
1530 features: ChannelFeatures::empty(),
1535 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1536 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1537 excess_data: Vec::new(),
1540 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1541 let valid_channel_announcement = ChannelAnnouncement {
1542 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1543 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1544 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1545 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1546 contents: unsigned_announcement.clone(),
1548 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1555 let mut unsigned_channel_update = UnsignedChannelUpdate {
1560 cltv_expiry_delta: 144,
1561 htlc_minimum_msat: 1000000,
1562 htlc_maximum_msat: OptionalField::Absent,
1563 fee_base_msat: 10000,
1564 fee_proportional_millionths: 20,
1565 excess_data: Vec::new()
1567 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1568 let valid_channel_update = ChannelUpdate {
1569 signature: secp_ctx.sign(&msghash, node_1_privkey),
1570 contents: unsigned_channel_update.clone()
1573 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1574 Ok(res) => assert!(res),
1579 let network = &net_graph_msg_handler.network_graph;
1580 match network.read_only().channels().get(&short_channel_id) {
1582 Some(channel_info) => {
1583 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
1584 assert!(channel_info.two_to_one.is_none());
1589 unsigned_channel_update.timestamp += 100;
1590 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1591 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1592 let valid_channel_update = ChannelUpdate {
1593 signature: secp_ctx.sign(&msghash, node_1_privkey),
1594 contents: unsigned_channel_update.clone()
1596 // Return false because contains excess data
1597 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1598 Ok(res) => assert!(!res),
1601 unsigned_channel_update.timestamp += 10;
1603 unsigned_channel_update.short_channel_id += 1;
1604 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1605 let valid_channel_update = ChannelUpdate {
1606 signature: secp_ctx.sign(&msghash, node_1_privkey),
1607 contents: unsigned_channel_update.clone()
1610 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1612 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
1614 unsigned_channel_update.short_channel_id = short_channel_id;
1616 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(MAX_VALUE_MSAT + 1);
1617 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1618 let valid_channel_update = ChannelUpdate {
1619 signature: secp_ctx.sign(&msghash, node_1_privkey),
1620 contents: unsigned_channel_update.clone()
1623 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1625 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
1627 unsigned_channel_update.htlc_maximum_msat = OptionalField::Absent;
1629 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(amount_sats * 1000 + 1);
1630 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1631 let valid_channel_update = ChannelUpdate {
1632 signature: secp_ctx.sign(&msghash, node_1_privkey),
1633 contents: unsigned_channel_update.clone()
1636 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1638 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
1640 unsigned_channel_update.htlc_maximum_msat = OptionalField::Absent;
1642 // Even though previous update was not relayed further, we still accepted it,
1643 // so we now won't accept update before the previous one.
1644 unsigned_channel_update.timestamp -= 10;
1645 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1646 let valid_channel_update = ChannelUpdate {
1647 signature: secp_ctx.sign(&msghash, node_1_privkey),
1648 contents: unsigned_channel_update.clone()
1651 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1653 Err(e) => assert_eq!(e.err, "Update older than last processed update")
1655 unsigned_channel_update.timestamp += 500;
1657 let fake_msghash = hash_to_message!(&zero_hash);
1658 let invalid_sig_channel_update = ChannelUpdate {
1659 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1660 contents: unsigned_channel_update.clone()
1663 match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) {
1665 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1671 fn handling_network_update() {
1672 let logger = test_utils::TestLogger::new();
1673 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1674 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1675 let network_graph = NetworkGraph::new(genesis_hash);
1676 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, Some(chain_source.clone()), &logger);
1677 let secp_ctx = Secp256k1::new();
1679 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1680 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1681 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1682 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1683 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1684 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1686 let short_channel_id = 0;
1687 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1688 let network_graph = &net_graph_msg_handler.network_graph;
1691 // There is no nodes in the table at the beginning.
1692 assert_eq!(network_graph.read_only().nodes().len(), 0);
1696 // Announce a channel we will update
1697 let unsigned_announcement = UnsignedChannelAnnouncement {
1698 features: ChannelFeatures::empty(),
1703 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1704 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1705 excess_data: Vec::new(),
1708 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1709 let valid_channel_announcement = ChannelAnnouncement {
1710 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1711 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1712 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1713 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1714 contents: unsigned_announcement.clone(),
1716 let chain_source: Option<&test_utils::TestChainSource> = None;
1717 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok());
1718 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
1720 let unsigned_channel_update = UnsignedChannelUpdate {
1725 cltv_expiry_delta: 144,
1726 htlc_minimum_msat: 1000000,
1727 htlc_maximum_msat: OptionalField::Absent,
1728 fee_base_msat: 10000,
1729 fee_proportional_millionths: 20,
1730 excess_data: Vec::new()
1732 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1733 let valid_channel_update = ChannelUpdate {
1734 signature: secp_ctx.sign(&msghash, node_1_privkey),
1735 contents: unsigned_channel_update.clone()
1738 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
1740 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1741 payment_hash: PaymentHash([0; 32]),
1742 rejected_by_dest: false,
1743 all_paths_failed: true,
1745 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
1746 msg: valid_channel_update,
1748 short_channel_id: None,
1753 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
1756 // Non-permanent closing just disables a channel
1758 match network_graph.read_only().channels().get(&short_channel_id) {
1760 Some(channel_info) => {
1761 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
1765 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1766 payment_hash: PaymentHash([0; 32]),
1767 rejected_by_dest: false,
1768 all_paths_failed: true,
1770 network_update: Some(NetworkUpdate::ChannelClosed {
1772 is_permanent: false,
1774 short_channel_id: None,
1779 match network_graph.read_only().channels().get(&short_channel_id) {
1781 Some(channel_info) => {
1782 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
1787 // Permanent closing deletes a channel
1789 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1790 payment_hash: PaymentHash([0; 32]),
1791 rejected_by_dest: false,
1792 all_paths_failed: true,
1794 network_update: Some(NetworkUpdate::ChannelClosed {
1798 short_channel_id: None,
1803 assert_eq!(network_graph.read_only().channels().len(), 0);
1804 // Nodes are also deleted because there are no associated channels anymore
1805 assert_eq!(network_graph.read_only().nodes().len(), 0);
1807 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
1811 fn getting_next_channel_announcements() {
1812 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1813 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1814 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1815 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1816 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1817 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1818 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1820 let short_channel_id = 1;
1821 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1823 // Channels were not announced yet.
1824 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1);
1825 assert_eq!(channels_with_announcements.len(), 0);
1828 // Announce a channel we will update
1829 let unsigned_announcement = UnsignedChannelAnnouncement {
1830 features: ChannelFeatures::empty(),
1835 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1836 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1837 excess_data: Vec::new(),
1840 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1841 let valid_channel_announcement = ChannelAnnouncement {
1842 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1843 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1844 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1845 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1846 contents: unsigned_announcement.clone(),
1848 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1854 // Contains initial channel announcement now.
1855 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1856 assert_eq!(channels_with_announcements.len(), 1);
1857 if let Some(channel_announcements) = channels_with_announcements.first() {
1858 let &(_, ref update_1, ref update_2) = channel_announcements;
1859 assert_eq!(update_1, &None);
1860 assert_eq!(update_2, &None);
1867 // Valid channel update
1868 let unsigned_channel_update = UnsignedChannelUpdate {
1873 cltv_expiry_delta: 144,
1874 htlc_minimum_msat: 1000000,
1875 htlc_maximum_msat: OptionalField::Absent,
1876 fee_base_msat: 10000,
1877 fee_proportional_millionths: 20,
1878 excess_data: Vec::new()
1880 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1881 let valid_channel_update = ChannelUpdate {
1882 signature: secp_ctx.sign(&msghash, node_1_privkey),
1883 contents: unsigned_channel_update.clone()
1885 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1891 // Now contains an initial announcement and an update.
1892 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1893 assert_eq!(channels_with_announcements.len(), 1);
1894 if let Some(channel_announcements) = channels_with_announcements.first() {
1895 let &(_, ref update_1, ref update_2) = channel_announcements;
1896 assert_ne!(update_1, &None);
1897 assert_eq!(update_2, &None);
1904 // Channel update with excess data.
1905 let unsigned_channel_update = UnsignedChannelUpdate {
1910 cltv_expiry_delta: 144,
1911 htlc_minimum_msat: 1000000,
1912 htlc_maximum_msat: OptionalField::Absent,
1913 fee_base_msat: 10000,
1914 fee_proportional_millionths: 20,
1915 excess_data: [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec()
1917 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1918 let valid_channel_update = ChannelUpdate {
1919 signature: secp_ctx.sign(&msghash, node_1_privkey),
1920 contents: unsigned_channel_update.clone()
1922 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1928 // Test that announcements with excess data won't be returned
1929 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1930 assert_eq!(channels_with_announcements.len(), 1);
1931 if let Some(channel_announcements) = channels_with_announcements.first() {
1932 let &(_, ref update_1, ref update_2) = channel_announcements;
1933 assert_eq!(update_1, &None);
1934 assert_eq!(update_2, &None);
1939 // Further starting point have no channels after it
1940 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1);
1941 assert_eq!(channels_with_announcements.len(), 0);
1945 fn getting_next_node_announcements() {
1946 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1947 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1948 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1949 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1950 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1951 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1952 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1954 let short_channel_id = 1;
1955 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1958 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10);
1959 assert_eq!(next_announcements.len(), 0);
1962 // Announce a channel to add 2 nodes
1963 let unsigned_announcement = UnsignedChannelAnnouncement {
1964 features: ChannelFeatures::empty(),
1969 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1970 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1971 excess_data: Vec::new(),
1974 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1975 let valid_channel_announcement = ChannelAnnouncement {
1976 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1977 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1978 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1979 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1980 contents: unsigned_announcement.clone(),
1982 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1989 // Nodes were never announced
1990 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
1991 assert_eq!(next_announcements.len(), 0);
1994 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1995 features: NodeFeatures::known(),
2000 addresses: Vec::new(),
2001 excess_address_data: Vec::new(),
2002 excess_data: Vec::new(),
2004 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2005 let valid_announcement = NodeAnnouncement {
2006 signature: secp_ctx.sign(&msghash, node_1_privkey),
2007 contents: unsigned_announcement.clone()
2009 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2014 unsigned_announcement.node_id = node_id_2;
2015 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2016 let valid_announcement = NodeAnnouncement {
2017 signature: secp_ctx.sign(&msghash, node_2_privkey),
2018 contents: unsigned_announcement.clone()
2021 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2027 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
2028 assert_eq!(next_announcements.len(), 2);
2030 // Skip the first node.
2031 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2032 assert_eq!(next_announcements.len(), 1);
2035 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2036 let unsigned_announcement = UnsignedNodeAnnouncement {
2037 features: NodeFeatures::known(),
2042 addresses: Vec::new(),
2043 excess_address_data: Vec::new(),
2044 excess_data: [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec(),
2046 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2047 let valid_announcement = NodeAnnouncement {
2048 signature: secp_ctx.sign(&msghash, node_2_privkey),
2049 contents: unsigned_announcement.clone()
2051 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2052 Ok(res) => assert!(!res),
2057 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2058 assert_eq!(next_announcements.len(), 0);
2062 fn network_graph_serialization() {
2063 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2065 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2066 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2067 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2068 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2070 // Announce a channel to add a corresponding node.
2071 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2072 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2073 let unsigned_announcement = UnsignedChannelAnnouncement {
2074 features: ChannelFeatures::known(),
2075 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2076 short_channel_id: 0,
2079 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
2080 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
2081 excess_data: Vec::new(),
2084 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2085 let valid_announcement = ChannelAnnouncement {
2086 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
2087 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
2088 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
2089 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
2090 contents: unsigned_announcement.clone(),
2092 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2093 Ok(res) => assert!(res),
2098 let node_id = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2099 let unsigned_announcement = UnsignedNodeAnnouncement {
2100 features: NodeFeatures::known(),
2105 addresses: Vec::new(),
2106 excess_address_data: Vec::new(),
2107 excess_data: Vec::new(),
2109 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2110 let valid_announcement = NodeAnnouncement {
2111 signature: secp_ctx.sign(&msghash, node_1_privkey),
2112 contents: unsigned_announcement.clone()
2115 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2120 let network = &net_graph_msg_handler.network_graph;
2121 let mut w = test_utils::TestVecWriter(Vec::new());
2122 assert!(!network.read_only().nodes().is_empty());
2123 assert!(!network.read_only().channels().is_empty());
2124 network.write(&mut w).unwrap();
2125 assert!(<NetworkGraph>::read(&mut io::Cursor::new(&w.0)).unwrap() == *network);
2129 fn calling_sync_routing_table() {
2130 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2131 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2132 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2134 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2135 let first_blocknum = 0;
2136 let number_of_blocks = 0xffff_ffff;
2138 // It should ignore if gossip_queries feature is not enabled
2140 let init_msg = Init { features: InitFeatures::known().clear_gossip_queries() };
2141 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2142 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2143 assert_eq!(events.len(), 0);
2146 // It should send a query_channel_message with the correct information
2148 let init_msg = Init { features: InitFeatures::known() };
2149 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2150 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2151 assert_eq!(events.len(), 1);
2153 MessageSendEvent::SendChannelRangeQuery{ node_id, msg } => {
2154 assert_eq!(node_id, &node_id_1);
2155 assert_eq!(msg.chain_hash, chain_hash);
2156 assert_eq!(msg.first_blocknum, first_blocknum);
2157 assert_eq!(msg.number_of_blocks, number_of_blocks);
2159 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2163 // It should not enqueue a query when should_request_full_sync return false.
2164 // The initial implementation allows syncing with the first 5 peers after
2165 // which should_request_full_sync will return false
2167 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2168 let init_msg = Init { features: InitFeatures::known() };
2170 let node_privkey = &SecretKey::from_slice(&[n; 32]).unwrap();
2171 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2172 net_graph_msg_handler.sync_routing_table(&node_id, &init_msg);
2173 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2175 assert_eq!(events.len(), 1);
2177 assert_eq!(events.len(), 0);
2185 fn handling_reply_channel_range() {
2186 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2187 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2188 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2190 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2192 // Test receipt of a single reply that should enqueue an SCID query
2193 // matching the SCIDs in the reply
2195 let result = net_graph_msg_handler.handle_reply_channel_range(&node_id_1, ReplyChannelRange {
2197 sync_complete: true,
2199 number_of_blocks: 2000,
2200 short_channel_ids: vec![
2201 0x0003e0_000000_0000, // 992x0x0
2202 0x0003e8_000000_0000, // 1000x0x0
2203 0x0003e9_000000_0000, // 1001x0x0
2204 0x0003f0_000000_0000, // 1008x0x0
2205 0x00044c_000000_0000, // 1100x0x0
2206 0x0006e0_000000_0000, // 1760x0x0
2209 assert!(result.is_ok());
2211 // We expect to emit a query_short_channel_ids message with the received scids
2212 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2213 assert_eq!(events.len(), 1);
2215 MessageSendEvent::SendShortIdsQuery { node_id, msg } => {
2216 assert_eq!(node_id, &node_id_1);
2217 assert_eq!(msg.chain_hash, chain_hash);
2218 assert_eq!(msg.short_channel_ids, vec![
2219 0x0003e0_000000_0000, // 992x0x0
2220 0x0003e8_000000_0000, // 1000x0x0
2221 0x0003e9_000000_0000, // 1001x0x0
2222 0x0003f0_000000_0000, // 1008x0x0
2223 0x00044c_000000_0000, // 1100x0x0
2224 0x0006e0_000000_0000, // 1760x0x0
2227 _ => panic!("expected MessageSendEvent::SendShortIdsQuery"),
2233 fn handling_reply_short_channel_ids() {
2234 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2235 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2236 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2238 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2240 // Test receipt of a successful reply
2242 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2244 full_information: true,
2246 assert!(result.is_ok());
2249 // Test receipt of a reply that indicates the peer does not maintain up-to-date information
2250 // for the chain_hash requested in the query.
2252 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2254 full_information: false,
2256 assert!(result.is_err());
2257 assert_eq!(result.err().unwrap().err, "Received reply_short_channel_ids_end with no information");
2262 fn handling_query_channel_range() {
2263 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2265 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2266 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2267 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2268 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2269 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2270 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2271 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2272 let bitcoin_key_1 = PublicKey::from_secret_key(&secp_ctx, node_1_btckey);
2273 let bitcoin_key_2 = PublicKey::from_secret_key(&secp_ctx, node_2_btckey);
2275 let mut scids: Vec<u64> = vec![
2276 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2277 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2280 // used for testing multipart reply across blocks
2281 for block in 100000..=108001 {
2282 scids.push(scid_from_parts(block, 0, 0).unwrap());
2285 // used for testing resumption on same block
2286 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2289 let unsigned_announcement = UnsignedChannelAnnouncement {
2290 features: ChannelFeatures::known(),
2291 chain_hash: chain_hash.clone(),
2292 short_channel_id: scid,
2297 excess_data: Vec::new(),
2300 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2301 let valid_announcement = ChannelAnnouncement {
2302 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
2303 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
2304 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
2305 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
2306 contents: unsigned_announcement.clone(),
2308 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2314 // Error when number_of_blocks=0
2315 do_handling_query_channel_range(
2316 &net_graph_msg_handler,
2319 chain_hash: chain_hash.clone(),
2321 number_of_blocks: 0,
2324 vec![ReplyChannelRange {
2325 chain_hash: chain_hash.clone(),
2327 number_of_blocks: 0,
2328 sync_complete: true,
2329 short_channel_ids: vec![]
2333 // Error when wrong chain
2334 do_handling_query_channel_range(
2335 &net_graph_msg_handler,
2338 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2340 number_of_blocks: 0xffff_ffff,
2343 vec![ReplyChannelRange {
2344 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2346 number_of_blocks: 0xffff_ffff,
2347 sync_complete: true,
2348 short_channel_ids: vec![],
2352 // Error when first_blocknum > 0xffffff
2353 do_handling_query_channel_range(
2354 &net_graph_msg_handler,
2357 chain_hash: chain_hash.clone(),
2358 first_blocknum: 0x01000000,
2359 number_of_blocks: 0xffff_ffff,
2362 vec![ReplyChannelRange {
2363 chain_hash: chain_hash.clone(),
2364 first_blocknum: 0x01000000,
2365 number_of_blocks: 0xffff_ffff,
2366 sync_complete: true,
2367 short_channel_ids: vec![]
2371 // Empty reply when max valid SCID block num
2372 do_handling_query_channel_range(
2373 &net_graph_msg_handler,
2376 chain_hash: chain_hash.clone(),
2377 first_blocknum: 0xffffff,
2378 number_of_blocks: 1,
2383 chain_hash: chain_hash.clone(),
2384 first_blocknum: 0xffffff,
2385 number_of_blocks: 1,
2386 sync_complete: true,
2387 short_channel_ids: vec![]
2392 // No results in valid query range
2393 do_handling_query_channel_range(
2394 &net_graph_msg_handler,
2397 chain_hash: chain_hash.clone(),
2398 first_blocknum: 1000,
2399 number_of_blocks: 1000,
2404 chain_hash: chain_hash.clone(),
2405 first_blocknum: 1000,
2406 number_of_blocks: 1000,
2407 sync_complete: true,
2408 short_channel_ids: vec![],
2413 // Overflow first_blocknum + number_of_blocks
2414 do_handling_query_channel_range(
2415 &net_graph_msg_handler,
2418 chain_hash: chain_hash.clone(),
2419 first_blocknum: 0xfe0000,
2420 number_of_blocks: 0xffffffff,
2425 chain_hash: chain_hash.clone(),
2426 first_blocknum: 0xfe0000,
2427 number_of_blocks: 0xffffffff - 0xfe0000,
2428 sync_complete: true,
2429 short_channel_ids: vec![
2430 0xfffffe_ffffff_ffff, // max
2436 // Single block exactly full
2437 do_handling_query_channel_range(
2438 &net_graph_msg_handler,
2441 chain_hash: chain_hash.clone(),
2442 first_blocknum: 100000,
2443 number_of_blocks: 8000,
2448 chain_hash: chain_hash.clone(),
2449 first_blocknum: 100000,
2450 number_of_blocks: 8000,
2451 sync_complete: true,
2452 short_channel_ids: (100000..=107999)
2453 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2459 // Multiple split on new block
2460 do_handling_query_channel_range(
2461 &net_graph_msg_handler,
2464 chain_hash: chain_hash.clone(),
2465 first_blocknum: 100000,
2466 number_of_blocks: 8001,
2471 chain_hash: chain_hash.clone(),
2472 first_blocknum: 100000,
2473 number_of_blocks: 7999,
2474 sync_complete: false,
2475 short_channel_ids: (100000..=107999)
2476 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2480 chain_hash: chain_hash.clone(),
2481 first_blocknum: 107999,
2482 number_of_blocks: 2,
2483 sync_complete: true,
2484 short_channel_ids: vec![
2485 scid_from_parts(108000, 0, 0).unwrap(),
2491 // Multiple split on same block
2492 do_handling_query_channel_range(
2493 &net_graph_msg_handler,
2496 chain_hash: chain_hash.clone(),
2497 first_blocknum: 100002,
2498 number_of_blocks: 8000,
2503 chain_hash: chain_hash.clone(),
2504 first_blocknum: 100002,
2505 number_of_blocks: 7999,
2506 sync_complete: false,
2507 short_channel_ids: (100002..=108001)
2508 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2512 chain_hash: chain_hash.clone(),
2513 first_blocknum: 108001,
2514 number_of_blocks: 1,
2515 sync_complete: true,
2516 short_channel_ids: vec![
2517 scid_from_parts(108001, 1, 0).unwrap(),
2524 fn do_handling_query_channel_range(
2525 net_graph_msg_handler: &NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2526 test_node_id: &PublicKey,
2527 msg: QueryChannelRange,
2529 expected_replies: Vec<ReplyChannelRange>
2531 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2532 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2533 let query_end_blocknum = msg.end_blocknum();
2534 let result = net_graph_msg_handler.handle_query_channel_range(test_node_id, msg);
2537 assert!(result.is_ok());
2539 assert!(result.is_err());
2542 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2543 assert_eq!(events.len(), expected_replies.len());
2545 for i in 0..events.len() {
2546 let expected_reply = &expected_replies[i];
2548 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2549 assert_eq!(node_id, test_node_id);
2550 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2551 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2552 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2553 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2554 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2556 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2557 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2558 assert!(msg.first_blocknum >= max_firstblocknum);
2559 max_firstblocknum = msg.first_blocknum;
2560 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2562 // Check that the last block count is >= the query's end_blocknum
2563 if i == events.len() - 1 {
2564 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2567 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2573 fn handling_query_short_channel_ids() {
2574 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2575 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2576 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2578 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2580 let result = net_graph_msg_handler.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2582 short_channel_ids: vec![0x0003e8_000000_0000],
2584 assert!(result.is_err());
2588 #[cfg(all(test, feature = "unstable"))]
2596 fn read_network_graph(bench: &mut Bencher) {
2597 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2598 let mut v = Vec::new();
2599 d.read_to_end(&mut v).unwrap();
2601 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v)).unwrap();
2606 fn write_network_graph(bench: &mut Bencher) {
2607 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2608 let net_graph = NetworkGraph::read(&mut d).unwrap();
2610 let _ = net_graph.encode();