1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level network map tracking logic lives here.
12 use bitcoin::secp256k1::key::PublicKey;
13 use bitcoin::secp256k1::Secp256k1;
14 use bitcoin::secp256k1;
16 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
17 use bitcoin::hashes::Hash;
18 use bitcoin::blockdata::script::Builder;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::blockdata::opcodes;
21 use bitcoin::hash_types::BlockHash;
25 use ln::features::{ChannelFeatures, NodeFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, OptionalField};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use util::ser::{Writeable, Readable, Writer};
31 use util::logger::Logger;
32 use util::events::{MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
36 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
38 use std::sync::{RwLock, RwLockReadGuard};
39 use core::sync::atomic::{AtomicUsize, Ordering};
42 use bitcoin::hashes::hex::ToHex;
44 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
45 /// refuse to relay the message.
46 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
48 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
49 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
50 const MAX_SCIDS_PER_REPLY: usize = 8000;
52 /// Represents the network as nodes and channels between them
53 #[derive(Clone, PartialEq)]
54 pub struct NetworkGraph {
55 genesis_hash: BlockHash,
56 channels: BTreeMap<u64, ChannelInfo>,
57 nodes: BTreeMap<PublicKey, NodeInfo>,
60 /// A simple newtype for RwLockReadGuard<'a, NetworkGraph>.
61 /// This exists only to make accessing a RwLock<NetworkGraph> possible from
62 /// the C bindings, as it can be done directly in Rust code.
63 pub struct LockedNetworkGraph<'a>(pub RwLockReadGuard<'a, NetworkGraph>);
65 /// Receives and validates network updates from peers,
66 /// stores authentic and relevant data as a network graph.
67 /// This network graph is then used for routing payments.
68 /// Provides interface to help with initial routing sync by
69 /// serving historical announcements.
70 pub struct NetGraphMsgHandler<C: Deref, L: Deref> where C::Target: chain::Access, L::Target: Logger {
71 secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
72 /// Representation of the payment channel network
73 pub network_graph: RwLock<NetworkGraph>,
74 chain_access: Option<C>,
75 full_syncs_requested: AtomicUsize,
76 pending_events: Mutex<Vec<MessageSendEvent>>,
80 impl<C: Deref, L: Deref> NetGraphMsgHandler<C, L> where C::Target: chain::Access, L::Target: Logger {
81 /// Creates a new tracker of the actual state of the network of channels and nodes,
82 /// assuming a fresh network graph.
83 /// Chain monitor is used to make sure announced channels exist on-chain,
84 /// channel data is correct, and that the announcement is signed with
85 /// channel owners' keys.
86 pub fn new(genesis_hash: BlockHash, chain_access: Option<C>, logger: L) -> Self {
88 secp_ctx: Secp256k1::verification_only(),
89 network_graph: RwLock::new(NetworkGraph::new(genesis_hash)),
90 full_syncs_requested: AtomicUsize::new(0),
92 pending_events: Mutex::new(vec![]),
97 /// Creates a new tracker of the actual state of the network of channels and nodes,
98 /// assuming an existing Network Graph.
99 pub fn from_net_graph(chain_access: Option<C>, logger: L, network_graph: NetworkGraph) -> Self {
101 secp_ctx: Secp256k1::verification_only(),
102 network_graph: RwLock::new(network_graph),
103 full_syncs_requested: AtomicUsize::new(0),
105 pending_events: Mutex::new(vec![]),
110 /// Adds a provider used to check new announcements. Does not affect
111 /// existing announcements unless they are updated.
112 /// Add, update or remove the provider would replace the current one.
113 pub fn add_chain_access(&mut self, chain_access: Option<C>) {
114 self.chain_access = chain_access;
117 /// Take a read lock on the network_graph and return it in the C-bindings
118 /// newtype helper. This is likely only useful when called via the C
119 /// bindings as you can call `self.network_graph.read().unwrap()` in Rust
121 pub fn read_locked_graph<'a>(&'a self) -> LockedNetworkGraph<'a> {
122 LockedNetworkGraph(self.network_graph.read().unwrap())
125 /// Returns true when a full routing table sync should be performed with a peer.
126 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
127 //TODO: Determine whether to request a full sync based on the network map.
128 const FULL_SYNCS_TO_REQUEST: usize = 5;
129 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
130 self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
138 impl<'a> LockedNetworkGraph<'a> {
139 /// Get a reference to the NetworkGraph which this read-lock contains.
140 pub fn graph(&self) -> &NetworkGraph {
146 macro_rules! secp_verify_sig {
147 ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr ) => {
148 match $secp_ctx.verify($msg, $sig, $pubkey) {
150 Err(_) => return Err(LightningError{err: "Invalid signature from remote node".to_owned(), action: ErrorAction::IgnoreError}),
155 impl<C: Deref , L: Deref > RoutingMessageHandler for NetGraphMsgHandler<C, L> where C::Target: chain::Access, L::Target: Logger {
156 fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
157 self.network_graph.write().unwrap().update_node_from_announcement(msg, &self.secp_ctx)?;
158 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
159 msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
160 msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
163 fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
164 self.network_graph.write().unwrap().update_channel_from_announcement(msg, &self.chain_access, &self.secp_ctx)?;
165 log_trace!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
166 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
169 fn handle_htlc_fail_channel_update(&self, update: &msgs::HTLCFailChannelUpdate) {
171 &msgs::HTLCFailChannelUpdate::ChannelUpdateMessage { ref msg } => {
172 let _ = self.network_graph.write().unwrap().update_channel(msg, &self.secp_ctx);
174 &msgs::HTLCFailChannelUpdate::ChannelClosed { short_channel_id, is_permanent } => {
175 self.network_graph.write().unwrap().close_channel_from_update(short_channel_id, is_permanent);
177 &msgs::HTLCFailChannelUpdate::NodeFailure { ref node_id, is_permanent } => {
178 self.network_graph.write().unwrap().fail_node(node_id, is_permanent);
183 fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
184 self.network_graph.write().unwrap().update_channel(msg, &self.secp_ctx)?;
185 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
188 fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
189 let network_graph = self.network_graph.read().unwrap();
190 let mut result = Vec::with_capacity(batch_amount as usize);
191 let mut iter = network_graph.get_channels().range(starting_point..);
192 while result.len() < batch_amount as usize {
193 if let Some((_, ref chan)) = iter.next() {
194 if chan.announcement_message.is_some() {
195 let chan_announcement = chan.announcement_message.clone().unwrap();
196 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
197 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
198 if let Some(one_to_two) = chan.one_to_two.as_ref() {
199 one_to_two_announcement = one_to_two.last_update_message.clone();
201 if let Some(two_to_one) = chan.two_to_one.as_ref() {
202 two_to_one_announcement = two_to_one.last_update_message.clone();
204 result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement));
206 // TODO: We may end up sending un-announced channel_updates if we are sending
207 // initial sync data while receiving announce/updates for this channel.
216 fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement> {
217 let network_graph = self.network_graph.read().unwrap();
218 let mut result = Vec::with_capacity(batch_amount as usize);
219 let mut iter = if let Some(pubkey) = starting_point {
220 let mut iter = network_graph.get_nodes().range((*pubkey)..);
224 network_graph.get_nodes().range(..)
226 while result.len() < batch_amount as usize {
227 if let Some((_, ref node)) = iter.next() {
228 if let Some(node_info) = node.announcement_info.as_ref() {
229 if node_info.announcement_message.is_some() {
230 result.push(node_info.announcement_message.clone().unwrap());
240 /// Initiates a stateless sync of routing gossip information with a peer
241 /// using gossip_queries. The default strategy used by this implementation
242 /// is to sync the full block range with several peers.
244 /// We should expect one or more reply_channel_range messages in response
245 /// to our query_channel_range. Each reply will enqueue a query_scid message
246 /// to request gossip messages for each channel. The sync is considered complete
247 /// when the final reply_scids_end message is received, though we are not
248 /// tracking this directly.
249 fn sync_routing_table(&self, their_node_id: &PublicKey, init_msg: &Init) {
251 // We will only perform a sync with peers that support gossip_queries.
252 if !init_msg.features.supports_gossip_queries() {
256 // Check if we need to perform a full synchronization with this peer
257 if !self.should_request_full_sync(their_node_id) {
261 let first_blocknum = 0;
262 let number_of_blocks = 0xffffffff;
263 log_debug!(self.logger, "Sending query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), first_blocknum, number_of_blocks);
264 let mut pending_events = self.pending_events.lock().unwrap();
265 pending_events.push(MessageSendEvent::SendChannelRangeQuery {
266 node_id: their_node_id.clone(),
267 msg: QueryChannelRange {
268 chain_hash: self.network_graph.read().unwrap().genesis_hash,
275 /// Statelessly processes a reply to a channel range query by immediately
276 /// sending an SCID query with SCIDs in the reply. To keep this handler
277 /// stateless, it does not validate the sequencing of replies for multi-
278 /// reply ranges. It does not validate whether the reply(ies) cover the
279 /// queried range. It also does not filter SCIDs to only those in the
280 /// original query range. We also do not validate that the chain_hash
281 /// matches the chain_hash of the NetworkGraph. Any chan_ann message that
282 /// does not match our chain_hash will be rejected when the announcement is
284 fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError> {
285 log_debug!(self.logger, "Handling reply_channel_range peer={}, first_blocknum={}, number_of_blocks={}, sync_complete={}, scids={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks, msg.sync_complete, msg.short_channel_ids.len(),);
287 log_debug!(self.logger, "Sending query_short_channel_ids peer={}, batch_size={}", log_pubkey!(their_node_id), msg.short_channel_ids.len());
288 let mut pending_events = self.pending_events.lock().unwrap();
289 pending_events.push(MessageSendEvent::SendShortIdsQuery {
290 node_id: their_node_id.clone(),
291 msg: QueryShortChannelIds {
292 chain_hash: msg.chain_hash,
293 short_channel_ids: msg.short_channel_ids,
300 /// When an SCID query is initiated the remote peer will begin streaming
301 /// gossip messages. In the event of a failure, we may have received
302 /// some channel information. Before trying with another peer, the
303 /// caller should update its set of SCIDs that need to be queried.
304 fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
305 log_debug!(self.logger, "Handling reply_short_channel_ids_end peer={}, full_information={}", log_pubkey!(their_node_id), msg.full_information);
307 // If the remote node does not have up-to-date information for the
308 // chain_hash they will set full_information=false. We can fail
309 // the result and try again with a different peer.
310 if !msg.full_information {
311 return Err(LightningError {
312 err: String::from("Received reply_short_channel_ids_end with no information"),
313 action: ErrorAction::IgnoreError
320 /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
321 /// are in the specified block range. Due to message size limits, large range
322 /// queries may result in several reply messages. This implementation enqueues
323 /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
324 /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
325 /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
326 /// memory constrained systems.
327 fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
328 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
330 let network_graph = self.network_graph.read().unwrap();
332 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
334 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
335 // If so, we manually cap the ending block to avoid this overflow.
336 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
338 // Per spec, we must reply to a query. Send an empty message when things are invalid.
339 if msg.chain_hash != network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
340 let mut pending_events = self.pending_events.lock().unwrap();
341 pending_events.push(MessageSendEvent::SendReplyChannelRange {
342 node_id: their_node_id.clone(),
343 msg: ReplyChannelRange {
344 chain_hash: msg.chain_hash.clone(),
345 first_blocknum: msg.first_blocknum,
346 number_of_blocks: msg.number_of_blocks,
348 short_channel_ids: vec![],
351 return Err(LightningError {
352 err: String::from("query_channel_range could not be processed"),
353 action: ErrorAction::IgnoreError,
357 // Creates channel batches. We are not checking if the channel is routable
358 // (has at least one update). A peer may still want to know the channel
359 // exists even if its not yet routable.
360 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
361 for (_, ref chan) in network_graph.get_channels().range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
362 if let Some(chan_announcement) = &chan.announcement_message {
363 // Construct a new batch if last one is full
364 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
365 batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
368 let batch = batches.last_mut().unwrap();
369 batch.push(chan_announcement.contents.short_channel_id);
374 let mut pending_events = self.pending_events.lock().unwrap();
375 let batch_count = batches.len();
376 let mut prev_batch_endblock = msg.first_blocknum;
377 for (batch_index, batch) in batches.into_iter().enumerate() {
378 // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
379 // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
381 // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
382 // reply is >= the previous reply's `first_blocknum` and either exactly the previous
383 // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
384 // significant diversion from the requirements set by the spec, and, in case of blocks
385 // with no channel opens (e.g. empty blocks), requires that we use the previous value
386 // and *not* derive the first_blocknum from the actual first block of the reply.
387 let first_blocknum = prev_batch_endblock;
389 // Each message carries the number of blocks (from the `first_blocknum`) its contents
390 // fit in. Though there is no requirement that we use exactly the number of blocks its
391 // contents are from, except for the bogus requirements c-lightning enforces, above.
393 // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
394 // >= the query's end block. Thus, for the last reply, we calculate the difference
395 // between the query's end block and the start of the reply.
397 // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
398 // first_blocknum will be either msg.first_blocknum or a higher block height.
399 let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
400 (true, msg.end_blocknum() - first_blocknum)
402 // Prior replies should use the number of blocks that fit into the reply. Overflow
403 // safe since first_blocknum is always <= last SCID's block.
405 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
408 prev_batch_endblock = first_blocknum + number_of_blocks;
410 pending_events.push(MessageSendEvent::SendReplyChannelRange {
411 node_id: their_node_id.clone(),
412 msg: ReplyChannelRange {
413 chain_hash: msg.chain_hash.clone(),
417 short_channel_ids: batch,
425 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
428 err: String::from("Not implemented"),
429 action: ErrorAction::IgnoreError,
434 impl<C: Deref, L: Deref> MessageSendEventsProvider for NetGraphMsgHandler<C, L>
436 C::Target: chain::Access,
439 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
440 let mut ret = Vec::new();
441 let mut pending_events = self.pending_events.lock().unwrap();
442 core::mem::swap(&mut ret, &mut pending_events);
447 #[derive(Clone, Debug, PartialEq)]
448 /// Details about one direction of a channel. Received
449 /// within a channel update.
450 pub struct DirectionalChannelInfo {
451 /// When the last update to the channel direction was issued.
452 /// Value is opaque, as set in the announcement.
453 pub last_update: u32,
454 /// Whether the channel can be currently used for payments (in this one direction).
456 /// The difference in CLTV values that you must have when routing through this channel.
457 pub cltv_expiry_delta: u16,
458 /// The minimum value, which must be relayed to the next hop via the channel
459 pub htlc_minimum_msat: u64,
460 /// The maximum value which may be relayed to the next hop via the channel.
461 pub htlc_maximum_msat: Option<u64>,
462 /// Fees charged when the channel is used for routing
463 pub fees: RoutingFees,
464 /// Most recent update for the channel received from the network
465 /// Mostly redundant with the data we store in fields explicitly.
466 /// Everything else is useful only for sending out for initial routing sync.
467 /// Not stored if contains excess data to prevent DoS.
468 pub last_update_message: Option<ChannelUpdate>,
471 impl fmt::Display for DirectionalChannelInfo {
472 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
473 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
478 impl_writeable_tlv_based!(DirectionalChannelInfo, {
481 (4, cltv_expiry_delta),
482 (6, htlc_minimum_msat),
483 (8, htlc_maximum_msat),
485 (12, last_update_message),
488 #[derive(Clone, Debug, PartialEq)]
489 /// Details about a channel (both directions).
490 /// Received within a channel announcement.
491 pub struct ChannelInfo {
492 /// Protocol features of a channel communicated during its announcement
493 pub features: ChannelFeatures,
494 /// Source node of the first direction of a channel
495 pub node_one: PublicKey,
496 /// Details about the first direction of a channel
497 pub one_to_two: Option<DirectionalChannelInfo>,
498 /// Source node of the second direction of a channel
499 pub node_two: PublicKey,
500 /// Details about the second direction of a channel
501 pub two_to_one: Option<DirectionalChannelInfo>,
502 /// The channel capacity as seen on-chain, if chain lookup is available.
503 pub capacity_sats: Option<u64>,
504 /// An initial announcement of the channel
505 /// Mostly redundant with the data we store in fields explicitly.
506 /// Everything else is useful only for sending out for initial routing sync.
507 /// Not stored if contains excess data to prevent DoS.
508 pub announcement_message: Option<ChannelAnnouncement>,
511 impl fmt::Display for ChannelInfo {
512 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
513 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
514 log_bytes!(self.features.encode()), log_pubkey!(self.node_one), self.one_to_two, log_pubkey!(self.node_two), self.two_to_one)?;
519 impl_writeable_tlv_based!(ChannelInfo, {
526 (12, announcement_message),
530 /// Fees for routing via a given channel or a node
531 #[derive(Eq, PartialEq, Copy, Clone, Debug)]
532 pub struct RoutingFees {
533 /// Flat routing fee in satoshis
535 /// Liquidity-based routing fee in millionths of a routed amount.
536 /// In other words, 10000 is 1%.
537 pub proportional_millionths: u32,
540 impl_writeable_tlv_based!(RoutingFees, {(0, base_msat), (2, proportional_millionths)}, {}, {});
542 #[derive(Clone, Debug, PartialEq)]
543 /// Information received in the latest node_announcement from this node.
544 pub struct NodeAnnouncementInfo {
545 /// Protocol features the node announced support for
546 pub features: NodeFeatures,
547 /// When the last known update to the node state was issued.
548 /// Value is opaque, as set in the announcement.
549 pub last_update: u32,
550 /// Color assigned to the node
552 /// Moniker assigned to the node.
553 /// May be invalid or malicious (eg control chars),
554 /// should not be exposed to the user.
556 /// Internet-level addresses via which one can connect to the node
557 pub addresses: Vec<NetAddress>,
558 /// An initial announcement of the node
559 /// Mostly redundant with the data we store in fields explicitly.
560 /// Everything else is useful only for sending out for initial routing sync.
561 /// Not stored if contains excess data to prevent DoS.
562 pub announcement_message: Option<NodeAnnouncement>
565 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
571 (8, announcement_message),
576 #[derive(Clone, Debug, PartialEq)]
577 /// Details about a node in the network, known from the network announcement.
578 pub struct NodeInfo {
579 /// All valid channels a node has announced
580 pub channels: Vec<u64>,
581 /// Lowest fees enabling routing via any of the enabled, known channels to a node.
582 /// The two fields (flat and proportional fee) are independent,
583 /// meaning they don't have to refer to the same channel.
584 pub lowest_inbound_channel_fees: Option<RoutingFees>,
585 /// More information about a node from node_announcement.
586 /// Optional because we store a Node entry after learning about it from
587 /// a channel announcement, but before receiving a node announcement.
588 pub announcement_info: Option<NodeAnnouncementInfo>
591 impl fmt::Display for NodeInfo {
592 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
593 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
594 self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
599 impl_writeable_tlv_based!(NodeInfo, {}, {
600 (0, lowest_inbound_channel_fees),
601 (2, announcement_info),
606 const SERIALIZATION_VERSION: u8 = 1;
607 const MIN_SERIALIZATION_VERSION: u8 = 1;
609 impl Writeable for NetworkGraph {
610 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
611 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
613 self.genesis_hash.write(writer)?;
614 (self.channels.len() as u64).write(writer)?;
615 for (ref chan_id, ref chan_info) in self.channels.iter() {
616 (*chan_id).write(writer)?;
617 chan_info.write(writer)?;
619 (self.nodes.len() as u64).write(writer)?;
620 for (ref node_id, ref node_info) in self.nodes.iter() {
621 node_id.write(writer)?;
622 node_info.write(writer)?;
625 write_tlv_fields!(writer, {}, {});
630 impl Readable for NetworkGraph {
631 fn read<R: ::std::io::Read>(reader: &mut R) -> Result<NetworkGraph, DecodeError> {
632 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
634 let genesis_hash: BlockHash = Readable::read(reader)?;
635 let channels_count: u64 = Readable::read(reader)?;
636 let mut channels = BTreeMap::new();
637 for _ in 0..channels_count {
638 let chan_id: u64 = Readable::read(reader)?;
639 let chan_info = Readable::read(reader)?;
640 channels.insert(chan_id, chan_info);
642 let nodes_count: u64 = Readable::read(reader)?;
643 let mut nodes = BTreeMap::new();
644 for _ in 0..nodes_count {
645 let node_id = Readable::read(reader)?;
646 let node_info = Readable::read(reader)?;
647 nodes.insert(node_id, node_info);
649 read_tlv_fields!(reader, {}, {});
659 impl fmt::Display for NetworkGraph {
660 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
661 writeln!(f, "Network map\n[Channels]")?;
662 for (key, val) in self.channels.iter() {
663 writeln!(f, " {}: {}", key, val)?;
665 writeln!(f, "[Nodes]")?;
666 for (key, val) in self.nodes.iter() {
667 writeln!(f, " {}: {}", log_pubkey!(key), val)?;
674 /// Returns all known valid channels' short ids along with announced channel info.
676 /// (C-not exported) because we have no mapping for `BTreeMap`s
677 pub fn get_channels<'a>(&'a self) -> &'a BTreeMap<u64, ChannelInfo> { &self.channels }
678 /// Returns all known nodes' public keys along with announced node info.
680 /// (C-not exported) because we have no mapping for `BTreeMap`s
681 pub fn get_nodes<'a>(&'a self) -> &'a BTreeMap<PublicKey, NodeInfo> { &self.nodes }
683 /// Get network addresses by node id.
684 /// Returns None if the requested node is completely unknown,
685 /// or if node announcement for the node was never received.
687 /// (C-not exported) as there is no practical way to track lifetimes of returned values.
688 pub fn get_addresses<'a>(&'a self, pubkey: &PublicKey) -> Option<&'a Vec<NetAddress>> {
689 if let Some(node) = self.nodes.get(pubkey) {
690 if let Some(node_info) = node.announcement_info.as_ref() {
691 return Some(&node_info.addresses)
697 /// Creates a new, empty, network graph.
698 pub fn new(genesis_hash: BlockHash) -> NetworkGraph {
701 channels: BTreeMap::new(),
702 nodes: BTreeMap::new(),
706 /// For an already known node (from channel announcements), update its stored properties from a
707 /// given node announcement.
709 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
710 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
711 /// routing messages from a source using a protocol other than the lightning P2P protocol.
712 pub fn update_node_from_announcement<T: secp256k1::Verification>(&mut self, msg: &msgs::NodeAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
713 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
714 secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id);
715 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
718 /// For an already known node (from channel announcements), update its stored properties from a
719 /// given node announcement without verifying the associated signatures. Because we aren't
720 /// given the associated signatures here we cannot relay the node announcement to any of our
722 pub fn update_node_from_unsigned_announcement(&mut self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
723 self.update_node_from_announcement_intern(msg, None)
726 fn update_node_from_announcement_intern(&mut self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
727 match self.nodes.get_mut(&msg.node_id) {
728 None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
730 if let Some(node_info) = node.announcement_info.as_ref() {
731 if node_info.last_update >= msg.timestamp {
732 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreError});
737 msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
738 msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
739 msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
740 node.announcement_info = Some(NodeAnnouncementInfo {
741 features: msg.features.clone(),
742 last_update: msg.timestamp,
745 addresses: msg.addresses.clone(),
746 announcement_message: if should_relay { full_msg.cloned() } else { None },
754 /// Store or update channel info from a channel announcement.
756 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
757 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
758 /// routing messages from a source using a protocol other than the lightning P2P protocol.
760 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
761 /// the corresponding UTXO exists on chain and is correctly-formatted.
762 pub fn update_channel_from_announcement<T: secp256k1::Verification, C: Deref>
763 (&mut self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>, secp_ctx: &Secp256k1<T>)
764 -> Result<(), LightningError>
765 where C::Target: chain::Access {
766 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
767 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1);
768 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2);
769 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1);
770 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2);
771 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
774 /// Store or update channel info from a channel announcement without verifying the associated
775 /// signatures. Because we aren't given the associated signatures here we cannot relay the
776 /// channel announcement to any of our peers.
778 /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
779 /// the corresponding UTXO exists on chain and is correctly-formatted.
780 pub fn update_channel_from_unsigned_announcement<C: Deref>
781 (&mut self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>)
782 -> Result<(), LightningError>
783 where C::Target: chain::Access {
784 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
787 fn update_channel_from_unsigned_announcement_intern<C: Deref>
788 (&mut self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>)
789 -> Result<(), LightningError>
790 where C::Target: chain::Access {
791 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
792 return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
795 let utxo_value = match &chain_access {
797 // Tentatively accept, potentially exposing us to DoS attacks
800 &Some(ref chain_access) => {
801 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
802 Ok(TxOut { value, script_pubkey }) => {
803 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
804 .push_slice(&msg.bitcoin_key_1.serialize())
805 .push_slice(&msg.bitcoin_key_2.serialize())
806 .push_opcode(opcodes::all::OP_PUSHNUM_2)
807 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
808 if script_pubkey != expected_script {
809 return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
811 //TODO: Check if value is worth storing, use it to inform routing, and compare it
812 //to the new HTLC max field in channel_update
815 Err(chain::AccessError::UnknownChain) => {
816 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
818 Err(chain::AccessError::UnknownTx) => {
819 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
825 let chan_info = ChannelInfo {
826 features: msg.features.clone(),
827 node_one: msg.node_id_1.clone(),
829 node_two: msg.node_id_2.clone(),
831 capacity_sats: utxo_value,
832 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
833 { full_msg.cloned() } else { None },
836 match self.channels.entry(msg.short_channel_id) {
837 BtreeEntry::Occupied(mut entry) => {
838 //TODO: because asking the blockchain if short_channel_id is valid is only optional
839 //in the blockchain API, we need to handle it smartly here, though it's unclear
841 if utxo_value.is_some() {
842 // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
843 // only sometimes returns results. In any case remove the previous entry. Note
844 // that the spec expects us to "blacklist" the node_ids involved, but we can't
846 // a) we don't *require* a UTXO provider that always returns results.
847 // b) we don't track UTXOs of channels we know about and remove them if they
849 // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
850 Self::remove_channel_in_nodes(&mut self.nodes, &entry.get(), msg.short_channel_id);
851 *entry.get_mut() = chan_info;
853 return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreError})
856 BtreeEntry::Vacant(entry) => {
857 entry.insert(chan_info);
861 macro_rules! add_channel_to_node {
862 ( $node_id: expr ) => {
863 match self.nodes.entry($node_id) {
864 BtreeEntry::Occupied(node_entry) => {
865 node_entry.into_mut().channels.push(msg.short_channel_id);
867 BtreeEntry::Vacant(node_entry) => {
868 node_entry.insert(NodeInfo {
869 channels: vec!(msg.short_channel_id),
870 lowest_inbound_channel_fees: None,
871 announcement_info: None,
878 add_channel_to_node!(msg.node_id_1);
879 add_channel_to_node!(msg.node_id_2);
884 /// Close a channel if a corresponding HTLC fail was sent.
885 /// If permanent, removes a channel from the local storage.
886 /// May cause the removal of nodes too, if this was their last channel.
887 /// If not permanent, makes channels unavailable for routing.
888 pub fn close_channel_from_update(&mut self, short_channel_id: u64, is_permanent: bool) {
890 if let Some(chan) = self.channels.remove(&short_channel_id) {
891 Self::remove_channel_in_nodes(&mut self.nodes, &chan, short_channel_id);
894 if let Some(chan) = self.channels.get_mut(&short_channel_id) {
895 if let Some(one_to_two) = chan.one_to_two.as_mut() {
896 one_to_two.enabled = false;
898 if let Some(two_to_one) = chan.two_to_one.as_mut() {
899 two_to_one.enabled = false;
905 fn fail_node(&mut self, _node_id: &PublicKey, is_permanent: bool) {
907 // TODO: Wholly remove the node
909 // TODO: downgrade the node
913 /// For an already known (from announcement) channel, update info about one of the directions
916 /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
917 /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
918 /// routing messages from a source using a protocol other than the lightning P2P protocol.
919 pub fn update_channel<T: secp256k1::Verification>(&mut self, msg: &msgs::ChannelUpdate, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
920 self.update_channel_intern(&msg.contents, Some(&msg), Some((&msg.signature, secp_ctx)))
923 /// For an already known (from announcement) channel, update info about one of the directions
924 /// of the channel without verifying the associated signatures. Because we aren't given the
925 /// associated signatures here we cannot relay the channel update to any of our peers.
926 pub fn update_channel_unsigned(&mut self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
927 self.update_channel_intern(msg, None, None::<(&secp256k1::Signature, &Secp256k1<secp256k1::VerifyOnly>)>)
930 fn update_channel_intern<T: secp256k1::Verification>(&mut self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig_info: Option<(&secp256k1::Signature, &Secp256k1<T>)>) -> Result<(), LightningError> {
932 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
933 let chan_was_enabled;
935 match self.channels.get_mut(&msg.short_channel_id) {
936 None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
938 if let OptionalField::Present(htlc_maximum_msat) = msg.htlc_maximum_msat {
939 if htlc_maximum_msat > MAX_VALUE_MSAT {
940 return Err(LightningError{err: "htlc_maximum_msat is larger than maximum possible msats".to_owned(), action: ErrorAction::IgnoreError});
943 if let Some(capacity_sats) = channel.capacity_sats {
944 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
945 // Don't query UTXO set here to reduce DoS risks.
946 if capacity_sats > MAX_VALUE_MSAT / 1000 || htlc_maximum_msat > capacity_sats * 1000 {
947 return Err(LightningError{err: "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(), action: ErrorAction::IgnoreError});
951 macro_rules! maybe_update_channel_info {
952 ( $target: expr, $src_node: expr) => {
953 if let Some(existing_chan_info) = $target.as_ref() {
954 if existing_chan_info.last_update >= msg.timestamp {
955 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreError});
957 chan_was_enabled = existing_chan_info.enabled;
959 chan_was_enabled = false;
962 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
963 { full_msg.cloned() } else { None };
965 let updated_channel_dir_info = DirectionalChannelInfo {
966 enabled: chan_enabled,
967 last_update: msg.timestamp,
968 cltv_expiry_delta: msg.cltv_expiry_delta,
969 htlc_minimum_msat: msg.htlc_minimum_msat,
970 htlc_maximum_msat: if let OptionalField::Present(max_value) = msg.htlc_maximum_msat { Some(max_value) } else { None },
972 base_msat: msg.fee_base_msat,
973 proportional_millionths: msg.fee_proportional_millionths,
977 $target = Some(updated_channel_dir_info);
981 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
982 if msg.flags & 1 == 1 {
983 dest_node_id = channel.node_one.clone();
984 if let Some((sig, ctx)) = sig_info {
985 secp_verify_sig!(ctx, &msg_hash, &sig, &channel.node_two);
987 maybe_update_channel_info!(channel.two_to_one, channel.node_two);
989 dest_node_id = channel.node_two.clone();
990 if let Some((sig, ctx)) = sig_info {
991 secp_verify_sig!(ctx, &msg_hash, &sig, &channel.node_one);
993 maybe_update_channel_info!(channel.one_to_two, channel.node_one);
999 let node = self.nodes.get_mut(&dest_node_id).unwrap();
1000 let mut base_msat = msg.fee_base_msat;
1001 let mut proportional_millionths = msg.fee_proportional_millionths;
1002 if let Some(fees) = node.lowest_inbound_channel_fees {
1003 base_msat = cmp::min(base_msat, fees.base_msat);
1004 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1006 node.lowest_inbound_channel_fees = Some(RoutingFees {
1008 proportional_millionths
1010 } else if chan_was_enabled {
1011 let node = self.nodes.get_mut(&dest_node_id).unwrap();
1012 let mut lowest_inbound_channel_fees = None;
1014 for chan_id in node.channels.iter() {
1015 let chan = self.channels.get(chan_id).unwrap();
1017 if chan.node_one == dest_node_id {
1018 chan_info_opt = chan.two_to_one.as_ref();
1020 chan_info_opt = chan.one_to_two.as_ref();
1022 if let Some(chan_info) = chan_info_opt {
1023 if chan_info.enabled {
1024 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1025 base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1026 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1027 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1032 node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1038 fn remove_channel_in_nodes(nodes: &mut BTreeMap<PublicKey, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1039 macro_rules! remove_from_node {
1040 ($node_id: expr) => {
1041 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1042 entry.get_mut().channels.retain(|chan_id| {
1043 short_channel_id != *chan_id
1045 if entry.get().channels.is_empty() {
1046 entry.remove_entry();
1049 panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1054 remove_from_node!(chan.node_one);
1055 remove_from_node!(chan.node_two);
1062 use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1063 use routing::network_graph::{NetGraphMsgHandler, NetworkGraph, MAX_EXCESS_BYTES_FOR_RELAY};
1064 use ln::msgs::{Init, OptionalField, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1065 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate, HTLCFailChannelUpdate,
1066 ReplyChannelRange, ReplyShortChannelIdsEnd, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1067 use util::test_utils;
1068 use util::logger::Logger;
1069 use util::ser::{Readable, Writeable};
1070 use util::events::{MessageSendEvent, MessageSendEventsProvider};
1071 use util::scid_utils::scid_from_parts;
1073 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1074 use bitcoin::hashes::Hash;
1075 use bitcoin::network::constants::Network;
1076 use bitcoin::blockdata::constants::genesis_block;
1077 use bitcoin::blockdata::script::Builder;
1078 use bitcoin::blockdata::transaction::TxOut;
1079 use bitcoin::blockdata::opcodes;
1083 use bitcoin::secp256k1::key::{PublicKey, SecretKey};
1084 use bitcoin::secp256k1::{All, Secp256k1};
1089 fn create_net_graph_msg_handler() -> (Secp256k1<All>, NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>) {
1090 let secp_ctx = Secp256k1::new();
1091 let logger = Arc::new(test_utils::TestLogger::new());
1092 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1093 let net_graph_msg_handler = NetGraphMsgHandler::new(genesis_hash, None, Arc::clone(&logger));
1094 (secp_ctx, net_graph_msg_handler)
1098 fn request_full_sync_finite_times() {
1099 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1100 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1102 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1103 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1104 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1105 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1106 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1107 assert!(!net_graph_msg_handler.should_request_full_sync(&node_id));
1111 fn handling_node_announcements() {
1112 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1114 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1115 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1116 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1117 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1118 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1119 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1120 let zero_hash = Sha256dHash::hash(&[0; 32]);
1121 let first_announcement_time = 500;
1123 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1124 features: NodeFeatures::known(),
1125 timestamp: first_announcement_time,
1129 addresses: Vec::new(),
1130 excess_address_data: Vec::new(),
1131 excess_data: Vec::new(),
1133 let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1134 let valid_announcement = NodeAnnouncement {
1135 signature: secp_ctx.sign(&msghash, node_1_privkey),
1136 contents: unsigned_announcement.clone()
1139 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1141 Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1145 // Announce a channel to add a corresponding node.
1146 let unsigned_announcement = UnsignedChannelAnnouncement {
1147 features: ChannelFeatures::known(),
1148 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1149 short_channel_id: 0,
1152 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1153 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1154 excess_data: Vec::new(),
1157 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1158 let valid_announcement = ChannelAnnouncement {
1159 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1160 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1161 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1162 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1163 contents: unsigned_announcement.clone(),
1165 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1166 Ok(res) => assert!(res),
1171 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1172 Ok(res) => assert!(res),
1176 let fake_msghash = hash_to_message!(&zero_hash);
1177 match net_graph_msg_handler.handle_node_announcement(
1179 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1180 contents: unsigned_announcement.clone()
1183 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1186 unsigned_announcement.timestamp += 1000;
1187 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1188 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1189 let announcement_with_data = NodeAnnouncement {
1190 signature: secp_ctx.sign(&msghash, node_1_privkey),
1191 contents: unsigned_announcement.clone()
1193 // Return false because contains excess data.
1194 match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) {
1195 Ok(res) => assert!(!res),
1198 unsigned_announcement.excess_data = Vec::new();
1200 // Even though previous announcement was not relayed further, we still accepted it,
1201 // so we now won't accept announcements before the previous one.
1202 unsigned_announcement.timestamp -= 10;
1203 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1204 let outdated_announcement = NodeAnnouncement {
1205 signature: secp_ctx.sign(&msghash, node_1_privkey),
1206 contents: unsigned_announcement.clone()
1208 match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) {
1210 Err(e) => assert_eq!(e.err, "Update older than last processed update")
1215 fn handling_channel_announcements() {
1216 let secp_ctx = Secp256k1::new();
1217 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1219 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1220 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1221 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1222 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1223 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1224 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1226 let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1227 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1228 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1229 .push_opcode(opcodes::all::OP_PUSHNUM_2)
1230 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1233 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1234 features: ChannelFeatures::known(),
1235 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1236 short_channel_id: 0,
1239 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1240 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1241 excess_data: Vec::new(),
1244 let mut msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1245 let valid_announcement = ChannelAnnouncement {
1246 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1247 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1248 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1249 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1250 contents: unsigned_announcement.clone(),
1253 // Test if the UTXO lookups were not supported
1254 let mut net_graph_msg_handler = NetGraphMsgHandler::new(genesis_block(Network::Testnet).header.block_hash(), None, Arc::clone(&logger));
1255 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1256 Ok(res) => assert!(res),
1261 let network = net_graph_msg_handler.network_graph.read().unwrap();
1262 match network.get_channels().get(&unsigned_announcement.short_channel_id) {
1268 // If we receive announcement for the same channel (with UTXO lookups disabled),
1269 // drop new one on the floor, since we can't see any changes.
1270 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1272 Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
1275 // Test if an associated transaction were not on-chain (or not confirmed).
1276 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1277 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1278 net_graph_msg_handler = NetGraphMsgHandler::new(chain_source.clone().genesis_hash, Some(chain_source.clone()), Arc::clone(&logger));
1279 unsigned_announcement.short_channel_id += 1;
1281 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1282 let valid_announcement = ChannelAnnouncement {
1283 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1284 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1285 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1286 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1287 contents: unsigned_announcement.clone(),
1290 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1292 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1295 // Now test if the transaction is found in the UTXO set and the script is correct.
1296 unsigned_announcement.short_channel_id += 1;
1297 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
1299 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1300 let valid_announcement = ChannelAnnouncement {
1301 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1302 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1303 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1304 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1305 contents: unsigned_announcement.clone(),
1307 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1308 Ok(res) => assert!(res),
1313 let network = net_graph_msg_handler.network_graph.read().unwrap();
1314 match network.get_channels().get(&unsigned_announcement.short_channel_id) {
1320 // If we receive announcement for the same channel (but TX is not confirmed),
1321 // drop new one on the floor, since we can't see any changes.
1322 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1323 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1325 Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1328 // But if it is confirmed, replace the channel
1329 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
1330 unsigned_announcement.features = ChannelFeatures::empty();
1331 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1332 let valid_announcement = ChannelAnnouncement {
1333 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1334 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1335 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1336 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1337 contents: unsigned_announcement.clone(),
1339 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1340 Ok(res) => assert!(res),
1344 let network = net_graph_msg_handler.network_graph.read().unwrap();
1345 match network.get_channels().get(&unsigned_announcement.short_channel_id) {
1346 Some(channel_entry) => {
1347 assert_eq!(channel_entry.features, ChannelFeatures::empty());
1353 // Don't relay valid channels with excess data
1354 unsigned_announcement.short_channel_id += 1;
1355 unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1356 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1357 let valid_announcement = ChannelAnnouncement {
1358 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1359 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1360 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1361 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1362 contents: unsigned_announcement.clone(),
1364 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1365 Ok(res) => assert!(!res),
1369 unsigned_announcement.excess_data = Vec::new();
1370 let invalid_sig_announcement = ChannelAnnouncement {
1371 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1372 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1373 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1374 bitcoin_signature_2: secp_ctx.sign(&msghash, node_1_btckey),
1375 contents: unsigned_announcement.clone(),
1377 match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) {
1379 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1382 unsigned_announcement.node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1383 msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1384 let channel_to_itself_announcement = ChannelAnnouncement {
1385 node_signature_1: secp_ctx.sign(&msghash, node_2_privkey),
1386 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1387 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1388 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1389 contents: unsigned_announcement.clone(),
1391 match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) {
1393 Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
1398 fn handling_channel_update() {
1399 let secp_ctx = Secp256k1::new();
1400 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1401 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1402 let net_graph_msg_handler = NetGraphMsgHandler::new(genesis_block(Network::Testnet).header.block_hash(), Some(chain_source.clone()), Arc::clone(&logger));
1404 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1405 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1406 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1407 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1408 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1409 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1411 let zero_hash = Sha256dHash::hash(&[0; 32]);
1412 let short_channel_id = 0;
1413 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1414 let amount_sats = 1000_000;
1417 // Announce a channel we will update
1418 let good_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1419 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1420 .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1421 .push_opcode(opcodes::all::OP_PUSHNUM_2)
1422 .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1423 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
1424 let unsigned_announcement = UnsignedChannelAnnouncement {
1425 features: ChannelFeatures::empty(),
1430 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1431 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1432 excess_data: Vec::new(),
1435 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1436 let valid_channel_announcement = ChannelAnnouncement {
1437 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1438 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1439 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1440 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1441 contents: unsigned_announcement.clone(),
1443 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1450 let mut unsigned_channel_update = UnsignedChannelUpdate {
1455 cltv_expiry_delta: 144,
1456 htlc_minimum_msat: 1000000,
1457 htlc_maximum_msat: OptionalField::Absent,
1458 fee_base_msat: 10000,
1459 fee_proportional_millionths: 20,
1460 excess_data: Vec::new()
1462 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1463 let valid_channel_update = ChannelUpdate {
1464 signature: secp_ctx.sign(&msghash, node_1_privkey),
1465 contents: unsigned_channel_update.clone()
1468 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1469 Ok(res) => assert!(res),
1474 let network = net_graph_msg_handler.network_graph.read().unwrap();
1475 match network.get_channels().get(&short_channel_id) {
1477 Some(channel_info) => {
1478 assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
1479 assert!(channel_info.two_to_one.is_none());
1484 unsigned_channel_update.timestamp += 100;
1485 unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1486 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1487 let valid_channel_update = ChannelUpdate {
1488 signature: secp_ctx.sign(&msghash, node_1_privkey),
1489 contents: unsigned_channel_update.clone()
1491 // Return false because contains excess data
1492 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1493 Ok(res) => assert!(!res),
1496 unsigned_channel_update.timestamp += 10;
1498 unsigned_channel_update.short_channel_id += 1;
1499 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1500 let valid_channel_update = ChannelUpdate {
1501 signature: secp_ctx.sign(&msghash, node_1_privkey),
1502 contents: unsigned_channel_update.clone()
1505 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1507 Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
1509 unsigned_channel_update.short_channel_id = short_channel_id;
1511 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(MAX_VALUE_MSAT + 1);
1512 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1513 let valid_channel_update = ChannelUpdate {
1514 signature: secp_ctx.sign(&msghash, node_1_privkey),
1515 contents: unsigned_channel_update.clone()
1518 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1520 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
1522 unsigned_channel_update.htlc_maximum_msat = OptionalField::Absent;
1524 unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(amount_sats * 1000 + 1);
1525 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1526 let valid_channel_update = ChannelUpdate {
1527 signature: secp_ctx.sign(&msghash, node_1_privkey),
1528 contents: unsigned_channel_update.clone()
1531 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1533 Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
1535 unsigned_channel_update.htlc_maximum_msat = OptionalField::Absent;
1537 // Even though previous update was not relayed further, we still accepted it,
1538 // so we now won't accept update before the previous one.
1539 unsigned_channel_update.timestamp -= 10;
1540 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1541 let valid_channel_update = ChannelUpdate {
1542 signature: secp_ctx.sign(&msghash, node_1_privkey),
1543 contents: unsigned_channel_update.clone()
1546 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1548 Err(e) => assert_eq!(e.err, "Update older than last processed update")
1550 unsigned_channel_update.timestamp += 500;
1552 let fake_msghash = hash_to_message!(&zero_hash);
1553 let invalid_sig_channel_update = ChannelUpdate {
1554 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1555 contents: unsigned_channel_update.clone()
1558 match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) {
1560 Err(e) => assert_eq!(e.err, "Invalid signature from remote node")
1566 fn handling_htlc_fail_channel_update() {
1567 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1568 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1569 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1570 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1571 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1572 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1573 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1575 let short_channel_id = 0;
1576 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1579 // There is no nodes in the table at the beginning.
1580 let network = net_graph_msg_handler.network_graph.read().unwrap();
1581 assert_eq!(network.get_nodes().len(), 0);
1585 // Announce a channel we will update
1586 let unsigned_announcement = UnsignedChannelAnnouncement {
1587 features: ChannelFeatures::empty(),
1592 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1593 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1594 excess_data: Vec::new(),
1597 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1598 let valid_channel_announcement = ChannelAnnouncement {
1599 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1600 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1601 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1602 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1603 contents: unsigned_announcement.clone(),
1605 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1610 let unsigned_channel_update = UnsignedChannelUpdate {
1615 cltv_expiry_delta: 144,
1616 htlc_minimum_msat: 1000000,
1617 htlc_maximum_msat: OptionalField::Absent,
1618 fee_base_msat: 10000,
1619 fee_proportional_millionths: 20,
1620 excess_data: Vec::new()
1622 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1623 let valid_channel_update = ChannelUpdate {
1624 signature: secp_ctx.sign(&msghash, node_1_privkey),
1625 contents: unsigned_channel_update.clone()
1628 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1629 Ok(res) => assert!(res),
1634 // Non-permanent closing just disables a channel
1636 let network = net_graph_msg_handler.network_graph.read().unwrap();
1637 match network.get_channels().get(&short_channel_id) {
1639 Some(channel_info) => {
1640 assert!(channel_info.one_to_two.is_some());
1645 let channel_close_msg = HTLCFailChannelUpdate::ChannelClosed {
1650 net_graph_msg_handler.handle_htlc_fail_channel_update(&channel_close_msg);
1652 // Non-permanent closing just disables a channel
1654 let network = net_graph_msg_handler.network_graph.read().unwrap();
1655 match network.get_channels().get(&short_channel_id) {
1657 Some(channel_info) => {
1658 assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
1663 let channel_close_msg = HTLCFailChannelUpdate::ChannelClosed {
1668 net_graph_msg_handler.handle_htlc_fail_channel_update(&channel_close_msg);
1670 // Permanent closing deletes a channel
1672 let network = net_graph_msg_handler.network_graph.read().unwrap();
1673 assert_eq!(network.get_channels().len(), 0);
1674 // Nodes are also deleted because there are no associated channels anymore
1675 assert_eq!(network.get_nodes().len(), 0);
1677 // TODO: Test HTLCFailChannelUpdate::NodeFailure, which is not implemented yet.
1681 fn getting_next_channel_announcements() {
1682 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1683 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1684 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1685 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1686 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1687 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1688 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1690 let short_channel_id = 1;
1691 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1693 // Channels were not announced yet.
1694 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1);
1695 assert_eq!(channels_with_announcements.len(), 0);
1698 // Announce a channel we will update
1699 let unsigned_announcement = UnsignedChannelAnnouncement {
1700 features: ChannelFeatures::empty(),
1705 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1706 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1707 excess_data: Vec::new(),
1710 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1711 let valid_channel_announcement = ChannelAnnouncement {
1712 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1713 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1714 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1715 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1716 contents: unsigned_announcement.clone(),
1718 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1724 // Contains initial channel announcement now.
1725 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1726 assert_eq!(channels_with_announcements.len(), 1);
1727 if let Some(channel_announcements) = channels_with_announcements.first() {
1728 let &(_, ref update_1, ref update_2) = channel_announcements;
1729 assert_eq!(update_1, &None);
1730 assert_eq!(update_2, &None);
1737 // Valid channel update
1738 let unsigned_channel_update = UnsignedChannelUpdate {
1743 cltv_expiry_delta: 144,
1744 htlc_minimum_msat: 1000000,
1745 htlc_maximum_msat: OptionalField::Absent,
1746 fee_base_msat: 10000,
1747 fee_proportional_millionths: 20,
1748 excess_data: Vec::new()
1750 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1751 let valid_channel_update = ChannelUpdate {
1752 signature: secp_ctx.sign(&msghash, node_1_privkey),
1753 contents: unsigned_channel_update.clone()
1755 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1761 // Now contains an initial announcement and an update.
1762 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1763 assert_eq!(channels_with_announcements.len(), 1);
1764 if let Some(channel_announcements) = channels_with_announcements.first() {
1765 let &(_, ref update_1, ref update_2) = channel_announcements;
1766 assert_ne!(update_1, &None);
1767 assert_eq!(update_2, &None);
1774 // Channel update with excess data.
1775 let unsigned_channel_update = UnsignedChannelUpdate {
1780 cltv_expiry_delta: 144,
1781 htlc_minimum_msat: 1000000,
1782 htlc_maximum_msat: OptionalField::Absent,
1783 fee_base_msat: 10000,
1784 fee_proportional_millionths: 20,
1785 excess_data: [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec()
1787 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1788 let valid_channel_update = ChannelUpdate {
1789 signature: secp_ctx.sign(&msghash, node_1_privkey),
1790 contents: unsigned_channel_update.clone()
1792 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1798 // Test that announcements with excess data won't be returned
1799 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
1800 assert_eq!(channels_with_announcements.len(), 1);
1801 if let Some(channel_announcements) = channels_with_announcements.first() {
1802 let &(_, ref update_1, ref update_2) = channel_announcements;
1803 assert_eq!(update_1, &None);
1804 assert_eq!(update_2, &None);
1809 // Further starting point have no channels after it
1810 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1);
1811 assert_eq!(channels_with_announcements.len(), 0);
1815 fn getting_next_node_announcements() {
1816 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1817 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1818 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1819 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1820 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1821 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1822 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1824 let short_channel_id = 1;
1825 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
1828 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10);
1829 assert_eq!(next_announcements.len(), 0);
1832 // Announce a channel to add 2 nodes
1833 let unsigned_announcement = UnsignedChannelAnnouncement {
1834 features: ChannelFeatures::empty(),
1839 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1840 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1841 excess_data: Vec::new(),
1844 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1845 let valid_channel_announcement = ChannelAnnouncement {
1846 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1847 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1848 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1849 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1850 contents: unsigned_announcement.clone(),
1852 match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1859 // Nodes were never announced
1860 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
1861 assert_eq!(next_announcements.len(), 0);
1864 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1865 features: NodeFeatures::known(),
1870 addresses: Vec::new(),
1871 excess_address_data: Vec::new(),
1872 excess_data: Vec::new(),
1874 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1875 let valid_announcement = NodeAnnouncement {
1876 signature: secp_ctx.sign(&msghash, node_1_privkey),
1877 contents: unsigned_announcement.clone()
1879 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1884 unsigned_announcement.node_id = node_id_2;
1885 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1886 let valid_announcement = NodeAnnouncement {
1887 signature: secp_ctx.sign(&msghash, node_2_privkey),
1888 contents: unsigned_announcement.clone()
1891 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1897 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
1898 assert_eq!(next_announcements.len(), 2);
1900 // Skip the first node.
1901 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
1902 assert_eq!(next_announcements.len(), 1);
1905 // Later announcement which should not be relayed (excess data) prevent us from sharing a node
1906 let unsigned_announcement = UnsignedNodeAnnouncement {
1907 features: NodeFeatures::known(),
1912 addresses: Vec::new(),
1913 excess_address_data: Vec::new(),
1914 excess_data: [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec(),
1916 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1917 let valid_announcement = NodeAnnouncement {
1918 signature: secp_ctx.sign(&msghash, node_2_privkey),
1919 contents: unsigned_announcement.clone()
1921 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1922 Ok(res) => assert!(!res),
1927 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
1928 assert_eq!(next_announcements.len(), 0);
1932 fn network_graph_serialization() {
1933 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
1935 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1936 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1937 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1938 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1940 // Announce a channel to add a corresponding node.
1941 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1942 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
1943 let unsigned_announcement = UnsignedChannelAnnouncement {
1944 features: ChannelFeatures::known(),
1945 chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1946 short_channel_id: 0,
1949 bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1950 bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1951 excess_data: Vec::new(),
1954 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1955 let valid_announcement = ChannelAnnouncement {
1956 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
1957 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
1958 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1959 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1960 contents: unsigned_announcement.clone(),
1962 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1963 Ok(res) => assert!(res),
1968 let node_id = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
1969 let unsigned_announcement = UnsignedNodeAnnouncement {
1970 features: NodeFeatures::known(),
1975 addresses: Vec::new(),
1976 excess_address_data: Vec::new(),
1977 excess_data: Vec::new(),
1979 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1980 let valid_announcement = NodeAnnouncement {
1981 signature: secp_ctx.sign(&msghash, node_1_privkey),
1982 contents: unsigned_announcement.clone()
1985 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1990 let network = net_graph_msg_handler.network_graph.write().unwrap();
1991 let mut w = test_utils::TestVecWriter(Vec::new());
1992 assert!(!network.get_nodes().is_empty());
1993 assert!(!network.get_channels().is_empty());
1994 network.write(&mut w).unwrap();
1995 assert!(<NetworkGraph>::read(&mut ::std::io::Cursor::new(&w.0)).unwrap() == *network);
1999 fn calling_sync_routing_table() {
2000 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2001 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2002 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2004 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2005 let first_blocknum = 0;
2006 let number_of_blocks = 0xffff_ffff;
2008 // It should ignore if gossip_queries feature is not enabled
2010 let init_msg = Init { features: InitFeatures::known().clear_gossip_queries() };
2011 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2012 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2013 assert_eq!(events.len(), 0);
2016 // It should send a query_channel_message with the correct information
2018 let init_msg = Init { features: InitFeatures::known() };
2019 net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2020 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2021 assert_eq!(events.len(), 1);
2023 MessageSendEvent::SendChannelRangeQuery{ node_id, msg } => {
2024 assert_eq!(node_id, &node_id_1);
2025 assert_eq!(msg.chain_hash, chain_hash);
2026 assert_eq!(msg.first_blocknum, first_blocknum);
2027 assert_eq!(msg.number_of_blocks, number_of_blocks);
2029 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2033 // It should not enqueue a query when should_request_full_sync return false.
2034 // The initial implementation allows syncing with the first 5 peers after
2035 // which should_request_full_sync will return false
2037 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2038 let init_msg = Init { features: InitFeatures::known() };
2040 let node_privkey = &SecretKey::from_slice(&[n; 32]).unwrap();
2041 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2042 net_graph_msg_handler.sync_routing_table(&node_id, &init_msg);
2043 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2045 assert_eq!(events.len(), 1);
2047 assert_eq!(events.len(), 0);
2055 fn handling_reply_channel_range() {
2056 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2057 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2058 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2060 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2062 // Test receipt of a single reply that should enqueue an SCID query
2063 // matching the SCIDs in the reply
2065 let result = net_graph_msg_handler.handle_reply_channel_range(&node_id_1, ReplyChannelRange {
2067 sync_complete: true,
2069 number_of_blocks: 2000,
2070 short_channel_ids: vec![
2071 0x0003e0_000000_0000, // 992x0x0
2072 0x0003e8_000000_0000, // 1000x0x0
2073 0x0003e9_000000_0000, // 1001x0x0
2074 0x0003f0_000000_0000, // 1008x0x0
2075 0x00044c_000000_0000, // 1100x0x0
2076 0x0006e0_000000_0000, // 1760x0x0
2079 assert!(result.is_ok());
2081 // We expect to emit a query_short_channel_ids message with the received scids
2082 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2083 assert_eq!(events.len(), 1);
2085 MessageSendEvent::SendShortIdsQuery { node_id, msg } => {
2086 assert_eq!(node_id, &node_id_1);
2087 assert_eq!(msg.chain_hash, chain_hash);
2088 assert_eq!(msg.short_channel_ids, vec![
2089 0x0003e0_000000_0000, // 992x0x0
2090 0x0003e8_000000_0000, // 1000x0x0
2091 0x0003e9_000000_0000, // 1001x0x0
2092 0x0003f0_000000_0000, // 1008x0x0
2093 0x00044c_000000_0000, // 1100x0x0
2094 0x0006e0_000000_0000, // 1760x0x0
2097 _ => panic!("expected MessageSendEvent::SendShortIdsQuery"),
2103 fn handling_reply_short_channel_ids() {
2104 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2105 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2106 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2108 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2110 // Test receipt of a successful reply
2112 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2114 full_information: true,
2116 assert!(result.is_ok());
2119 // Test receipt of a reply that indicates the peer does not maintain up-to-date information
2120 // for the chain_hash requested in the query.
2122 let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2124 full_information: false,
2126 assert!(result.is_err());
2127 assert_eq!(result.err().unwrap().err, "Received reply_short_channel_ids_end with no information");
2132 fn handling_query_channel_range() {
2133 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2135 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2136 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2137 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2138 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
2139 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
2140 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2141 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2142 let bitcoin_key_1 = PublicKey::from_secret_key(&secp_ctx, node_1_btckey);
2143 let bitcoin_key_2 = PublicKey::from_secret_key(&secp_ctx, node_2_btckey);
2145 let mut scids: Vec<u64> = vec![
2146 scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2147 scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2150 // used for testing multipart reply across blocks
2151 for block in 100000..=108001 {
2152 scids.push(scid_from_parts(block, 0, 0).unwrap());
2155 // used for testing resumption on same block
2156 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2159 let unsigned_announcement = UnsignedChannelAnnouncement {
2160 features: ChannelFeatures::known(),
2161 chain_hash: chain_hash.clone(),
2162 short_channel_id: scid,
2167 excess_data: Vec::new(),
2170 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2171 let valid_announcement = ChannelAnnouncement {
2172 node_signature_1: secp_ctx.sign(&msghash, node_1_privkey),
2173 node_signature_2: secp_ctx.sign(&msghash, node_2_privkey),
2174 bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
2175 bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
2176 contents: unsigned_announcement.clone(),
2178 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2184 // Error when number_of_blocks=0
2185 do_handling_query_channel_range(
2186 &net_graph_msg_handler,
2189 chain_hash: chain_hash.clone(),
2191 number_of_blocks: 0,
2194 vec![ReplyChannelRange {
2195 chain_hash: chain_hash.clone(),
2197 number_of_blocks: 0,
2198 sync_complete: true,
2199 short_channel_ids: vec![]
2203 // Error when wrong chain
2204 do_handling_query_channel_range(
2205 &net_graph_msg_handler,
2208 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2210 number_of_blocks: 0xffff_ffff,
2213 vec![ReplyChannelRange {
2214 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2216 number_of_blocks: 0xffff_ffff,
2217 sync_complete: true,
2218 short_channel_ids: vec![],
2222 // Error when first_blocknum > 0xffffff
2223 do_handling_query_channel_range(
2224 &net_graph_msg_handler,
2227 chain_hash: chain_hash.clone(),
2228 first_blocknum: 0x01000000,
2229 number_of_blocks: 0xffff_ffff,
2232 vec![ReplyChannelRange {
2233 chain_hash: chain_hash.clone(),
2234 first_blocknum: 0x01000000,
2235 number_of_blocks: 0xffff_ffff,
2236 sync_complete: true,
2237 short_channel_ids: vec![]
2241 // Empty reply when max valid SCID block num
2242 do_handling_query_channel_range(
2243 &net_graph_msg_handler,
2246 chain_hash: chain_hash.clone(),
2247 first_blocknum: 0xffffff,
2248 number_of_blocks: 1,
2253 chain_hash: chain_hash.clone(),
2254 first_blocknum: 0xffffff,
2255 number_of_blocks: 1,
2256 sync_complete: true,
2257 short_channel_ids: vec![]
2262 // No results in valid query range
2263 do_handling_query_channel_range(
2264 &net_graph_msg_handler,
2267 chain_hash: chain_hash.clone(),
2268 first_blocknum: 1000,
2269 number_of_blocks: 1000,
2274 chain_hash: chain_hash.clone(),
2275 first_blocknum: 1000,
2276 number_of_blocks: 1000,
2277 sync_complete: true,
2278 short_channel_ids: vec![],
2283 // Overflow first_blocknum + number_of_blocks
2284 do_handling_query_channel_range(
2285 &net_graph_msg_handler,
2288 chain_hash: chain_hash.clone(),
2289 first_blocknum: 0xfe0000,
2290 number_of_blocks: 0xffffffff,
2295 chain_hash: chain_hash.clone(),
2296 first_blocknum: 0xfe0000,
2297 number_of_blocks: 0xffffffff - 0xfe0000,
2298 sync_complete: true,
2299 short_channel_ids: vec![
2300 0xfffffe_ffffff_ffff, // max
2306 // Single block exactly full
2307 do_handling_query_channel_range(
2308 &net_graph_msg_handler,
2311 chain_hash: chain_hash.clone(),
2312 first_blocknum: 100000,
2313 number_of_blocks: 8000,
2318 chain_hash: chain_hash.clone(),
2319 first_blocknum: 100000,
2320 number_of_blocks: 8000,
2321 sync_complete: true,
2322 short_channel_ids: (100000..=107999)
2323 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2329 // Multiple split on new block
2330 do_handling_query_channel_range(
2331 &net_graph_msg_handler,
2334 chain_hash: chain_hash.clone(),
2335 first_blocknum: 100000,
2336 number_of_blocks: 8001,
2341 chain_hash: chain_hash.clone(),
2342 first_blocknum: 100000,
2343 number_of_blocks: 7999,
2344 sync_complete: false,
2345 short_channel_ids: (100000..=107999)
2346 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2350 chain_hash: chain_hash.clone(),
2351 first_blocknum: 107999,
2352 number_of_blocks: 2,
2353 sync_complete: true,
2354 short_channel_ids: vec![
2355 scid_from_parts(108000, 0, 0).unwrap(),
2361 // Multiple split on same block
2362 do_handling_query_channel_range(
2363 &net_graph_msg_handler,
2366 chain_hash: chain_hash.clone(),
2367 first_blocknum: 100002,
2368 number_of_blocks: 8000,
2373 chain_hash: chain_hash.clone(),
2374 first_blocknum: 100002,
2375 number_of_blocks: 7999,
2376 sync_complete: false,
2377 short_channel_ids: (100002..=108001)
2378 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2382 chain_hash: chain_hash.clone(),
2383 first_blocknum: 108001,
2384 number_of_blocks: 1,
2385 sync_complete: true,
2386 short_channel_ids: vec![
2387 scid_from_parts(108001, 1, 0).unwrap(),
2394 fn do_handling_query_channel_range(
2395 net_graph_msg_handler: &NetGraphMsgHandler<Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2396 test_node_id: &PublicKey,
2397 msg: QueryChannelRange,
2399 expected_replies: Vec<ReplyChannelRange>
2401 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2402 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2403 let query_end_blocknum = msg.end_blocknum();
2404 let result = net_graph_msg_handler.handle_query_channel_range(test_node_id, msg);
2407 assert!(result.is_ok());
2409 assert!(result.is_err());
2412 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2413 assert_eq!(events.len(), expected_replies.len());
2415 for i in 0..events.len() {
2416 let expected_reply = &expected_replies[i];
2418 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2419 assert_eq!(node_id, test_node_id);
2420 assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2421 assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2422 assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2423 assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2424 assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2426 // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2427 assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2428 assert!(msg.first_blocknum >= max_firstblocknum);
2429 max_firstblocknum = msg.first_blocknum;
2430 c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2432 // Check that the last block count is >= the query's end_blocknum
2433 if i == events.len() - 1 {
2434 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2437 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2443 fn handling_query_short_channel_ids() {
2444 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler();
2445 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2446 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2448 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2450 let result = net_graph_msg_handler.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2452 short_channel_ids: vec![0x0003e8_000000_0000],
2454 assert!(result.is_err());
2458 #[cfg(all(test, feature = "unstable"))]
2466 fn read_network_graph(bench: &mut Bencher) {
2467 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2468 let mut v = Vec::new();
2469 d.read_to_end(&mut v).unwrap();
2471 let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v)).unwrap();
2476 fn write_network_graph(bench: &mut Bencher) {
2477 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2478 let net_graph = NetworkGraph::read(&mut d).unwrap();
2480 let _ = net_graph.encode();