1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level network map tracking logic lives here.
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::key::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::script::Builder;
20 use bitcoin::blockdata::transaction::TxOut;
21 use bitcoin::blockdata::opcodes;
22 use bitcoin::hash_types::BlockHash;
26 use ln::features::{ChannelFeatures, NodeFeatures};
27 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, OptionalField};
29 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
31 use util::ser::{Writeable, Readable, Writer};
32 use util::logger::{Logger, Level};
33 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
34 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
44 use bitcoin::hashes::hex::ToHex;
46 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
47 /// refuse to relay the message.
48 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
50 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
51 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
52 const MAX_SCIDS_PER_REPLY: usize = 8000;
54 /// Represents the compressed public key of a node
55 #[derive(Clone, Copy)]
56 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
59 /// Create a new NodeId from a public key
60 pub fn from_pubkey(pubkey: &PublicKey) -> Self {
61 NodeId(pubkey.serialize())
64 /// Get the public key slice from this NodeId
65 pub fn as_slice(&self) -> &[u8] {
70 impl fmt::Debug for NodeId {
71 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
72 write!(f, "NodeId({})", log_bytes!(self.0))
76 impl core::hash::Hash for NodeId {
77 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
84 impl PartialEq for NodeId {
85 fn eq(&self, other: &Self) -> bool {
86 self.0[..] == other.0[..]
90 impl cmp::PartialOrd for NodeId {
91 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
97 fn cmp(&self, other: &Self) -> cmp::Ordering {
98 self.0[..].cmp(&other.0[..])
102 impl Writeable for NodeId {
103 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
104 writer.write_all(&self.0)?;
109 impl Readable for NodeId {
110 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
111 let mut buf = [0; PUBLIC_KEY_SIZE];
112 reader.read_exact(&mut buf)?;
117 /// Represents the network as nodes and channels between them
118 pub struct NetworkGraph {
119 genesis_hash: BlockHash,
120 // Lock order: channels -> nodes
121 channels: RwLock<BTreeMap<u64, ChannelInfo>>,
122 nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
125 impl Clone for NetworkGraph {
126 fn clone(&self) -> Self {
127 let channels = self.channels.read().unwrap();
128 let nodes = self.nodes.read().unwrap();
130 genesis_hash: self.genesis_hash.clone(),
131 channels: RwLock::new(channels.clone()),
132 nodes: RwLock::new(nodes.clone()),
137 /// A read-only view of [`NetworkGraph`].
138 pub struct ReadOnlyNetworkGraph<'a> {
139 channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
140 nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
143 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
144 /// return packet by a node along the route. See [BOLT #4] for details.
146 /// [BOLT #4]: https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
147 #[derive(Clone, Debug, PartialEq)]
148 pub enum NetworkUpdate {
149 /// An error indicating a `channel_update` messages should be applied via
150 /// [`NetworkGraph::update_channel`].
151 ChannelUpdateMessage {
152 /// The update to apply via [`NetworkGraph::update_channel`].
155 /// An error indicating only that a channel has been closed, which should be applied via
156 /// [`NetworkGraph::close_channel_from_update`].
158 /// The short channel id of the closed channel.
159 short_channel_id: u64,
160 /// Whether the channel should be permanently removed or temporarily disabled until a new
161 /// `channel_update` message is received.
164 /// An error indicating only that a node has failed, which should be applied via
165 /// [`NetworkGraph::fail_node`].
167 /// The node id of the failed node.
169 /// Whether the node should be permanently removed from consideration or can be restored
170 /// when a new `channel_update` message is received.
175 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
176 (0, ChannelUpdateMessage) => {
179 (2, ChannelClosed) => {
180 (0, short_channel_id, required),
181 (2, is_permanent, required),
183 (4, NodeFailure) => {
184 (0, node_id, required),
185 (2, is_permanent, required),
189 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> EventHandler for NetGraphMsgHandler<G, C, L>
190 where C::Target: chain::Access, L::Target: Logger {
191 fn handle_event(&self, event: &Event) {
192 if let Event::PaymentPathFailed { payment_hash: _, rejected_by_dest: _, network_update, .. } = event {
193 if let Some(network_update) = network_update {
194 self.handle_network_update(network_update);
200 /// Receives and validates network updates from peers,
201 /// stores authentic and relevant data as a network graph.
202 /// This network graph is then used for routing payments.
203 /// Provides interface to help with initial routing sync by
204 /// serving historical announcements.
206 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
207 /// [`NetworkGraph`].
208 pub struct NetGraphMsgHandler<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref>
209 where C::Target: chain::Access, L::Target: Logger
211 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
213 chain_access: Option<C>,
214 full_syncs_requested: AtomicUsize,
215 pending_events: Mutex<Vec<MessageSendEvent>>,
219 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> NetGraphMsgHandler<G, C, L>
220 where C::Target: chain::Access, L::Target: Logger
222 /// Creates a new tracker of the actual state of the network of channels and nodes,
223 /// assuming an existing Network Graph.
224 /// Chain monitor is used to make sure announced channels exist on-chain,
225 /// channel data is correct, and that the announcement is signed with
226 /// channel owners' keys.
227 pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
229 secp_ctx: Secp256k1::verification_only(),
231 full_syncs_requested: AtomicUsize::new(0),
233 pending_events: Mutex::new(vec![]),
238 /// Adds a provider used to check new announcements. Does not affect
239 /// existing announcements unless they are updated.
240 /// Add, update or remove the provider would replace the current one.
241 pub fn add_chain_access(&mut self, chain_access: Option<C>) {
242 self.chain_access = chain_access;
245 /// Returns true when a full routing table sync should be performed with a peer.
246 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
247 //TODO: Determine whether to request a full sync based on the network map.
248 const FULL_SYNCS_TO_REQUEST: usize = 5;
249 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
250 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
257 /// Applies changes to the [`NetworkGraph`] from the given update.
258 fn handle_network_update(&self, update: &NetworkUpdate) {
260 NetworkUpdate::ChannelUpdateMessage { ref msg } => {
261 let short_channel_id = msg.contents.short_channel_id;
262 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
263 let status = if is_enabled { "enabled" } else { "disabled" };
264 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
265 let _ = self.network_graph.update_channel(msg, &self.secp_ctx);
267 NetworkUpdate::ChannelClosed { short_channel_id, is_permanent } => {
268 let action = if is_permanent { "Removing" } else { "Disabling" };
269 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
270 self.network_graph.close_channel_from_update(short_channel_id, is_permanent);
272 NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
273 let action = if is_permanent { "Removing" } else { "Disabling" };
274 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
275 self.network_graph.fail_node(node_id, is_permanent);
281 macro_rules! secp_verify_sig {
282 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr ) => {
283 match $secp_ctx.verify($msg, $sig, $pubkey) {
285 Err(_) => return Err(LightningError{err: "Invalid signature from remote node".to_owned(), action: ErrorAction::IgnoreError}),
290 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> RoutingMessageHandler for NetGraphMsgHandler<G, C, L>
291 where C::Target: chain::Access, L::Target: Logger
293 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
294 self.network_graph.update_node_from_announcement(msg, &self.secp_ctx)?;
295 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
296 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
297 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
300 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
301 self.network_graph.update_channel_from_announcement(msg, &self.chain_access, &self.secp_ctx)?;
302 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
303 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
306 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
307 self.network_graph.update_channel(msg, &self.secp_ctx)?;
308 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
311 fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
312 let mut result = Vec::with_capacity(batch_amount as usize);
313 let channels = self.network_graph.channels.read().unwrap();
314 let mut iter = channels.range(starting_point..);
315 while result.len() < batch_amount as usize {
316 if let Some((_, ref chan)) = iter.next() {
317 if chan.announcement_message.is_some() {
318 let chan_announcement = chan.announcement_message.clone().unwrap();
319 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
320 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
321 if let Some(one_to_two) = chan.one_to_two.as_ref() {
322 one_to_two_announcement = one_to_two.last_update_message.clone();
324 if let Some(two_to_one) = chan.two_to_one.as_ref() {
325 two_to_one_announcement = two_to_one.last_update_message.clone();
327 result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement));
329 // TODO: We may end up sending un-announced channel_updates if we are sending
330 // initial sync data while receiving announce/updates for this channel.
339 fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement> {
340 let mut result = Vec::with_capacity(batch_amount as usize);
341 let nodes = self.network_graph.nodes.read().unwrap();
342 let mut iter = if let Some(pubkey) = starting_point {
343 let mut iter = nodes.range(NodeId::from_pubkey(pubkey)..);
347 nodes.range::<NodeId, _>(..)
349 while result.len() < batch_amount as usize {
350 if let Some((_, ref node)) = iter.next() {
351 if let Some(node_info) = node.announcement_info.as_ref() {
352 if node_info.announcement_message.is_some() {
353 result.push(node_info.announcement_message.clone().unwrap());
363 /// Initiates a stateless sync of routing gossip information with a peer
364 /// using gossip_queries. The default strategy used by this implementation
365 /// is to sync the full block range with several peers.
367 /// We should expect one or more reply_channel_range messages in response
368 /// to our query_channel_range. Each reply will enqueue a query_scid message
369 /// to request gossip messages for each channel. The sync is considered complete
370 /// when the final reply_scids_end message is received, though we are not
371 /// tracking this directly.
372 fn sync_routing_table(&self, their_node_id: &PublicKey, init_msg: &Init) {
374 // We will only perform a sync with peers that support gossip_queries.
375 if !init_msg.features.supports_gossip_queries() {
379 // Check if we need to perform a full synchronization with this peer
380 if !self.should_request_full_sync(&their_node_id) {
384 let first_blocknum = 0;
385 let number_of_blocks = 0xffffffff;
386 log_debug!(self.logger, "Sending query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), first_blocknum, number_of_blocks);
387 let mut pending_events = self.pending_events.lock().unwrap();
388 pending_events.push(MessageSendEvent::SendChannelRangeQuery {
389 node_id: their_node_id.clone(),
390 msg: QueryChannelRange {
391 chain_hash: self.network_graph.genesis_hash,
398 /// Statelessly processes a reply to a channel range query by immediately
399 /// sending an SCID query with SCIDs in the reply. To keep this handler
400 /// stateless, it does not validate the sequencing of replies for multi-
401 /// reply ranges. It does not validate whether the reply(ies) cover the
402 /// queried range. It also does not filter SCIDs to only those in the
403 /// original query range. We also do not validate that the chain_hash
404 /// matches the chain_hash of the NetworkGraph. Any chan_ann message that
405 /// does not match our chain_hash will be rejected when the announcement is
407 fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError> {
408 log_debug!(self.logger, "Handling reply_channel_range peer={}, first_blocknum={}, number_of_blocks={}, sync_complete={}, scids={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks, msg.sync_complete, msg.short_channel_ids.len(),);
410 log_debug!(self.logger, "Sending query_short_channel_ids peer={}, batch_size={}", log_pubkey!(their_node_id), msg.short_channel_ids.len());
411 let mut pending_events = self.pending_events.lock().unwrap();
412 pending_events.push(MessageSendEvent::SendShortIdsQuery {
413 node_id: their_node_id.clone(),
414 msg: QueryShortChannelIds {
415 chain_hash: msg.chain_hash,
416 short_channel_ids: msg.short_channel_ids,
423 /// When an SCID query is initiated the remote peer will begin streaming
424 /// gossip messages. In the event of a failure, we may have received
425 /// some channel information. Before trying with another peer, the
426 /// caller should update its set of SCIDs that need to be queried.
427 fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
428 log_debug!(self.logger, "Handling reply_short_channel_ids_end peer={}, full_information={}", log_pubkey!(their_node_id), msg.full_information);
430 // If the remote node does not have up-to-date information for the
431 // chain_hash they will set full_information=false. We can fail
432 // the result and try again with a different peer.
433 if !msg.full_information {
434 return Err(LightningError {
435 err: String::from("Received reply_short_channel_ids_end with no information"),
436 action: ErrorAction::IgnoreError
443 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
444 /// are in the specified block range. Due to message size limits, large range
445 /// queries may result in several reply messages. This implementation enqueues
446 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
447 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
448 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
449 /// memory constrained systems.
450 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
451 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
453 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
455 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
456 // If so, we manually cap the ending block to avoid this overflow.
457 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
459 // Per spec, we must reply to a query. Send an empty message when things are invalid.
460 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
461 let mut pending_events = self.pending_events.lock().unwrap();
462 pending_events.push(MessageSendEvent::SendReplyChannelRange {
463 node_id: their_node_id.clone(),
464 msg: ReplyChannelRange {
465 chain_hash: msg.chain_hash.clone(),
466 first_blocknum: msg.first_blocknum,
467 number_of_blocks: msg.number_of_blocks,
469 short_channel_ids: vec![],
472 return Err(LightningError {
473 err: String::from("query_channel_range could not be processed"),
474 action: ErrorAction::IgnoreError,
478 // Creates channel batches. We are not checking if the channel is routable
479 // (has at least one update). A peer may still want to know the channel
480 // exists even if its not yet routable.
481 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
482 let channels = self.network_graph.channels.read().unwrap();
483 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
484 if let Some(chan_announcement) = &chan.announcement_message {
485 // Construct a new batch if last one is full
486 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
487 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
490 let batch = batches.last_mut().unwrap();
491 batch.push(chan_announcement.contents.short_channel_id);
496 let mut pending_events = self.pending_events.lock().unwrap();
497 let batch_count = batches.len();
498 let mut prev_batch_endblock = msg.first_blocknum;
499 for (batch_index, batch) in batches.into_iter().enumerate() {
500 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
501 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
503 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
504 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
505 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
506 // significant diversion from the requirements set by the spec, and, in case of blocks
507 // with no channel opens (e.g. empty blocks), requires that we use the previous value
508 // and *not* derive the first_blocknum from the actual first block of the reply.
509 let first_blocknum = prev_batch_endblock;
511 // Each message carries the number of blocks (from the `first_blocknum`) its contents
512 // fit in. Though there is no requirement that we use exactly the number of blocks its
513 // contents are from, except for the bogus requirements c-lightning enforces, above.
515 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
516 // >= the query's end block. Thus, for the last reply, we calculate the difference
517 // between the query's end block and the start of the reply.
519 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
520 // first_blocknum will be either msg.first_blocknum or a higher block height.
521 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
522 (true, msg.end_blocknum() - first_blocknum)
524 // Prior replies should use the number of blocks that fit into the reply. Overflow
525 // safe since first_blocknum is always <= last SCID's block.
527 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
530 prev_batch_endblock = first_blocknum + number_of_blocks;
532 pending_events.push(MessageSendEvent::SendReplyChannelRange {
533 node_id: their_node_id.clone(),
534 msg: ReplyChannelRange {
535 chain_hash: msg.chain_hash.clone(),
539 short_channel_ids: batch,
547 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
550 err: String::from("Not implemented"),
551 action: ErrorAction::IgnoreError,
556 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> MessageSendEventsProvider for NetGraphMsgHandler<G, C, L>
558 C::Target: chain::Access,
561 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
562 let mut ret = Vec::new();
563 let mut pending_events = self.pending_events.lock().unwrap();
564 core::mem::swap(&mut ret, &mut pending_events);
569 #[derive(Clone, Debug, PartialEq)]
570 /// Details about one direction of a channel. Received
571 /// within a channel update.
572 pub struct DirectionalChannelInfo {
573 /// When the last update to the channel direction was issued.
574 /// Value is opaque, as set in the announcement.
575 pub last_update: u32,
576 /// Whether the channel can be currently used for payments (in this one direction).
578 /// The difference in CLTV values that you must have when routing through this channel.
579 pub cltv_expiry_delta: u16,
580 /// The minimum value, which must be relayed to the next hop via the channel
581 pub htlc_minimum_msat: u64,
582 /// The maximum value which may be relayed to the next hop via the channel.
583 pub htlc_maximum_msat: Option<u64>,
584 /// Fees charged when the channel is used for routing
585 pub fees: RoutingFees,
586 /// Most recent update for the channel received from the network
587 /// Mostly redundant with the data we store in fields explicitly.
588 /// Everything else is useful only for sending out for initial routing sync.
589 /// Not stored if contains excess data to prevent DoS.
590 pub last_update_message: Option<ChannelUpdate>,
593 impl fmt::Display for DirectionalChannelInfo {
594 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
595 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
600 impl_writeable_tlv_based!(DirectionalChannelInfo, {
601 (0, last_update, required),
602 (2, enabled, required),
603 (4, cltv_expiry_delta, required),
604 (6, htlc_minimum_msat, required),
605 (8, htlc_maximum_msat, required),
606 (10, fees, required),
607 (12, last_update_message, required),
610 #[derive(Clone, Debug, PartialEq)]
611 /// Details about a channel (both directions).
612 /// Received within a channel announcement.
613 pub struct ChannelInfo {
614 /// Protocol features of a channel communicated during its announcement
615 pub features: ChannelFeatures,
616 /// Source node of the first direction of a channel
617 pub node_one: NodeId,
618 /// Details about the first direction of a channel
619 pub one_to_two: Option<DirectionalChannelInfo>,
620 /// Source node of the second direction of a channel
621 pub node_two: NodeId,
622 /// Details about the second direction of a channel
623 pub two_to_one: Option<DirectionalChannelInfo>,
624 /// The channel capacity as seen on-chain, if chain lookup is available.
625 pub capacity_sats: Option<u64>,
626 /// An initial announcement of the channel
627 /// Mostly redundant with the data we store in fields explicitly.
628 /// Everything else is useful only for sending out for initial routing sync.
629 /// Not stored if contains excess data to prevent DoS.
630 pub announcement_message: Option<ChannelAnnouncement>,
633 impl fmt::Display for ChannelInfo {
634 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
635 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
636 log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
641 impl_writeable_tlv_based!(ChannelInfo, {
642 (0, features, required),
643 (2, node_one, required),
644 (4, one_to_two, required),
645 (6, node_two, required),
646 (8, two_to_one, required),
647 (10, capacity_sats, required),
648 (12, announcement_message, required),
652 /// Fees for routing via a given channel or a node
653 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
654 pub struct RoutingFees {
655 /// Flat routing fee in satoshis
657 /// Liquidity-based routing fee in millionths of a routed amount.
658 /// In other words, 10000 is 1%.
659 pub proportional_millionths: u32,
662 impl_writeable_tlv_based!(RoutingFees, {
663 (0, base_msat, required),
664 (2, proportional_millionths, required)
667 #[derive(Clone, Debug, PartialEq)]
668 /// Information received in the latest node_announcement from this node.
669 pub struct NodeAnnouncementInfo {
670 /// Protocol features the node announced support for
671 pub features: NodeFeatures,
672 /// When the last known update to the node state was issued.
673 /// Value is opaque, as set in the announcement.
674 pub last_update: u32,
675 /// Color assigned to the node
677 /// Moniker assigned to the node.
678 /// May be invalid or malicious (eg control chars),
679 /// should not be exposed to the user.
681 /// Internet-level addresses via which one can connect to the node
682 pub addresses: Vec<NetAddress>,
683 /// An initial announcement of the node
684 /// Mostly redundant with the data we store in fields explicitly.
685 /// Everything else is useful only for sending out for initial routing sync.
686 /// Not stored if contains excess data to prevent DoS.
687 pub announcement_message: Option<NodeAnnouncement>
690 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
691 (0, features, required),
692 (2, last_update, required),
694 (6, alias, required),
695 (8, announcement_message, option),
696 (10, addresses, vec_type),
699 #[derive(Clone, Debug, PartialEq)]
700 /// Details about a node in the network, known from the network announcement.
701 pub struct NodeInfo {
702 /// All valid channels a node has announced
703 pub channels: Vec<u64>,
704 /// Lowest fees enabling routing via any of the enabled, known channels to a node.
705 /// The two fields (flat and proportional fee) are independent,
706 /// meaning they don't have to refer to the same channel.
707 pub lowest_inbound_channel_fees: Option<RoutingFees>,
708 /// More information about a node from node_announcement.
709 /// Optional because we store a Node entry after learning about it from
710 /// a channel announcement, but before receiving a node announcement.
711 pub announcement_info: Option<NodeAnnouncementInfo>
714 impl fmt::Display for NodeInfo {
715 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
716 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
717 self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
722 impl_writeable_tlv_based!(NodeInfo, {
723 (0, lowest_inbound_channel_fees, option),
724 (2, announcement_info, option),
725 (4, channels, vec_type),
728 const SERIALIZATION_VERSION: u8 = 1;
729 const MIN_SERIALIZATION_VERSION: u8 = 1;
731 impl Writeable for NetworkGraph {
732 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
733 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
735 self.genesis_hash.write(writer)?;
736 let channels = self.channels.read().unwrap();
737 (channels.len() as u64).write(writer)?;
738 for (ref chan_id, ref chan_info) in channels.iter() {
739 (*chan_id).write(writer)?;
740 chan_info.write(writer)?;
742 let nodes = self.nodes.read().unwrap();
743 (nodes.len() as u64).write(writer)?;
744 for (ref node_id, ref node_info) in nodes.iter() {
745 node_id.write(writer)?;
746 node_info.write(writer)?;
749 write_tlv_fields!(writer, {});
754 impl Readable for NetworkGraph {
755 fn read<R: io::Read>(reader: &mut R) -> Result<NetworkGraph, DecodeError> {
756 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
758 let genesis_hash: BlockHash = Readable::read(reader)?;
759 let channels_count: u64 = Readable::read(reader)?;
760 let mut channels = BTreeMap::new();
761 for _ in 0..channels_count {
762 let chan_id: u64 = Readable::read(reader)?;
763 let chan_info = Readable::read(reader)?;
764 channels.insert(chan_id, chan_info);
766 let nodes_count: u64 = Readable::read(reader)?;
767 let mut nodes = BTreeMap::new();
768 for _ in 0..nodes_count {
769 let node_id = Readable::read(reader)?;
770 let node_info = Readable::read(reader)?;
771 nodes.insert(node_id, node_info);
773 read_tlv_fields!(reader, {});
777 channels: RwLock::new(channels),
778 nodes: RwLock::new(nodes),
783 impl fmt::Display for NetworkGraph {
784 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
785 writeln!(f, "Network map\n[Channels]")?;
786 for (key, val) in self.channels.read().unwrap().iter() {
787 writeln!(f, " {}: {}", key, val)?;
789 writeln!(f, "[Nodes]")?;
790 for (&node_id, val) in self.nodes.read().unwrap().iter() {
791 writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
797 impl PartialEq for NetworkGraph {
798 fn eq(&self, other: &Self) -> bool {
799 self.genesis_hash == other.genesis_hash &&
800 *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
801 *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
806 /// Creates a new, empty, network graph.
807 pub fn new(genesis_hash: BlockHash) -> NetworkGraph {
810 channels: RwLock::new(BTreeMap::new()),
811 nodes: RwLock::new(BTreeMap::new()),
815 /// Returns a read-only view of the network graph.
816 pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
817 let channels = self.channels.read().unwrap();
818 let nodes = self.nodes.read().unwrap();
819 ReadOnlyNetworkGraph {
825 /// For an already known node (from channel announcements), update its stored properties from a
826 /// given node announcement.
828 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
829 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
830 /// routing messages from a source using a protocol other than the lightning P2P protocol.
831 pub fn update_node_from_announcement<T: secp256k1::Verification>(&self, msg: &msgs::NodeAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
832 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
833 secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id);
834 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
837 /// For an already known node (from channel announcements), update its stored properties from a
838 /// given node announcement without verifying the associated signatures. Because we aren't
839 /// given the associated signatures here we cannot relay the node announcement to any of our
841 pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
842 self.update_node_from_announcement_intern(msg, None)
845 fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
846 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
847 None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
849 if let Some(node_info) = node.announcement_info.as_ref() {
850 // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
851 // updates to ensure you always have the latest one, only vaguely suggesting
852 // that it be at least the current time.
853 if node_info.last_update > msg.timestamp {
854 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
855 } else if node_info.last_update == msg.timestamp {
856 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
861 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
862 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
863 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
864 node.announcement_info = Some(NodeAnnouncementInfo {
865 features: msg.features.clone(),
866 last_update: msg.timestamp,
869 addresses: msg.addresses.clone(),
870 announcement_message: if should_relay { full_msg.cloned() } else { None },
878 /// Store or update channel info from a channel announcement.
880 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
881 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
882 /// routing messages from a source using a protocol other than the lightning P2P protocol.
884 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
885 /// the corresponding UTXO exists on chain and is correctly-formatted.
886 pub fn update_channel_from_announcement<T: secp256k1::Verification, C: Deref>(
887 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>, secp_ctx: &Secp256k1<T>
888 ) -> Result<(), LightningError>
890 C::Target: chain::Access,
892 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
893 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1);
894 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2);
895 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1);
896 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2);
897 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
900 /// Store or update channel info from a channel announcement without verifying the associated
901 /// signatures. Because we aren't given the associated signatures here we cannot relay the
902 /// channel announcement to any of our peers.
904 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
905 /// the corresponding UTXO exists on chain and is correctly-formatted.
906 pub fn update_channel_from_unsigned_announcement<C: Deref>(
907 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
908 ) -> Result<(), LightningError>
910 C::Target: chain::Access,
912 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
915 fn update_channel_from_unsigned_announcement_intern<C: Deref>(
916 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
917 ) -> Result<(), LightningError>
919 C::Target: chain::Access,
921 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
922 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
925 let utxo_value = match &chain_access {
927 // Tentatively accept, potentially exposing us to DoS attacks
930 &Some(ref chain_access) => {
931 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
932 Ok(TxOut { value, script_pubkey }) => {
933 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
934 .push_slice(&msg.bitcoin_key_1.serialize())
935 .push_slice(&msg.bitcoin_key_2.serialize())
936 .push_opcode(opcodes::all::OP_PUSHNUM_2)
937 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
938 if script_pubkey != expected_script {
939 return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
941 //TODO: Check if value is worth storing, use it to inform routing, and compare it
942 //to the new HTLC max field in channel_update
945 Err(chain::AccessError::UnknownChain) => {
946 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
948 Err(chain::AccessError::UnknownTx) => {
949 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
955 let chan_info = ChannelInfo {
956 features: msg.features.clone(),
957 node_one: NodeId::from_pubkey(&msg.node_id_1),
959 node_two: NodeId::from_pubkey(&msg.node_id_2),
961 capacity_sats: utxo_value,
962 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
963 { full_msg.cloned() } else { None },
966 let mut channels = self.channels.write().unwrap();
967 let mut nodes = self.nodes.write().unwrap();
968 match channels.entry(msg.short_channel_id) {
969 BtreeEntry::Occupied(mut entry) => {
970 //TODO: because asking the blockchain if short_channel_id is valid is only optional
971 //in the blockchain API, we need to handle it smartly here, though it's unclear
973 if utxo_value.is_some() {
974 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
975 // only sometimes returns results. In any case remove the previous entry. Note
976 // that the spec expects us to "blacklist" the node_ids involved, but we can't
978 // a) we don't *require* a UTXO provider that always returns results.
979 // b) we don't track UTXOs of channels we know about and remove them if they
981 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
982 Self::remove_channel_in_nodes(&mut nodes, &entry.get(), msg.short_channel_id);
983 *entry.get_mut() = chan_info;
985 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
988 BtreeEntry::Vacant(entry) => {
989 entry.insert(chan_info);
993 macro_rules! add_channel_to_node {
994 ( $node_id: expr ) => {
995 match nodes.entry($node_id) {
996 BtreeEntry::Occupied(node_entry) => {
997 node_entry.into_mut().channels.push(msg.short_channel_id);
999 BtreeEntry::Vacant(node_entry) => {
1000 node_entry.insert(NodeInfo {
1001 channels: vec!(msg.short_channel_id),
1002 lowest_inbound_channel_fees: None,
1003 announcement_info: None,
1010 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_1));
1011 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_2));
1016 /// Close a channel if a corresponding HTLC fail was sent.
1017 /// If permanent, removes a channel from the local storage.
1018 /// May cause the removal of nodes too, if this was their last channel.
1019 /// If not permanent, makes channels unavailable for routing.
1020 pub fn close_channel_from_update(&self, short_channel_id: u64, is_permanent: bool) {
1021 let mut channels = self.channels.write().unwrap();
1023 if let Some(chan) = channels.remove(&short_channel_id) {
1024 let mut nodes = self.nodes.write().unwrap();
1025 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1028 if let Some(chan) = channels.get_mut(&short_channel_id) {
1029 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1030 one_to_two.enabled = false;
1032 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1033 two_to_one.enabled = false;
1039 /// Marks a node in the graph as failed.
1040 pub fn fail_node(&self, _node_id: &PublicKey, is_permanent: bool) {
1042 // TODO: Wholly remove the node
1044 // TODO: downgrade the node
1048 /// For an already known (from announcement) channel, update info about one of the directions
1051 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
1052 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1053 /// routing messages from a source using a protocol other than the lightning P2P protocol.
1054 pub fn update_channel<T: secp256k1::Verification>(&self, msg: &msgs::ChannelUpdate, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
1055 self.update_channel_intern(&msg.contents, Some(&msg), Some((&msg.signature, secp_ctx)))
1058 /// For an already known (from announcement) channel, update info about one of the directions
1059 /// of the channel without verifying the associated signatures. Because we aren't given the
1060 /// associated signatures here we cannot relay the channel update to any of our peers.
1061 pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1062 self.update_channel_intern(msg, None, None::<(&secp256k1::Signature, &Secp256k1<secp256k1::VerifyOnly>)>)
1065 fn update_channel_intern<T: secp256k1::Verification>(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig_info: Option<(&secp256k1::Signature, &Secp256k1<T>)>) -> Result<(), LightningError> {
1067 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1068 let chan_was_enabled;
1070 let mut channels = self.channels.write().unwrap();
1071 match channels.get_mut(&msg.short_channel_id) {
1072 None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1074 if let OptionalField::Present(htlc_maximum_msat) = msg.htlc_maximum_msat {
1075 if htlc_maximum_msat > MAX_VALUE_MSAT {
1076 return Err(LightningError{err: "htlc_maximum_msat is larger than maximum possible msats".to_owned(), action: ErrorAction::IgnoreError});
1079 if let Some(capacity_sats) = channel.capacity_sats {
1080 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1081 // Don't query UTXO set here to reduce DoS risks.
1082 if capacity_sats > MAX_VALUE_MSAT / 1000 || htlc_maximum_msat > capacity_sats * 1000 {
1083 return Err(LightningError{err: "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(), action: ErrorAction::IgnoreError});
1087 macro_rules! maybe_update_channel_info {
1088 ( $target: expr, $src_node: expr) => {
1089 if let Some(existing_chan_info) = $target.as_ref() {
1090 // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1091 // order updates to ensure you always have the latest one, only
1092 // suggesting that it be at least the current time. For
1093 // channel_updates specifically, the BOLTs discuss the possibility of
1094 // pruning based on the timestamp field being more than two weeks old,
1095 // but only in the non-normative section.
1096 if existing_chan_info.last_update > msg.timestamp {
1097 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1098 } else if existing_chan_info.last_update == msg.timestamp {
1099 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1101 chan_was_enabled = existing_chan_info.enabled;
1103 chan_was_enabled = false;
1106 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1107 { full_msg.cloned() } else { None };
1109 let updated_channel_dir_info = DirectionalChannelInfo {
1110 enabled: chan_enabled,
1111 last_update: msg.timestamp,
1112 cltv_expiry_delta: msg.cltv_expiry_delta,
1113 htlc_minimum_msat: msg.htlc_minimum_msat,
1114 htlc_maximum_msat: if let OptionalField::Present(max_value) = msg.htlc_maximum_msat { Some(max_value) } else { None },
1116 base_msat: msg.fee_base_msat,
1117 proportional_millionths: msg.fee_proportional_millionths,
1121 $target = Some(updated_channel_dir_info);
1125 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1126 if msg.flags & 1 == 1 {
1127 dest_node_id = channel.node_one.clone();
1128 if let Some((sig, ctx)) = sig_info {
1129 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1130 err: "Couldn't parse source node pubkey".to_owned(),
1131 action: ErrorAction::IgnoreAndLog(Level::Debug)
1134 maybe_update_channel_info!(channel.two_to_one, channel.node_two);
1136 dest_node_id = channel.node_two.clone();
1137 if let Some((sig, ctx)) = sig_info {
1138 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1139 err: "Couldn't parse destination node pubkey".to_owned(),
1140 action: ErrorAction::IgnoreAndLog(Level::Debug)
1143 maybe_update_channel_info!(channel.one_to_two, channel.node_one);
1148 let mut nodes = self.nodes.write().unwrap();
1150 let node = nodes.get_mut(&dest_node_id).unwrap();
1151 let mut base_msat = msg.fee_base_msat;
1152 let mut proportional_millionths = msg.fee_proportional_millionths;
1153 if let Some(fees) = node.lowest_inbound_channel_fees {
1154 base_msat = cmp::min(base_msat, fees.base_msat);
1155 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1157 node.lowest_inbound_channel_fees = Some(RoutingFees {
1159 proportional_millionths
1161 } else if chan_was_enabled {
1162 let node = nodes.get_mut(&dest_node_id).unwrap();
1163 let mut lowest_inbound_channel_fees = None;
1165 for chan_id in node.channels.iter() {
1166 let chan = channels.get(chan_id).unwrap();
1168 if chan.node_one == dest_node_id {
1169 chan_info_opt = chan.two_to_one.as_ref();
1171 chan_info_opt = chan.one_to_two.as_ref();
1173 if let Some(chan_info) = chan_info_opt {
1174 if chan_info.enabled {
1175 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1176 base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1177 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1178 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1183 node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1189 fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1190 macro_rules! remove_from_node {
1191 ($node_id: expr) => {
1192 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1193 entry.get_mut().channels.retain(|chan_id| {
1194 short_channel_id != *chan_id
1196 if entry.get().channels.is_empty() {
1197 entry.remove_entry();
1200 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1205 remove_from_node!(chan.node_one);
1206 remove_from_node!(chan.node_two);
1210 impl ReadOnlyNetworkGraph<'_> {
1211 /// Returns all known valid channels' short ids along with announced channel info.
1213 /// (C-not exported) because we have no mapping for `BTreeMap`s
1214 pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1218 /// Returns all known nodes' public keys along with announced node info.
1220 /// (C-not exported) because we have no mapping for `BTreeMap`s
1221 pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1225 /// Get network addresses by node id.
1226 /// Returns None if the requested node is completely unknown,
1227 /// or if node announcement for the node was never received.
1228 pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1229 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1230 if let Some(node_info) = node.announcement_info.as_ref() {
1231 return Some(node_info.addresses.clone())
1241 use ln::PaymentHash;
1242 use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1243 use routing::network_graph::{NetGraphMsgHandler, NetworkGraph, NetworkUpdate, MAX_EXCESS_BYTES_FOR_RELAY};
1244 use ln::msgs::{Init, OptionalField, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1245 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1246 ReplyChannelRange, ReplyShortChannelIdsEnd, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1247 use util::test_utils;
1248 use util::logger::Logger;
1249 use util::ser::{Readable, Writeable};
1250 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1251 use util::scid_utils::scid_from_parts;
1253 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1254 use bitcoin::hashes::Hash;
1255 use bitcoin::network::constants::Network;
1256 use bitcoin::blockdata::constants::genesis_block;
1257 use bitcoin::blockdata::script::{Builder, Script};
1258 use bitcoin::blockdata::transaction::TxOut;
1259 use bitcoin::blockdata::opcodes;
1263 use bitcoin::secp256k1::key::{PublicKey, SecretKey};
1264 use bitcoin::secp256k1::{All, Secp256k1};
1270 fn create_network_graph() -> NetworkGraph {
1271 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1272 NetworkGraph::new(genesis_hash)
1275 fn create_net_graph_msg_handler(network_graph: &NetworkGraph) -> (
1276 Secp256k1<All>, NetGraphMsgHandler<&NetworkGraph, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1278 let secp_ctx = Secp256k1::new();
1279 let logger = Arc::new(test_utils::TestLogger::new());
1280 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger));
1281 (secp_ctx, net_graph_msg_handler)
1285 fn request_full_sync_finite_times() {
1286 let network_graph = create_network_graph();
1287 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1288 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1290 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1291 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1292 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1293 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1294 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1295 assert!(!net_graph_msg_handler.should_request_full_sync(&node_id));
1298 fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1299 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1300 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1301 features: NodeFeatures::known(),
1306 addresses: Vec::new(),
1307 excess_address_data: Vec::new(),
1308 excess_data: Vec::new(),
1310 f(&mut unsigned_announcement);
1311 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1313 signature: secp_ctx.sign(&msghash, node_key),
1314 contents: unsigned_announcement
1318 fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1319 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1320 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1321 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1322 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1324 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1325 features: ChannelFeatures::known(),
1326 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1327 short_channel_id: 0,
1330 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1331 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1332 excess_data: Vec::new(),
1334 f(&mut unsigned_announcement);
1335 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1336 ChannelAnnouncement {
1337 node_signature_1: secp_ctx.sign(&msghash, node_1_key),
1338 node_signature_2: secp_ctx.sign(&msghash, node_2_key),
1339 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1340 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1341 contents: unsigned_announcement,
1345 fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1346 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1347 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1348 Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1349 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1350 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1351 .push_opcode(opcodes::all::OP_PUSHNUM_2)
1352 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
1356 fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1357 let mut unsigned_channel_update = UnsignedChannelUpdate {
1358 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1359 short_channel_id: 0,
1362 cltv_expiry_delta: 144,
1363 htlc_minimum_msat: 1_000_000,
1364 htlc_maximum_msat: OptionalField::Absent,
1365 fee_base_msat: 10_000,
1366 fee_proportional_millionths: 20,
1367 excess_data: Vec::new()
1369 f(&mut unsigned_channel_update);
1370 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1372 signature: secp_ctx.sign(&msghash, node_key),
1373 contents: unsigned_channel_update
1378 fn handling_node_announcements() {
1379 let network_graph = create_network_graph();
1380 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1382 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1383 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1384 let zero_hash = Sha256dHash::hash(&[0; 32]);
1386 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
1387 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1389 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1393 // Announce a channel to add a corresponding node.
1394 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1395 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1396 Ok(res) => assert!(res),
1401 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1402 Ok(res) => assert!(res),
1406 let fake_msghash = hash_to_message!(&zero_hash);
1407 match net_graph_msg_handler.handle_node_announcement(
1409 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1410 contents: valid_announcement.contents.clone()
1413 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1416 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
1417 unsigned_announcement.timestamp += 1000;
1418 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1419 }, node_1_privkey, &secp_ctx);
1420 // Return false because contains excess data.
1421 match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) {
1422 Ok(res) => assert!(!res),
1426 // Even though previous announcement was not relayed further, we still accepted it,
1427 // so we now won't accept announcements before the previous one.
1428 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
1429 unsigned_announcement.timestamp += 1000 - 10;
1430 }, node_1_privkey, &secp_ctx);
1431 match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) {
1433 Err(e) => assert_eq!(e.err, "Update older than last processed update")
1438 fn handling_channel_announcements() {
1439 let secp_ctx = Secp256k1::new();
1440 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1442 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1443 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1445 let good_script = get_channel_script(&secp_ctx);
1446 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1448 // Test if the UTXO lookups were not supported
1449 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1450 let mut net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, None, Arc::clone(&logger));
1451 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1452 Ok(res) => assert!(res),
1457 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1463 // If we receive announcement for the same channel (with UTXO lookups disabled),
1464 // drop new one on the floor, since we can't see any changes.
1465 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1467 Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
1470 // Test if an associated transaction were not on-chain (or not confirmed).
1471 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1472 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1473 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1474 net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1476 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1477 unsigned_announcement.short_channel_id += 1;
1478 }, node_1_privkey, node_2_privkey, &secp_ctx);
1479 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1481 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1484 // Now test if the transaction is found in the UTXO set and the script is correct.
1485 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
1486 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1487 unsigned_announcement.short_channel_id += 2;
1488 }, node_1_privkey, node_2_privkey, &secp_ctx);
1489 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1490 Ok(res) => assert!(res),
1495 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1501 // If we receive announcement for the same channel (but TX is not confirmed),
1502 // drop new one on the floor, since we can't see any changes.
1503 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1504 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1506 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1509 // But if it is confirmed, replace the channel
1510 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
1511 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1512 unsigned_announcement.features = ChannelFeatures::empty();
1513 unsigned_announcement.short_channel_id += 2;
1514 }, node_1_privkey, node_2_privkey, &secp_ctx);
1515 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1516 Ok(res) => assert!(res),
1520 match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1521 Some(channel_entry) => {
1522 assert_eq!(channel_entry.features, ChannelFeatures::empty());
1528 // Don't relay valid channels with excess data
1529 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1530 unsigned_announcement.short_channel_id += 3;
1531 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1532 }, node_1_privkey, node_2_privkey, &secp_ctx);
1533 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1534 Ok(res) => assert!(!res),
1538 let mut invalid_sig_announcement = valid_announcement.clone();
1539 invalid_sig_announcement.contents.excess_data = Vec::new();
1540 match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) {
1542 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1545 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
1546 match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) {
1548 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
1553 fn handling_channel_update() {
1554 let secp_ctx = Secp256k1::new();
1555 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1556 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1557 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1558 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1560 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1561 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1563 let amount_sats = 1000_000;
1564 let short_channel_id;
1567 // Announce a channel we will update
1568 let good_script = get_channel_script(&secp_ctx);
1569 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
1571 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1572 short_channel_id = valid_channel_announcement.contents.short_channel_id;
1573 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1580 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
1581 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1582 Ok(res) => assert!(res),
1587 match network_graph.read_only().channels().get(&short_channel_id) {
1589 Some(channel_info) => {
1590 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
1591 assert!(channel_info.two_to_one.is_none());
1596 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1597 unsigned_channel_update.timestamp += 100;
1598 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1599 }, node_1_privkey, &secp_ctx);
1600 // Return false because contains excess data
1601 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1602 Ok(res) => assert!(!res),
1606 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1607 unsigned_channel_update.timestamp += 110;
1608 unsigned_channel_update.short_channel_id += 1;
1609 }, node_1_privkey, &secp_ctx);
1610 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1612 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
1615 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1616 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(MAX_VALUE_MSAT + 1);
1617 unsigned_channel_update.timestamp += 110;
1618 }, node_1_privkey, &secp_ctx);
1619 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1621 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
1624 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1625 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(amount_sats * 1000 + 1);
1626 unsigned_channel_update.timestamp += 110;
1627 }, node_1_privkey, &secp_ctx);
1628 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1630 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
1633 // Even though previous update was not relayed further, we still accepted it,
1634 // so we now won't accept update before the previous one.
1635 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1636 unsigned_channel_update.timestamp += 100;
1637 }, node_1_privkey, &secp_ctx);
1638 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1640 Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
1643 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1644 unsigned_channel_update.timestamp += 500;
1645 }, node_1_privkey, &secp_ctx);
1646 let zero_hash = Sha256dHash::hash(&[0; 32]);
1647 let fake_msghash = hash_to_message!(&zero_hash);
1648 invalid_sig_channel_update.signature = secp_ctx.sign(&fake_msghash, node_1_privkey);
1649 match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) {
1651 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1656 fn handling_network_update() {
1657 let logger = test_utils::TestLogger::new();
1658 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1659 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1660 let network_graph = NetworkGraph::new(genesis_hash);
1661 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), &logger);
1662 let secp_ctx = Secp256k1::new();
1664 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1665 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1668 // There is no nodes in the table at the beginning.
1669 assert_eq!(network_graph.read_only().nodes().len(), 0);
1672 let short_channel_id;
1674 // Announce a channel we will update
1675 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1676 short_channel_id = valid_channel_announcement.contents.short_channel_id;
1677 let chain_source: Option<&test_utils::TestChainSource> = None;
1678 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok());
1679 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
1681 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
1682 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
1684 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1686 payment_hash: PaymentHash([0; 32]),
1687 rejected_by_dest: false,
1688 all_paths_failed: true,
1690 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
1691 msg: valid_channel_update,
1693 short_channel_id: None,
1699 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
1702 // Non-permanent closing just disables a channel
1704 match network_graph.read_only().channels().get(&short_channel_id) {
1706 Some(channel_info) => {
1707 assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
1711 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1713 payment_hash: PaymentHash([0; 32]),
1714 rejected_by_dest: false,
1715 all_paths_failed: true,
1717 network_update: Some(NetworkUpdate::ChannelClosed {
1719 is_permanent: false,
1721 short_channel_id: None,
1727 match network_graph.read_only().channels().get(&short_channel_id) {
1729 Some(channel_info) => {
1730 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
1735 // Permanent closing deletes a channel
1737 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1739 payment_hash: PaymentHash([0; 32]),
1740 rejected_by_dest: false,
1741 all_paths_failed: true,
1743 network_update: Some(NetworkUpdate::ChannelClosed {
1747 short_channel_id: None,
1753 assert_eq!(network_graph.read_only().channels().len(), 0);
1754 // Nodes are also deleted because there are no associated channels anymore
1755 assert_eq!(network_graph.read_only().nodes().len(), 0);
1757 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
1761 fn getting_next_channel_announcements() {
1762 let network_graph = create_network_graph();
1763 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1764 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1765 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1767 // Channels were not announced yet.
1768 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1);
1769 assert_eq!(channels_with_announcements.len(), 0);
1771 let short_channel_id;
1773 // Announce a channel we will update
1774 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1775 short_channel_id = valid_channel_announcement.contents.short_channel_id;
1776 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1782 // Contains initial channel announcement now.
1783 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1784 assert_eq!(channels_with_announcements.len(), 1);
1785 if let Some(channel_announcements) = channels_with_announcements.first() {
1786 let &(_, ref update_1, ref update_2) = channel_announcements;
1787 assert_eq!(update_1, &None);
1788 assert_eq!(update_2, &None);
1795 // Valid channel update
1796 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1797 unsigned_channel_update.timestamp = 101;
1798 }, node_1_privkey, &secp_ctx);
1799 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1805 // Now contains an initial announcement and an update.
1806 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1807 assert_eq!(channels_with_announcements.len(), 1);
1808 if let Some(channel_announcements) = channels_with_announcements.first() {
1809 let &(_, ref update_1, ref update_2) = channel_announcements;
1810 assert_ne!(update_1, &None);
1811 assert_eq!(update_2, &None);
1817 // Channel update with excess data.
1818 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1819 unsigned_channel_update.timestamp = 102;
1820 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
1821 }, node_1_privkey, &secp_ctx);
1822 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1828 // Test that announcements with excess data won't be returned
1829 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1830 assert_eq!(channels_with_announcements.len(), 1);
1831 if let Some(channel_announcements) = channels_with_announcements.first() {
1832 let &(_, ref update_1, ref update_2) = channel_announcements;
1833 assert_eq!(update_1, &None);
1834 assert_eq!(update_2, &None);
1839 // Further starting point have no channels after it
1840 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1);
1841 assert_eq!(channels_with_announcements.len(), 0);
1845 fn getting_next_node_announcements() {
1846 let network_graph = create_network_graph();
1847 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1848 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1849 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1850 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1853 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10);
1854 assert_eq!(next_announcements.len(), 0);
1857 // Announce a channel to add 2 nodes
1858 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1859 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1866 // Nodes were never announced
1867 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
1868 assert_eq!(next_announcements.len(), 0);
1871 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
1872 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1877 let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
1878 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1884 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
1885 assert_eq!(next_announcements.len(), 2);
1887 // Skip the first node.
1888 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
1889 assert_eq!(next_announcements.len(), 1);
1892 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
1893 let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
1894 unsigned_announcement.timestamp += 10;
1895 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
1896 }, node_2_privkey, &secp_ctx);
1897 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1898 Ok(res) => assert!(!res),
1903 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
1904 assert_eq!(next_announcements.len(), 0);
1908 fn network_graph_serialization() {
1909 let network_graph = create_network_graph();
1910 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1912 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1913 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1915 // Announce a channel to add a corresponding node.
1916 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1917 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1918 Ok(res) => assert!(res),
1922 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
1923 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1928 let mut w = test_utils::TestVecWriter(Vec::new());
1929 assert!(!network_graph.read_only().nodes().is_empty());
1930 assert!(!network_graph.read_only().channels().is_empty());
1931 network_graph.write(&mut w).unwrap();
1932 assert!(<NetworkGraph>::read(&mut io::Cursor::new(&w.0)).unwrap() == network_graph);
1936 fn calling_sync_routing_table() {
1937 let network_graph = create_network_graph();
1938 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1939 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
1940 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
1942 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1943 let first_blocknum = 0;
1944 let number_of_blocks = 0xffff_ffff;
1946 // It should ignore if gossip_queries feature is not enabled
1948 let init_msg = Init { features: InitFeatures::known().clear_gossip_queries() };
1949 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
1950 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
1951 assert_eq!(events.len(), 0);
1954 // It should send a query_channel_message with the correct information
1956 let init_msg = Init { features: InitFeatures::known() };
1957 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
1958 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
1959 assert_eq!(events.len(), 1);
1961 MessageSendEvent::SendChannelRangeQuery{ node_id, msg } => {
1962 assert_eq!(node_id, &node_id_1);
1963 assert_eq!(msg.chain_hash, chain_hash);
1964 assert_eq!(msg.first_blocknum, first_blocknum);
1965 assert_eq!(msg.number_of_blocks, number_of_blocks);
1967 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
1971 // It should not enqueue a query when should_request_full_sync return false.
1972 // The initial implementation allows syncing with the first 5 peers after
1973 // which should_request_full_sync will return false
1975 let network_graph = create_network_graph();
1976 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1977 let init_msg = Init { features: InitFeatures::known() };
1979 let node_privkey = &SecretKey::from_slice(&[n; 32]).unwrap();
1980 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
1981 net_graph_msg_handler.sync_routing_table(&node_id, &init_msg);
1982 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
1984 assert_eq!(events.len(), 1);
1986 assert_eq!(events.len(), 0);
1994 fn handling_reply_channel_range() {
1995 let network_graph = create_network_graph();
1996 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1997 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
1998 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2000 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2002 // Test receipt of a single reply that should enqueue an SCID query
2003 // matching the SCIDs in the reply
2005 let result = net_graph_msg_handler.handle_reply_channel_range(&node_id_1, ReplyChannelRange {
2007 sync_complete: true,
2009 number_of_blocks: 2000,
2010 short_channel_ids: vec![
2011 0x0003e0_000000_0000, // 992x0x0
2012 0x0003e8_000000_0000, // 1000x0x0
2013 0x0003e9_000000_0000, // 1001x0x0
2014 0x0003f0_000000_0000, // 1008x0x0
2015 0x00044c_000000_0000, // 1100x0x0
2016 0x0006e0_000000_0000, // 1760x0x0
2019 assert!(result.is_ok());
2021 // We expect to emit a query_short_channel_ids message with the received scids
2022 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2023 assert_eq!(events.len(), 1);
2025 MessageSendEvent::SendShortIdsQuery { node_id, msg } => {
2026 assert_eq!(node_id, &node_id_1);
2027 assert_eq!(msg.chain_hash, chain_hash);
2028 assert_eq!(msg.short_channel_ids, vec![
2029 0x0003e0_000000_0000, // 992x0x0
2030 0x0003e8_000000_0000, // 1000x0x0
2031 0x0003e9_000000_0000, // 1001x0x0
2032 0x0003f0_000000_0000, // 1008x0x0
2033 0x00044c_000000_0000, // 1100x0x0
2034 0x0006e0_000000_0000, // 1760x0x0
2037 _ => panic!("expected MessageSendEvent::SendShortIdsQuery"),
2043 fn handling_reply_short_channel_ids() {
2044 let network_graph = create_network_graph();
2045 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2046 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2047 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2049 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2051 // Test receipt of a successful reply
2053 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2055 full_information: true,
2057 assert!(result.is_ok());
2060 // Test receipt of a reply that indicates the peer does not maintain up-to-date information
2061 // for the chain_hash requested in the query.
2063 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2065 full_information: false,
2067 assert!(result.is_err());
2068 assert_eq!(result.err().unwrap().err, "Received reply_short_channel_ids_end with no information");
2073 fn handling_query_channel_range() {
2074 let network_graph = create_network_graph();
2075 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2077 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2078 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2079 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2080 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2082 let mut scids: Vec<u64> = vec![
2083 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2084 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2087 // used for testing multipart reply across blocks
2088 for block in 100000..=108001 {
2089 scids.push(scid_from_parts(block, 0, 0).unwrap());
2092 // used for testing resumption on same block
2093 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2096 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2097 unsigned_announcement.short_channel_id = scid;
2098 }, node_1_privkey, node_2_privkey, &secp_ctx);
2099 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2105 // Error when number_of_blocks=0
2106 do_handling_query_channel_range(
2107 &net_graph_msg_handler,
2110 chain_hash: chain_hash.clone(),
2112 number_of_blocks: 0,
2115 vec![ReplyChannelRange {
2116 chain_hash: chain_hash.clone(),
2118 number_of_blocks: 0,
2119 sync_complete: true,
2120 short_channel_ids: vec![]
2124 // Error when wrong chain
2125 do_handling_query_channel_range(
2126 &net_graph_msg_handler,
2129 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2131 number_of_blocks: 0xffff_ffff,
2134 vec![ReplyChannelRange {
2135 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2137 number_of_blocks: 0xffff_ffff,
2138 sync_complete: true,
2139 short_channel_ids: vec![],
2143 // Error when first_blocknum > 0xffffff
2144 do_handling_query_channel_range(
2145 &net_graph_msg_handler,
2148 chain_hash: chain_hash.clone(),
2149 first_blocknum: 0x01000000,
2150 number_of_blocks: 0xffff_ffff,
2153 vec![ReplyChannelRange {
2154 chain_hash: chain_hash.clone(),
2155 first_blocknum: 0x01000000,
2156 number_of_blocks: 0xffff_ffff,
2157 sync_complete: true,
2158 short_channel_ids: vec![]
2162 // Empty reply when max valid SCID block num
2163 do_handling_query_channel_range(
2164 &net_graph_msg_handler,
2167 chain_hash: chain_hash.clone(),
2168 first_blocknum: 0xffffff,
2169 number_of_blocks: 1,
2174 chain_hash: chain_hash.clone(),
2175 first_blocknum: 0xffffff,
2176 number_of_blocks: 1,
2177 sync_complete: true,
2178 short_channel_ids: vec![]
2183 // No results in valid query range
2184 do_handling_query_channel_range(
2185 &net_graph_msg_handler,
2188 chain_hash: chain_hash.clone(),
2189 first_blocknum: 1000,
2190 number_of_blocks: 1000,
2195 chain_hash: chain_hash.clone(),
2196 first_blocknum: 1000,
2197 number_of_blocks: 1000,
2198 sync_complete: true,
2199 short_channel_ids: vec![],
2204 // Overflow first_blocknum + number_of_blocks
2205 do_handling_query_channel_range(
2206 &net_graph_msg_handler,
2209 chain_hash: chain_hash.clone(),
2210 first_blocknum: 0xfe0000,
2211 number_of_blocks: 0xffffffff,
2216 chain_hash: chain_hash.clone(),
2217 first_blocknum: 0xfe0000,
2218 number_of_blocks: 0xffffffff - 0xfe0000,
2219 sync_complete: true,
2220 short_channel_ids: vec![
2221 0xfffffe_ffffff_ffff, // max
2227 // Single block exactly full
2228 do_handling_query_channel_range(
2229 &net_graph_msg_handler,
2232 chain_hash: chain_hash.clone(),
2233 first_blocknum: 100000,
2234 number_of_blocks: 8000,
2239 chain_hash: chain_hash.clone(),
2240 first_blocknum: 100000,
2241 number_of_blocks: 8000,
2242 sync_complete: true,
2243 short_channel_ids: (100000..=107999)
2244 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2250 // Multiple split on new block
2251 do_handling_query_channel_range(
2252 &net_graph_msg_handler,
2255 chain_hash: chain_hash.clone(),
2256 first_blocknum: 100000,
2257 number_of_blocks: 8001,
2262 chain_hash: chain_hash.clone(),
2263 first_blocknum: 100000,
2264 number_of_blocks: 7999,
2265 sync_complete: false,
2266 short_channel_ids: (100000..=107999)
2267 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2271 chain_hash: chain_hash.clone(),
2272 first_blocknum: 107999,
2273 number_of_blocks: 2,
2274 sync_complete: true,
2275 short_channel_ids: vec![
2276 scid_from_parts(108000, 0, 0).unwrap(),
2282 // Multiple split on same block
2283 do_handling_query_channel_range(
2284 &net_graph_msg_handler,
2287 chain_hash: chain_hash.clone(),
2288 first_blocknum: 100002,
2289 number_of_blocks: 8000,
2294 chain_hash: chain_hash.clone(),
2295 first_blocknum: 100002,
2296 number_of_blocks: 7999,
2297 sync_complete: false,
2298 short_channel_ids: (100002..=108001)
2299 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2303 chain_hash: chain_hash.clone(),
2304 first_blocknum: 108001,
2305 number_of_blocks: 1,
2306 sync_complete: true,
2307 short_channel_ids: vec![
2308 scid_from_parts(108001, 1, 0).unwrap(),
2315 fn do_handling_query_channel_range(
2316 net_graph_msg_handler: &NetGraphMsgHandler<&NetworkGraph, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2317 test_node_id: &PublicKey,
2318 msg: QueryChannelRange,
2320 expected_replies: Vec<ReplyChannelRange>
2322 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2323 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2324 let query_end_blocknum = msg.end_blocknum();
2325 let result = net_graph_msg_handler.handle_query_channel_range(test_node_id, msg);
2328 assert!(result.is_ok());
2330 assert!(result.is_err());
2333 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2334 assert_eq!(events.len(), expected_replies.len());
2336 for i in 0..events.len() {
2337 let expected_reply = &expected_replies[i];
2339 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2340 assert_eq!(node_id, test_node_id);
2341 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2342 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2343 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2344 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2345 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2347 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2348 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2349 assert!(msg.first_blocknum >= max_firstblocknum);
2350 max_firstblocknum = msg.first_blocknum;
2351 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2353 // Check that the last block count is >= the query's end_blocknum
2354 if i == events.len() - 1 {
2355 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2358 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2364 fn handling_query_short_channel_ids() {
2365 let network_graph = create_network_graph();
2366 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2367 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2368 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2370 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2372 let result = net_graph_msg_handler.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2374 short_channel_ids: vec![0x0003e8_000000_0000],
2376 assert!(result.is_err());
2380 #[cfg(all(test, feature = "unstable"))]
2388 fn read_network_graph(bench: &mut Bencher) {
2389 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2390 let mut v = Vec::new();
2391 d.read_to_end(&mut v).unwrap();
2393 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v)).unwrap();
2398 fn write_network_graph(bench: &mut Bencher) {
2399 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2400 let net_graph = NetworkGraph::read(&mut d).unwrap();
2402 let _ = net_graph.encode();