1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level network map tracking logic lives here.
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::key::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::script::Builder;
20 use bitcoin::blockdata::transaction::TxOut;
21 use bitcoin::blockdata::opcodes;
22 use bitcoin::hash_types::BlockHash;
26 use ln::features::{ChannelFeatures, NodeFeatures};
27 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, OptionalField};
29 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
31 use util::ser::{Writeable, Readable, Writer};
32 use util::logger::{Logger, Level};
33 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
34 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
44 use bitcoin::hashes::hex::ToHex;
46 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
47 /// refuse to relay the message.
48 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
50 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
51 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
52 const MAX_SCIDS_PER_REPLY: usize = 8000;
54 /// Represents the compressed public key of a node
55 #[derive(Clone, Copy)]
56 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
59 /// Create a new NodeId from a public key
60 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
61 NodeId(pubkey.serialize())
64 /// Get the public key slice from this NodeId
65 pub fn as_slice(&self) -> &[u8] {
70 impl fmt::Debug for NodeId {
71 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
72 write!(f, "NodeId({})", log_bytes!(self.0))
76 impl core::hash::Hash for NodeId {
77 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
84 impl PartialEq for NodeId {
85 fn eq(&self, other: &Self) -> bool {
86 self.0[..] == other.0[..]
90 impl cmp::PartialOrd for NodeId {
91 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
97 fn cmp(&self, other: &Self) -> cmp::Ordering {
98 self.0[..].cmp(&other.0[..])
102 impl Writeable for NodeId {
103 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
104 writer.write_all(&self.0)?;
109 impl Readable for NodeId {
110 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
111 let mut buf = [0; PUBLIC_KEY_SIZE];
112 reader.read_exact(&mut buf)?;
117 /// Represents the network as nodes and channels between them
118 pub struct NetworkGraph {
119 genesis_hash: BlockHash,
120 // Lock order: channels -> nodes
121 channels: RwLock<BTreeMap<u64, ChannelInfo>>,
122 nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
125 impl Clone for NetworkGraph {
126 fn clone(&self) -> Self {
127 let channels = self.channels.read().unwrap();
128 let nodes = self.nodes.read().unwrap();
130 genesis_hash: self.genesis_hash.clone(),
131 channels: RwLock::new(channels.clone()),
132 nodes: RwLock::new(nodes.clone()),
137 /// A read-only view of [`NetworkGraph`].
138 pub struct ReadOnlyNetworkGraph<'a> {
139 channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
140 nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
143 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
144 /// return packet by a node along the route. See [BOLT #4] for details.
146 /// [BOLT #4]: https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
147 #[derive(Clone, Debug, PartialEq)]
148 pub enum NetworkUpdate {
149 /// An error indicating a `channel_update` messages should be applied via
150 /// [`NetworkGraph::update_channel`].
151 ChannelUpdateMessage {
152 /// The update to apply via [`NetworkGraph::update_channel`].
155 /// An error indicating only that a channel has been closed, which should be applied via
156 /// [`NetworkGraph::close_channel_from_update`].
158 /// The short channel id of the closed channel.
159 short_channel_id: u64,
160 /// Whether the channel should be permanently removed or temporarily disabled until a new
161 /// `channel_update` message is received.
164 /// An error indicating only that a node has failed, which should be applied via
165 /// [`NetworkGraph::fail_node`].
167 /// The node id of the failed node.
169 /// Whether the node should be permanently removed from consideration or can be restored
170 /// when a new `channel_update` message is received.
175 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
176 (0, ChannelUpdateMessage) => {
179 (2, ChannelClosed) => {
180 (0, short_channel_id, required),
181 (2, is_permanent, required),
183 (4, NodeFailure) => {
184 (0, node_id, required),
185 (2, is_permanent, required),
189 impl<C: Deref, L: Deref> EventHandler for NetGraphMsgHandler<C, L>
190 where C::Target: chain::Access, L::Target: Logger {
191 fn handle_event(&self, event: &Event) {
192 if let Event::PaymentPathFailed { payment_hash: _, rejected_by_dest: _, network_update, .. } = event {
193 if let Some(network_update) = network_update {
194 self.handle_network_update(network_update);
200 /// Receives and validates network updates from peers,
201 /// stores authentic and relevant data as a network graph.
202 /// This network graph is then used for routing payments.
203 /// Provides interface to help with initial routing sync by
204 /// serving historical announcements.
206 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
207 /// [`NetworkGraph`].
208 pub struct NetGraphMsgHandler<C: Deref, L: Deref>
209 where C::Target: chain::Access, L::Target: Logger
211 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
212 /// Representation of the payment channel network
213 pub network_graph: NetworkGraph,
214 chain_access: Option<C>,
215 full_syncs_requested: AtomicUsize,
216 pending_events: Mutex<Vec<MessageSendEvent>>,
220 impl<C: Deref, L: Deref> NetGraphMsgHandler<C, L>
221 where C::Target: chain::Access, L::Target: Logger
223 /// Creates a new tracker of the actual state of the network of channels and nodes,
224 /// assuming an existing Network Graph.
225 /// Chain monitor is used to make sure announced channels exist on-chain,
226 /// channel data is correct, and that the announcement is signed with
227 /// channel owners' keys.
228 pub fn new(network_graph: NetworkGraph, chain_access: Option<C>, logger: L) -> Self {
230 secp_ctx: Secp256k1::verification_only(),
232 full_syncs_requested: AtomicUsize::new(0),
234 pending_events: Mutex::new(vec![]),
239 /// Adds a provider used to check new announcements. Does not affect
240 /// existing announcements unless they are updated.
241 /// Add, update or remove the provider would replace the current one.
242 pub fn add_chain_access(&mut self, chain_access: Option<C>) {
243 self.chain_access = chain_access;
246 /// Returns true when a full routing table sync should be performed with a peer.
247 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
248 //TODO: Determine whether to request a full sync based on the network map.
249 const FULL_SYNCS_TO_REQUEST: usize = 5;
250 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
251 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
258 /// Applies changes to the [`NetworkGraph`] from the given update.
259 fn handle_network_update(&self, update: &NetworkUpdate) {
261 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
262 let short_channel_id = msg.contents.short_channel_id;
263 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
264 let status = if is_enabled { "enabled" } else { "disabled" };
265 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
266 let _ = self.network_graph.update_channel(msg, &self.secp_ctx);
268 NetworkUpdate::ChannelClosed { short_channel_id, is_permanent } => {
269 let action = if is_permanent { "Removing" } else { "Disabling" };
270 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
271 self.network_graph.close_channel_from_update(short_channel_id, is_permanent);
273 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
274 let action = if is_permanent { "Removing" } else { "Disabling" };
275 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
276 self.network_graph.fail_node(node_id, is_permanent);
282 macro_rules! secp_verify_sig {
283 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr ) => {
284 match $secp_ctx.verify($msg, $sig, $pubkey) {
286 Err(_) => return Err(LightningError{err: "Invalid signature from remote node".to_owned(), action: ErrorAction::IgnoreError}),
291 impl<C: Deref, L: Deref> RoutingMessageHandler for NetGraphMsgHandler<C, L>
292 where C::Target: chain::Access, L::Target: Logger
294 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
295 self.network_graph.update_node_from_announcement(msg, &self.secp_ctx)?;
296 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
297 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
298 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
301 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
302 self.network_graph.update_channel_from_announcement(msg, &self.chain_access, &self.secp_ctx)?;
303 log_trace!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
304 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
307 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
308 self.network_graph.update_channel(msg, &self.secp_ctx)?;
309 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
312 fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
313 let mut result = Vec::with_capacity(batch_amount as usize);
314 let channels = self.network_graph.channels.read().unwrap();
315 let mut iter = channels.range(starting_point..);
316 while result.len() < batch_amount as usize {
317 if let Some((_, ref chan)) = iter.next() {
318 if chan.announcement_message.is_some() {
319 let chan_announcement = chan.announcement_message.clone().unwrap();
320 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
321 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
322 if let Some(one_to_two) = chan.one_to_two.as_ref() {
323 one_to_two_announcement = one_to_two.last_update_message.clone();
325 if let Some(two_to_one) = chan.two_to_one.as_ref() {
326 two_to_one_announcement = two_to_one.last_update_message.clone();
328 result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement));
330 // TODO: We may end up sending un-announced channel_updates if we are sending
331 // initial sync data while receiving announce/updates for this channel.
340 fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement> {
341 let mut result = Vec::with_capacity(batch_amount as usize);
342 let nodes = self.network_graph.nodes.read().unwrap();
343 let mut iter = if let Some(pubkey) = starting_point {
344 let mut iter = nodes.range(NodeId::from_pubkey(pubkey)..);
348 nodes.range::<NodeId, _>(..)
350 while result.len() < batch_amount as usize {
351 if let Some((_, ref node)) = iter.next() {
352 if let Some(node_info) = node.announcement_info.as_ref() {
353 if node_info.announcement_message.is_some() {
354 result.push(node_info.announcement_message.clone().unwrap());
364 /// Initiates a stateless sync of routing gossip information with a peer
365 /// using gossip_queries. The default strategy used by this implementation
366 /// is to sync the full block range with several peers.
368 /// We should expect one or more reply_channel_range messages in response
369 /// to our query_channel_range. Each reply will enqueue a query_scid message
370 /// to request gossip messages for each channel. The sync is considered complete
371 /// when the final reply_scids_end message is received, though we are not
372 /// tracking this directly.
373 fn sync_routing_table(&self, their_node_id: &PublicKey, init_msg: &Init) {
375 // We will only perform a sync with peers that support gossip_queries.
376 if !init_msg.features.supports_gossip_queries() {
380 // Check if we need to perform a full synchronization with this peer
381 if !self.should_request_full_sync(&their_node_id) {
385 let first_blocknum = 0;
386 let number_of_blocks = 0xffffffff;
387 log_debug!(self.logger, "Sending query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), first_blocknum, number_of_blocks);
388 let mut pending_events = self.pending_events.lock().unwrap();
389 pending_events.push(MessageSendEvent::SendChannelRangeQuery {
390 node_id: their_node_id.clone(),
391 msg: QueryChannelRange {
392 chain_hash: self.network_graph.genesis_hash,
399 /// Statelessly processes a reply to a channel range query by immediately
400 /// sending an SCID query with SCIDs in the reply. To keep this handler
401 /// stateless, it does not validate the sequencing of replies for multi-
402 /// reply ranges. It does not validate whether the reply(ies) cover the
403 /// queried range. It also does not filter SCIDs to only those in the
404 /// original query range. We also do not validate that the chain_hash
405 /// matches the chain_hash of the NetworkGraph. Any chan_ann message that
406 /// does not match our chain_hash will be rejected when the announcement is
408 fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError> {
409 log_debug!(self.logger, "Handling reply_channel_range peer={}, first_blocknum={}, number_of_blocks={}, sync_complete={}, scids={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks, msg.sync_complete, msg.short_channel_ids.len(),);
411 log_debug!(self.logger, "Sending query_short_channel_ids peer={}, batch_size={}", log_pubkey!(their_node_id), msg.short_channel_ids.len());
412 let mut pending_events = self.pending_events.lock().unwrap();
413 pending_events.push(MessageSendEvent::SendShortIdsQuery {
414 node_id: their_node_id.clone(),
415 msg: QueryShortChannelIds {
416 chain_hash: msg.chain_hash,
417 short_channel_ids: msg.short_channel_ids,
424 /// When an SCID query is initiated the remote peer will begin streaming
425 /// gossip messages. In the event of a failure, we may have received
426 /// some channel information. Before trying with another peer, the
427 /// caller should update its set of SCIDs that need to be queried.
428 fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
429 log_debug!(self.logger, "Handling reply_short_channel_ids_end peer={}, full_information={}", log_pubkey!(their_node_id), msg.full_information);
431 // If the remote node does not have up-to-date information for the
432 // chain_hash they will set full_information=false. We can fail
433 // the result and try again with a different peer.
434 if !msg.full_information {
435 return Err(LightningError {
436 err: String::from("Received reply_short_channel_ids_end with no information"),
437 action: ErrorAction::IgnoreError
444 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
445 /// are in the specified block range. Due to message size limits, large range
446 /// queries may result in several reply messages. This implementation enqueues
447 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
448 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
449 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
450 /// memory constrained systems.
451 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
452 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
454 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
456 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
457 // If so, we manually cap the ending block to avoid this overflow.
458 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
460 // Per spec, we must reply to a query. Send an empty message when things are invalid.
461 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
462 let mut pending_events = self.pending_events.lock().unwrap();
463 pending_events.push(MessageSendEvent::SendReplyChannelRange {
464 node_id: their_node_id.clone(),
465 msg: ReplyChannelRange {
466 chain_hash: msg.chain_hash.clone(),
467 first_blocknum: msg.first_blocknum,
468 number_of_blocks: msg.number_of_blocks,
470 short_channel_ids: vec![],
473 return Err(LightningError {
474 err: String::from("query_channel_range could not be processed"),
475 action: ErrorAction::IgnoreError,
479 // Creates channel batches. We are not checking if the channel is routable
480 // (has at least one update). A peer may still want to know the channel
481 // exists even if its not yet routable.
482 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
483 let channels = self.network_graph.channels.read().unwrap();
484 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
485 if let Some(chan_announcement) = &chan.announcement_message {
486 // Construct a new batch if last one is full
487 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
488 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
491 let batch = batches.last_mut().unwrap();
492 batch.push(chan_announcement.contents.short_channel_id);
497 let mut pending_events = self.pending_events.lock().unwrap();
498 let batch_count = batches.len();
499 let mut prev_batch_endblock = msg.first_blocknum;
500 for (batch_index, batch) in batches.into_iter().enumerate() {
501 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
502 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
504 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
505 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
506 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
507 // significant diversion from the requirements set by the spec, and, in case of blocks
508 // with no channel opens (e.g. empty blocks), requires that we use the previous value
509 // and *not* derive the first_blocknum from the actual first block of the reply.
510 let first_blocknum = prev_batch_endblock;
512 // Each message carries the number of blocks (from the `first_blocknum`) its contents
513 // fit in. Though there is no requirement that we use exactly the number of blocks its
514 // contents are from, except for the bogus requirements c-lightning enforces, above.
516 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
517 // >= the query's end block. Thus, for the last reply, we calculate the difference
518 // between the query's end block and the start of the reply.
520 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
521 // first_blocknum will be either msg.first_blocknum or a higher block height.
522 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
523 (true, msg.end_blocknum() - first_blocknum)
525 // Prior replies should use the number of blocks that fit into the reply. Overflow
526 // safe since first_blocknum is always <= last SCID's block.
528 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
531 prev_batch_endblock = first_blocknum + number_of_blocks;
533 pending_events.push(MessageSendEvent::SendReplyChannelRange {
534 node_id: their_node_id.clone(),
535 msg: ReplyChannelRange {
536 chain_hash: msg.chain_hash.clone(),
540 short_channel_ids: batch,
548 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
551 err: String::from("Not implemented"),
552 action: ErrorAction::IgnoreError,
557 impl<C: Deref, L: Deref> MessageSendEventsProvider for NetGraphMsgHandler<C, L>
559 C::Target: chain::Access,
562 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
563 let mut ret = Vec::new();
564 let mut pending_events = self.pending_events.lock().unwrap();
565 core::mem::swap(&mut ret, &mut pending_events);
570 #[derive(Clone, Debug, PartialEq)]
571 /// Details about one direction of a channel. Received
572 /// within a channel update.
573 pub struct DirectionalChannelInfo {
574 /// When the last update to the channel direction was issued.
575 /// Value is opaque, as set in the announcement.
576 pub last_update: u32,
577 /// Whether the channel can be currently used for payments (in this one direction).
579 /// The difference in CLTV values that you must have when routing through this channel.
580 pub cltv_expiry_delta: u16,
581 /// The minimum value, which must be relayed to the next hop via the channel
582 pub htlc_minimum_msat: u64,
583 /// The maximum value which may be relayed to the next hop via the channel.
584 pub htlc_maximum_msat: Option<u64>,
585 /// Fees charged when the channel is used for routing
586 pub fees: RoutingFees,
587 /// Most recent update for the channel received from the network
588 /// Mostly redundant with the data we store in fields explicitly.
589 /// Everything else is useful only for sending out for initial routing sync.
590 /// Not stored if contains excess data to prevent DoS.
591 pub last_update_message: Option<ChannelUpdate>,
594 impl fmt::Display for DirectionalChannelInfo {
595 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
596 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
601 impl_writeable_tlv_based!(DirectionalChannelInfo, {
602 (0, last_update, required),
603 (2, enabled, required),
604 (4, cltv_expiry_delta, required),
605 (6, htlc_minimum_msat, required),
606 (8, htlc_maximum_msat, required),
607 (10, fees, required),
608 (12, last_update_message, required),
611 #[derive(Clone, Debug, PartialEq)]
612 /// Details about a channel (both directions).
613 /// Received within a channel announcement.
614 pub struct ChannelInfo {
615 /// Protocol features of a channel communicated during its announcement
616 pub features: ChannelFeatures,
617 /// Source node of the first direction of a channel
618 pub node_one: NodeId,
619 /// Details about the first direction of a channel
620 pub one_to_two: Option<DirectionalChannelInfo>,
621 /// Source node of the second direction of a channel
622 pub node_two: NodeId,
623 /// Details about the second direction of a channel
624 pub two_to_one: Option<DirectionalChannelInfo>,
625 /// The channel capacity as seen on-chain, if chain lookup is available.
626 pub capacity_sats: Option<u64>,
627 /// An initial announcement of the channel
628 /// Mostly redundant with the data we store in fields explicitly.
629 /// Everything else is useful only for sending out for initial routing sync.
630 /// Not stored if contains excess data to prevent DoS.
631 pub announcement_message: Option<ChannelAnnouncement>,
634 impl fmt::Display for ChannelInfo {
635 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
636 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
637 log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
642 impl_writeable_tlv_based!(ChannelInfo, {
643 (0, features, required),
644 (2, node_one, required),
645 (4, one_to_two, required),
646 (6, node_two, required),
647 (8, two_to_one, required),
648 (10, capacity_sats, required),
649 (12, announcement_message, required),
653 /// Fees for routing via a given channel or a node
654 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
655 pub struct RoutingFees {
656 /// Flat routing fee in satoshis
658 /// Liquidity-based routing fee in millionths of a routed amount.
659 /// In other words, 10000 is 1%.
660 pub proportional_millionths: u32,
663 impl_writeable_tlv_based!(RoutingFees, {
664 (0, base_msat, required),
665 (2, proportional_millionths, required)
668 #[derive(Clone, Debug, PartialEq)]
669 /// Information received in the latest node_announcement from this node.
670 pub struct NodeAnnouncementInfo {
671 /// Protocol features the node announced support for
672 pub features: NodeFeatures,
673 /// When the last known update to the node state was issued.
674 /// Value is opaque, as set in the announcement.
675 pub last_update: u32,
676 /// Color assigned to the node
678 /// Moniker assigned to the node.
679 /// May be invalid or malicious (eg control chars),
680 /// should not be exposed to the user.
682 /// Internet-level addresses via which one can connect to the node
683 pub addresses: Vec<NetAddress>,
684 /// An initial announcement of the node
685 /// Mostly redundant with the data we store in fields explicitly.
686 /// Everything else is useful only for sending out for initial routing sync.
687 /// Not stored if contains excess data to prevent DoS.
688 pub announcement_message: Option<NodeAnnouncement>
691 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
692 (0, features, required),
693 (2, last_update, required),
695 (6, alias, required),
696 (8, announcement_message, option),
697 (10, addresses, vec_type),
700 #[derive(Clone, Debug, PartialEq)]
701 /// Details about a node in the network, known from the network announcement.
702 pub struct NodeInfo {
703 /// All valid channels a node has announced
704 pub channels: Vec<u64>,
705 /// Lowest fees enabling routing via any of the enabled, known channels to a node.
706 /// The two fields (flat and proportional fee) are independent,
707 /// meaning they don't have to refer to the same channel.
708 pub lowest_inbound_channel_fees: Option<RoutingFees>,
709 /// More information about a node from node_announcement.
710 /// Optional because we store a Node entry after learning about it from
711 /// a channel announcement, but before receiving a node announcement.
712 pub announcement_info: Option<NodeAnnouncementInfo>
715 impl fmt::Display for NodeInfo {
716 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
717 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
718 self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
723 impl_writeable_tlv_based!(NodeInfo, {
724 (0, lowest_inbound_channel_fees, option),
725 (2, announcement_info, option),
726 (4, channels, vec_type),
729 const SERIALIZATION_VERSION: u8 = 1;
730 const MIN_SERIALIZATION_VERSION: u8 = 1;
732 impl Writeable for NetworkGraph {
733 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
734 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
736 self.genesis_hash.write(writer)?;
737 let channels = self.channels.read().unwrap();
738 (channels.len() as u64).write(writer)?;
739 for (ref chan_id, ref chan_info) in channels.iter() {
740 (*chan_id).write(writer)?;
741 chan_info.write(writer)?;
743 let nodes = self.nodes.read().unwrap();
744 (nodes.len() as u64).write(writer)?;
745 for (ref node_id, ref node_info) in nodes.iter() {
746 node_id.write(writer)?;
747 node_info.write(writer)?;
750 write_tlv_fields!(writer, {});
755 impl Readable for NetworkGraph {
756 fn read<R: io::Read>(reader: &mut R) -> Result<NetworkGraph, DecodeError> {
757 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
759 let genesis_hash: BlockHash = Readable::read(reader)?;
760 let channels_count: u64 = Readable::read(reader)?;
761 let mut channels = BTreeMap::new();
762 for _ in 0..channels_count {
763 let chan_id: u64 = Readable::read(reader)?;
764 let chan_info = Readable::read(reader)?;
765 channels.insert(chan_id, chan_info);
767 let nodes_count: u64 = Readable::read(reader)?;
768 let mut nodes = BTreeMap::new();
769 for _ in 0..nodes_count {
770 let node_id = Readable::read(reader)?;
771 let node_info = Readable::read(reader)?;
772 nodes.insert(node_id, node_info);
774 read_tlv_fields!(reader, {});
778 channels: RwLock::new(channels),
779 nodes: RwLock::new(nodes),
784 impl fmt::Display for NetworkGraph {
785 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
786 writeln!(f, "Network map\n[Channels]")?;
787 for (key, val) in self.channels.read().unwrap().iter() {
788 writeln!(f, " {}: {}", key, val)?;
790 writeln!(f, "[Nodes]")?;
791 for (&node_id, val) in self.nodes.read().unwrap().iter() {
792 writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
798 impl PartialEq for NetworkGraph {
799 fn eq(&self, other: &Self) -> bool {
800 self.genesis_hash == other.genesis_hash &&
801 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
802 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
807 /// Creates a new, empty, network graph.
808 pub fn new(genesis_hash: BlockHash) -> NetworkGraph {
811 channels: RwLock::new(BTreeMap::new()),
812 nodes: RwLock::new(BTreeMap::new()),
816 /// Returns a read-only view of the network graph.
817 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
818 let channels = self.channels.read().unwrap();
819 let nodes = self.nodes.read().unwrap();
820 ReadOnlyNetworkGraph {
826 /// For an already known node (from channel announcements), update its stored properties from a
827 /// given node announcement.
829 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
830 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
831 /// routing messages from a source using a protocol other than the lightning P2P protocol.
832 pub fn update_node_from_announcement<T: secp256k1::Verification>(&self, msg: &msgs::NodeAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
833 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
834 secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id);
835 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
838 /// For an already known node (from channel announcements), update its stored properties from a
839 /// given node announcement without verifying the associated signatures. Because we aren't
840 /// given the associated signatures here we cannot relay the node announcement to any of our
842 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
843 self.update_node_from_announcement_intern(msg, None)
846 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
847 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
848 None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
850 if let Some(node_info) = node.announcement_info.as_ref() {
851 if node_info.last_update >= msg.timestamp {
852 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Trace)});
857 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
858 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
859 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
860 node.announcement_info = Some(NodeAnnouncementInfo {
861 features: msg.features.clone(),
862 last_update: msg.timestamp,
865 addresses: msg.addresses.clone(),
866 announcement_message: if should_relay { full_msg.cloned() } else { None },
874 /// Store or update channel info from a channel announcement.
876 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
877 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
878 /// routing messages from a source using a protocol other than the lightning P2P protocol.
880 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
881 /// the corresponding UTXO exists on chain and is correctly-formatted.
882 pub fn update_channel_from_announcement<T: secp256k1::Verification, C: Deref>(
883 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>, secp_ctx: &Secp256k1<T>
884 ) -> Result<(), LightningError>
886 C::Target: chain::Access,
888 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
889 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1);
890 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2);
891 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1);
892 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2);
893 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
896 /// Store or update channel info from a channel announcement without verifying the associated
897 /// signatures. Because we aren't given the associated signatures here we cannot relay the
898 /// channel announcement to any of our peers.
900 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
901 /// the corresponding UTXO exists on chain and is correctly-formatted.
902 pub fn update_channel_from_unsigned_announcement<C: Deref>(
903 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
904 ) -> Result<(), LightningError>
906 C::Target: chain::Access,
908 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
911 fn update_channel_from_unsigned_announcement_intern<C: Deref>(
912 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
913 ) -> Result<(), LightningError>
915 C::Target: chain::Access,
917 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
918 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
921 let utxo_value = match &chain_access {
923 // Tentatively accept, potentially exposing us to DoS attacks
926 &Some(ref chain_access) => {
927 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
928 Ok(TxOut { value, script_pubkey }) => {
929 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
930 .push_slice(&msg.bitcoin_key_1.serialize())
931 .push_slice(&msg.bitcoin_key_2.serialize())
932 .push_opcode(opcodes::all::OP_PUSHNUM_2)
933 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
934 if script_pubkey != expected_script {
935 return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
937 //TODO: Check if value is worth storing, use it to inform routing, and compare it
938 //to the new HTLC max field in channel_update
941 Err(chain::AccessError::UnknownChain) => {
942 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
944 Err(chain::AccessError::UnknownTx) => {
945 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
951 let chan_info = ChannelInfo {
952 features: msg.features.clone(),
953 node_one: NodeId::from_pubkey(&msg.node_id_1),
955 node_two: NodeId::from_pubkey(&msg.node_id_2),
957 capacity_sats: utxo_value,
958 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
959 { full_msg.cloned() } else { None },
962 let mut channels = self.channels.write().unwrap();
963 let mut nodes = self.nodes.write().unwrap();
964 match channels.entry(msg.short_channel_id) {
965 BtreeEntry::Occupied(mut entry) => {
966 //TODO: because asking the blockchain if short_channel_id is valid is only optional
967 //in the blockchain API, we need to handle it smartly here, though it's unclear
969 if utxo_value.is_some() {
970 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
971 // only sometimes returns results. In any case remove the previous entry. Note
972 // that the spec expects us to "blacklist" the node_ids involved, but we can't
974 // a) we don't *require* a UTXO provider that always returns results.
975 // b) we don't track UTXOs of channels we know about and remove them if they
977 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
978 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), msg.short_channel_id);
979 *entry.get_mut() = chan_info;
981 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Trace)})
984 BtreeEntry::Vacant(entry) => {
985 entry.insert(chan_info);
989 macro_rules! add_channel_to_node {
990 ( $node_id: expr ) => {
991 match nodes.entry($node_id) {
992 BtreeEntry::Occupied(node_entry) => {
993 node_entry.into_mut().channels.push(msg.short_channel_id);
995 BtreeEntry::Vacant(node_entry) => {
996 node_entry.insert(NodeInfo {
997 channels: vec!(msg.short_channel_id),
998 lowest_inbound_channel_fees: None,
999 announcement_info: None,
1006 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_1));
1007 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_2));
1012 /// Close a channel if a corresponding HTLC fail was sent.
1013 /// If permanent, removes a channel from the local storage.
1014 /// May cause the removal of nodes too, if this was their last channel.
1015 /// If not permanent, makes channels unavailable for routing.
1016 pub fn close_channel_from_update(&self, short_channel_id: u64, is_permanent: bool) {
1017 let mut channels = self.channels.write().unwrap();
1019 if let Some(chan) = channels.remove(&short_channel_id) {
1020 let mut nodes = self.nodes.write().unwrap();
1021 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1024 if let Some(chan) = channels.get_mut(&short_channel_id) {
1025 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1026 one_to_two.enabled = false;
1028 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1029 two_to_one.enabled = false;
1035 /// Marks a node in the graph as failed.
1036 pub fn fail_node(&self, _node_id: &PublicKey, is_permanent: bool) {
1038 // TODO: Wholly remove the node
1040 // TODO: downgrade the node
1044 /// For an already known (from announcement) channel, update info about one of the directions
1047 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
1048 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1049 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1050 pub fn update_channel<T: secp256k1::Verification>(&self, msg: &msgs::ChannelUpdate, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
1051 self.update_channel_intern(&msg.contents, Some(&msg), Some((&msg.signature, secp_ctx)))
1054 /// For an already known (from announcement) channel, update info about one of the directions
1055 /// of the channel without verifying the associated signatures. Because we aren't given the
1056 /// associated signatures here we cannot relay the channel update to any of our peers.
1057 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1058 self.update_channel_intern(msg, None, None::<(&secp256k1::Signature, &Secp256k1<secp256k1::VerifyOnly>)>)
1061 fn update_channel_intern<T: secp256k1::Verification>(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig_info: Option<(&secp256k1::Signature, &Secp256k1<T>)>) -> Result<(), LightningError> {
1063 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1064 let chan_was_enabled;
1066 let mut channels = self.channels.write().unwrap();
1067 match channels.get_mut(&msg.short_channel_id) {
1068 None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1070 if let OptionalField::Present(htlc_maximum_msat) = msg.htlc_maximum_msat {
1071 if htlc_maximum_msat > MAX_VALUE_MSAT {
1072 return Err(LightningError{err: "htlc_maximum_msat is larger than maximum possible msats".to_owned(), action: ErrorAction::IgnoreError});
1075 if let Some(capacity_sats) = channel.capacity_sats {
1076 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1077 // Don't query UTXO set here to reduce DoS risks.
1078 if capacity_sats > MAX_VALUE_MSAT / 1000 || htlc_maximum_msat > capacity_sats * 1000 {
1079 return Err(LightningError{err: "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(), action: ErrorAction::IgnoreError});
1083 macro_rules! maybe_update_channel_info {
1084 ( $target: expr, $src_node: expr) => {
1085 if let Some(existing_chan_info) = $target.as_ref() {
1086 if existing_chan_info.last_update >= msg.timestamp {
1087 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Trace)});
1089 chan_was_enabled = existing_chan_info.enabled;
1091 chan_was_enabled = false;
1094 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1095 { full_msg.cloned() } else { None };
1097 let updated_channel_dir_info = DirectionalChannelInfo {
1098 enabled: chan_enabled,
1099 last_update: msg.timestamp,
1100 cltv_expiry_delta: msg.cltv_expiry_delta,
1101 htlc_minimum_msat: msg.htlc_minimum_msat,
1102 htlc_maximum_msat: if let OptionalField::Present(max_value) = msg.htlc_maximum_msat { Some(max_value) } else { None },
1104 base_msat: msg.fee_base_msat,
1105 proportional_millionths: msg.fee_proportional_millionths,
1109 $target = Some(updated_channel_dir_info);
1113 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1114 if msg.flags & 1 == 1 {
1115 dest_node_id = channel.node_one.clone();
1116 if let Some((sig, ctx)) = sig_info {
1117 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1118 err: "Couldn't parse source node pubkey".to_owned(),
1119 action: ErrorAction::IgnoreAndLog(Level::Debug)
1122 maybe_update_channel_info!(channel.two_to_one, channel.node_two);
1124 dest_node_id = channel.node_two.clone();
1125 if let Some((sig, ctx)) = sig_info {
1126 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1127 err: "Couldn't parse destination node pubkey".to_owned(),
1128 action: ErrorAction::IgnoreAndLog(Level::Debug)
1131 maybe_update_channel_info!(channel.one_to_two, channel.node_one);
1136 let mut nodes = self.nodes.write().unwrap();
1138 let node = nodes.get_mut(&dest_node_id).unwrap();
1139 let mut base_msat = msg.fee_base_msat;
1140 let mut proportional_millionths = msg.fee_proportional_millionths;
1141 if let Some(fees) = node.lowest_inbound_channel_fees {
1142 base_msat = cmp::min(base_msat, fees.base_msat);
1143 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1145 node.lowest_inbound_channel_fees = Some(RoutingFees {
1147 proportional_millionths
1149 } else if chan_was_enabled {
1150 let node = nodes.get_mut(&dest_node_id).unwrap();
1151 let mut lowest_inbound_channel_fees = None;
1153 for chan_id in node.channels.iter() {
1154 let chan = channels.get(chan_id).unwrap();
1156 if chan.node_one == dest_node_id {
1157 chan_info_opt = chan.two_to_one.as_ref();
1159 chan_info_opt = chan.one_to_two.as_ref();
1161 if let Some(chan_info) = chan_info_opt {
1162 if chan_info.enabled {
1163 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1164 base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1165 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1166 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1171 node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1177 fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1178 macro_rules! remove_from_node {
1179 ($node_id: expr) => {
1180 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1181 entry.get_mut().channels.retain(|chan_id| {
1182 short_channel_id != *chan_id
1184 if entry.get().channels.is_empty() {
1185 entry.remove_entry();
1188 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1193 remove_from_node!(chan.node_one);
1194 remove_from_node!(chan.node_two);
1198 impl ReadOnlyNetworkGraph<'_> {
1199 /// Returns all known valid channels' short ids along with announced channel info.
1201 /// (C-not exported) because we have no mapping for `BTreeMap`s
1202 pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1206 /// Returns all known nodes' public keys along with announced node info.
1208 /// (C-not exported) because we have no mapping for `BTreeMap`s
1209 pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1213 /// Get network addresses by node id.
1214 /// Returns None if the requested node is completely unknown,
1215 /// or if node announcement for the node was never received.
1216 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1217 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1218 if let Some(node_info) = node.announcement_info.as_ref() {
1219 return Some(node_info.addresses.clone())
1229 use ln::PaymentHash;
1230 use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1231 use routing::network_graph::{NetGraphMsgHandler, NetworkGraph, NetworkUpdate, MAX_EXCESS_BYTES_FOR_RELAY};
1232 use ln::msgs::{Init, OptionalField, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1233 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1234 ReplyChannelRange, ReplyShortChannelIdsEnd, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1235 use util::test_utils;
1236 use util::logger::Logger;
1237 use util::ser::{Readable, Writeable};
1238 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1239 use util::scid_utils::scid_from_parts;
1241 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1242 use bitcoin::hashes::Hash;
1243 use bitcoin::network::constants::Network;
1244 use bitcoin::blockdata::constants::genesis_block;
1245 use bitcoin::blockdata::script::Builder;
1246 use bitcoin::blockdata::transaction::TxOut;
1247 use bitcoin::blockdata::opcodes;
1251 use bitcoin::secp256k1::key::{PublicKey, SecretKey};
1252 use bitcoin::secp256k1::{All, Secp256k1};
1258 fn create_net_graph_msg_handler() -> (Secp256k1<All>, NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>) {
1259 let secp_ctx = Secp256k1::new();
1260 let logger = Arc::new(test_utils::TestLogger::new());
1261 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1262 let network_graph = NetworkGraph::new(genesis_hash);
1263 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger));
1264 (secp_ctx, net_graph_msg_handler)
1268 fn request_full_sync_finite_times() {
1269 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1270 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1272 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1273 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1274 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1275 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1276 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1277 assert!(!net_graph_msg_handler.should_request_full_sync(&node_id));
1281 fn handling_node_announcements() {
1282 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1284 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1285 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1286 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1287 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1288 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1289 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1290 let zero_hash = Sha256dHash::hash(&[0; 32]);
1291 let first_announcement_time = 500;
1293 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1294 features: NodeFeatures::known(),
1295 timestamp: first_announcement_time,
1299 addresses: Vec::new(),
1300 excess_address_data: Vec::new(),
1301 excess_data: Vec::new(),
1303 let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1304 let valid_announcement = NodeAnnouncement {
1305 signature: secp_ctx.sign(&msghash, node_1_privkey),
1306 contents: unsigned_announcement.clone()
1309 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1311 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1315 // Announce a channel to add a corresponding node.
1316 let unsigned_announcement = UnsignedChannelAnnouncement {
1317 features: ChannelFeatures::known(),
1318 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1319 short_channel_id: 0,
1322 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1323 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1324 excess_data: Vec::new(),
1327 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1328 let valid_announcement = ChannelAnnouncement {
1329 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1330 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1331 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1332 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1333 contents: unsigned_announcement.clone(),
1335 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1336 Ok(res) => assert!(res),
1341 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1342 Ok(res) => assert!(res),
1346 let fake_msghash = hash_to_message!(&zero_hash);
1347 match net_graph_msg_handler.handle_node_announcement(
1349 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1350 contents: unsigned_announcement.clone()
1353 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1356 unsigned_announcement.timestamp += 1000;
1357 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1358 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1359 let announcement_with_data = NodeAnnouncement {
1360 signature: secp_ctx.sign(&msghash, node_1_privkey),
1361 contents: unsigned_announcement.clone()
1363 // Return false because contains excess data.
1364 match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) {
1365 Ok(res) => assert!(!res),
1368 unsigned_announcement.excess_data = Vec::new();
1370 // Even though previous announcement was not relayed further, we still accepted it,
1371 // so we now won't accept announcements before the previous one.
1372 unsigned_announcement.timestamp -= 10;
1373 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1374 let outdated_announcement = NodeAnnouncement {
1375 signature: secp_ctx.sign(&msghash, node_1_privkey),
1376 contents: unsigned_announcement.clone()
1378 match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) {
1380 Err(e) => assert_eq!(e.err, "Update older than last processed update")
1385 fn handling_channel_announcements() {
1386 let secp_ctx = Secp256k1::new();
1387 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1389 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1390 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1391 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1392 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1393 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1394 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1396 let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1397 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1398 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1399 .push_opcode(opcodes::all::OP_PUSHNUM_2)
1400 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1403 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1404 features: ChannelFeatures::known(),
1405 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1406 short_channel_id: 0,
1409 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1410 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1411 excess_data: Vec::new(),
1414 let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1415 let valid_announcement = ChannelAnnouncement {
1416 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1417 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1418 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1419 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1420 contents: unsigned_announcement.clone(),
1423 // Test if the UTXO lookups were not supported
1424 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1425 let mut net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger));
1426 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1427 Ok(res) => assert!(res),
1432 let network = &net_graph_msg_handler.network_graph;
1433 match network.read_only().channels().get(&unsigned_announcement.short_channel_id) {
1439 // If we receive announcement for the same channel (with UTXO lookups disabled),
1440 // drop new one on the floor, since we can't see any changes.
1441 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1443 Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
1446 // Test if an associated transaction were not on-chain (or not confirmed).
1447 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1448 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1449 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1450 net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1451 unsigned_announcement.short_channel_id += 1;
1453 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1454 let valid_announcement = ChannelAnnouncement {
1455 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1456 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1457 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1458 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1459 contents: unsigned_announcement.clone(),
1462 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1464 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1467 // Now test if the transaction is found in the UTXO set and the script is correct.
1468 unsigned_announcement.short_channel_id += 1;
1469 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
1471 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1472 let valid_announcement = ChannelAnnouncement {
1473 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1474 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1475 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1476 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1477 contents: unsigned_announcement.clone(),
1479 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1480 Ok(res) => assert!(res),
1485 let network = &net_graph_msg_handler.network_graph;
1486 match network.read_only().channels().get(&unsigned_announcement.short_channel_id) {
1492 // If we receive announcement for the same channel (but TX is not confirmed),
1493 // drop new one on the floor, since we can't see any changes.
1494 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1495 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1497 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1500 // But if it is confirmed, replace the channel
1501 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
1502 unsigned_announcement.features = ChannelFeatures::empty();
1503 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1504 let valid_announcement = ChannelAnnouncement {
1505 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1506 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1507 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1508 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1509 contents: unsigned_announcement.clone(),
1511 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1512 Ok(res) => assert!(res),
1516 let network = &net_graph_msg_handler.network_graph;
1517 match network.read_only().channels().get(&unsigned_announcement.short_channel_id) {
1518 Some(channel_entry) => {
1519 assert_eq!(channel_entry.features, ChannelFeatures::empty());
1525 // Don't relay valid channels with excess data
1526 unsigned_announcement.short_channel_id += 1;
1527 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1528 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1529 let valid_announcement = ChannelAnnouncement {
1530 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1531 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1532 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1533 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1534 contents: unsigned_announcement.clone(),
1536 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1537 Ok(res) => assert!(!res),
1541 unsigned_announcement.excess_data = Vec::new();
1542 let invalid_sig_announcement = ChannelAnnouncement {
1543 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1544 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1545 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1546 bitcoin_signature_2: secp_ctx.sign(&msghash, node_1_btckey),
1547 contents: unsigned_announcement.clone(),
1549 match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) {
1551 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1554 unsigned_announcement.node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1555 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1556 let channel_to_itself_announcement = ChannelAnnouncement {
1557 node_signature_1: secp_ctx.sign(&msghash, node_2_privkey),
1558 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1559 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1560 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1561 contents: unsigned_announcement.clone(),
1563 match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) {
1565 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
1570 fn handling_channel_update() {
1571 let secp_ctx = Secp256k1::new();
1572 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1573 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1574 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1575 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1577 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1578 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1579 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1580 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1581 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1582 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1584 let zero_hash = Sha256dHash::hash(&[0; 32]);
1585 let short_channel_id = 0;
1586 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1587 let amount_sats = 1000_000;
1590 // Announce a channel we will update
1591 let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1592 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1593 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1594 .push_opcode(opcodes::all::OP_PUSHNUM_2)
1595 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1596 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
1597 let unsigned_announcement = UnsignedChannelAnnouncement {
1598 features: ChannelFeatures::empty(),
1603 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1604 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1605 excess_data: Vec::new(),
1608 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1609 let valid_channel_announcement = ChannelAnnouncement {
1610 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1611 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1612 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1613 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1614 contents: unsigned_announcement.clone(),
1616 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1623 let mut unsigned_channel_update = UnsignedChannelUpdate {
1628 cltv_expiry_delta: 144,
1629 htlc_minimum_msat: 1000000,
1630 htlc_maximum_msat: OptionalField::Absent,
1631 fee_base_msat: 10000,
1632 fee_proportional_millionths: 20,
1633 excess_data: Vec::new()
1635 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1636 let valid_channel_update = ChannelUpdate {
1637 signature: secp_ctx.sign(&msghash, node_1_privkey),
1638 contents: unsigned_channel_update.clone()
1641 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1642 Ok(res) => assert!(res),
1647 let network = &net_graph_msg_handler.network_graph;
1648 match network.read_only().channels().get(&short_channel_id) {
1650 Some(channel_info) => {
1651 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
1652 assert!(channel_info.two_to_one.is_none());
1657 unsigned_channel_update.timestamp += 100;
1658 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1659 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1660 let valid_channel_update = ChannelUpdate {
1661 signature: secp_ctx.sign(&msghash, node_1_privkey),
1662 contents: unsigned_channel_update.clone()
1664 // Return false because contains excess data
1665 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1666 Ok(res) => assert!(!res),
1669 unsigned_channel_update.timestamp += 10;
1671 unsigned_channel_update.short_channel_id += 1;
1672 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1673 let valid_channel_update = ChannelUpdate {
1674 signature: secp_ctx.sign(&msghash, node_1_privkey),
1675 contents: unsigned_channel_update.clone()
1678 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1680 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
1682 unsigned_channel_update.short_channel_id = short_channel_id;
1684 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(MAX_VALUE_MSAT + 1);
1685 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1686 let valid_channel_update = ChannelUpdate {
1687 signature: secp_ctx.sign(&msghash, node_1_privkey),
1688 contents: unsigned_channel_update.clone()
1691 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1693 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
1695 unsigned_channel_update.htlc_maximum_msat = OptionalField::Absent;
1697 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(amount_sats * 1000 + 1);
1698 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1699 let valid_channel_update = ChannelUpdate {
1700 signature: secp_ctx.sign(&msghash, node_1_privkey),
1701 contents: unsigned_channel_update.clone()
1704 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1706 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
1708 unsigned_channel_update.htlc_maximum_msat = OptionalField::Absent;
1710 // Even though previous update was not relayed further, we still accepted it,
1711 // so we now won't accept update before the previous one.
1712 unsigned_channel_update.timestamp -= 10;
1713 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1714 let valid_channel_update = ChannelUpdate {
1715 signature: secp_ctx.sign(&msghash, node_1_privkey),
1716 contents: unsigned_channel_update.clone()
1719 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1721 Err(e) => assert_eq!(e.err, "Update older than last processed update")
1723 unsigned_channel_update.timestamp += 500;
1725 let fake_msghash = hash_to_message!(&zero_hash);
1726 let invalid_sig_channel_update = ChannelUpdate {
1727 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1728 contents: unsigned_channel_update.clone()
1731 match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) {
1733 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1739 fn handling_network_update() {
1740 let logger = test_utils::TestLogger::new();
1741 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1742 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1743 let network_graph = NetworkGraph::new(genesis_hash);
1744 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, Some(chain_source.clone()), &logger);
1745 let secp_ctx = Secp256k1::new();
1747 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1748 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1749 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1750 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1751 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1752 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1754 let short_channel_id = 0;
1755 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1756 let network_graph = &net_graph_msg_handler.network_graph;
1759 // There is no nodes in the table at the beginning.
1760 assert_eq!(network_graph.read_only().nodes().len(), 0);
1764 // Announce a channel we will update
1765 let unsigned_announcement = UnsignedChannelAnnouncement {
1766 features: ChannelFeatures::empty(),
1771 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1772 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1773 excess_data: Vec::new(),
1776 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1777 let valid_channel_announcement = ChannelAnnouncement {
1778 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1779 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1780 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1781 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1782 contents: unsigned_announcement.clone(),
1784 let chain_source: Option<&test_utils::TestChainSource> = None;
1785 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok());
1786 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
1788 let unsigned_channel_update = UnsignedChannelUpdate {
1793 cltv_expiry_delta: 144,
1794 htlc_minimum_msat: 1000000,
1795 htlc_maximum_msat: OptionalField::Absent,
1796 fee_base_msat: 10000,
1797 fee_proportional_millionths: 20,
1798 excess_data: Vec::new()
1800 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1801 let valid_channel_update = ChannelUpdate {
1802 signature: secp_ctx.sign(&msghash, node_1_privkey),
1803 contents: unsigned_channel_update.clone()
1806 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
1808 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1809 payment_hash: PaymentHash([0; 32]),
1810 rejected_by_dest: false,
1811 all_paths_failed: true,
1813 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
1814 msg: valid_channel_update,
1816 short_channel_id: None,
1822 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
1825 // Non-permanent closing just disables a channel
1827 match network_graph.read_only().channels().get(&short_channel_id) {
1829 Some(channel_info) => {
1830 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
1834 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1835 payment_hash: PaymentHash([0; 32]),
1836 rejected_by_dest: false,
1837 all_paths_failed: true,
1839 network_update: Some(NetworkUpdate::ChannelClosed {
1841 is_permanent: false,
1843 short_channel_id: None,
1849 match network_graph.read_only().channels().get(&short_channel_id) {
1851 Some(channel_info) => {
1852 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
1857 // Permanent closing deletes a channel
1859 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1860 payment_hash: PaymentHash([0; 32]),
1861 rejected_by_dest: false,
1862 all_paths_failed: true,
1864 network_update: Some(NetworkUpdate::ChannelClosed {
1868 short_channel_id: None,
1874 assert_eq!(network_graph.read_only().channels().len(), 0);
1875 // Nodes are also deleted because there are no associated channels anymore
1876 assert_eq!(network_graph.read_only().nodes().len(), 0);
1878 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
1882 fn getting_next_channel_announcements() {
1883 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1884 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1885 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1886 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1887 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1888 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1889 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1891 let short_channel_id = 1;
1892 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1894 // Channels were not announced yet.
1895 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1);
1896 assert_eq!(channels_with_announcements.len(), 0);
1899 // Announce a channel we will update
1900 let unsigned_announcement = UnsignedChannelAnnouncement {
1901 features: ChannelFeatures::empty(),
1906 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1907 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1908 excess_data: Vec::new(),
1911 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1912 let valid_channel_announcement = ChannelAnnouncement {
1913 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1914 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1915 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1916 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1917 contents: unsigned_announcement.clone(),
1919 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1925 // Contains initial channel announcement now.
1926 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1927 assert_eq!(channels_with_announcements.len(), 1);
1928 if let Some(channel_announcements) = channels_with_announcements.first() {
1929 let &(_, ref update_1, ref update_2) = channel_announcements;
1930 assert_eq!(update_1, &None);
1931 assert_eq!(update_2, &None);
1938 // Valid channel update
1939 let unsigned_channel_update = UnsignedChannelUpdate {
1944 cltv_expiry_delta: 144,
1945 htlc_minimum_msat: 1000000,
1946 htlc_maximum_msat: OptionalField::Absent,
1947 fee_base_msat: 10000,
1948 fee_proportional_millionths: 20,
1949 excess_data: Vec::new()
1951 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1952 let valid_channel_update = ChannelUpdate {
1953 signature: secp_ctx.sign(&msghash, node_1_privkey),
1954 contents: unsigned_channel_update.clone()
1956 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1962 // Now contains an initial announcement and an update.
1963 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1964 assert_eq!(channels_with_announcements.len(), 1);
1965 if let Some(channel_announcements) = channels_with_announcements.first() {
1966 let &(_, ref update_1, ref update_2) = channel_announcements;
1967 assert_ne!(update_1, &None);
1968 assert_eq!(update_2, &None);
1975 // Channel update with excess data.
1976 let unsigned_channel_update = UnsignedChannelUpdate {
1981 cltv_expiry_delta: 144,
1982 htlc_minimum_msat: 1000000,
1983 htlc_maximum_msat: OptionalField::Absent,
1984 fee_base_msat: 10000,
1985 fee_proportional_millionths: 20,
1986 excess_data: [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec()
1988 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1989 let valid_channel_update = ChannelUpdate {
1990 signature: secp_ctx.sign(&msghash, node_1_privkey),
1991 contents: unsigned_channel_update.clone()
1993 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1999 // Test that announcements with excess data won't be returned
2000 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
2001 assert_eq!(channels_with_announcements.len(), 1);
2002 if let Some(channel_announcements) = channels_with_announcements.first() {
2003 let &(_, ref update_1, ref update_2) = channel_announcements;
2004 assert_eq!(update_1, &None);
2005 assert_eq!(update_2, &None);
2010 // Further starting point have no channels after it
2011 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1);
2012 assert_eq!(channels_with_announcements.len(), 0);
2016 fn getting_next_node_announcements() {
2017 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2018 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2019 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2020 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2021 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2022 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2023 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2025 let short_channel_id = 1;
2026 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2029 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10);
2030 assert_eq!(next_announcements.len(), 0);
2033 // Announce a channel to add 2 nodes
2034 let unsigned_announcement = UnsignedChannelAnnouncement {
2035 features: ChannelFeatures::empty(),
2040 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
2041 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
2042 excess_data: Vec::new(),
2045 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2046 let valid_channel_announcement = ChannelAnnouncement {
2047 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
2048 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
2049 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
2050 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
2051 contents: unsigned_announcement.clone(),
2053 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
2060 // Nodes were never announced
2061 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
2062 assert_eq!(next_announcements.len(), 0);
2065 let mut unsigned_announcement = UnsignedNodeAnnouncement {
2066 features: NodeFeatures::known(),
2071 addresses: Vec::new(),
2072 excess_address_data: Vec::new(),
2073 excess_data: Vec::new(),
2075 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2076 let valid_announcement = NodeAnnouncement {
2077 signature: secp_ctx.sign(&msghash, node_1_privkey),
2078 contents: unsigned_announcement.clone()
2080 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2085 unsigned_announcement.node_id = node_id_2;
2086 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2087 let valid_announcement = NodeAnnouncement {
2088 signature: secp_ctx.sign(&msghash, node_2_privkey),
2089 contents: unsigned_announcement.clone()
2092 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2098 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
2099 assert_eq!(next_announcements.len(), 2);
2101 // Skip the first node.
2102 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2103 assert_eq!(next_announcements.len(), 1);
2106 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2107 let unsigned_announcement = UnsignedNodeAnnouncement {
2108 features: NodeFeatures::known(),
2113 addresses: Vec::new(),
2114 excess_address_data: Vec::new(),
2115 excess_data: [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec(),
2117 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2118 let valid_announcement = NodeAnnouncement {
2119 signature: secp_ctx.sign(&msghash, node_2_privkey),
2120 contents: unsigned_announcement.clone()
2122 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2123 Ok(res) => assert!(!res),
2128 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2129 assert_eq!(next_announcements.len(), 0);
2133 fn network_graph_serialization() {
2134 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2136 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2137 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2138 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2139 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2141 // Announce a channel to add a corresponding node.
2142 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2143 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2144 let unsigned_announcement = UnsignedChannelAnnouncement {
2145 features: ChannelFeatures::known(),
2146 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
2147 short_channel_id: 0,
2150 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
2151 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
2152 excess_data: Vec::new(),
2155 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2156 let valid_announcement = ChannelAnnouncement {
2157 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
2158 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
2159 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
2160 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
2161 contents: unsigned_announcement.clone(),
2163 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2164 Ok(res) => assert!(res),
2169 let node_id = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2170 let unsigned_announcement = UnsignedNodeAnnouncement {
2171 features: NodeFeatures::known(),
2176 addresses: Vec::new(),
2177 excess_address_data: Vec::new(),
2178 excess_data: Vec::new(),
2180 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2181 let valid_announcement = NodeAnnouncement {
2182 signature: secp_ctx.sign(&msghash, node_1_privkey),
2183 contents: unsigned_announcement.clone()
2186 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2191 let network = &net_graph_msg_handler.network_graph;
2192 let mut w = test_utils::TestVecWriter(Vec::new());
2193 assert!(!network.read_only().nodes().is_empty());
2194 assert!(!network.read_only().channels().is_empty());
2195 network.write(&mut w).unwrap();
2196 assert!(<NetworkGraph>::read(&mut io::Cursor::new(&w.0)).unwrap() == *network);
2200 fn calling_sync_routing_table() {
2201 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2202 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2203 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2205 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2206 let first_blocknum = 0;
2207 let number_of_blocks = 0xffff_ffff;
2209 // It should ignore if gossip_queries feature is not enabled
2211 let init_msg = Init { features: InitFeatures::known().clear_gossip_queries() };
2212 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2213 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2214 assert_eq!(events.len(), 0);
2217 // It should send a query_channel_message with the correct information
2219 let init_msg = Init { features: InitFeatures::known() };
2220 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2221 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2222 assert_eq!(events.len(), 1);
2224 MessageSendEvent::SendChannelRangeQuery{ node_id, msg } => {
2225 assert_eq!(node_id, &node_id_1);
2226 assert_eq!(msg.chain_hash, chain_hash);
2227 assert_eq!(msg.first_blocknum, first_blocknum);
2228 assert_eq!(msg.number_of_blocks, number_of_blocks);
2230 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2234 // It should not enqueue a query when should_request_full_sync return false.
2235 // The initial implementation allows syncing with the first 5 peers after
2236 // which should_request_full_sync will return false
2238 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2239 let init_msg = Init { features: InitFeatures::known() };
2241 let node_privkey = &SecretKey::from_slice(&[n; 32]).unwrap();
2242 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2243 net_graph_msg_handler.sync_routing_table(&node_id, &init_msg);
2244 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2246 assert_eq!(events.len(), 1);
2248 assert_eq!(events.len(), 0);
2256 fn handling_reply_channel_range() {
2257 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2258 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2259 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2261 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2263 // Test receipt of a single reply that should enqueue an SCID query
2264 // matching the SCIDs in the reply
2266 let result = net_graph_msg_handler.handle_reply_channel_range(&node_id_1, ReplyChannelRange {
2268 sync_complete: true,
2270 number_of_blocks: 2000,
2271 short_channel_ids: vec![
2272 0x0003e0_000000_0000, // 992x0x0
2273 0x0003e8_000000_0000, // 1000x0x0
2274 0x0003e9_000000_0000, // 1001x0x0
2275 0x0003f0_000000_0000, // 1008x0x0
2276 0x00044c_000000_0000, // 1100x0x0
2277 0x0006e0_000000_0000, // 1760x0x0
2280 assert!(result.is_ok());
2282 // We expect to emit a query_short_channel_ids message with the received scids
2283 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2284 assert_eq!(events.len(), 1);
2286 MessageSendEvent::SendShortIdsQuery { node_id, msg } => {
2287 assert_eq!(node_id, &node_id_1);
2288 assert_eq!(msg.chain_hash, chain_hash);
2289 assert_eq!(msg.short_channel_ids, vec![
2290 0x0003e0_000000_0000, // 992x0x0
2291 0x0003e8_000000_0000, // 1000x0x0
2292 0x0003e9_000000_0000, // 1001x0x0
2293 0x0003f0_000000_0000, // 1008x0x0
2294 0x00044c_000000_0000, // 1100x0x0
2295 0x0006e0_000000_0000, // 1760x0x0
2298 _ => panic!("expected MessageSendEvent::SendShortIdsQuery"),
2304 fn handling_reply_short_channel_ids() {
2305 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2306 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2307 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2309 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2311 // Test receipt of a successful reply
2313 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2315 full_information: true,
2317 assert!(result.is_ok());
2320 // Test receipt of a reply that indicates the peer does not maintain up-to-date information
2321 // for the chain_hash requested in the query.
2323 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2325 full_information: false,
2327 assert!(result.is_err());
2328 assert_eq!(result.err().unwrap().err, "Received reply_short_channel_ids_end with no information");
2333 fn handling_query_channel_range() {
2334 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2336 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2337 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2338 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2339 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2340 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2341 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2342 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2343 let bitcoin_key_1 = PublicKey::from_secret_key(&secp_ctx, node_1_btckey);
2344 let bitcoin_key_2 = PublicKey::from_secret_key(&secp_ctx, node_2_btckey);
2346 let mut scids: Vec<u64> = vec![
2347 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2348 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2351 // used for testing multipart reply across blocks
2352 for block in 100000..=108001 {
2353 scids.push(scid_from_parts(block, 0, 0).unwrap());
2356 // used for testing resumption on same block
2357 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2360 let unsigned_announcement = UnsignedChannelAnnouncement {
2361 features: ChannelFeatures::known(),
2362 chain_hash: chain_hash.clone(),
2363 short_channel_id: scid,
2368 excess_data: Vec::new(),
2371 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2372 let valid_announcement = ChannelAnnouncement {
2373 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
2374 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
2375 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
2376 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
2377 contents: unsigned_announcement.clone(),
2379 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2385 // Error when number_of_blocks=0
2386 do_handling_query_channel_range(
2387 &net_graph_msg_handler,
2390 chain_hash: chain_hash.clone(),
2392 number_of_blocks: 0,
2395 vec![ReplyChannelRange {
2396 chain_hash: chain_hash.clone(),
2398 number_of_blocks: 0,
2399 sync_complete: true,
2400 short_channel_ids: vec![]
2404 // Error when wrong chain
2405 do_handling_query_channel_range(
2406 &net_graph_msg_handler,
2409 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2411 number_of_blocks: 0xffff_ffff,
2414 vec![ReplyChannelRange {
2415 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2417 number_of_blocks: 0xffff_ffff,
2418 sync_complete: true,
2419 short_channel_ids: vec![],
2423 // Error when first_blocknum > 0xffffff
2424 do_handling_query_channel_range(
2425 &net_graph_msg_handler,
2428 chain_hash: chain_hash.clone(),
2429 first_blocknum: 0x01000000,
2430 number_of_blocks: 0xffff_ffff,
2433 vec![ReplyChannelRange {
2434 chain_hash: chain_hash.clone(),
2435 first_blocknum: 0x01000000,
2436 number_of_blocks: 0xffff_ffff,
2437 sync_complete: true,
2438 short_channel_ids: vec![]
2442 // Empty reply when max valid SCID block num
2443 do_handling_query_channel_range(
2444 &net_graph_msg_handler,
2447 chain_hash: chain_hash.clone(),
2448 first_blocknum: 0xffffff,
2449 number_of_blocks: 1,
2454 chain_hash: chain_hash.clone(),
2455 first_blocknum: 0xffffff,
2456 number_of_blocks: 1,
2457 sync_complete: true,
2458 short_channel_ids: vec![]
2463 // No results in valid query range
2464 do_handling_query_channel_range(
2465 &net_graph_msg_handler,
2468 chain_hash: chain_hash.clone(),
2469 first_blocknum: 1000,
2470 number_of_blocks: 1000,
2475 chain_hash: chain_hash.clone(),
2476 first_blocknum: 1000,
2477 number_of_blocks: 1000,
2478 sync_complete: true,
2479 short_channel_ids: vec![],
2484 // Overflow first_blocknum + number_of_blocks
2485 do_handling_query_channel_range(
2486 &net_graph_msg_handler,
2489 chain_hash: chain_hash.clone(),
2490 first_blocknum: 0xfe0000,
2491 number_of_blocks: 0xffffffff,
2496 chain_hash: chain_hash.clone(),
2497 first_blocknum: 0xfe0000,
2498 number_of_blocks: 0xffffffff - 0xfe0000,
2499 sync_complete: true,
2500 short_channel_ids: vec![
2501 0xfffffe_ffffff_ffff, // max
2507 // Single block exactly full
2508 do_handling_query_channel_range(
2509 &net_graph_msg_handler,
2512 chain_hash: chain_hash.clone(),
2513 first_blocknum: 100000,
2514 number_of_blocks: 8000,
2519 chain_hash: chain_hash.clone(),
2520 first_blocknum: 100000,
2521 number_of_blocks: 8000,
2522 sync_complete: true,
2523 short_channel_ids: (100000..=107999)
2524 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2530 // Multiple split on new block
2531 do_handling_query_channel_range(
2532 &net_graph_msg_handler,
2535 chain_hash: chain_hash.clone(),
2536 first_blocknum: 100000,
2537 number_of_blocks: 8001,
2542 chain_hash: chain_hash.clone(),
2543 first_blocknum: 100000,
2544 number_of_blocks: 7999,
2545 sync_complete: false,
2546 short_channel_ids: (100000..=107999)
2547 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2551 chain_hash: chain_hash.clone(),
2552 first_blocknum: 107999,
2553 number_of_blocks: 2,
2554 sync_complete: true,
2555 short_channel_ids: vec![
2556 scid_from_parts(108000, 0, 0).unwrap(),
2562 // Multiple split on same block
2563 do_handling_query_channel_range(
2564 &net_graph_msg_handler,
2567 chain_hash: chain_hash.clone(),
2568 first_blocknum: 100002,
2569 number_of_blocks: 8000,
2574 chain_hash: chain_hash.clone(),
2575 first_blocknum: 100002,
2576 number_of_blocks: 7999,
2577 sync_complete: false,
2578 short_channel_ids: (100002..=108001)
2579 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2583 chain_hash: chain_hash.clone(),
2584 first_blocknum: 108001,
2585 number_of_blocks: 1,
2586 sync_complete: true,
2587 short_channel_ids: vec![
2588 scid_from_parts(108001, 1, 0).unwrap(),
2595 fn do_handling_query_channel_range(
2596 net_graph_msg_handler: &NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2597 test_node_id: &PublicKey,
2598 msg: QueryChannelRange,
2600 expected_replies: Vec<ReplyChannelRange>
2602 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2603 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2604 let query_end_blocknum = msg.end_blocknum();
2605 let result = net_graph_msg_handler.handle_query_channel_range(test_node_id, msg);
2608 assert!(result.is_ok());
2610 assert!(result.is_err());
2613 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2614 assert_eq!(events.len(), expected_replies.len());
2616 for i in 0..events.len() {
2617 let expected_reply = &expected_replies[i];
2619 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2620 assert_eq!(node_id, test_node_id);
2621 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2622 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2623 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2624 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2625 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2627 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2628 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2629 assert!(msg.first_blocknum >= max_firstblocknum);
2630 max_firstblocknum = msg.first_blocknum;
2631 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2633 // Check that the last block count is >= the query's end_blocknum
2634 if i == events.len() - 1 {
2635 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2638 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2644 fn handling_query_short_channel_ids() {
2645 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2646 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2647 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2649 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2651 let result = net_graph_msg_handler.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2653 short_channel_ids: vec![0x0003e8_000000_0000],
2655 assert!(result.is_err());
2659 #[cfg(all(test, feature = "unstable"))]
2667 fn read_network_graph(bench: &mut Bencher) {
2668 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2669 let mut v = Vec::new();
2670 d.read_to_end(&mut v).unwrap();
2672 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v)).unwrap();
2677 fn write_network_graph(bench: &mut Bencher) {
2678 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2679 let net_graph = NetworkGraph::read(&mut d).unwrap();
2681 let _ = net_graph.encode();