Rename `RoutingMessageHandler::sync_routing_table` `peer_connected`
[rust-lightning] / lightning / src / routing / network_graph.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::key::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::script::Builder;
20 use bitcoin::blockdata::transaction::TxOut;
21 use bitcoin::blockdata::opcodes;
22 use bitcoin::hash_types::BlockHash;
23
24 use chain;
25 use chain::Access;
26 use ln::features::{ChannelFeatures, NodeFeatures};
27 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, OptionalField};
29 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use ln::msgs;
31 use util::ser::{Writeable, Readable, Writer};
32 use util::logger::{Logger, Level};
33 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
34 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35
36 use io;
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::Deref;
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70         
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph {
126         genesis_hash: BlockHash,
127         // Lock order: channels -> nodes
128         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
129         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
130 }
131
132 impl Clone for NetworkGraph {
133         fn clone(&self) -> Self {
134                 let channels = self.channels.read().unwrap();
135                 let nodes = self.nodes.read().unwrap();
136                 Self {
137                         genesis_hash: self.genesis_hash.clone(),
138                         channels: RwLock::new(channels.clone()),
139                         nodes: RwLock::new(nodes.clone()),
140                 }
141         }
142 }
143
144 /// A read-only view of [`NetworkGraph`].
145 pub struct ReadOnlyNetworkGraph<'a> {
146         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
147         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
148 }
149
150 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
151 /// return packet by a node along the route. See [BOLT #4] for details.
152 ///
153 /// [BOLT #4]: https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
154 #[derive(Clone, Debug, PartialEq)]
155 pub enum NetworkUpdate {
156         /// An error indicating a `channel_update` messages should be applied via
157         /// [`NetworkGraph::update_channel`].
158         ChannelUpdateMessage {
159                 /// The update to apply via [`NetworkGraph::update_channel`].
160                 msg: ChannelUpdate,
161         },
162         /// An error indicating only that a channel has been closed, which should be applied via
163         /// [`NetworkGraph::close_channel_from_update`].
164         ChannelClosed {
165                 /// The short channel id of the closed channel.
166                 short_channel_id: u64,
167                 /// Whether the channel should be permanently removed or temporarily disabled until a new
168                 /// `channel_update` message is received.
169                 is_permanent: bool,
170         },
171         /// An error indicating only that a node has failed, which should be applied via
172         /// [`NetworkGraph::fail_node`].
173         NodeFailure {
174                 /// The node id of the failed node.
175                 node_id: PublicKey,
176                 /// Whether the node should be permanently removed from consideration or can be restored
177                 /// when a new `channel_update` message is received.
178                 is_permanent: bool,
179         }
180 }
181
182 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
183         (0, ChannelUpdateMessage) => {
184                 (0, msg, required),
185         },
186         (2, ChannelClosed) => {
187                 (0, short_channel_id, required),
188                 (2, is_permanent, required),
189         },
190         (4, NodeFailure) => {
191                 (0, node_id, required),
192                 (2, is_permanent, required),
193         },
194 );
195
196 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> EventHandler for NetGraphMsgHandler<G, C, L>
197 where C::Target: chain::Access, L::Target: Logger {
198         fn handle_event(&self, event: &Event) {
199                 if let Event::PaymentPathFailed { payment_hash: _, rejected_by_dest: _, network_update, .. } = event {
200                         if let Some(network_update) = network_update {
201                                 self.handle_network_update(network_update);
202                         }
203                 }
204         }
205 }
206
207 /// Receives and validates network updates from peers,
208 /// stores authentic and relevant data as a network graph.
209 /// This network graph is then used for routing payments.
210 /// Provides interface to help with initial routing sync by
211 /// serving historical announcements.
212 ///
213 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
214 /// [`NetworkGraph`].
215 pub struct NetGraphMsgHandler<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref>
216 where C::Target: chain::Access, L::Target: Logger
217 {
218         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
219         network_graph: G,
220         chain_access: Option<C>,
221         full_syncs_requested: AtomicUsize,
222         pending_events: Mutex<Vec<MessageSendEvent>>,
223         logger: L,
224 }
225
226 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> NetGraphMsgHandler<G, C, L>
227 where C::Target: chain::Access, L::Target: Logger
228 {
229         /// Creates a new tracker of the actual state of the network of channels and nodes,
230         /// assuming an existing Network Graph.
231         /// Chain monitor is used to make sure announced channels exist on-chain,
232         /// channel data is correct, and that the announcement is signed with
233         /// channel owners' keys.
234         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
235                 NetGraphMsgHandler {
236                         secp_ctx: Secp256k1::verification_only(),
237                         network_graph,
238                         full_syncs_requested: AtomicUsize::new(0),
239                         chain_access,
240                         pending_events: Mutex::new(vec![]),
241                         logger,
242                 }
243         }
244
245         /// Adds a provider used to check new announcements. Does not affect
246         /// existing announcements unless they are updated.
247         /// Add, update or remove the provider would replace the current one.
248         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
249                 self.chain_access = chain_access;
250         }
251
252         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
253         /// [`NetGraphMsgHandler::new`].
254         ///
255         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
256         pub fn network_graph(&self) -> &G {
257                 &self.network_graph
258         }
259
260         /// Returns true when a full routing table sync should be performed with a peer.
261         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
262                 //TODO: Determine whether to request a full sync based on the network map.
263                 const FULL_SYNCS_TO_REQUEST: usize = 5;
264                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
265                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
266                         true
267                 } else {
268                         false
269                 }
270         }
271
272         /// Applies changes to the [`NetworkGraph`] from the given update.
273         fn handle_network_update(&self, update: &NetworkUpdate) {
274                 match *update {
275                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
276                                 let short_channel_id = msg.contents.short_channel_id;
277                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
278                                 let status = if is_enabled { "enabled" } else { "disabled" };
279                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
280                                 let _ = self.network_graph.update_channel(msg, &self.secp_ctx);
281                         },
282                         NetworkUpdate::ChannelClosed { short_channel_id, is_permanent } => {
283                                 let action = if is_permanent { "Removing" } else { "Disabling" };
284                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
285                                 self.network_graph.close_channel_from_update(short_channel_id, is_permanent);
286                         },
287                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
288                                 let action = if is_permanent { "Removing" } else { "Disabling" };
289                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
290                                 self.network_graph.fail_node(node_id, is_permanent);
291                         },
292                 }
293         }
294 }
295
296 macro_rules! secp_verify_sig {
297         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
298                 match $secp_ctx.verify($msg, $sig, $pubkey) {
299                         Ok(_) => {},
300                         Err(_) => {
301                                 return Err(LightningError {
302                                         err: format!("Invalid signature on {} message", $msg_type),
303                                         action: ErrorAction::SendWarningMessage {
304                                                 msg: msgs::WarningMessage {
305                                                         channel_id: [0; 32],
306                                                         data: format!("Invalid signature on {} message", $msg_type),
307                                                 },
308                                                 log_level: Level::Trace,
309                                         },
310                                 });
311                         },
312                 }
313         };
314 }
315
316 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> RoutingMessageHandler for NetGraphMsgHandler<G, C, L>
317 where C::Target: chain::Access, L::Target: Logger
318 {
319         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
320                 self.network_graph.update_node_from_announcement(msg, &self.secp_ctx)?;
321                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
322                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
323                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
324         }
325
326         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
327                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access, &self.secp_ctx)?;
328                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
329                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
330         }
331
332         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
333                 self.network_graph.update_channel(msg, &self.secp_ctx)?;
334                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
335         }
336
337         fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
338                 let mut result = Vec::with_capacity(batch_amount as usize);
339                 let channels = self.network_graph.channels.read().unwrap();
340                 let mut iter = channels.range(starting_point..);
341                 while result.len() < batch_amount as usize {
342                         if let Some((_, ref chan)) = iter.next() {
343                                 if chan.announcement_message.is_some() {
344                                         let chan_announcement = chan.announcement_message.clone().unwrap();
345                                         let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
346                                         let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
347                                         if let Some(one_to_two) = chan.one_to_two.as_ref() {
348                                                 one_to_two_announcement = one_to_two.last_update_message.clone();
349                                         }
350                                         if let Some(two_to_one) = chan.two_to_one.as_ref() {
351                                                 two_to_one_announcement = two_to_one.last_update_message.clone();
352                                         }
353                                         result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement));
354                                 } else {
355                                         // TODO: We may end up sending un-announced channel_updates if we are sending
356                                         // initial sync data while receiving announce/updates for this channel.
357                                 }
358                         } else {
359                                 return result;
360                         }
361                 }
362                 result
363         }
364
365         fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement> {
366                 let mut result = Vec::with_capacity(batch_amount as usize);
367                 let nodes = self.network_graph.nodes.read().unwrap();
368                 let mut iter = if let Some(pubkey) = starting_point {
369                                 let mut iter = nodes.range(NodeId::from_pubkey(pubkey)..);
370                                 iter.next();
371                                 iter
372                         } else {
373                                 nodes.range::<NodeId, _>(..)
374                         };
375                 while result.len() < batch_amount as usize {
376                         if let Some((_, ref node)) = iter.next() {
377                                 if let Some(node_info) = node.announcement_info.as_ref() {
378                                         if node_info.announcement_message.is_some() {
379                                                 result.push(node_info.announcement_message.clone().unwrap());
380                                         }
381                                 }
382                         } else {
383                                 return result;
384                         }
385                 }
386                 result
387         }
388
389         /// Initiates a stateless sync of routing gossip information with a peer
390         /// using gossip_queries. The default strategy used by this implementation
391         /// is to sync the full block range with several peers.
392         ///
393         /// We should expect one or more reply_channel_range messages in response
394         /// to our query_channel_range. Each reply will enqueue a query_scid message
395         /// to request gossip messages for each channel. The sync is considered complete
396         /// when the final reply_scids_end message is received, though we are not
397         /// tracking this directly.
398         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
399                 // We will only perform a sync with peers that support gossip_queries.
400                 if !init_msg.features.supports_gossip_queries() {
401                         return ();
402                 }
403
404                 // Check if we need to perform a full synchronization with this peer
405                 if !self.should_request_full_sync(&their_node_id) {
406                         return ();
407                 }
408
409                 let first_blocknum = 0;
410                 let number_of_blocks = 0xffffffff;
411                 log_debug!(self.logger, "Sending query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), first_blocknum, number_of_blocks);
412                 let mut pending_events = self.pending_events.lock().unwrap();
413                 pending_events.push(MessageSendEvent::SendChannelRangeQuery {
414                         node_id: their_node_id.clone(),
415                         msg: QueryChannelRange {
416                                 chain_hash: self.network_graph.genesis_hash,
417                                 first_blocknum,
418                                 number_of_blocks,
419                         },
420                 });
421         }
422
423         /// Statelessly processes a reply to a channel range query by immediately
424         /// sending an SCID query with SCIDs in the reply. To keep this handler
425         /// stateless, it does not validate the sequencing of replies for multi-
426         /// reply ranges. It does not validate whether the reply(ies) cover the
427         /// queried range. It also does not filter SCIDs to only those in the
428         /// original query range. We also do not validate that the chain_hash
429         /// matches the chain_hash of the NetworkGraph. Any chan_ann message that
430         /// does not match our chain_hash will be rejected when the announcement is
431         /// processed.
432         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError> {
433                 log_debug!(self.logger, "Handling reply_channel_range peer={}, first_blocknum={}, number_of_blocks={}, sync_complete={}, scids={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks, msg.sync_complete, msg.short_channel_ids.len(),);
434
435                 log_debug!(self.logger, "Sending query_short_channel_ids peer={}, batch_size={}", log_pubkey!(their_node_id), msg.short_channel_ids.len());
436                 let mut pending_events = self.pending_events.lock().unwrap();
437                 pending_events.push(MessageSendEvent::SendShortIdsQuery {
438                         node_id: their_node_id.clone(),
439                         msg: QueryShortChannelIds {
440                                 chain_hash: msg.chain_hash,
441                                 short_channel_ids: msg.short_channel_ids,
442                         }
443                 });
444
445                 Ok(())
446         }
447
448         /// When an SCID query is initiated the remote peer will begin streaming
449         /// gossip messages. In the event of a failure, we may have received
450         /// some channel information. Before trying with another peer, the
451         /// caller should update its set of SCIDs that need to be queried.
452         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
453                 log_debug!(self.logger, "Handling reply_short_channel_ids_end peer={}, full_information={}", log_pubkey!(their_node_id), msg.full_information);
454
455                 // If the remote node does not have up-to-date information for the
456                 // chain_hash they will set full_information=false. We can fail
457                 // the result and try again with a different peer.
458                 if !msg.full_information {
459                         return Err(LightningError {
460                                 err: String::from("Received reply_short_channel_ids_end with no information"),
461                                 action: ErrorAction::IgnoreError
462                         });
463                 }
464
465                 Ok(())
466         }
467
468         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
469         /// are in the specified block range. Due to message size limits, large range
470         /// queries may result in several reply messages. This implementation enqueues
471         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
472         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
473         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
474         /// memory constrained systems.
475         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
476                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
477
478                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
479
480                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
481                 // If so, we manually cap the ending block to avoid this overflow.
482                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
483
484                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
485                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
486                         let mut pending_events = self.pending_events.lock().unwrap();
487                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
488                                 node_id: their_node_id.clone(),
489                                 msg: ReplyChannelRange {
490                                         chain_hash: msg.chain_hash.clone(),
491                                         first_blocknum: msg.first_blocknum,
492                                         number_of_blocks: msg.number_of_blocks,
493                                         sync_complete: true,
494                                         short_channel_ids: vec![],
495                                 }
496                         });
497                         return Err(LightningError {
498                                 err: String::from("query_channel_range could not be processed"),
499                                 action: ErrorAction::IgnoreError,
500                         });
501                 }
502
503                 // Creates channel batches. We are not checking if the channel is routable
504                 // (has at least one update). A peer may still want to know the channel
505                 // exists even if its not yet routable.
506                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
507                 let channels = self.network_graph.channels.read().unwrap();
508                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
509                         if let Some(chan_announcement) = &chan.announcement_message {
510                                 // Construct a new batch if last one is full
511                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
512                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
513                                 }
514
515                                 let batch = batches.last_mut().unwrap();
516                                 batch.push(chan_announcement.contents.short_channel_id);
517                         }
518                 }
519                 drop(channels);
520
521                 let mut pending_events = self.pending_events.lock().unwrap();
522                 let batch_count = batches.len();
523                 let mut prev_batch_endblock = msg.first_blocknum;
524                 for (batch_index, batch) in batches.into_iter().enumerate() {
525                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
526                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
527                         //
528                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
529                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
530                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
531                         // significant diversion from the requirements set by the spec, and, in case of blocks
532                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
533                         // and *not* derive the first_blocknum from the actual first block of the reply.
534                         let first_blocknum = prev_batch_endblock;
535
536                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
537                         // fit in. Though there is no requirement that we use exactly the number of blocks its
538                         // contents are from, except for the bogus requirements c-lightning enforces, above.
539                         //
540                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
541                         // >= the query's end block. Thus, for the last reply, we calculate the difference
542                         // between the query's end block and the start of the reply.
543                         //
544                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
545                         // first_blocknum will be either msg.first_blocknum or a higher block height.
546                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
547                                 (true, msg.end_blocknum() - first_blocknum)
548                         }
549                         // Prior replies should use the number of blocks that fit into the reply. Overflow
550                         // safe since first_blocknum is always <= last SCID's block.
551                         else {
552                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
553                         };
554
555                         prev_batch_endblock = first_blocknum + number_of_blocks;
556
557                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
558                                 node_id: their_node_id.clone(),
559                                 msg: ReplyChannelRange {
560                                         chain_hash: msg.chain_hash.clone(),
561                                         first_blocknum,
562                                         number_of_blocks,
563                                         sync_complete,
564                                         short_channel_ids: batch,
565                                 }
566                         });
567                 }
568
569                 Ok(())
570         }
571
572         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
573                 // TODO
574                 Err(LightningError {
575                         err: String::from("Not implemented"),
576                         action: ErrorAction::IgnoreError,
577                 })
578         }
579 }
580
581 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> MessageSendEventsProvider for NetGraphMsgHandler<G, C, L>
582 where
583         C::Target: chain::Access,
584         L::Target: Logger,
585 {
586         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
587                 let mut ret = Vec::new();
588                 let mut pending_events = self.pending_events.lock().unwrap();
589                 core::mem::swap(&mut ret, &mut pending_events);
590                 ret
591         }
592 }
593
594 #[derive(Clone, Debug, PartialEq)]
595 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
596 pub struct ChannelUpdateInfo {
597         /// When the last update to the channel direction was issued.
598         /// Value is opaque, as set in the announcement.
599         pub last_update: u32,
600         /// Whether the channel can be currently used for payments (in this one direction).
601         pub enabled: bool,
602         /// The difference in CLTV values that you must have when routing through this channel.
603         pub cltv_expiry_delta: u16,
604         /// The minimum value, which must be relayed to the next hop via the channel
605         pub htlc_minimum_msat: u64,
606         /// The maximum value which may be relayed to the next hop via the channel.
607         pub htlc_maximum_msat: Option<u64>,
608         /// Fees charged when the channel is used for routing
609         pub fees: RoutingFees,
610         /// Most recent update for the channel received from the network
611         /// Mostly redundant with the data we store in fields explicitly.
612         /// Everything else is useful only for sending out for initial routing sync.
613         /// Not stored if contains excess data to prevent DoS.
614         pub last_update_message: Option<ChannelUpdate>,
615 }
616
617 impl fmt::Display for ChannelUpdateInfo {
618         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
619                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
620                 Ok(())
621         }
622 }
623
624 impl_writeable_tlv_based!(ChannelUpdateInfo, {
625         (0, last_update, required),
626         (2, enabled, required),
627         (4, cltv_expiry_delta, required),
628         (6, htlc_minimum_msat, required),
629         (8, htlc_maximum_msat, required),
630         (10, fees, required),
631         (12, last_update_message, required),
632 });
633
634 #[derive(Clone, Debug, PartialEq)]
635 /// Details about a channel (both directions).
636 /// Received within a channel announcement.
637 pub struct ChannelInfo {
638         /// Protocol features of a channel communicated during its announcement
639         pub features: ChannelFeatures,
640         /// Source node of the first direction of a channel
641         pub node_one: NodeId,
642         /// Details about the first direction of a channel
643         pub one_to_two: Option<ChannelUpdateInfo>,
644         /// Source node of the second direction of a channel
645         pub node_two: NodeId,
646         /// Details about the second direction of a channel
647         pub two_to_one: Option<ChannelUpdateInfo>,
648         /// The channel capacity as seen on-chain, if chain lookup is available.
649         pub capacity_sats: Option<u64>,
650         /// An initial announcement of the channel
651         /// Mostly redundant with the data we store in fields explicitly.
652         /// Everything else is useful only for sending out for initial routing sync.
653         /// Not stored if contains excess data to prevent DoS.
654         pub announcement_message: Option<ChannelAnnouncement>,
655         /// The timestamp when we received the announcement, if we are running with feature = "std"
656         /// (which we can probably assume we are - no-std environments probably won't have a full
657         /// network graph in memory!).
658         announcement_received_time: u64,
659 }
660
661 impl ChannelInfo {
662         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
663         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
664         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
665                 let (direction, source) = {
666                         if target == &self.node_one {
667                                 (self.two_to_one.as_ref(), &self.node_two)
668                         } else if target == &self.node_two {
669                                 (self.one_to_two.as_ref(), &self.node_one)
670                         } else {
671                                 return None;
672                         }
673                 };
674                 Some((DirectedChannelInfo { channel: self, direction }, source))
675         }
676
677         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
678         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
679         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
680                 let (direction, target) = {
681                         if source == &self.node_one {
682                                 (self.one_to_two.as_ref(), &self.node_two)
683                         } else if source == &self.node_two {
684                                 (self.two_to_one.as_ref(), &self.node_one)
685                         } else {
686                                 return None;
687                         }
688                 };
689                 Some((DirectedChannelInfo { channel: self, direction }, target))
690         }
691 }
692
693 impl fmt::Display for ChannelInfo {
694         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
695                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
696                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
697                 Ok(())
698         }
699 }
700
701 impl_writeable_tlv_based!(ChannelInfo, {
702         (0, features, required),
703         (1, announcement_received_time, (default_value, 0)),
704         (2, node_one, required),
705         (4, one_to_two, required),
706         (6, node_two, required),
707         (8, two_to_one, required),
708         (10, capacity_sats, required),
709         (12, announcement_message, required),
710 });
711
712 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
713 /// source node to a target node.
714 #[derive(Clone)]
715 pub struct DirectedChannelInfo<'a> {
716         channel: &'a ChannelInfo,
717         direction: Option<&'a ChannelUpdateInfo>,
718 }
719
720 impl<'a> DirectedChannelInfo<'a> {
721         /// Returns information for the channel.
722         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
723
724         /// Returns information for the direction.
725         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
726
727         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
728         ///
729         /// This is either the total capacity from the funding transaction, if known, or the
730         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
731         /// whichever is smaller.
732         pub fn effective_capacity(&self) -> EffectiveCapacity {
733                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
734                 self.direction
735                         .and_then(|direction| direction.htlc_maximum_msat)
736                         .map(|max_htlc_msat| {
737                                 let capacity_msat = capacity_msat.unwrap_or(u64::max_value());
738                                 if max_htlc_msat < capacity_msat {
739                                         EffectiveCapacity::MaximumHTLC { amount_msat: max_htlc_msat }
740                                 } else {
741                                         EffectiveCapacity::Total { capacity_msat }
742                                 }
743                         })
744                         .or_else(|| capacity_msat.map(|capacity_msat|
745                                         EffectiveCapacity::Total { capacity_msat }))
746                         .unwrap_or(EffectiveCapacity::Unknown)
747         }
748
749         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
750         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
751                 match self.direction {
752                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
753                         None => None,
754                 }
755         }
756 }
757
758 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
759         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
760                 f.debug_struct("DirectedChannelInfo")
761                         .field("channel", &self.channel)
762                         .finish()
763         }
764 }
765
766 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
767 #[derive(Clone)]
768 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
769         inner: DirectedChannelInfo<'a>,
770 }
771
772 impl<'a> DirectedChannelInfoWithUpdate<'a> {
773         /// Returns information for the channel.
774         #[inline]
775         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
776
777         /// Returns information for the direction.
778         #[inline]
779         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
780
781         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
782         #[inline]
783         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
784 }
785
786 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
787         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
788                 self.inner.fmt(f)
789         }
790 }
791
792 /// The effective capacity of a channel for routing purposes.
793 ///
794 /// While this may be smaller than the actual channel capacity, amounts greater than
795 /// [`Self::as_msat`] should not be routed through the channel.
796 pub enum EffectiveCapacity {
797         /// The available liquidity in the channel known from being a channel counterparty, and thus a
798         /// direct hop.
799         ExactLiquidity {
800                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
801                 /// millisatoshi.
802                 liquidity_msat: u64,
803         },
804         /// The maximum HTLC amount in one direction as advertised on the gossip network.
805         MaximumHTLC {
806                 /// The maximum HTLC amount denominated in millisatoshi.
807                 amount_msat: u64,
808         },
809         /// The total capacity of the channel as determined by the funding transaction.
810         Total {
811                 /// The funding amount denominated in millisatoshi.
812                 capacity_msat: u64,
813         },
814         /// A capacity sufficient to route any payment, typically used for private channels provided by
815         /// an invoice.
816         Infinite,
817         /// A capacity that is unknown possibly because either the chain state is unavailable to know
818         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
819         Unknown,
820 }
821
822 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
823 /// use when making routing decisions.
824 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
825
826 impl EffectiveCapacity {
827         /// Returns the effective capacity denominated in millisatoshi.
828         pub fn as_msat(&self) -> u64 {
829                 match self {
830                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
831                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
832                         EffectiveCapacity::Total { capacity_msat } => *capacity_msat,
833                         EffectiveCapacity::Infinite => u64::max_value(),
834                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
835                 }
836         }
837 }
838
839 /// Fees for routing via a given channel or a node
840 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
841 pub struct RoutingFees {
842         /// Flat routing fee in satoshis
843         pub base_msat: u32,
844         /// Liquidity-based routing fee in millionths of a routed amount.
845         /// In other words, 10000 is 1%.
846         pub proportional_millionths: u32,
847 }
848
849 impl_writeable_tlv_based!(RoutingFees, {
850         (0, base_msat, required),
851         (2, proportional_millionths, required)
852 });
853
854 #[derive(Clone, Debug, PartialEq)]
855 /// Information received in the latest node_announcement from this node.
856 pub struct NodeAnnouncementInfo {
857         /// Protocol features the node announced support for
858         pub features: NodeFeatures,
859         /// When the last known update to the node state was issued.
860         /// Value is opaque, as set in the announcement.
861         pub last_update: u32,
862         /// Color assigned to the node
863         pub rgb: [u8; 3],
864         /// Moniker assigned to the node.
865         /// May be invalid or malicious (eg control chars),
866         /// should not be exposed to the user.
867         pub alias: [u8; 32],
868         /// Internet-level addresses via which one can connect to the node
869         pub addresses: Vec<NetAddress>,
870         /// An initial announcement of the node
871         /// Mostly redundant with the data we store in fields explicitly.
872         /// Everything else is useful only for sending out for initial routing sync.
873         /// Not stored if contains excess data to prevent DoS.
874         pub announcement_message: Option<NodeAnnouncement>
875 }
876
877 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
878         (0, features, required),
879         (2, last_update, required),
880         (4, rgb, required),
881         (6, alias, required),
882         (8, announcement_message, option),
883         (10, addresses, vec_type),
884 });
885
886 #[derive(Clone, Debug, PartialEq)]
887 /// Details about a node in the network, known from the network announcement.
888 pub struct NodeInfo {
889         /// All valid channels a node has announced
890         pub channels: Vec<u64>,
891         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
892         /// The two fields (flat and proportional fee) are independent,
893         /// meaning they don't have to refer to the same channel.
894         pub lowest_inbound_channel_fees: Option<RoutingFees>,
895         /// More information about a node from node_announcement.
896         /// Optional because we store a Node entry after learning about it from
897         /// a channel announcement, but before receiving a node announcement.
898         pub announcement_info: Option<NodeAnnouncementInfo>
899 }
900
901 impl fmt::Display for NodeInfo {
902         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
903                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
904                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
905                 Ok(())
906         }
907 }
908
909 impl_writeable_tlv_based!(NodeInfo, {
910         (0, lowest_inbound_channel_fees, option),
911         (2, announcement_info, option),
912         (4, channels, vec_type),
913 });
914
915 const SERIALIZATION_VERSION: u8 = 1;
916 const MIN_SERIALIZATION_VERSION: u8 = 1;
917
918 impl Writeable for NetworkGraph {
919         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
920                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
921
922                 self.genesis_hash.write(writer)?;
923                 let channels = self.channels.read().unwrap();
924                 (channels.len() as u64).write(writer)?;
925                 for (ref chan_id, ref chan_info) in channels.iter() {
926                         (*chan_id).write(writer)?;
927                         chan_info.write(writer)?;
928                 }
929                 let nodes = self.nodes.read().unwrap();
930                 (nodes.len() as u64).write(writer)?;
931                 for (ref node_id, ref node_info) in nodes.iter() {
932                         node_id.write(writer)?;
933                         node_info.write(writer)?;
934                 }
935
936                 write_tlv_fields!(writer, {});
937                 Ok(())
938         }
939 }
940
941 impl Readable for NetworkGraph {
942         fn read<R: io::Read>(reader: &mut R) -> Result<NetworkGraph, DecodeError> {
943                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
944
945                 let genesis_hash: BlockHash = Readable::read(reader)?;
946                 let channels_count: u64 = Readable::read(reader)?;
947                 let mut channels = BTreeMap::new();
948                 for _ in 0..channels_count {
949                         let chan_id: u64 = Readable::read(reader)?;
950                         let chan_info = Readable::read(reader)?;
951                         channels.insert(chan_id, chan_info);
952                 }
953                 let nodes_count: u64 = Readable::read(reader)?;
954                 let mut nodes = BTreeMap::new();
955                 for _ in 0..nodes_count {
956                         let node_id = Readable::read(reader)?;
957                         let node_info = Readable::read(reader)?;
958                         nodes.insert(node_id, node_info);
959                 }
960                 read_tlv_fields!(reader, {});
961
962                 Ok(NetworkGraph {
963                         genesis_hash,
964                         channels: RwLock::new(channels),
965                         nodes: RwLock::new(nodes),
966                 })
967         }
968 }
969
970 impl fmt::Display for NetworkGraph {
971         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
972                 writeln!(f, "Network map\n[Channels]")?;
973                 for (key, val) in self.channels.read().unwrap().iter() {
974                         writeln!(f, " {}: {}", key, val)?;
975                 }
976                 writeln!(f, "[Nodes]")?;
977                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
978                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
979                 }
980                 Ok(())
981         }
982 }
983
984 impl PartialEq for NetworkGraph {
985         fn eq(&self, other: &Self) -> bool {
986                 self.genesis_hash == other.genesis_hash &&
987                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
988                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
989         }
990 }
991
992 impl NetworkGraph {
993         /// Creates a new, empty, network graph.
994         pub fn new(genesis_hash: BlockHash) -> NetworkGraph {
995                 Self {
996                         genesis_hash,
997                         channels: RwLock::new(BTreeMap::new()),
998                         nodes: RwLock::new(BTreeMap::new()),
999                 }
1000         }
1001
1002         /// Returns a read-only view of the network graph.
1003         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1004                 let channels = self.channels.read().unwrap();
1005                 let nodes = self.nodes.read().unwrap();
1006                 ReadOnlyNetworkGraph {
1007                         channels,
1008                         nodes,
1009                 }
1010         }
1011
1012         /// For an already known node (from channel announcements), update its stored properties from a
1013         /// given node announcement.
1014         ///
1015         /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
1016         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1017         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1018         pub fn update_node_from_announcement<T: secp256k1::Verification>(&self, msg: &msgs::NodeAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
1019                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1020                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1021                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1022         }
1023
1024         /// For an already known node (from channel announcements), update its stored properties from a
1025         /// given node announcement without verifying the associated signatures. Because we aren't
1026         /// given the associated signatures here we cannot relay the node announcement to any of our
1027         /// peers.
1028         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1029                 self.update_node_from_announcement_intern(msg, None)
1030         }
1031
1032         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1033                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1034                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1035                         Some(node) => {
1036                                 if let Some(node_info) = node.announcement_info.as_ref() {
1037                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1038                                         // updates to ensure you always have the latest one, only vaguely suggesting
1039                                         // that it be at least the current time.
1040                                         if node_info.last_update  > msg.timestamp {
1041                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1042                                         } else if node_info.last_update  == msg.timestamp {
1043                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1044                                         }
1045                                 }
1046
1047                                 let should_relay =
1048                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1049                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1050                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1051                                 node.announcement_info = Some(NodeAnnouncementInfo {
1052                                         features: msg.features.clone(),
1053                                         last_update: msg.timestamp,
1054                                         rgb: msg.rgb,
1055                                         alias: msg.alias,
1056                                         addresses: msg.addresses.clone(),
1057                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1058                                 });
1059
1060                                 Ok(())
1061                         }
1062                 }
1063         }
1064
1065         /// Store or update channel info from a channel announcement.
1066         ///
1067         /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
1068         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1069         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1070         ///
1071         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1072         /// the corresponding UTXO exists on chain and is correctly-formatted.
1073         pub fn update_channel_from_announcement<T: secp256k1::Verification, C: Deref>(
1074                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>, secp_ctx: &Secp256k1<T>
1075         ) -> Result<(), LightningError>
1076         where
1077                 C::Target: chain::Access,
1078         {
1079                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1080                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1081                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1082                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1083                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1084                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1085         }
1086
1087         /// Store or update channel info from a channel announcement without verifying the associated
1088         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1089         /// channel announcement to any of our peers.
1090         ///
1091         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1092         /// the corresponding UTXO exists on chain and is correctly-formatted.
1093         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1094                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1095         ) -> Result<(), LightningError>
1096         where
1097                 C::Target: chain::Access,
1098         {
1099                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1100         }
1101
1102         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1103                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1104         ) -> Result<(), LightningError>
1105         where
1106                 C::Target: chain::Access,
1107         {
1108                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1109                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1110                 }
1111
1112                 let utxo_value = match &chain_access {
1113                         &None => {
1114                                 // Tentatively accept, potentially exposing us to DoS attacks
1115                                 None
1116                         },
1117                         &Some(ref chain_access) => {
1118                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1119                                         Ok(TxOut { value, script_pubkey }) => {
1120                                                 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1121                                                                                     .push_slice(&msg.bitcoin_key_1.serialize())
1122                                                                                     .push_slice(&msg.bitcoin_key_2.serialize())
1123                                                                                     .push_opcode(opcodes::all::OP_PUSHNUM_2)
1124                                                                                     .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1125                                                 if script_pubkey != expected_script {
1126                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
1127                                                 }
1128                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1129                                                 //to the new HTLC max field in channel_update
1130                                                 Some(value)
1131                                         },
1132                                         Err(chain::AccessError::UnknownChain) => {
1133                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1134                                         },
1135                                         Err(chain::AccessError::UnknownTx) => {
1136                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1137                                         },
1138                                 }
1139                         },
1140                 };
1141
1142                 #[allow(unused_mut, unused_assignments)]
1143                 let mut announcement_received_time = 0;
1144                 #[cfg(feature = "std")]
1145                 {
1146                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1147                 }
1148
1149                 let chan_info = ChannelInfo {
1150                                 features: msg.features.clone(),
1151                                 node_one: NodeId::from_pubkey(&msg.node_id_1),
1152                                 one_to_two: None,
1153                                 node_two: NodeId::from_pubkey(&msg.node_id_2),
1154                                 two_to_one: None,
1155                                 capacity_sats: utxo_value,
1156                                 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1157                                         { full_msg.cloned() } else { None },
1158                                 announcement_received_time,
1159                         };
1160
1161                 let mut channels = self.channels.write().unwrap();
1162                 let mut nodes = self.nodes.write().unwrap();
1163                 match channels.entry(msg.short_channel_id) {
1164                         BtreeEntry::Occupied(mut entry) => {
1165                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1166                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1167                                 //exactly how...
1168                                 if utxo_value.is_some() {
1169                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1170                                         // only sometimes returns results. In any case remove the previous entry. Note
1171                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1172                                         // do that because
1173                                         // a) we don't *require* a UTXO provider that always returns results.
1174                                         // b) we don't track UTXOs of channels we know about and remove them if they
1175                                         //    get reorg'd out.
1176                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1177                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), msg.short_channel_id);
1178                                         *entry.get_mut() = chan_info;
1179                                 } else {
1180                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1181                                 }
1182                         },
1183                         BtreeEntry::Vacant(entry) => {
1184                                 entry.insert(chan_info);
1185                         }
1186                 };
1187
1188                 macro_rules! add_channel_to_node {
1189                         ( $node_id: expr ) => {
1190                                 match nodes.entry($node_id) {
1191                                         BtreeEntry::Occupied(node_entry) => {
1192                                                 node_entry.into_mut().channels.push(msg.short_channel_id);
1193                                         },
1194                                         BtreeEntry::Vacant(node_entry) => {
1195                                                 node_entry.insert(NodeInfo {
1196                                                         channels: vec!(msg.short_channel_id),
1197                                                         lowest_inbound_channel_fees: None,
1198                                                         announcement_info: None,
1199                                                 });
1200                                         }
1201                                 }
1202                         };
1203                 }
1204
1205                 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_1));
1206                 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_2));
1207
1208                 Ok(())
1209         }
1210
1211         /// Close a channel if a corresponding HTLC fail was sent.
1212         /// If permanent, removes a channel from the local storage.
1213         /// May cause the removal of nodes too, if this was their last channel.
1214         /// If not permanent, makes channels unavailable for routing.
1215         pub fn close_channel_from_update(&self, short_channel_id: u64, is_permanent: bool) {
1216                 let mut channels = self.channels.write().unwrap();
1217                 if is_permanent {
1218                         if let Some(chan) = channels.remove(&short_channel_id) {
1219                                 let mut nodes = self.nodes.write().unwrap();
1220                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1221                         }
1222                 } else {
1223                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1224                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1225                                         one_to_two.enabled = false;
1226                                 }
1227                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1228                                         two_to_one.enabled = false;
1229                                 }
1230                         }
1231                 }
1232         }
1233
1234         /// Marks a node in the graph as failed.
1235         pub fn fail_node(&self, _node_id: &PublicKey, is_permanent: bool) {
1236                 if is_permanent {
1237                         // TODO: Wholly remove the node
1238                 } else {
1239                         // TODO: downgrade the node
1240                 }
1241         }
1242
1243         #[cfg(feature = "std")]
1244         /// Removes information about channels that we haven't heard any updates about in some time.
1245         /// This can be used regularly to prune the network graph of channels that likely no longer
1246         /// exist.
1247         ///
1248         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1249         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1250         /// pruning occur for updates which are at least two weeks old, which we implement here.
1251         ///
1252         /// Note that for users of the `lightning-background-processor` crate this method may be
1253         /// automatically called regularly for you.
1254         ///
1255         /// This method is only available with the `std` feature. See
1256         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1257         pub fn remove_stale_channels(&self) {
1258                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1259                 self.remove_stale_channels_with_time(time);
1260         }
1261
1262         /// Removes information about channels that we haven't heard any updates about in some time.
1263         /// This can be used regularly to prune the network graph of channels that likely no longer
1264         /// exist.
1265         ///
1266         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1267         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1268         /// pruning occur for updates which are at least two weeks old, which we implement here.
1269         ///
1270         /// This function takes the current unix time as an argument. For users with the `std` feature
1271         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1272         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1273                 let mut channels = self.channels.write().unwrap();
1274                 // Time out if we haven't received an update in at least 14 days.
1275                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1276                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1277                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1278                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1279                 // time.
1280                 let mut scids_to_remove = Vec::new();
1281                 for (scid, info) in channels.iter_mut() {
1282                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1283                                 info.one_to_two = None;
1284                         }
1285                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1286                                 info.two_to_one = None;
1287                         }
1288                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1289                                 // We check the announcement_received_time here to ensure we don't drop
1290                                 // announcements that we just received and are just waiting for our peer to send a
1291                                 // channel_update for.
1292                                 if info.announcement_received_time < min_time_unix as u64 {
1293                                         scids_to_remove.push(*scid);
1294                                 }
1295                         }
1296                 }
1297                 if !scids_to_remove.is_empty() {
1298                         let mut nodes = self.nodes.write().unwrap();
1299                         for scid in scids_to_remove {
1300                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1301                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1302                         }
1303                 }
1304         }
1305
1306         /// For an already known (from announcement) channel, update info about one of the directions
1307         /// of the channel.
1308         ///
1309         /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
1310         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1311         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1312         ///
1313         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1314         /// materially in the future will be rejected.
1315         pub fn update_channel<T: secp256k1::Verification>(&self, msg: &msgs::ChannelUpdate, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
1316                 self.update_channel_intern(&msg.contents, Some(&msg), Some((&msg.signature, secp_ctx)))
1317         }
1318
1319         /// For an already known (from announcement) channel, update info about one of the directions
1320         /// of the channel without verifying the associated signatures. Because we aren't given the
1321         /// associated signatures here we cannot relay the channel update to any of our peers.
1322         ///
1323         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1324         /// materially in the future will be rejected.
1325         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1326                 self.update_channel_intern(msg, None, None::<(&secp256k1::Signature, &Secp256k1<secp256k1::VerifyOnly>)>)
1327         }
1328
1329         fn update_channel_intern<T: secp256k1::Verification>(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig_info: Option<(&secp256k1::Signature, &Secp256k1<T>)>) -> Result<(), LightningError> {
1330                 let dest_node_id;
1331                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1332                 let chan_was_enabled;
1333
1334                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1335                 {
1336                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1337                         // disable this check during tests!
1338                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1339                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1340                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1341                         }
1342                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1343                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1344                         }
1345                 }
1346
1347                 let mut channels = self.channels.write().unwrap();
1348                 match channels.get_mut(&msg.short_channel_id) {
1349                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1350                         Some(channel) => {
1351                                 if let OptionalField::Present(htlc_maximum_msat) = msg.htlc_maximum_msat {
1352                                         if htlc_maximum_msat > MAX_VALUE_MSAT {
1353                                                 return Err(LightningError{err: "htlc_maximum_msat is larger than maximum possible msats".to_owned(), action: ErrorAction::IgnoreError});
1354                                         }
1355
1356                                         if let Some(capacity_sats) = channel.capacity_sats {
1357                                                 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1358                                                 // Don't query UTXO set here to reduce DoS risks.
1359                                                 if capacity_sats > MAX_VALUE_MSAT / 1000 || htlc_maximum_msat > capacity_sats * 1000 {
1360                                                         return Err(LightningError{err: "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(), action: ErrorAction::IgnoreError});
1361                                                 }
1362                                         }
1363                                 }
1364                                 macro_rules! maybe_update_channel_info {
1365                                         ( $target: expr, $src_node: expr) => {
1366                                                 if let Some(existing_chan_info) = $target.as_ref() {
1367                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1368                                                         // order updates to ensure you always have the latest one, only
1369                                                         // suggesting  that it be at least the current time. For
1370                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1371                                                         // pruning based on the timestamp field being more than two weeks old,
1372                                                         // but only in the non-normative section.
1373                                                         if existing_chan_info.last_update > msg.timestamp {
1374                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1375                                                         } else if existing_chan_info.last_update == msg.timestamp {
1376                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1377                                                         }
1378                                                         chan_was_enabled = existing_chan_info.enabled;
1379                                                 } else {
1380                                                         chan_was_enabled = false;
1381                                                 }
1382
1383                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1384                                                         { full_msg.cloned() } else { None };
1385
1386                                                 let updated_channel_update_info = ChannelUpdateInfo {
1387                                                         enabled: chan_enabled,
1388                                                         last_update: msg.timestamp,
1389                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1390                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1391                                                         htlc_maximum_msat: if let OptionalField::Present(max_value) = msg.htlc_maximum_msat { Some(max_value) } else { None },
1392                                                         fees: RoutingFees {
1393                                                                 base_msat: msg.fee_base_msat,
1394                                                                 proportional_millionths: msg.fee_proportional_millionths,
1395                                                         },
1396                                                         last_update_message
1397                                                 };
1398                                                 $target = Some(updated_channel_update_info);
1399                                         }
1400                                 }
1401
1402                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1403                                 if msg.flags & 1 == 1 {
1404                                         dest_node_id = channel.node_one.clone();
1405                                         if let Some((sig, ctx)) = sig_info {
1406                                                 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1407                                                         err: "Couldn't parse source node pubkey".to_owned(),
1408                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1409                                                 })?, "channel_update");
1410                                         }
1411                                         maybe_update_channel_info!(channel.two_to_one, channel.node_two);
1412                                 } else {
1413                                         dest_node_id = channel.node_two.clone();
1414                                         if let Some((sig, ctx)) = sig_info {
1415                                                 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1416                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1417                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1418                                                 })?, "channel_update");
1419                                         }
1420                                         maybe_update_channel_info!(channel.one_to_two, channel.node_one);
1421                                 }
1422                         }
1423                 }
1424
1425                 let mut nodes = self.nodes.write().unwrap();
1426                 if chan_enabled {
1427                         let node = nodes.get_mut(&dest_node_id).unwrap();
1428                         let mut base_msat = msg.fee_base_msat;
1429                         let mut proportional_millionths = msg.fee_proportional_millionths;
1430                         if let Some(fees) = node.lowest_inbound_channel_fees {
1431                                 base_msat = cmp::min(base_msat, fees.base_msat);
1432                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1433                         }
1434                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1435                                 base_msat,
1436                                 proportional_millionths
1437                         });
1438                 } else if chan_was_enabled {
1439                         let node = nodes.get_mut(&dest_node_id).unwrap();
1440                         let mut lowest_inbound_channel_fees = None;
1441
1442                         for chan_id in node.channels.iter() {
1443                                 let chan = channels.get(chan_id).unwrap();
1444                                 let chan_info_opt;
1445                                 if chan.node_one == dest_node_id {
1446                                         chan_info_opt = chan.two_to_one.as_ref();
1447                                 } else {
1448                                         chan_info_opt = chan.one_to_two.as_ref();
1449                                 }
1450                                 if let Some(chan_info) = chan_info_opt {
1451                                         if chan_info.enabled {
1452                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1453                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1454                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1455                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1456                                         }
1457                                 }
1458                         }
1459
1460                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1461                 }
1462
1463                 Ok(())
1464         }
1465
1466         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1467                 macro_rules! remove_from_node {
1468                         ($node_id: expr) => {
1469                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1470                                         entry.get_mut().channels.retain(|chan_id| {
1471                                                 short_channel_id != *chan_id
1472                                         });
1473                                         if entry.get().channels.is_empty() {
1474                                                 entry.remove_entry();
1475                                         }
1476                                 } else {
1477                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1478                                 }
1479                         }
1480                 }
1481
1482                 remove_from_node!(chan.node_one);
1483                 remove_from_node!(chan.node_two);
1484         }
1485 }
1486
1487 impl ReadOnlyNetworkGraph<'_> {
1488         /// Returns all known valid channels' short ids along with announced channel info.
1489         ///
1490         /// (C-not exported) because we have no mapping for `BTreeMap`s
1491         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1492                 &*self.channels
1493         }
1494
1495         /// Returns all known nodes' public keys along with announced node info.
1496         ///
1497         /// (C-not exported) because we have no mapping for `BTreeMap`s
1498         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1499                 &*self.nodes
1500         }
1501
1502         /// Get network addresses by node id.
1503         /// Returns None if the requested node is completely unknown,
1504         /// or if node announcement for the node was never received.
1505         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1506                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1507                         if let Some(node_info) = node.announcement_info.as_ref() {
1508                                 return Some(node_info.addresses.clone())
1509                         }
1510                 }
1511                 None
1512         }
1513 }
1514
1515 #[cfg(test)]
1516 mod tests {
1517         use chain;
1518         use ln::PaymentHash;
1519         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1520         use routing::network_graph::{NetGraphMsgHandler, NetworkGraph, NetworkUpdate, MAX_EXCESS_BYTES_FOR_RELAY};
1521         use ln::msgs::{Init, OptionalField, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1522                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate, 
1523                 ReplyChannelRange, ReplyShortChannelIdsEnd, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1524         use util::test_utils;
1525         use util::logger::Logger;
1526         use util::ser::{Readable, Writeable};
1527         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1528         use util::scid_utils::scid_from_parts;
1529
1530         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1531
1532         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1533         use bitcoin::hashes::Hash;
1534         use bitcoin::network::constants::Network;
1535         use bitcoin::blockdata::constants::genesis_block;
1536         use bitcoin::blockdata::script::{Builder, Script};
1537         use bitcoin::blockdata::transaction::TxOut;
1538         use bitcoin::blockdata::opcodes;
1539
1540         use hex;
1541
1542         use bitcoin::secp256k1::key::{PublicKey, SecretKey};
1543         use bitcoin::secp256k1::{All, Secp256k1};
1544
1545         use io;
1546         use prelude::*;
1547         use sync::Arc;
1548
1549         fn create_network_graph() -> NetworkGraph {
1550                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1551                 NetworkGraph::new(genesis_hash)
1552         }
1553
1554         fn create_net_graph_msg_handler(network_graph: &NetworkGraph) -> (
1555                 Secp256k1<All>, NetGraphMsgHandler<&NetworkGraph, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1556         ) {
1557                 let secp_ctx = Secp256k1::new();
1558                 let logger = Arc::new(test_utils::TestLogger::new());
1559                 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger));
1560                 (secp_ctx, net_graph_msg_handler)
1561         }
1562
1563         #[test]
1564         fn request_full_sync_finite_times() {
1565                 let network_graph = create_network_graph();
1566                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1567                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1568
1569                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1570                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1571                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1572                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1573                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1574                 assert!(!net_graph_msg_handler.should_request_full_sync(&node_id));
1575         }
1576
1577         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1578                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1579                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1580                         features: NodeFeatures::known(),
1581                         timestamp: 100,
1582                         node_id: node_id,
1583                         rgb: [0; 3],
1584                         alias: [0; 32],
1585                         addresses: Vec::new(),
1586                         excess_address_data: Vec::new(),
1587                         excess_data: Vec::new(),
1588                 };
1589                 f(&mut unsigned_announcement);
1590                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1591                 NodeAnnouncement {
1592                         signature: secp_ctx.sign(&msghash, node_key),
1593                         contents: unsigned_announcement
1594                 }
1595         }
1596
1597         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1598                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1599                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1600                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1601                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1602
1603                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1604                         features: ChannelFeatures::known(),
1605                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1606                         short_channel_id: 0,
1607                         node_id_1,
1608                         node_id_2,
1609                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1610                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1611                         excess_data: Vec::new(),
1612                 };
1613                 f(&mut unsigned_announcement);
1614                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1615                 ChannelAnnouncement {
1616                         node_signature_1: secp_ctx.sign(&msghash, node_1_key),
1617                         node_signature_2: secp_ctx.sign(&msghash, node_2_key),
1618                         bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1619                         bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1620                         contents: unsigned_announcement,
1621                 }
1622         }
1623
1624         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1625                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1626                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1627                 Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1628                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1629                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1630                               .push_opcode(opcodes::all::OP_PUSHNUM_2)
1631                               .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
1632                               .to_v0_p2wsh()
1633         }
1634
1635         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1636                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1637                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1638                         short_channel_id: 0,
1639                         timestamp: 100,
1640                         flags: 0,
1641                         cltv_expiry_delta: 144,
1642                         htlc_minimum_msat: 1_000_000,
1643                         htlc_maximum_msat: OptionalField::Absent,
1644                         fee_base_msat: 10_000,
1645                         fee_proportional_millionths: 20,
1646                         excess_data: Vec::new()
1647                 };
1648                 f(&mut unsigned_channel_update);
1649                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1650                 ChannelUpdate {
1651                         signature: secp_ctx.sign(&msghash, node_key),
1652                         contents: unsigned_channel_update
1653                 }
1654         }
1655
1656         #[test]
1657         fn handling_node_announcements() {
1658                 let network_graph = create_network_graph();
1659                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1660
1661                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1662                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1663                 let zero_hash = Sha256dHash::hash(&[0; 32]);
1664
1665                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
1666                 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1667                         Ok(_) => panic!(),
1668                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1669                 };
1670
1671                 {
1672                         // Announce a channel to add a corresponding node.
1673                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1674                         match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1675                                 Ok(res) => assert!(res),
1676                                 _ => panic!()
1677                         };
1678                 }
1679
1680                 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1681                         Ok(res) => assert!(res),
1682                         Err(_) => panic!()
1683                 };
1684
1685                 let fake_msghash = hash_to_message!(&zero_hash);
1686                 match net_graph_msg_handler.handle_node_announcement(
1687                         &NodeAnnouncement {
1688                                 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1689                                 contents: valid_announcement.contents.clone()
1690                 }) {
1691                         Ok(_) => panic!(),
1692                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
1693                 };
1694
1695                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
1696                         unsigned_announcement.timestamp += 1000;
1697                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1698                 }, node_1_privkey, &secp_ctx);
1699                 // Return false because contains excess data.
1700                 match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) {
1701                         Ok(res) => assert!(!res),
1702                         Err(_) => panic!()
1703                 };
1704
1705                 // Even though previous announcement was not relayed further, we still accepted it,
1706                 // so we now won't accept announcements before the previous one.
1707                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
1708                         unsigned_announcement.timestamp += 1000 - 10;
1709                 }, node_1_privkey, &secp_ctx);
1710                 match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) {
1711                         Ok(_) => panic!(),
1712                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
1713                 };
1714         }
1715
1716         #[test]
1717         fn handling_channel_announcements() {
1718                 let secp_ctx = Secp256k1::new();
1719                 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1720
1721                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1722                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1723
1724                 let good_script = get_channel_script(&secp_ctx);
1725                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1726
1727                 // Test if the UTXO lookups were not supported
1728                 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1729                 let mut net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, None, Arc::clone(&logger));
1730                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1731                         Ok(res) => assert!(res),
1732                         _ => panic!()
1733                 };
1734
1735                 {
1736                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1737                                 None => panic!(),
1738                                 Some(_) => ()
1739                         };
1740                 }
1741
1742                 // If we receive announcement for the same channel (with UTXO lookups disabled),
1743                 // drop new one on the floor, since we can't see any changes.
1744                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1745                         Ok(_) => panic!(),
1746                         Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
1747                 };
1748
1749                 // Test if an associated transaction were not on-chain (or not confirmed).
1750                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1751                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1752                 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1753                 net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1754
1755                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1756                         unsigned_announcement.short_channel_id += 1;
1757                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1758                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1759                         Ok(_) => panic!(),
1760                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1761                 };
1762
1763                 // Now test if the transaction is found in the UTXO set and the script is correct.
1764                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
1765                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1766                         unsigned_announcement.short_channel_id += 2;
1767                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1768                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1769                         Ok(res) => assert!(res),
1770                         _ => panic!()
1771                 };
1772
1773                 {
1774                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1775                                 None => panic!(),
1776                                 Some(_) => ()
1777                         };
1778                 }
1779
1780                 // If we receive announcement for the same channel (but TX is not confirmed),
1781                 // drop new one on the floor, since we can't see any changes.
1782                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1783                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1784                         Ok(_) => panic!(),
1785                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1786                 };
1787
1788                 // But if it is confirmed, replace the channel
1789                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
1790                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1791                         unsigned_announcement.features = ChannelFeatures::empty();
1792                         unsigned_announcement.short_channel_id += 2;
1793                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1794                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1795                         Ok(res) => assert!(res),
1796                         _ => panic!()
1797                 };
1798                 {
1799                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1800                                 Some(channel_entry) => {
1801                                         assert_eq!(channel_entry.features, ChannelFeatures::empty());
1802                                 },
1803                                 _ => panic!()
1804                         };
1805                 }
1806
1807                 // Don't relay valid channels with excess data
1808                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1809                         unsigned_announcement.short_channel_id += 3;
1810                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1811                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1812                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1813                         Ok(res) => assert!(!res),
1814                         _ => panic!()
1815                 };
1816
1817                 let mut invalid_sig_announcement = valid_announcement.clone();
1818                 invalid_sig_announcement.contents.excess_data = Vec::new();
1819                 match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) {
1820                         Ok(_) => panic!(),
1821                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
1822                 };
1823
1824                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
1825                 match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) {
1826                         Ok(_) => panic!(),
1827                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
1828                 };
1829         }
1830
1831         #[test]
1832         fn handling_channel_update() {
1833                 let secp_ctx = Secp256k1::new();
1834                 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1835                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1836                 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1837                 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1838
1839                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1840                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1841
1842                 let amount_sats = 1000_000;
1843                 let short_channel_id;
1844
1845                 {
1846                         // Announce a channel we will update
1847                         let good_script = get_channel_script(&secp_ctx);
1848                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
1849
1850                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1851                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
1852                         match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1853                                 Ok(_) => (),
1854                                 Err(_) => panic!()
1855                         };
1856
1857                 }
1858
1859                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
1860                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1861                         Ok(res) => assert!(res),
1862                         _ => panic!()
1863                 };
1864
1865                 {
1866                         match network_graph.read_only().channels().get(&short_channel_id) {
1867                                 None => panic!(),
1868                                 Some(channel_info) => {
1869                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
1870                                         assert!(channel_info.two_to_one.is_none());
1871                                 }
1872                         };
1873                 }
1874
1875                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1876                         unsigned_channel_update.timestamp += 100;
1877                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1878                 }, node_1_privkey, &secp_ctx);
1879                 // Return false because contains excess data
1880                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1881                         Ok(res) => assert!(!res),
1882                         _ => panic!()
1883                 };
1884
1885                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1886                         unsigned_channel_update.timestamp += 110;
1887                         unsigned_channel_update.short_channel_id += 1;
1888                 }, node_1_privkey, &secp_ctx);
1889                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1890                         Ok(_) => panic!(),
1891                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
1892                 };
1893
1894                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1895                         unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(MAX_VALUE_MSAT + 1);
1896                         unsigned_channel_update.timestamp += 110;
1897                 }, node_1_privkey, &secp_ctx);
1898                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1899                         Ok(_) => panic!(),
1900                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
1901                 };
1902
1903                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1904                         unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(amount_sats * 1000 + 1);
1905                         unsigned_channel_update.timestamp += 110;
1906                 }, node_1_privkey, &secp_ctx);
1907                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1908                         Ok(_) => panic!(),
1909                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
1910                 };
1911
1912                 // Even though previous update was not relayed further, we still accepted it,
1913                 // so we now won't accept update before the previous one.
1914                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1915                         unsigned_channel_update.timestamp += 100;
1916                 }, node_1_privkey, &secp_ctx);
1917                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1918                         Ok(_) => panic!(),
1919                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
1920                 };
1921
1922                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1923                         unsigned_channel_update.timestamp += 500;
1924                 }, node_1_privkey, &secp_ctx);
1925                 let zero_hash = Sha256dHash::hash(&[0; 32]);
1926                 let fake_msghash = hash_to_message!(&zero_hash);
1927                 invalid_sig_channel_update.signature = secp_ctx.sign(&fake_msghash, node_1_privkey);
1928                 match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) {
1929                         Ok(_) => panic!(),
1930                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
1931                 };
1932         }
1933
1934         #[test]
1935         fn handling_network_update() {
1936                 let logger = test_utils::TestLogger::new();
1937                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1938                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1939                 let network_graph = NetworkGraph::new(genesis_hash);
1940                 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), &logger);
1941                 let secp_ctx = Secp256k1::new();
1942
1943                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1944                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1945
1946                 {
1947                         // There is no nodes in the table at the beginning.
1948                         assert_eq!(network_graph.read_only().nodes().len(), 0);
1949                 }
1950
1951                 let short_channel_id;
1952                 {
1953                         // Announce a channel we will update
1954                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1955                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
1956                         let chain_source: Option<&test_utils::TestChainSource> = None;
1957                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok());
1958                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
1959
1960                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
1961                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
1962
1963                         net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1964                                 payment_id: None,
1965                                 payment_hash: PaymentHash([0; 32]),
1966                                 rejected_by_dest: false,
1967                                 all_paths_failed: true,
1968                                 path: vec![],
1969                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
1970                                         msg: valid_channel_update,
1971                                 }),
1972                                 short_channel_id: None,
1973                                 retry: None,
1974                                 error_code: None,
1975                                 error_data: None,
1976                         });
1977
1978                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
1979                 }
1980
1981                 // Non-permanent closing just disables a channel
1982                 {
1983                         match network_graph.read_only().channels().get(&short_channel_id) {
1984                                 None => panic!(),
1985                                 Some(channel_info) => {
1986                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
1987                                 }
1988                         };
1989
1990                         net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1991                                 payment_id: None,
1992                                 payment_hash: PaymentHash([0; 32]),
1993                                 rejected_by_dest: false,
1994                                 all_paths_failed: true,
1995                                 path: vec![],
1996                                 network_update: Some(NetworkUpdate::ChannelClosed {
1997                                         short_channel_id,
1998                                         is_permanent: false,
1999                                 }),
2000                                 short_channel_id: None,
2001                                 retry: None,
2002                                 error_code: None,
2003                                 error_data: None,
2004                         });
2005
2006                         match network_graph.read_only().channels().get(&short_channel_id) {
2007                                 None => panic!(),
2008                                 Some(channel_info) => {
2009                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2010                                 }
2011                         };
2012                 }
2013
2014                 // Permanent closing deletes a channel
2015                 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
2016                         payment_id: None,
2017                         payment_hash: PaymentHash([0; 32]),
2018                         rejected_by_dest: false,
2019                         all_paths_failed: true,
2020                         path: vec![],
2021                         network_update: Some(NetworkUpdate::ChannelClosed {
2022                                 short_channel_id,
2023                                 is_permanent: true,
2024                         }),
2025                         short_channel_id: None,
2026                         retry: None,
2027                         error_code: None,
2028                         error_data: None,
2029                 });
2030
2031                 assert_eq!(network_graph.read_only().channels().len(), 0);
2032                 // Nodes are also deleted because there are no associated channels anymore
2033                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2034                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2035         }
2036
2037         #[test]
2038         fn test_channel_timeouts() {
2039                 // Test the removal of channels with `remove_stale_channels`.
2040                 let logger = test_utils::TestLogger::new();
2041                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
2042                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2043                 let network_graph = NetworkGraph::new(genesis_hash);
2044                 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), &logger);
2045                 let secp_ctx = Secp256k1::new();
2046
2047                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2048                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2049
2050                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2051                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2052                 let chain_source: Option<&test_utils::TestChainSource> = None;
2053                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok());
2054                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2055
2056                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2057                 assert!(net_graph_msg_handler.handle_channel_update(&valid_channel_update).is_ok());
2058                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2059
2060                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2061                 assert_eq!(network_graph.read_only().channels().len(), 1);
2062                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2063
2064                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2065                 #[cfg(feature = "std")]
2066                 {
2067                         // In std mode, a further check is performed before fully removing the channel -
2068                         // the channel_announcement must have been received at least two weeks ago. We
2069                         // fudge that here by indicating the time has jumped two weeks. Note that the
2070                         // directional channel information will have been removed already..
2071                         assert_eq!(network_graph.read_only().channels().len(), 1);
2072                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2073                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2074
2075                         use std::time::{SystemTime, UNIX_EPOCH};
2076                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2077                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2078                 }
2079
2080                 assert_eq!(network_graph.read_only().channels().len(), 0);
2081                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2082         }
2083
2084         #[test]
2085         fn getting_next_channel_announcements() {
2086                 let network_graph = create_network_graph();
2087                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2088                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2089                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2090
2091                 // Channels were not announced yet.
2092                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1);
2093                 assert_eq!(channels_with_announcements.len(), 0);
2094
2095                 let short_channel_id;
2096                 {
2097                         // Announce a channel we will update
2098                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2099                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2100                         match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
2101                                 Ok(_) => (),
2102                                 Err(_) => panic!()
2103                         };
2104                 }
2105
2106                 // Contains initial channel announcement now.
2107                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
2108                 assert_eq!(channels_with_announcements.len(), 1);
2109                 if let Some(channel_announcements) = channels_with_announcements.first() {
2110                         let &(_, ref update_1, ref update_2) = channel_announcements;
2111                         assert_eq!(update_1, &None);
2112                         assert_eq!(update_2, &None);
2113                 } else {
2114                         panic!();
2115                 }
2116
2117
2118                 {
2119                         // Valid channel update
2120                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2121                                 unsigned_channel_update.timestamp = 101;
2122                         }, node_1_privkey, &secp_ctx);
2123                         match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
2124                                 Ok(_) => (),
2125                                 Err(_) => panic!()
2126                         };
2127                 }
2128
2129                 // Now contains an initial announcement and an update.
2130                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
2131                 assert_eq!(channels_with_announcements.len(), 1);
2132                 if let Some(channel_announcements) = channels_with_announcements.first() {
2133                         let &(_, ref update_1, ref update_2) = channel_announcements;
2134                         assert_ne!(update_1, &None);
2135                         assert_eq!(update_2, &None);
2136                 } else {
2137                         panic!();
2138                 }
2139
2140                 {
2141                         // Channel update with excess data.
2142                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2143                                 unsigned_channel_update.timestamp = 102;
2144                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2145                         }, node_1_privkey, &secp_ctx);
2146                         match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
2147                                 Ok(_) => (),
2148                                 Err(_) => panic!()
2149                         };
2150                 }
2151
2152                 // Test that announcements with excess data won't be returned
2153                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
2154                 assert_eq!(channels_with_announcements.len(), 1);
2155                 if let Some(channel_announcements) = channels_with_announcements.first() {
2156                         let &(_, ref update_1, ref update_2) = channel_announcements;
2157                         assert_eq!(update_1, &None);
2158                         assert_eq!(update_2, &None);
2159                 } else {
2160                         panic!();
2161                 }
2162
2163                 // Further starting point have no channels after it
2164                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1);
2165                 assert_eq!(channels_with_announcements.len(), 0);
2166         }
2167
2168         #[test]
2169         fn getting_next_node_announcements() {
2170                 let network_graph = create_network_graph();
2171                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2172                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2173                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2174                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2175
2176                 // No nodes yet.
2177                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10);
2178                 assert_eq!(next_announcements.len(), 0);
2179
2180                 {
2181                         // Announce a channel to add 2 nodes
2182                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2183                         match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
2184                                 Ok(_) => (),
2185                                 Err(_) => panic!()
2186                         };
2187                 }
2188
2189
2190                 // Nodes were never announced
2191                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
2192                 assert_eq!(next_announcements.len(), 0);
2193
2194                 {
2195                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2196                         match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2197                                 Ok(_) => (),
2198                                 Err(_) => panic!()
2199                         };
2200
2201                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2202                         match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2203                                 Ok(_) => (),
2204                                 Err(_) => panic!()
2205                         };
2206                 }
2207
2208                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
2209                 assert_eq!(next_announcements.len(), 2);
2210
2211                 // Skip the first node.
2212                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2213                 assert_eq!(next_announcements.len(), 1);
2214
2215                 {
2216                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2217                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2218                                 unsigned_announcement.timestamp += 10;
2219                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2220                         }, node_2_privkey, &secp_ctx);
2221                         match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2222                                 Ok(res) => assert!(!res),
2223                                 Err(_) => panic!()
2224                         };
2225                 }
2226
2227                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2228                 assert_eq!(next_announcements.len(), 0);
2229         }
2230
2231         #[test]
2232         fn network_graph_serialization() {
2233                 let network_graph = create_network_graph();
2234                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2235
2236                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2237                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2238
2239                 // Announce a channel to add a corresponding node.
2240                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2241                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2242                         Ok(res) => assert!(res),
2243                         _ => panic!()
2244                 };
2245
2246                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2247                 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2248                         Ok(_) => (),
2249                         Err(_) => panic!()
2250                 };
2251
2252                 let mut w = test_utils::TestVecWriter(Vec::new());
2253                 assert!(!network_graph.read_only().nodes().is_empty());
2254                 assert!(!network_graph.read_only().channels().is_empty());
2255                 network_graph.write(&mut w).unwrap();
2256                 assert!(<NetworkGraph>::read(&mut io::Cursor::new(&w.0)).unwrap() == network_graph);
2257         }
2258
2259         #[test]
2260         fn calling_sync_routing_table() {
2261                 let network_graph = create_network_graph();
2262                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2263                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2264                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2265
2266                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2267                 let first_blocknum = 0;
2268                 let number_of_blocks = 0xffff_ffff;
2269
2270                 // It should ignore if gossip_queries feature is not enabled
2271                 {
2272                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries() };
2273                         net_graph_msg_handler.peer_connected(&node_id_1, &init_msg);
2274                         let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2275                         assert_eq!(events.len(), 0);
2276                 }
2277
2278                 // It should send a query_channel_message with the correct information
2279                 {
2280                         let init_msg = Init { features: InitFeatures::known() };
2281                         net_graph_msg_handler.peer_connected(&node_id_1, &init_msg);
2282                         let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2283                         assert_eq!(events.len(), 1);
2284                         match &events[0] {
2285                                 MessageSendEvent::SendChannelRangeQuery{ node_id, msg } => {
2286                                         assert_eq!(node_id, &node_id_1);
2287                                         assert_eq!(msg.chain_hash, chain_hash);
2288                                         assert_eq!(msg.first_blocknum, first_blocknum);
2289                                         assert_eq!(msg.number_of_blocks, number_of_blocks);
2290                                 },
2291                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2292                         };
2293                 }
2294
2295                 // It should not enqueue a query when should_request_full_sync return false.
2296                 // The initial implementation allows syncing with the first 5 peers after
2297                 // which should_request_full_sync will return false
2298                 {
2299                         let network_graph = create_network_graph();
2300                         let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2301                         let init_msg = Init { features: InitFeatures::known() };
2302                         for n in 1..7 {
2303                                 let node_privkey = &SecretKey::from_slice(&[n; 32]).unwrap();
2304                                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2305                                 net_graph_msg_handler.peer_connected(&node_id, &init_msg);
2306                                 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2307                                 if n <= 5 {
2308                                         assert_eq!(events.len(), 1);
2309                                 } else {
2310                                         assert_eq!(events.len(), 0);
2311                                 }
2312
2313                         }
2314                 }
2315         }
2316
2317         #[test]
2318         fn handling_reply_channel_range() {
2319                 let network_graph = create_network_graph();
2320                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2321                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2322                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2323
2324                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2325
2326                 // Test receipt of a single reply that should enqueue an SCID query
2327                 // matching the SCIDs in the reply
2328                 {
2329                         let result = net_graph_msg_handler.handle_reply_channel_range(&node_id_1, ReplyChannelRange {
2330                                 chain_hash,
2331                                 sync_complete: true,
2332                                 first_blocknum: 0,
2333                                 number_of_blocks: 2000,
2334                                 short_channel_ids: vec![
2335                                         0x0003e0_000000_0000, // 992x0x0
2336                                         0x0003e8_000000_0000, // 1000x0x0
2337                                         0x0003e9_000000_0000, // 1001x0x0
2338                                         0x0003f0_000000_0000, // 1008x0x0
2339                                         0x00044c_000000_0000, // 1100x0x0
2340                                         0x0006e0_000000_0000, // 1760x0x0
2341                                 ],
2342                         });
2343                         assert!(result.is_ok());
2344
2345                         // We expect to emit a query_short_channel_ids message with the received scids
2346                         let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2347                         assert_eq!(events.len(), 1);
2348                         match &events[0] {
2349                                 MessageSendEvent::SendShortIdsQuery { node_id, msg } => {
2350                                         assert_eq!(node_id, &node_id_1);
2351                                         assert_eq!(msg.chain_hash, chain_hash);
2352                                         assert_eq!(msg.short_channel_ids, vec![
2353                                                 0x0003e0_000000_0000, // 992x0x0
2354                                                 0x0003e8_000000_0000, // 1000x0x0
2355                                                 0x0003e9_000000_0000, // 1001x0x0
2356                                                 0x0003f0_000000_0000, // 1008x0x0
2357                                                 0x00044c_000000_0000, // 1100x0x0
2358                                                 0x0006e0_000000_0000, // 1760x0x0
2359                                         ]);
2360                                 },
2361                                 _ => panic!("expected MessageSendEvent::SendShortIdsQuery"),
2362                         }
2363                 }
2364         }
2365
2366         #[test]
2367         fn handling_reply_short_channel_ids() {
2368                 let network_graph = create_network_graph();
2369                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2370                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2371                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2372
2373                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2374
2375                 // Test receipt of a successful reply
2376                 {
2377                         let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2378                                 chain_hash,
2379                                 full_information: true,
2380                         });
2381                         assert!(result.is_ok());
2382                 }
2383
2384                 // Test receipt of a reply that indicates the peer does not maintain up-to-date information
2385                 // for the chain_hash requested in the query.
2386                 {
2387                         let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2388                                 chain_hash,
2389                                 full_information: false,
2390                         });
2391                         assert!(result.is_err());
2392                         assert_eq!(result.err().unwrap().err, "Received reply_short_channel_ids_end with no information");
2393                 }
2394         }
2395
2396         #[test]
2397         fn handling_query_channel_range() {
2398                 let network_graph = create_network_graph();
2399                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2400
2401                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2402                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2403                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2404                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2405
2406                 let mut scids: Vec<u64> = vec![
2407                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2408                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2409                 ];
2410
2411                 // used for testing multipart reply across blocks
2412                 for block in 100000..=108001 {
2413                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2414                 }
2415
2416                 // used for testing resumption on same block
2417                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2418
2419                 for scid in scids {
2420                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2421                                 unsigned_announcement.short_channel_id = scid;
2422                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2423                         match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2424                                 Ok(_) => (),
2425                                 _ => panic!()
2426                         };
2427                 }
2428
2429                 // Error when number_of_blocks=0
2430                 do_handling_query_channel_range(
2431                         &net_graph_msg_handler,
2432                         &node_id_2,
2433                         QueryChannelRange {
2434                                 chain_hash: chain_hash.clone(),
2435                                 first_blocknum: 0,
2436                                 number_of_blocks: 0,
2437                         },
2438                         false,
2439                         vec![ReplyChannelRange {
2440                                 chain_hash: chain_hash.clone(),
2441                                 first_blocknum: 0,
2442                                 number_of_blocks: 0,
2443                                 sync_complete: true,
2444                                 short_channel_ids: vec![]
2445                         }]
2446                 );
2447
2448                 // Error when wrong chain
2449                 do_handling_query_channel_range(
2450                         &net_graph_msg_handler,
2451                         &node_id_2,
2452                         QueryChannelRange {
2453                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2454                                 first_blocknum: 0,
2455                                 number_of_blocks: 0xffff_ffff,
2456                         },
2457                         false,
2458                         vec![ReplyChannelRange {
2459                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2460                                 first_blocknum: 0,
2461                                 number_of_blocks: 0xffff_ffff,
2462                                 sync_complete: true,
2463                                 short_channel_ids: vec![],
2464                         }]
2465                 );
2466
2467                 // Error when first_blocknum > 0xffffff
2468                 do_handling_query_channel_range(
2469                         &net_graph_msg_handler,
2470                         &node_id_2,
2471                         QueryChannelRange {
2472                                 chain_hash: chain_hash.clone(),
2473                                 first_blocknum: 0x01000000,
2474                                 number_of_blocks: 0xffff_ffff,
2475                         },
2476                         false,
2477                         vec![ReplyChannelRange {
2478                                 chain_hash: chain_hash.clone(),
2479                                 first_blocknum: 0x01000000,
2480                                 number_of_blocks: 0xffff_ffff,
2481                                 sync_complete: true,
2482                                 short_channel_ids: vec![]
2483                         }]
2484                 );
2485
2486                 // Empty reply when max valid SCID block num
2487                 do_handling_query_channel_range(
2488                         &net_graph_msg_handler,
2489                         &node_id_2,
2490                         QueryChannelRange {
2491                                 chain_hash: chain_hash.clone(),
2492                                 first_blocknum: 0xffffff,
2493                                 number_of_blocks: 1,
2494                         },
2495                         true,
2496                         vec![
2497                                 ReplyChannelRange {
2498                                         chain_hash: chain_hash.clone(),
2499                                         first_blocknum: 0xffffff,
2500                                         number_of_blocks: 1,
2501                                         sync_complete: true,
2502                                         short_channel_ids: vec![]
2503                                 },
2504                         ]
2505                 );
2506
2507                 // No results in valid query range
2508                 do_handling_query_channel_range(
2509                         &net_graph_msg_handler,
2510                         &node_id_2,
2511                         QueryChannelRange {
2512                                 chain_hash: chain_hash.clone(),
2513                                 first_blocknum: 1000,
2514                                 number_of_blocks: 1000,
2515                         },
2516                         true,
2517                         vec![
2518                                 ReplyChannelRange {
2519                                         chain_hash: chain_hash.clone(),
2520                                         first_blocknum: 1000,
2521                                         number_of_blocks: 1000,
2522                                         sync_complete: true,
2523                                         short_channel_ids: vec![],
2524                                 }
2525                         ]
2526                 );
2527
2528                 // Overflow first_blocknum + number_of_blocks
2529                 do_handling_query_channel_range(
2530                         &net_graph_msg_handler,
2531                         &node_id_2,
2532                         QueryChannelRange {
2533                                 chain_hash: chain_hash.clone(),
2534                                 first_blocknum: 0xfe0000,
2535                                 number_of_blocks: 0xffffffff,
2536                         },
2537                         true,
2538                         vec![
2539                                 ReplyChannelRange {
2540                                         chain_hash: chain_hash.clone(),
2541                                         first_blocknum: 0xfe0000,
2542                                         number_of_blocks: 0xffffffff - 0xfe0000,
2543                                         sync_complete: true,
2544                                         short_channel_ids: vec![
2545                                                 0xfffffe_ffffff_ffff, // max
2546                                         ]
2547                                 }
2548                         ]
2549                 );
2550
2551                 // Single block exactly full
2552                 do_handling_query_channel_range(
2553                         &net_graph_msg_handler,
2554                         &node_id_2,
2555                         QueryChannelRange {
2556                                 chain_hash: chain_hash.clone(),
2557                                 first_blocknum: 100000,
2558                                 number_of_blocks: 8000,
2559                         },
2560                         true,
2561                         vec![
2562                                 ReplyChannelRange {
2563                                         chain_hash: chain_hash.clone(),
2564                                         first_blocknum: 100000,
2565                                         number_of_blocks: 8000,
2566                                         sync_complete: true,
2567                                         short_channel_ids: (100000..=107999)
2568                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2569                                                 .collect(),
2570                                 },
2571                         ]
2572                 );
2573
2574                 // Multiple split on new block
2575                 do_handling_query_channel_range(
2576                         &net_graph_msg_handler,
2577                         &node_id_2,
2578                         QueryChannelRange {
2579                                 chain_hash: chain_hash.clone(),
2580                                 first_blocknum: 100000,
2581                                 number_of_blocks: 8001,
2582                         },
2583                         true,
2584                         vec![
2585                                 ReplyChannelRange {
2586                                         chain_hash: chain_hash.clone(),
2587                                         first_blocknum: 100000,
2588                                         number_of_blocks: 7999,
2589                                         sync_complete: false,
2590                                         short_channel_ids: (100000..=107999)
2591                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2592                                                 .collect(),
2593                                 },
2594                                 ReplyChannelRange {
2595                                         chain_hash: chain_hash.clone(),
2596                                         first_blocknum: 107999,
2597                                         number_of_blocks: 2,
2598                                         sync_complete: true,
2599                                         short_channel_ids: vec![
2600                                                 scid_from_parts(108000, 0, 0).unwrap(),
2601                                         ],
2602                                 }
2603                         ]
2604                 );
2605
2606                 // Multiple split on same block
2607                 do_handling_query_channel_range(
2608                         &net_graph_msg_handler,
2609                         &node_id_2,
2610                         QueryChannelRange {
2611                                 chain_hash: chain_hash.clone(),
2612                                 first_blocknum: 100002,
2613                                 number_of_blocks: 8000,
2614                         },
2615                         true,
2616                         vec![
2617                                 ReplyChannelRange {
2618                                         chain_hash: chain_hash.clone(),
2619                                         first_blocknum: 100002,
2620                                         number_of_blocks: 7999,
2621                                         sync_complete: false,
2622                                         short_channel_ids: (100002..=108001)
2623                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2624                                                 .collect(),
2625                                 },
2626                                 ReplyChannelRange {
2627                                         chain_hash: chain_hash.clone(),
2628                                         first_blocknum: 108001,
2629                                         number_of_blocks: 1,
2630                                         sync_complete: true,
2631                                         short_channel_ids: vec![
2632                                                 scid_from_parts(108001, 1, 0).unwrap(),
2633                                         ],
2634                                 }
2635                         ]
2636                 );
2637         }
2638
2639         fn do_handling_query_channel_range(
2640                 net_graph_msg_handler: &NetGraphMsgHandler<&NetworkGraph, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2641                 test_node_id: &PublicKey,
2642                 msg: QueryChannelRange,
2643                 expected_ok: bool,
2644                 expected_replies: Vec<ReplyChannelRange>
2645         ) {
2646                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2647                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2648                 let query_end_blocknum = msg.end_blocknum();
2649                 let result = net_graph_msg_handler.handle_query_channel_range(test_node_id, msg);
2650
2651                 if expected_ok {
2652                         assert!(result.is_ok());
2653                 } else {
2654                         assert!(result.is_err());
2655                 }
2656
2657                 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2658                 assert_eq!(events.len(), expected_replies.len());
2659
2660                 for i in 0..events.len() {
2661                         let expected_reply = &expected_replies[i];
2662                         match &events[i] {
2663                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2664                                         assert_eq!(node_id, test_node_id);
2665                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2666                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2667                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2668                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2669                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2670
2671                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2672                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2673                                         assert!(msg.first_blocknum >= max_firstblocknum);
2674                                         max_firstblocknum = msg.first_blocknum;
2675                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2676
2677                                         // Check that the last block count is >= the query's end_blocknum
2678                                         if i == events.len() - 1 {
2679                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2680                                         }
2681                                 },
2682                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2683                         }
2684                 }
2685         }
2686
2687         #[test]
2688         fn handling_query_short_channel_ids() {
2689                 let network_graph = create_network_graph();
2690                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2691                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2692                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2693
2694                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2695
2696                 let result = net_graph_msg_handler.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2697                         chain_hash,
2698                         short_channel_ids: vec![0x0003e8_000000_0000],
2699                 });
2700                 assert!(result.is_err());
2701         }
2702 }
2703
2704 #[cfg(all(test, feature = "_bench_unstable"))]
2705 mod benches {
2706         use super::*;
2707
2708         use test::Bencher;
2709         use std::io::Read;
2710
2711         #[bench]
2712         fn read_network_graph(bench: &mut Bencher) {
2713                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2714                 let mut v = Vec::new();
2715                 d.read_to_end(&mut v).unwrap();
2716                 bench.iter(|| {
2717                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v)).unwrap();
2718                 });
2719         }
2720
2721         #[bench]
2722         fn write_network_graph(bench: &mut Bencher) {
2723                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2724                 let net_graph = NetworkGraph::read(&mut d).unwrap();
2725                 bench.iter(|| {
2726                         let _ = net_graph.encode();
2727                 });
2728         }
2729 }