f - Enforce direction is Some
[rust-lightning] / lightning / src / routing / network_graph.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::key::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::script::Builder;
20 use bitcoin::blockdata::transaction::TxOut;
21 use bitcoin::blockdata::opcodes;
22 use bitcoin::hash_types::BlockHash;
23
24 use chain;
25 use chain::Access;
26 use ln::features::{ChannelFeatures, NodeFeatures};
27 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
28 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, OptionalField};
29 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
30 use ln::msgs;
31 use util::ser::{Writeable, Readable, Writer};
32 use util::logger::{Logger, Level};
33 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
34 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
35
36 use io;
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::Deref;
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70         
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph {
126         genesis_hash: BlockHash,
127         // Lock order: channels -> nodes
128         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
129         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
130 }
131
132 impl Clone for NetworkGraph {
133         fn clone(&self) -> Self {
134                 let channels = self.channels.read().unwrap();
135                 let nodes = self.nodes.read().unwrap();
136                 Self {
137                         genesis_hash: self.genesis_hash.clone(),
138                         channels: RwLock::new(channels.clone()),
139                         nodes: RwLock::new(nodes.clone()),
140                 }
141         }
142 }
143
144 /// A read-only view of [`NetworkGraph`].
145 pub struct ReadOnlyNetworkGraph<'a> {
146         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
147         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
148 }
149
150 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
151 /// return packet by a node along the route. See [BOLT #4] for details.
152 ///
153 /// [BOLT #4]: https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
154 #[derive(Clone, Debug, PartialEq)]
155 pub enum NetworkUpdate {
156         /// An error indicating a `channel_update` messages should be applied via
157         /// [`NetworkGraph::update_channel`].
158         ChannelUpdateMessage {
159                 /// The update to apply via [`NetworkGraph::update_channel`].
160                 msg: ChannelUpdate,
161         },
162         /// An error indicating only that a channel has been closed, which should be applied via
163         /// [`NetworkGraph::close_channel_from_update`].
164         ChannelClosed {
165                 /// The short channel id of the closed channel.
166                 short_channel_id: u64,
167                 /// Whether the channel should be permanently removed or temporarily disabled until a new
168                 /// `channel_update` message is received.
169                 is_permanent: bool,
170         },
171         /// An error indicating only that a node has failed, which should be applied via
172         /// [`NetworkGraph::fail_node`].
173         NodeFailure {
174                 /// The node id of the failed node.
175                 node_id: PublicKey,
176                 /// Whether the node should be permanently removed from consideration or can be restored
177                 /// when a new `channel_update` message is received.
178                 is_permanent: bool,
179         }
180 }
181
182 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
183         (0, ChannelUpdateMessage) => {
184                 (0, msg, required),
185         },
186         (2, ChannelClosed) => {
187                 (0, short_channel_id, required),
188                 (2, is_permanent, required),
189         },
190         (4, NodeFailure) => {
191                 (0, node_id, required),
192                 (2, is_permanent, required),
193         },
194 );
195
196 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> EventHandler for NetGraphMsgHandler<G, C, L>
197 where C::Target: chain::Access, L::Target: Logger {
198         fn handle_event(&self, event: &Event) {
199                 if let Event::PaymentPathFailed { payment_hash: _, rejected_by_dest: _, network_update, .. } = event {
200                         if let Some(network_update) = network_update {
201                                 self.handle_network_update(network_update);
202                         }
203                 }
204         }
205 }
206
207 /// Receives and validates network updates from peers,
208 /// stores authentic and relevant data as a network graph.
209 /// This network graph is then used for routing payments.
210 /// Provides interface to help with initial routing sync by
211 /// serving historical announcements.
212 ///
213 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
214 /// [`NetworkGraph`].
215 pub struct NetGraphMsgHandler<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref>
216 where C::Target: chain::Access, L::Target: Logger
217 {
218         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
219         network_graph: G,
220         chain_access: Option<C>,
221         full_syncs_requested: AtomicUsize,
222         pending_events: Mutex<Vec<MessageSendEvent>>,
223         logger: L,
224 }
225
226 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> NetGraphMsgHandler<G, C, L>
227 where C::Target: chain::Access, L::Target: Logger
228 {
229         /// Creates a new tracker of the actual state of the network of channels and nodes,
230         /// assuming an existing Network Graph.
231         /// Chain monitor is used to make sure announced channels exist on-chain,
232         /// channel data is correct, and that the announcement is signed with
233         /// channel owners' keys.
234         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
235                 NetGraphMsgHandler {
236                         secp_ctx: Secp256k1::verification_only(),
237                         network_graph,
238                         full_syncs_requested: AtomicUsize::new(0),
239                         chain_access,
240                         pending_events: Mutex::new(vec![]),
241                         logger,
242                 }
243         }
244
245         /// Adds a provider used to check new announcements. Does not affect
246         /// existing announcements unless they are updated.
247         /// Add, update or remove the provider would replace the current one.
248         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
249                 self.chain_access = chain_access;
250         }
251
252         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
253         /// [`NetGraphMsgHandler::new`].
254         ///
255         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
256         pub fn network_graph(&self) -> &G {
257                 &self.network_graph
258         }
259
260         /// Returns true when a full routing table sync should be performed with a peer.
261         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
262                 //TODO: Determine whether to request a full sync based on the network map.
263                 const FULL_SYNCS_TO_REQUEST: usize = 5;
264                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
265                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
266                         true
267                 } else {
268                         false
269                 }
270         }
271
272         /// Applies changes to the [`NetworkGraph`] from the given update.
273         fn handle_network_update(&self, update: &NetworkUpdate) {
274                 match *update {
275                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
276                                 let short_channel_id = msg.contents.short_channel_id;
277                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
278                                 let status = if is_enabled { "enabled" } else { "disabled" };
279                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
280                                 let _ = self.network_graph.update_channel(msg, &self.secp_ctx);
281                         },
282                         NetworkUpdate::ChannelClosed { short_channel_id, is_permanent } => {
283                                 let action = if is_permanent { "Removing" } else { "Disabling" };
284                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
285                                 self.network_graph.close_channel_from_update(short_channel_id, is_permanent);
286                         },
287                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
288                                 let action = if is_permanent { "Removing" } else { "Disabling" };
289                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
290                                 self.network_graph.fail_node(node_id, is_permanent);
291                         },
292                 }
293         }
294 }
295
296 macro_rules! secp_verify_sig {
297         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
298                 match $secp_ctx.verify($msg, $sig, $pubkey) {
299                         Ok(_) => {},
300                         Err(_) => {
301                                 return Err(LightningError {
302                                         err: format!("Invalid signature on {} message", $msg_type),
303                                         action: ErrorAction::SendWarningMessage {
304                                                 msg: msgs::WarningMessage {
305                                                         channel_id: [0; 32],
306                                                         data: format!("Invalid signature on {} message", $msg_type),
307                                                 },
308                                                 log_level: Level::Trace,
309                                         },
310                                 });
311                         },
312                 }
313         };
314 }
315
316 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> RoutingMessageHandler for NetGraphMsgHandler<G, C, L>
317 where C::Target: chain::Access, L::Target: Logger
318 {
319         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
320                 self.network_graph.update_node_from_announcement(msg, &self.secp_ctx)?;
321                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
322                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
323                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
324         }
325
326         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
327                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access, &self.secp_ctx)?;
328                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
329                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
330         }
331
332         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
333                 self.network_graph.update_channel(msg, &self.secp_ctx)?;
334                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
335         }
336
337         fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
338                 let mut result = Vec::with_capacity(batch_amount as usize);
339                 let channels = self.network_graph.channels.read().unwrap();
340                 let mut iter = channels.range(starting_point..);
341                 while result.len() < batch_amount as usize {
342                         if let Some((_, ref chan)) = iter.next() {
343                                 if chan.announcement_message.is_some() {
344                                         let chan_announcement = chan.announcement_message.clone().unwrap();
345                                         let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
346                                         let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
347                                         if let Some(one_to_two) = chan.one_to_two.as_ref() {
348                                                 one_to_two_announcement = one_to_two.last_update_message.clone();
349                                         }
350                                         if let Some(two_to_one) = chan.two_to_one.as_ref() {
351                                                 two_to_one_announcement = two_to_one.last_update_message.clone();
352                                         }
353                                         result.push((chan_announcement, one_to_two_announcement, two_to_one_announcement));
354                                 } else {
355                                         // TODO: We may end up sending un-announced channel_updates if we are sending
356                                         // initial sync data while receiving announce/updates for this channel.
357                                 }
358                         } else {
359                                 return result;
360                         }
361                 }
362                 result
363         }
364
365         fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement> {
366                 let mut result = Vec::with_capacity(batch_amount as usize);
367                 let nodes = self.network_graph.nodes.read().unwrap();
368                 let mut iter = if let Some(pubkey) = starting_point {
369                                 let mut iter = nodes.range(NodeId::from_pubkey(pubkey)..);
370                                 iter.next();
371                                 iter
372                         } else {
373                                 nodes.range::<NodeId, _>(..)
374                         };
375                 while result.len() < batch_amount as usize {
376                         if let Some((_, ref node)) = iter.next() {
377                                 if let Some(node_info) = node.announcement_info.as_ref() {
378                                         if node_info.announcement_message.is_some() {
379                                                 result.push(node_info.announcement_message.clone().unwrap());
380                                         }
381                                 }
382                         } else {
383                                 return result;
384                         }
385                 }
386                 result
387         }
388
389         /// Initiates a stateless sync of routing gossip information with a peer
390         /// using gossip_queries. The default strategy used by this implementation
391         /// is to sync the full block range with several peers.
392         ///
393         /// We should expect one or more reply_channel_range messages in response
394         /// to our query_channel_range. Each reply will enqueue a query_scid message
395         /// to request gossip messages for each channel. The sync is considered complete
396         /// when the final reply_scids_end message is received, though we are not
397         /// tracking this directly.
398         fn sync_routing_table(&self, their_node_id: &PublicKey, init_msg: &Init) {
399
400                 // We will only perform a sync with peers that support gossip_queries.
401                 if !init_msg.features.supports_gossip_queries() {
402                         return ();
403                 }
404
405                 // Check if we need to perform a full synchronization with this peer
406                 if !self.should_request_full_sync(&their_node_id) {
407                         return ();
408                 }
409
410                 let first_blocknum = 0;
411                 let number_of_blocks = 0xffffffff;
412                 log_debug!(self.logger, "Sending query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), first_blocknum, number_of_blocks);
413                 let mut pending_events = self.pending_events.lock().unwrap();
414                 pending_events.push(MessageSendEvent::SendChannelRangeQuery {
415                         node_id: their_node_id.clone(),
416                         msg: QueryChannelRange {
417                                 chain_hash: self.network_graph.genesis_hash,
418                                 first_blocknum,
419                                 number_of_blocks,
420                         },
421                 });
422         }
423
424         /// Statelessly processes a reply to a channel range query by immediately
425         /// sending an SCID query with SCIDs in the reply. To keep this handler
426         /// stateless, it does not validate the sequencing of replies for multi-
427         /// reply ranges. It does not validate whether the reply(ies) cover the
428         /// queried range. It also does not filter SCIDs to only those in the
429         /// original query range. We also do not validate that the chain_hash
430         /// matches the chain_hash of the NetworkGraph. Any chan_ann message that
431         /// does not match our chain_hash will be rejected when the announcement is
432         /// processed.
433         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError> {
434                 log_debug!(self.logger, "Handling reply_channel_range peer={}, first_blocknum={}, number_of_blocks={}, sync_complete={}, scids={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks, msg.sync_complete, msg.short_channel_ids.len(),);
435
436                 log_debug!(self.logger, "Sending query_short_channel_ids peer={}, batch_size={}", log_pubkey!(their_node_id), msg.short_channel_ids.len());
437                 let mut pending_events = self.pending_events.lock().unwrap();
438                 pending_events.push(MessageSendEvent::SendShortIdsQuery {
439                         node_id: their_node_id.clone(),
440                         msg: QueryShortChannelIds {
441                                 chain_hash: msg.chain_hash,
442                                 short_channel_ids: msg.short_channel_ids,
443                         }
444                 });
445
446                 Ok(())
447         }
448
449         /// When an SCID query is initiated the remote peer will begin streaming
450         /// gossip messages. In the event of a failure, we may have received
451         /// some channel information. Before trying with another peer, the
452         /// caller should update its set of SCIDs that need to be queried.
453         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
454                 log_debug!(self.logger, "Handling reply_short_channel_ids_end peer={}, full_information={}", log_pubkey!(their_node_id), msg.full_information);
455
456                 // If the remote node does not have up-to-date information for the
457                 // chain_hash they will set full_information=false. We can fail
458                 // the result and try again with a different peer.
459                 if !msg.full_information {
460                         return Err(LightningError {
461                                 err: String::from("Received reply_short_channel_ids_end with no information"),
462                                 action: ErrorAction::IgnoreError
463                         });
464                 }
465
466                 Ok(())
467         }
468
469         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
470         /// are in the specified block range. Due to message size limits, large range
471         /// queries may result in several reply messages. This implementation enqueues
472         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
473         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
474         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
475         /// memory constrained systems.
476         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
477                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
478
479                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
480
481                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
482                 // If so, we manually cap the ending block to avoid this overflow.
483                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
484
485                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
486                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
487                         let mut pending_events = self.pending_events.lock().unwrap();
488                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
489                                 node_id: their_node_id.clone(),
490                                 msg: ReplyChannelRange {
491                                         chain_hash: msg.chain_hash.clone(),
492                                         first_blocknum: msg.first_blocknum,
493                                         number_of_blocks: msg.number_of_blocks,
494                                         sync_complete: true,
495                                         short_channel_ids: vec![],
496                                 }
497                         });
498                         return Err(LightningError {
499                                 err: String::from("query_channel_range could not be processed"),
500                                 action: ErrorAction::IgnoreError,
501                         });
502                 }
503
504                 // Creates channel batches. We are not checking if the channel is routable
505                 // (has at least one update). A peer may still want to know the channel
506                 // exists even if its not yet routable.
507                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
508                 let channels = self.network_graph.channels.read().unwrap();
509                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
510                         if let Some(chan_announcement) = &chan.announcement_message {
511                                 // Construct a new batch if last one is full
512                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
513                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
514                                 }
515
516                                 let batch = batches.last_mut().unwrap();
517                                 batch.push(chan_announcement.contents.short_channel_id);
518                         }
519                 }
520                 drop(channels);
521
522                 let mut pending_events = self.pending_events.lock().unwrap();
523                 let batch_count = batches.len();
524                 let mut prev_batch_endblock = msg.first_blocknum;
525                 for (batch_index, batch) in batches.into_iter().enumerate() {
526                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
527                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
528                         //
529                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
530                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
531                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
532                         // significant diversion from the requirements set by the spec, and, in case of blocks
533                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
534                         // and *not* derive the first_blocknum from the actual first block of the reply.
535                         let first_blocknum = prev_batch_endblock;
536
537                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
538                         // fit in. Though there is no requirement that we use exactly the number of blocks its
539                         // contents are from, except for the bogus requirements c-lightning enforces, above.
540                         //
541                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
542                         // >= the query's end block. Thus, for the last reply, we calculate the difference
543                         // between the query's end block and the start of the reply.
544                         //
545                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
546                         // first_blocknum will be either msg.first_blocknum or a higher block height.
547                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
548                                 (true, msg.end_blocknum() - first_blocknum)
549                         }
550                         // Prior replies should use the number of blocks that fit into the reply. Overflow
551                         // safe since first_blocknum is always <= last SCID's block.
552                         else {
553                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
554                         };
555
556                         prev_batch_endblock = first_blocknum + number_of_blocks;
557
558                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
559                                 node_id: their_node_id.clone(),
560                                 msg: ReplyChannelRange {
561                                         chain_hash: msg.chain_hash.clone(),
562                                         first_blocknum,
563                                         number_of_blocks,
564                                         sync_complete,
565                                         short_channel_ids: batch,
566                                 }
567                         });
568                 }
569
570                 Ok(())
571         }
572
573         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
574                 // TODO
575                 Err(LightningError {
576                         err: String::from("Not implemented"),
577                         action: ErrorAction::IgnoreError,
578                 })
579         }
580 }
581
582 impl<G: Deref<Target=NetworkGraph>, C: Deref, L: Deref> MessageSendEventsProvider for NetGraphMsgHandler<G, C, L>
583 where
584         C::Target: chain::Access,
585         L::Target: Logger,
586 {
587         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
588                 let mut ret = Vec::new();
589                 let mut pending_events = self.pending_events.lock().unwrap();
590                 core::mem::swap(&mut ret, &mut pending_events);
591                 ret
592         }
593 }
594
595 #[derive(Clone, Debug, PartialEq)]
596 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
597 pub struct ChannelUpdateInfo {
598         /// When the last update to the channel direction was issued.
599         /// Value is opaque, as set in the announcement.
600         pub last_update: u32,
601         /// Whether the channel can be currently used for payments (in this one direction).
602         pub enabled: bool,
603         /// The difference in CLTV values that you must have when routing through this channel.
604         pub cltv_expiry_delta: u16,
605         /// The minimum value, which must be relayed to the next hop via the channel
606         pub htlc_minimum_msat: u64,
607         /// The maximum value which may be relayed to the next hop via the channel.
608         pub htlc_maximum_msat: Option<u64>,
609         /// Fees charged when the channel is used for routing
610         pub fees: RoutingFees,
611         /// Most recent update for the channel received from the network
612         /// Mostly redundant with the data we store in fields explicitly.
613         /// Everything else is useful only for sending out for initial routing sync.
614         /// Not stored if contains excess data to prevent DoS.
615         pub last_update_message: Option<ChannelUpdate>,
616 }
617
618 impl fmt::Display for ChannelUpdateInfo {
619         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
620                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
621                 Ok(())
622         }
623 }
624
625 impl_writeable_tlv_based!(ChannelUpdateInfo, {
626         (0, last_update, required),
627         (2, enabled, required),
628         (4, cltv_expiry_delta, required),
629         (6, htlc_minimum_msat, required),
630         (8, htlc_maximum_msat, required),
631         (10, fees, required),
632         (12, last_update_message, required),
633 });
634
635 #[derive(Clone, Debug, PartialEq)]
636 /// Details about a channel (both directions).
637 /// Received within a channel announcement.
638 pub struct ChannelInfo {
639         /// Protocol features of a channel communicated during its announcement
640         pub features: ChannelFeatures,
641         /// Source node of the first direction of a channel
642         pub node_one: NodeId,
643         /// Details about the first direction of a channel
644         pub one_to_two: Option<ChannelUpdateInfo>,
645         /// Source node of the second direction of a channel
646         pub node_two: NodeId,
647         /// Details about the second direction of a channel
648         pub two_to_one: Option<ChannelUpdateInfo>,
649         /// The channel capacity as seen on-chain, if chain lookup is available.
650         pub capacity_sats: Option<u64>,
651         /// An initial announcement of the channel
652         /// Mostly redundant with the data we store in fields explicitly.
653         /// Everything else is useful only for sending out for initial routing sync.
654         /// Not stored if contains excess data to prevent DoS.
655         pub announcement_message: Option<ChannelAnnouncement>,
656         /// The timestamp when we received the announcement, if we are running with feature = "std"
657         /// (which we can probably assume we are - no-std environments probably won't have a full
658         /// network graph in memory!).
659         announcement_received_time: u64,
660 }
661
662 impl ChannelInfo {
663         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target`, or `None`
664         /// if `target` is not one of the channel's counterparties.
665         pub fn as_directed_to(&self, target: &NodeId) -> Option<DirectedChannelInfo> {
666                 let (direction, source, target) = {
667                         if target == &self.node_one {
668                                 (self.two_to_one.as_ref(), &self.node_two, &self.node_one)
669                         } else if target == &self.node_two {
670                                 (self.one_to_two.as_ref(), &self.node_one, &self.node_two)
671                         } else {
672                                 return None;
673                         }
674                 };
675                 Some(DirectedChannelInfo { channel: self, direction, source, target })
676         }
677 }
678
679 impl fmt::Display for ChannelInfo {
680         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
681                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
682                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
683                 Ok(())
684         }
685 }
686
687 impl_writeable_tlv_based!(ChannelInfo, {
688         (0, features, required),
689         (1, announcement_received_time, (default_value, 0)),
690         (2, node_one, required),
691         (4, one_to_two, required),
692         (6, node_two, required),
693         (8, two_to_one, required),
694         (10, capacity_sats, required),
695         (12, announcement_message, required),
696 });
697
698 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
699 /// source node to a target node.
700 #[derive(Clone, Debug)]
701 pub struct DirectedChannelInfo<'a: 'b, 'b> {
702         channel: &'a ChannelInfo,
703         direction: Option<&'b ChannelUpdateInfo>,
704         source: &'b NodeId,
705         target: &'b NodeId,
706 }
707
708 impl<'a: 'b, 'b> DirectedChannelInfo<'a, 'b> {
709         /// Returns information for the channel.
710         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
711
712         /// Returns information for the direction.
713         pub fn direction(&self) -> Option<&'b ChannelUpdateInfo> { self.direction }
714
715         /// Returns the node id for the source.
716         pub fn source(&self) -> &'b NodeId { self.source }
717
718         /// Returns the node id for the target.
719         pub fn target(&self) -> &'b NodeId { self.target }
720
721         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
722         ///
723         /// This is either the total capacity from the funding transaction, if known, or the
724         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
725         /// whichever is smaller.
726         pub fn effective_capacity(&self) -> EffectiveCapacity {
727                 let capacity_msat = self.channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
728                 self.direction
729                         .and_then(|direction| direction.htlc_maximum_msat)
730                         .map(|max_htlc_msat| {
731                                 let capacity_msat = capacity_msat.unwrap_or(u64::max_value());
732                                 if max_htlc_msat < capacity_msat {
733                                         EffectiveCapacity::MaximumHTLC { amount_msat: max_htlc_msat }
734                                 } else {
735                                         EffectiveCapacity::Total { capacity_msat }
736                                 }
737                         })
738                         .or_else(|| capacity_msat.map(|capacity_msat|
739                                         EffectiveCapacity::Total { capacity_msat }))
740                         .unwrap_or(EffectiveCapacity::Unknown)
741         }
742
743         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
744         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a, 'b>> {
745                 match self.direction {
746                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
747                         None => None,
748                 }
749         }
750 }
751
752 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its the direction.
753 #[derive(Clone, Debug)]
754 pub(super) struct DirectedChannelInfoWithUpdate<'a: 'b, 'b> {
755         inner: DirectedChannelInfo<'a, 'b>,
756 }
757
758 impl<'a: 'b, 'b> DirectedChannelInfoWithUpdate<'a, 'b> {
759         /// Returns the underlying [`DirectedChannelInfo`].
760         pub(super) fn inner(&self) -> &DirectedChannelInfo<'a, 'b> {
761                 &self.inner
762         }
763 }
764
765 /// The effective capacity of a channel for routing purposes.
766 ///
767 /// While this may be smaller than the actual channel capacity, amounts greater than
768 /// [`Self::as_msat`] should not be routed through the channel.
769 pub enum EffectiveCapacity {
770         /// The available liquidity in the channel known from being a channel counterparty, and thus a
771         /// direct hop.
772         ExactLiquidity {
773                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
774                 /// millisatoshi.
775                 liquidity_msat: u64,
776         },
777         /// The maximum HTLC amount in one direction as advertised on the gossip network.
778         MaximumHTLC {
779                 /// The maximum HTLC amount denominated in millisatoshi.
780                 amount_msat: u64,
781         },
782         /// The total capacity of the channel as determined by the funding transaction.
783         Total {
784                 /// The funding amount denominated in millisatoshi.
785                 capacity_msat: u64,
786         },
787         /// A capacity sufficient to route any payment, typically used for private channels provided by
788         /// an invoice, though may not be the case for zero-amount invoices.
789         Infinite,
790         /// A capacity that is unknown possibly because either the chain state is unavailable to know
791         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
792         Unknown,
793 }
794
795 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
796 /// use when making routing decisions.
797 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
798
799 impl EffectiveCapacity {
800         /// Returns the effective capacity denominated in millisatoshi.
801         pub fn as_msat(&self) -> u64 {
802                 match self {
803                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
804                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
805                         EffectiveCapacity::Total { capacity_msat } => *capacity_msat,
806                         EffectiveCapacity::Infinite => u64::max_value(),
807                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
808                 }
809         }
810 }
811
812 /// Fees for routing via a given channel or a node
813 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
814 pub struct RoutingFees {
815         /// Flat routing fee in satoshis
816         pub base_msat: u32,
817         /// Liquidity-based routing fee in millionths of a routed amount.
818         /// In other words, 10000 is 1%.
819         pub proportional_millionths: u32,
820 }
821
822 impl_writeable_tlv_based!(RoutingFees, {
823         (0, base_msat, required),
824         (2, proportional_millionths, required)
825 });
826
827 #[derive(Clone, Debug, PartialEq)]
828 /// Information received in the latest node_announcement from this node.
829 pub struct NodeAnnouncementInfo {
830         /// Protocol features the node announced support for
831         pub features: NodeFeatures,
832         /// When the last known update to the node state was issued.
833         /// Value is opaque, as set in the announcement.
834         pub last_update: u32,
835         /// Color assigned to the node
836         pub rgb: [u8; 3],
837         /// Moniker assigned to the node.
838         /// May be invalid or malicious (eg control chars),
839         /// should not be exposed to the user.
840         pub alias: [u8; 32],
841         /// Internet-level addresses via which one can connect to the node
842         pub addresses: Vec<NetAddress>,
843         /// An initial announcement of the node
844         /// Mostly redundant with the data we store in fields explicitly.
845         /// Everything else is useful only for sending out for initial routing sync.
846         /// Not stored if contains excess data to prevent DoS.
847         pub announcement_message: Option<NodeAnnouncement>
848 }
849
850 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
851         (0, features, required),
852         (2, last_update, required),
853         (4, rgb, required),
854         (6, alias, required),
855         (8, announcement_message, option),
856         (10, addresses, vec_type),
857 });
858
859 #[derive(Clone, Debug, PartialEq)]
860 /// Details about a node in the network, known from the network announcement.
861 pub struct NodeInfo {
862         /// All valid channels a node has announced
863         pub channels: Vec<u64>,
864         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
865         /// The two fields (flat and proportional fee) are independent,
866         /// meaning they don't have to refer to the same channel.
867         pub lowest_inbound_channel_fees: Option<RoutingFees>,
868         /// More information about a node from node_announcement.
869         /// Optional because we store a Node entry after learning about it from
870         /// a channel announcement, but before receiving a node announcement.
871         pub announcement_info: Option<NodeAnnouncementInfo>
872 }
873
874 impl fmt::Display for NodeInfo {
875         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
876                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
877                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
878                 Ok(())
879         }
880 }
881
882 impl_writeable_tlv_based!(NodeInfo, {
883         (0, lowest_inbound_channel_fees, option),
884         (2, announcement_info, option),
885         (4, channels, vec_type),
886 });
887
888 const SERIALIZATION_VERSION: u8 = 1;
889 const MIN_SERIALIZATION_VERSION: u8 = 1;
890
891 impl Writeable for NetworkGraph {
892         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
893                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
894
895                 self.genesis_hash.write(writer)?;
896                 let channels = self.channels.read().unwrap();
897                 (channels.len() as u64).write(writer)?;
898                 for (ref chan_id, ref chan_info) in channels.iter() {
899                         (*chan_id).write(writer)?;
900                         chan_info.write(writer)?;
901                 }
902                 let nodes = self.nodes.read().unwrap();
903                 (nodes.len() as u64).write(writer)?;
904                 for (ref node_id, ref node_info) in nodes.iter() {
905                         node_id.write(writer)?;
906                         node_info.write(writer)?;
907                 }
908
909                 write_tlv_fields!(writer, {});
910                 Ok(())
911         }
912 }
913
914 impl Readable for NetworkGraph {
915         fn read<R: io::Read>(reader: &mut R) -> Result<NetworkGraph, DecodeError> {
916                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
917
918                 let genesis_hash: BlockHash = Readable::read(reader)?;
919                 let channels_count: u64 = Readable::read(reader)?;
920                 let mut channels = BTreeMap::new();
921                 for _ in 0..channels_count {
922                         let chan_id: u64 = Readable::read(reader)?;
923                         let chan_info = Readable::read(reader)?;
924                         channels.insert(chan_id, chan_info);
925                 }
926                 let nodes_count: u64 = Readable::read(reader)?;
927                 let mut nodes = BTreeMap::new();
928                 for _ in 0..nodes_count {
929                         let node_id = Readable::read(reader)?;
930                         let node_info = Readable::read(reader)?;
931                         nodes.insert(node_id, node_info);
932                 }
933                 read_tlv_fields!(reader, {});
934
935                 Ok(NetworkGraph {
936                         genesis_hash,
937                         channels: RwLock::new(channels),
938                         nodes: RwLock::new(nodes),
939                 })
940         }
941 }
942
943 impl fmt::Display for NetworkGraph {
944         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
945                 writeln!(f, "Network map\n[Channels]")?;
946                 for (key, val) in self.channels.read().unwrap().iter() {
947                         writeln!(f, " {}: {}", key, val)?;
948                 }
949                 writeln!(f, "[Nodes]")?;
950                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
951                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
952                 }
953                 Ok(())
954         }
955 }
956
957 impl PartialEq for NetworkGraph {
958         fn eq(&self, other: &Self) -> bool {
959                 self.genesis_hash == other.genesis_hash &&
960                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
961                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
962         }
963 }
964
965 impl NetworkGraph {
966         /// Creates a new, empty, network graph.
967         pub fn new(genesis_hash: BlockHash) -> NetworkGraph {
968                 Self {
969                         genesis_hash,
970                         channels: RwLock::new(BTreeMap::new()),
971                         nodes: RwLock::new(BTreeMap::new()),
972                 }
973         }
974
975         /// Returns a read-only view of the network graph.
976         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
977                 let channels = self.channels.read().unwrap();
978                 let nodes = self.nodes.read().unwrap();
979                 ReadOnlyNetworkGraph {
980                         channels,
981                         nodes,
982                 }
983         }
984
985         /// For an already known node (from channel announcements), update its stored properties from a
986         /// given node announcement.
987         ///
988         /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
989         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
990         /// routing messages from a source using a protocol other than the lightning P2P protocol.
991         pub fn update_node_from_announcement<T: secp256k1::Verification>(&self, msg: &msgs::NodeAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
992                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
993                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
994                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
995         }
996
997         /// For an already known node (from channel announcements), update its stored properties from a
998         /// given node announcement without verifying the associated signatures. Because we aren't
999         /// given the associated signatures here we cannot relay the node announcement to any of our
1000         /// peers.
1001         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1002                 self.update_node_from_announcement_intern(msg, None)
1003         }
1004
1005         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1006                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1007                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1008                         Some(node) => {
1009                                 if let Some(node_info) = node.announcement_info.as_ref() {
1010                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1011                                         // updates to ensure you always have the latest one, only vaguely suggesting
1012                                         // that it be at least the current time.
1013                                         if node_info.last_update  > msg.timestamp {
1014                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1015                                         } else if node_info.last_update  == msg.timestamp {
1016                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1017                                         }
1018                                 }
1019
1020                                 let should_relay =
1021                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1022                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1023                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1024                                 node.announcement_info = Some(NodeAnnouncementInfo {
1025                                         features: msg.features.clone(),
1026                                         last_update: msg.timestamp,
1027                                         rgb: msg.rgb,
1028                                         alias: msg.alias,
1029                                         addresses: msg.addresses.clone(),
1030                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1031                                 });
1032
1033                                 Ok(())
1034                         }
1035                 }
1036         }
1037
1038         /// Store or update channel info from a channel announcement.
1039         ///
1040         /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
1041         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1042         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1043         ///
1044         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1045         /// the corresponding UTXO exists on chain and is correctly-formatted.
1046         pub fn update_channel_from_announcement<T: secp256k1::Verification, C: Deref>(
1047                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>, secp_ctx: &Secp256k1<T>
1048         ) -> Result<(), LightningError>
1049         where
1050                 C::Target: chain::Access,
1051         {
1052                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1053                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1054                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1055                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1056                 secp_verify_sig!(secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1057                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1058         }
1059
1060         /// Store or update channel info from a channel announcement without verifying the associated
1061         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1062         /// channel announcement to any of our peers.
1063         ///
1064         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1065         /// the corresponding UTXO exists on chain and is correctly-formatted.
1066         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1067                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1068         ) -> Result<(), LightningError>
1069         where
1070                 C::Target: chain::Access,
1071         {
1072                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1073         }
1074
1075         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1076                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1077         ) -> Result<(), LightningError>
1078         where
1079                 C::Target: chain::Access,
1080         {
1081                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1082                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1083                 }
1084
1085                 let utxo_value = match &chain_access {
1086                         &None => {
1087                                 // Tentatively accept, potentially exposing us to DoS attacks
1088                                 None
1089                         },
1090                         &Some(ref chain_access) => {
1091                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1092                                         Ok(TxOut { value, script_pubkey }) => {
1093                                                 let expected_script = Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1094                                                                                     .push_slice(&msg.bitcoin_key_1.serialize())
1095                                                                                     .push_slice(&msg.bitcoin_key_2.serialize())
1096                                                                                     .push_opcode(opcodes::all::OP_PUSHNUM_2)
1097                                                                                     .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script().to_v0_p2wsh();
1098                                                 if script_pubkey != expected_script {
1099                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", script_pubkey.to_hex(), expected_script.to_hex()), action: ErrorAction::IgnoreError});
1100                                                 }
1101                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1102                                                 //to the new HTLC max field in channel_update
1103                                                 Some(value)
1104                                         },
1105                                         Err(chain::AccessError::UnknownChain) => {
1106                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1107                                         },
1108                                         Err(chain::AccessError::UnknownTx) => {
1109                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1110                                         },
1111                                 }
1112                         },
1113                 };
1114
1115                 #[allow(unused_mut, unused_assignments)]
1116                 let mut announcement_received_time = 0;
1117                 #[cfg(feature = "std")]
1118                 {
1119                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1120                 }
1121
1122                 let chan_info = ChannelInfo {
1123                                 features: msg.features.clone(),
1124                                 node_one: NodeId::from_pubkey(&msg.node_id_1),
1125                                 one_to_two: None,
1126                                 node_two: NodeId::from_pubkey(&msg.node_id_2),
1127                                 two_to_one: None,
1128                                 capacity_sats: utxo_value,
1129                                 announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1130                                         { full_msg.cloned() } else { None },
1131                                 announcement_received_time,
1132                         };
1133
1134                 let mut channels = self.channels.write().unwrap();
1135                 let mut nodes = self.nodes.write().unwrap();
1136                 match channels.entry(msg.short_channel_id) {
1137                         BtreeEntry::Occupied(mut entry) => {
1138                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1139                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1140                                 //exactly how...
1141                                 if utxo_value.is_some() {
1142                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1143                                         // only sometimes returns results. In any case remove the previous entry. Note
1144                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1145                                         // do that because
1146                                         // a) we don't *require* a UTXO provider that always returns results.
1147                                         // b) we don't track UTXOs of channels we know about and remove them if they
1148                                         //    get reorg'd out.
1149                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1150                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), msg.short_channel_id);
1151                                         *entry.get_mut() = chan_info;
1152                                 } else {
1153                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1154                                 }
1155                         },
1156                         BtreeEntry::Vacant(entry) => {
1157                                 entry.insert(chan_info);
1158                         }
1159                 };
1160
1161                 macro_rules! add_channel_to_node {
1162                         ( $node_id: expr ) => {
1163                                 match nodes.entry($node_id) {
1164                                         BtreeEntry::Occupied(node_entry) => {
1165                                                 node_entry.into_mut().channels.push(msg.short_channel_id);
1166                                         },
1167                                         BtreeEntry::Vacant(node_entry) => {
1168                                                 node_entry.insert(NodeInfo {
1169                                                         channels: vec!(msg.short_channel_id),
1170                                                         lowest_inbound_channel_fees: None,
1171                                                         announcement_info: None,
1172                                                 });
1173                                         }
1174                                 }
1175                         };
1176                 }
1177
1178                 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_1));
1179                 add_channel_to_node!(NodeId::from_pubkey(&msg.node_id_2));
1180
1181                 Ok(())
1182         }
1183
1184         /// Close a channel if a corresponding HTLC fail was sent.
1185         /// If permanent, removes a channel from the local storage.
1186         /// May cause the removal of nodes too, if this was their last channel.
1187         /// If not permanent, makes channels unavailable for routing.
1188         pub fn close_channel_from_update(&self, short_channel_id: u64, is_permanent: bool) {
1189                 let mut channels = self.channels.write().unwrap();
1190                 if is_permanent {
1191                         if let Some(chan) = channels.remove(&short_channel_id) {
1192                                 let mut nodes = self.nodes.write().unwrap();
1193                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1194                         }
1195                 } else {
1196                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1197                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1198                                         one_to_two.enabled = false;
1199                                 }
1200                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1201                                         two_to_one.enabled = false;
1202                                 }
1203                         }
1204                 }
1205         }
1206
1207         /// Marks a node in the graph as failed.
1208         pub fn fail_node(&self, _node_id: &PublicKey, is_permanent: bool) {
1209                 if is_permanent {
1210                         // TODO: Wholly remove the node
1211                 } else {
1212                         // TODO: downgrade the node
1213                 }
1214         }
1215
1216         #[cfg(feature = "std")]
1217         /// Removes information about channels that we haven't heard any updates about in some time.
1218         /// This can be used regularly to prune the network graph of channels that likely no longer
1219         /// exist.
1220         ///
1221         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1222         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1223         /// pruning occur for updates which are at least two weeks old, which we implement here.
1224         ///
1225         /// Note that for users of the `lightning-background-processor` crate this method may be
1226         /// automatically called regularly for you.
1227         ///
1228         /// This method is only available with the `std` feature. See
1229         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1230         pub fn remove_stale_channels(&self) {
1231                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1232                 self.remove_stale_channels_with_time(time);
1233         }
1234
1235         /// Removes information about channels that we haven't heard any updates about in some time.
1236         /// This can be used regularly to prune the network graph of channels that likely no longer
1237         /// exist.
1238         ///
1239         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1240         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1241         /// pruning occur for updates which are at least two weeks old, which we implement here.
1242         ///
1243         /// This function takes the current unix time as an argument. For users with the `std` feature
1244         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1245         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1246                 let mut channels = self.channels.write().unwrap();
1247                 // Time out if we haven't received an update in at least 14 days.
1248                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1249                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1250                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1251                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1252                 // time.
1253                 let mut scids_to_remove = Vec::new();
1254                 for (scid, info) in channels.iter_mut() {
1255                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1256                                 info.one_to_two = None;
1257                         }
1258                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1259                                 info.two_to_one = None;
1260                         }
1261                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1262                                 // We check the announcement_received_time here to ensure we don't drop
1263                                 // announcements that we just received and are just waiting for our peer to send a
1264                                 // channel_update for.
1265                                 if info.announcement_received_time < min_time_unix as u64 {
1266                                         scids_to_remove.push(*scid);
1267                                 }
1268                         }
1269                 }
1270                 if !scids_to_remove.is_empty() {
1271                         let mut nodes = self.nodes.write().unwrap();
1272                         for scid in scids_to_remove {
1273                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1274                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1275                         }
1276                 }
1277         }
1278
1279         /// For an already known (from announcement) channel, update info about one of the directions
1280         /// of the channel.
1281         ///
1282         /// You probably don't want to call this directly, instead relying on a NetGraphMsgHandler's
1283         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1284         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1285         ///
1286         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1287         /// materially in the future will be rejected.
1288         pub fn update_channel<T: secp256k1::Verification>(&self, msg: &msgs::ChannelUpdate, secp_ctx: &Secp256k1<T>) -> Result<(), LightningError> {
1289                 self.update_channel_intern(&msg.contents, Some(&msg), Some((&msg.signature, secp_ctx)))
1290         }
1291
1292         /// For an already known (from announcement) channel, update info about one of the directions
1293         /// of the channel without verifying the associated signatures. Because we aren't given the
1294         /// associated signatures here we cannot relay the channel update to any of our peers.
1295         ///
1296         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1297         /// materially in the future will be rejected.
1298         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1299                 self.update_channel_intern(msg, None, None::<(&secp256k1::Signature, &Secp256k1<secp256k1::VerifyOnly>)>)
1300         }
1301
1302         fn update_channel_intern<T: secp256k1::Verification>(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig_info: Option<(&secp256k1::Signature, &Secp256k1<T>)>) -> Result<(), LightningError> {
1303                 let dest_node_id;
1304                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1305                 let chan_was_enabled;
1306
1307                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1308                 {
1309                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1310                         // disable this check during tests!
1311                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1312                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1313                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1314                         }
1315                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1316                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1317                         }
1318                 }
1319
1320                 let mut channels = self.channels.write().unwrap();
1321                 match channels.get_mut(&msg.short_channel_id) {
1322                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1323                         Some(channel) => {
1324                                 if let OptionalField::Present(htlc_maximum_msat) = msg.htlc_maximum_msat {
1325                                         if htlc_maximum_msat > MAX_VALUE_MSAT {
1326                                                 return Err(LightningError{err: "htlc_maximum_msat is larger than maximum possible msats".to_owned(), action: ErrorAction::IgnoreError});
1327                                         }
1328
1329                                         if let Some(capacity_sats) = channel.capacity_sats {
1330                                                 // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1331                                                 // Don't query UTXO set here to reduce DoS risks.
1332                                                 if capacity_sats > MAX_VALUE_MSAT / 1000 || htlc_maximum_msat > capacity_sats * 1000 {
1333                                                         return Err(LightningError{err: "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(), action: ErrorAction::IgnoreError});
1334                                                 }
1335                                         }
1336                                 }
1337                                 macro_rules! maybe_update_channel_info {
1338                                         ( $target: expr, $src_node: expr) => {
1339                                                 if let Some(existing_chan_info) = $target.as_ref() {
1340                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1341                                                         // order updates to ensure you always have the latest one, only
1342                                                         // suggesting  that it be at least the current time. For
1343                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1344                                                         // pruning based on the timestamp field being more than two weeks old,
1345                                                         // but only in the non-normative section.
1346                                                         if existing_chan_info.last_update > msg.timestamp {
1347                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1348                                                         } else if existing_chan_info.last_update == msg.timestamp {
1349                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1350                                                         }
1351                                                         chan_was_enabled = existing_chan_info.enabled;
1352                                                 } else {
1353                                                         chan_was_enabled = false;
1354                                                 }
1355
1356                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1357                                                         { full_msg.cloned() } else { None };
1358
1359                                                 let updated_channel_update_info = ChannelUpdateInfo {
1360                                                         enabled: chan_enabled,
1361                                                         last_update: msg.timestamp,
1362                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1363                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1364                                                         htlc_maximum_msat: if let OptionalField::Present(max_value) = msg.htlc_maximum_msat { Some(max_value) } else { None },
1365                                                         fees: RoutingFees {
1366                                                                 base_msat: msg.fee_base_msat,
1367                                                                 proportional_millionths: msg.fee_proportional_millionths,
1368                                                         },
1369                                                         last_update_message
1370                                                 };
1371                                                 $target = Some(updated_channel_update_info);
1372                                         }
1373                                 }
1374
1375                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1376                                 if msg.flags & 1 == 1 {
1377                                         dest_node_id = channel.node_one.clone();
1378                                         if let Some((sig, ctx)) = sig_info {
1379                                                 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1380                                                         err: "Couldn't parse source node pubkey".to_owned(),
1381                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1382                                                 })?, "channel_update");
1383                                         }
1384                                         maybe_update_channel_info!(channel.two_to_one, channel.node_two);
1385                                 } else {
1386                                         dest_node_id = channel.node_two.clone();
1387                                         if let Some((sig, ctx)) = sig_info {
1388                                                 secp_verify_sig!(ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1389                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1390                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1391                                                 })?, "channel_update");
1392                                         }
1393                                         maybe_update_channel_info!(channel.one_to_two, channel.node_one);
1394                                 }
1395                         }
1396                 }
1397
1398                 let mut nodes = self.nodes.write().unwrap();
1399                 if chan_enabled {
1400                         let node = nodes.get_mut(&dest_node_id).unwrap();
1401                         let mut base_msat = msg.fee_base_msat;
1402                         let mut proportional_millionths = msg.fee_proportional_millionths;
1403                         if let Some(fees) = node.lowest_inbound_channel_fees {
1404                                 base_msat = cmp::min(base_msat, fees.base_msat);
1405                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1406                         }
1407                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1408                                 base_msat,
1409                                 proportional_millionths
1410                         });
1411                 } else if chan_was_enabled {
1412                         let node = nodes.get_mut(&dest_node_id).unwrap();
1413                         let mut lowest_inbound_channel_fees = None;
1414
1415                         for chan_id in node.channels.iter() {
1416                                 let chan = channels.get(chan_id).unwrap();
1417                                 let chan_info_opt;
1418                                 if chan.node_one == dest_node_id {
1419                                         chan_info_opt = chan.two_to_one.as_ref();
1420                                 } else {
1421                                         chan_info_opt = chan.one_to_two.as_ref();
1422                                 }
1423                                 if let Some(chan_info) = chan_info_opt {
1424                                         if chan_info.enabled {
1425                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1426                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1427                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1428                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1429                                         }
1430                                 }
1431                         }
1432
1433                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1434                 }
1435
1436                 Ok(())
1437         }
1438
1439         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1440                 macro_rules! remove_from_node {
1441                         ($node_id: expr) => {
1442                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1443                                         entry.get_mut().channels.retain(|chan_id| {
1444                                                 short_channel_id != *chan_id
1445                                         });
1446                                         if entry.get().channels.is_empty() {
1447                                                 entry.remove_entry();
1448                                         }
1449                                 } else {
1450                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1451                                 }
1452                         }
1453                 }
1454
1455                 remove_from_node!(chan.node_one);
1456                 remove_from_node!(chan.node_two);
1457         }
1458 }
1459
1460 impl ReadOnlyNetworkGraph<'_> {
1461         /// Returns all known valid channels' short ids along with announced channel info.
1462         ///
1463         /// (C-not exported) because we have no mapping for `BTreeMap`s
1464         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1465                 &*self.channels
1466         }
1467
1468         /// Returns all known nodes' public keys along with announced node info.
1469         ///
1470         /// (C-not exported) because we have no mapping for `BTreeMap`s
1471         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1472                 &*self.nodes
1473         }
1474
1475         /// Get network addresses by node id.
1476         /// Returns None if the requested node is completely unknown,
1477         /// or if node announcement for the node was never received.
1478         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1479                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1480                         if let Some(node_info) = node.announcement_info.as_ref() {
1481                                 return Some(node_info.addresses.clone())
1482                         }
1483                 }
1484                 None
1485         }
1486 }
1487
1488 #[cfg(test)]
1489 mod tests {
1490         use chain;
1491         use ln::PaymentHash;
1492         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1493         use routing::network_graph::{NetGraphMsgHandler, NetworkGraph, NetworkUpdate, MAX_EXCESS_BYTES_FOR_RELAY};
1494         use ln::msgs::{Init, OptionalField, RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1495                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate, 
1496                 ReplyChannelRange, ReplyShortChannelIdsEnd, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1497         use util::test_utils;
1498         use util::logger::Logger;
1499         use util::ser::{Readable, Writeable};
1500         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1501         use util::scid_utils::scid_from_parts;
1502
1503         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1504
1505         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1506         use bitcoin::hashes::Hash;
1507         use bitcoin::network::constants::Network;
1508         use bitcoin::blockdata::constants::genesis_block;
1509         use bitcoin::blockdata::script::{Builder, Script};
1510         use bitcoin::blockdata::transaction::TxOut;
1511         use bitcoin::blockdata::opcodes;
1512
1513         use hex;
1514
1515         use bitcoin::secp256k1::key::{PublicKey, SecretKey};
1516         use bitcoin::secp256k1::{All, Secp256k1};
1517
1518         use io;
1519         use prelude::*;
1520         use sync::Arc;
1521
1522         fn create_network_graph() -> NetworkGraph {
1523                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1524                 NetworkGraph::new(genesis_hash)
1525         }
1526
1527         fn create_net_graph_msg_handler(network_graph: &NetworkGraph) -> (
1528                 Secp256k1<All>, NetGraphMsgHandler<&NetworkGraph, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1529         ) {
1530                 let secp_ctx = Secp256k1::new();
1531                 let logger = Arc::new(test_utils::TestLogger::new());
1532                 let net_graph_msg_handler = NetGraphMsgHandler::new(network_graph, None, Arc::clone(&logger));
1533                 (secp_ctx, net_graph_msg_handler)
1534         }
1535
1536         #[test]
1537         fn request_full_sync_finite_times() {
1538                 let network_graph = create_network_graph();
1539                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1540                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1541
1542                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1543                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1544                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1545                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1546                 assert!(net_graph_msg_handler.should_request_full_sync(&node_id));
1547                 assert!(!net_graph_msg_handler.should_request_full_sync(&node_id));
1548         }
1549
1550         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1551                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1552                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1553                         features: NodeFeatures::known(),
1554                         timestamp: 100,
1555                         node_id: node_id,
1556                         rgb: [0; 3],
1557                         alias: [0; 32],
1558                         addresses: Vec::new(),
1559                         excess_address_data: Vec::new(),
1560                         excess_data: Vec::new(),
1561                 };
1562                 f(&mut unsigned_announcement);
1563                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1564                 NodeAnnouncement {
1565                         signature: secp_ctx.sign(&msghash, node_key),
1566                         contents: unsigned_announcement
1567                 }
1568         }
1569
1570         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1571                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1572                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1573                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1574                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1575
1576                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1577                         features: ChannelFeatures::known(),
1578                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1579                         short_channel_id: 0,
1580                         node_id_1,
1581                         node_id_2,
1582                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1583                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1584                         excess_data: Vec::new(),
1585                 };
1586                 f(&mut unsigned_announcement);
1587                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1588                 ChannelAnnouncement {
1589                         node_signature_1: secp_ctx.sign(&msghash, node_1_key),
1590                         node_signature_2: secp_ctx.sign(&msghash, node_2_key),
1591                         bitcoin_signature_1: secp_ctx.sign(&msghash, node_1_btckey),
1592                         bitcoin_signature_2: secp_ctx.sign(&msghash, node_2_btckey),
1593                         contents: unsigned_announcement,
1594                 }
1595         }
1596
1597         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1598                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1599                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1600                 Builder::new().push_opcode(opcodes::all::OP_PUSHNUM_2)
1601                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_1_btckey).serialize())
1602                               .push_slice(&PublicKey::from_secret_key(&secp_ctx, node_2_btckey).serialize())
1603                               .push_opcode(opcodes::all::OP_PUSHNUM_2)
1604                               .push_opcode(opcodes::all::OP_CHECKMULTISIG).into_script()
1605                               .to_v0_p2wsh()
1606         }
1607
1608         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1609                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1610                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1611                         short_channel_id: 0,
1612                         timestamp: 100,
1613                         flags: 0,
1614                         cltv_expiry_delta: 144,
1615                         htlc_minimum_msat: 1_000_000,
1616                         htlc_maximum_msat: OptionalField::Absent,
1617                         fee_base_msat: 10_000,
1618                         fee_proportional_millionths: 20,
1619                         excess_data: Vec::new()
1620                 };
1621                 f(&mut unsigned_channel_update);
1622                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1623                 ChannelUpdate {
1624                         signature: secp_ctx.sign(&msghash, node_key),
1625                         contents: unsigned_channel_update
1626                 }
1627         }
1628
1629         #[test]
1630         fn handling_node_announcements() {
1631                 let network_graph = create_network_graph();
1632                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
1633
1634                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1635                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1636                 let zero_hash = Sha256dHash::hash(&[0; 32]);
1637
1638                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
1639                 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1640                         Ok(_) => panic!(),
1641                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
1642                 };
1643
1644                 {
1645                         // Announce a channel to add a corresponding node.
1646                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1647                         match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1648                                 Ok(res) => assert!(res),
1649                                 _ => panic!()
1650                         };
1651                 }
1652
1653                 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
1654                         Ok(res) => assert!(res),
1655                         Err(_) => panic!()
1656                 };
1657
1658                 let fake_msghash = hash_to_message!(&zero_hash);
1659                 match net_graph_msg_handler.handle_node_announcement(
1660                         &NodeAnnouncement {
1661                                 signature: secp_ctx.sign(&fake_msghash, node_1_privkey),
1662                                 contents: valid_announcement.contents.clone()
1663                 }) {
1664                         Ok(_) => panic!(),
1665                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
1666                 };
1667
1668                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
1669                         unsigned_announcement.timestamp += 1000;
1670                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1671                 }, node_1_privkey, &secp_ctx);
1672                 // Return false because contains excess data.
1673                 match net_graph_msg_handler.handle_node_announcement(&announcement_with_data) {
1674                         Ok(res) => assert!(!res),
1675                         Err(_) => panic!()
1676                 };
1677
1678                 // Even though previous announcement was not relayed further, we still accepted it,
1679                 // so we now won't accept announcements before the previous one.
1680                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
1681                         unsigned_announcement.timestamp += 1000 - 10;
1682                 }, node_1_privkey, &secp_ctx);
1683                 match net_graph_msg_handler.handle_node_announcement(&outdated_announcement) {
1684                         Ok(_) => panic!(),
1685                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
1686                 };
1687         }
1688
1689         #[test]
1690         fn handling_channel_announcements() {
1691                 let secp_ctx = Secp256k1::new();
1692                 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1693
1694                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1695                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1696
1697                 let good_script = get_channel_script(&secp_ctx);
1698                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1699
1700                 // Test if the UTXO lookups were not supported
1701                 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1702                 let mut net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, None, Arc::clone(&logger));
1703                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1704                         Ok(res) => assert!(res),
1705                         _ => panic!()
1706                 };
1707
1708                 {
1709                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1710                                 None => panic!(),
1711                                 Some(_) => ()
1712                         };
1713                 }
1714
1715                 // If we receive announcement for the same channel (with UTXO lookups disabled),
1716                 // drop new one on the floor, since we can't see any changes.
1717                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1718                         Ok(_) => panic!(),
1719                         Err(e) => assert_eq!(e.err, "Already have knowledge of channel")
1720                 };
1721
1722                 // Test if an associated transaction were not on-chain (or not confirmed).
1723                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1724                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1725                 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1726                 net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1727
1728                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1729                         unsigned_announcement.short_channel_id += 1;
1730                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1731                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1732                         Ok(_) => panic!(),
1733                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1734                 };
1735
1736                 // Now test if the transaction is found in the UTXO set and the script is correct.
1737                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
1738                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1739                         unsigned_announcement.short_channel_id += 2;
1740                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1741                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1742                         Ok(res) => assert!(res),
1743                         _ => panic!()
1744                 };
1745
1746                 {
1747                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1748                                 None => panic!(),
1749                                 Some(_) => ()
1750                         };
1751                 }
1752
1753                 // If we receive announcement for the same channel (but TX is not confirmed),
1754                 // drop new one on the floor, since we can't see any changes.
1755                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
1756                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1757                         Ok(_) => panic!(),
1758                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
1759                 };
1760
1761                 // But if it is confirmed, replace the channel
1762                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
1763                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1764                         unsigned_announcement.features = ChannelFeatures::empty();
1765                         unsigned_announcement.short_channel_id += 2;
1766                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1767                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1768                         Ok(res) => assert!(res),
1769                         _ => panic!()
1770                 };
1771                 {
1772                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
1773                                 Some(channel_entry) => {
1774                                         assert_eq!(channel_entry.features, ChannelFeatures::empty());
1775                                 },
1776                                 _ => panic!()
1777                         };
1778                 }
1779
1780                 // Don't relay valid channels with excess data
1781                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
1782                         unsigned_announcement.short_channel_id += 3;
1783                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1784                 }, node_1_privkey, node_2_privkey, &secp_ctx);
1785                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
1786                         Ok(res) => assert!(!res),
1787                         _ => panic!()
1788                 };
1789
1790                 let mut invalid_sig_announcement = valid_announcement.clone();
1791                 invalid_sig_announcement.contents.excess_data = Vec::new();
1792                 match net_graph_msg_handler.handle_channel_announcement(&invalid_sig_announcement) {
1793                         Ok(_) => panic!(),
1794                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
1795                 };
1796
1797                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
1798                 match net_graph_msg_handler.handle_channel_announcement(&channel_to_itself_announcement) {
1799                         Ok(_) => panic!(),
1800                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
1801                 };
1802         }
1803
1804         #[test]
1805         fn handling_channel_update() {
1806                 let secp_ctx = Secp256k1::new();
1807                 let logger: Arc<Logger> = Arc::new(test_utils::TestLogger::new());
1808                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1809                 let network_graph = NetworkGraph::new(genesis_block(Network::Testnet).header.block_hash());
1810                 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), Arc::clone(&logger));
1811
1812                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1813                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1814
1815                 let amount_sats = 1000_000;
1816                 let short_channel_id;
1817
1818                 {
1819                         // Announce a channel we will update
1820                         let good_script = get_channel_script(&secp_ctx);
1821                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
1822
1823                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1824                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
1825                         match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
1826                                 Ok(_) => (),
1827                                 Err(_) => panic!()
1828                         };
1829
1830                 }
1831
1832                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
1833                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1834                         Ok(res) => assert!(res),
1835                         _ => panic!()
1836                 };
1837
1838                 {
1839                         match network_graph.read_only().channels().get(&short_channel_id) {
1840                                 None => panic!(),
1841                                 Some(channel_info) => {
1842                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
1843                                         assert!(channel_info.two_to_one.is_none());
1844                                 }
1845                         };
1846                 }
1847
1848                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1849                         unsigned_channel_update.timestamp += 100;
1850                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
1851                 }, node_1_privkey, &secp_ctx);
1852                 // Return false because contains excess data
1853                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1854                         Ok(res) => assert!(!res),
1855                         _ => panic!()
1856                 };
1857
1858                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1859                         unsigned_channel_update.timestamp += 110;
1860                         unsigned_channel_update.short_channel_id += 1;
1861                 }, node_1_privkey, &secp_ctx);
1862                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1863                         Ok(_) => panic!(),
1864                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
1865                 };
1866
1867                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1868                         unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(MAX_VALUE_MSAT + 1);
1869                         unsigned_channel_update.timestamp += 110;
1870                 }, node_1_privkey, &secp_ctx);
1871                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1872                         Ok(_) => panic!(),
1873                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
1874                 };
1875
1876                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1877                         unsigned_channel_update.htlc_maximum_msat = OptionalField::Present(amount_sats * 1000 + 1);
1878                         unsigned_channel_update.timestamp += 110;
1879                 }, node_1_privkey, &secp_ctx);
1880                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1881                         Ok(_) => panic!(),
1882                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
1883                 };
1884
1885                 // Even though previous update was not relayed further, we still accepted it,
1886                 // so we now won't accept update before the previous one.
1887                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1888                         unsigned_channel_update.timestamp += 100;
1889                 }, node_1_privkey, &secp_ctx);
1890                 match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
1891                         Ok(_) => panic!(),
1892                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
1893                 };
1894
1895                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
1896                         unsigned_channel_update.timestamp += 500;
1897                 }, node_1_privkey, &secp_ctx);
1898                 let zero_hash = Sha256dHash::hash(&[0; 32]);
1899                 let fake_msghash = hash_to_message!(&zero_hash);
1900                 invalid_sig_channel_update.signature = secp_ctx.sign(&fake_msghash, node_1_privkey);
1901                 match net_graph_msg_handler.handle_channel_update(&invalid_sig_channel_update) {
1902                         Ok(_) => panic!(),
1903                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
1904                 };
1905         }
1906
1907         #[test]
1908         fn handling_network_update() {
1909                 let logger = test_utils::TestLogger::new();
1910                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
1911                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1912                 let network_graph = NetworkGraph::new(genesis_hash);
1913                 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), &logger);
1914                 let secp_ctx = Secp256k1::new();
1915
1916                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
1917                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
1918
1919                 {
1920                         // There is no nodes in the table at the beginning.
1921                         assert_eq!(network_graph.read_only().nodes().len(), 0);
1922                 }
1923
1924                 let short_channel_id;
1925                 {
1926                         // Announce a channel we will update
1927                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
1928                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
1929                         let chain_source: Option<&test_utils::TestChainSource> = None;
1930                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok());
1931                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
1932
1933                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
1934                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
1935
1936                         net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1937                                 payment_id: None,
1938                                 payment_hash: PaymentHash([0; 32]),
1939                                 rejected_by_dest: false,
1940                                 all_paths_failed: true,
1941                                 path: vec![],
1942                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
1943                                         msg: valid_channel_update,
1944                                 }),
1945                                 short_channel_id: None,
1946                                 retry: None,
1947                                 error_code: None,
1948                                 error_data: None,
1949                         });
1950
1951                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
1952                 }
1953
1954                 // Non-permanent closing just disables a channel
1955                 {
1956                         match network_graph.read_only().channels().get(&short_channel_id) {
1957                                 None => panic!(),
1958                                 Some(channel_info) => {
1959                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
1960                                 }
1961                         };
1962
1963                         net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1964                                 payment_id: None,
1965                                 payment_hash: PaymentHash([0; 32]),
1966                                 rejected_by_dest: false,
1967                                 all_paths_failed: true,
1968                                 path: vec![],
1969                                 network_update: Some(NetworkUpdate::ChannelClosed {
1970                                         short_channel_id,
1971                                         is_permanent: false,
1972                                 }),
1973                                 short_channel_id: None,
1974                                 retry: None,
1975                                 error_code: None,
1976                                 error_data: None,
1977                         });
1978
1979                         match network_graph.read_only().channels().get(&short_channel_id) {
1980                                 None => panic!(),
1981                                 Some(channel_info) => {
1982                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
1983                                 }
1984                         };
1985                 }
1986
1987                 // Permanent closing deletes a channel
1988                 net_graph_msg_handler.handle_event(&Event::PaymentPathFailed {
1989                         payment_id: None,
1990                         payment_hash: PaymentHash([0; 32]),
1991                         rejected_by_dest: false,
1992                         all_paths_failed: true,
1993                         path: vec![],
1994                         network_update: Some(NetworkUpdate::ChannelClosed {
1995                                 short_channel_id,
1996                                 is_permanent: true,
1997                         }),
1998                         short_channel_id: None,
1999                         retry: None,
2000                         error_code: None,
2001                         error_data: None,
2002                 });
2003
2004                 assert_eq!(network_graph.read_only().channels().len(), 0);
2005                 // Nodes are also deleted because there are no associated channels anymore
2006                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2007                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2008         }
2009
2010         #[test]
2011         fn test_channel_timeouts() {
2012                 // Test the removal of channels with `remove_stale_channels`.
2013                 let logger = test_utils::TestLogger::new();
2014                 let chain_source = Arc::new(test_utils::TestChainSource::new(Network::Testnet));
2015                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2016                 let network_graph = NetworkGraph::new(genesis_hash);
2017                 let net_graph_msg_handler = NetGraphMsgHandler::new(&network_graph, Some(chain_source.clone()), &logger);
2018                 let secp_ctx = Secp256k1::new();
2019
2020                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2021                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2022
2023                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2024                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2025                 let chain_source: Option<&test_utils::TestChainSource> = None;
2026                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source, &secp_ctx).is_ok());
2027                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2028
2029                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2030                 assert!(net_graph_msg_handler.handle_channel_update(&valid_channel_update).is_ok());
2031                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2032
2033                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2034                 assert_eq!(network_graph.read_only().channels().len(), 1);
2035                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2036
2037                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2038                 #[cfg(feature = "std")]
2039                 {
2040                         // In std mode, a further check is performed before fully removing the channel -
2041                         // the channel_announcement must have been received at least two weeks ago. We
2042                         // fudge that here by indicating the time has jumped two weeks. Note that the
2043                         // directional channel information will have been removed already..
2044                         assert_eq!(network_graph.read_only().channels().len(), 1);
2045                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2046                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2047
2048                         use std::time::{SystemTime, UNIX_EPOCH};
2049                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2050                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2051                 }
2052
2053                 assert_eq!(network_graph.read_only().channels().len(), 0);
2054                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2055         }
2056
2057         #[test]
2058         fn getting_next_channel_announcements() {
2059                 let network_graph = create_network_graph();
2060                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2061                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2062                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2063
2064                 // Channels were not announced yet.
2065                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(0, 1);
2066                 assert_eq!(channels_with_announcements.len(), 0);
2067
2068                 let short_channel_id;
2069                 {
2070                         // Announce a channel we will update
2071                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2072                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2073                         match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
2074                                 Ok(_) => (),
2075                                 Err(_) => panic!()
2076                         };
2077                 }
2078
2079                 // Contains initial channel announcement now.
2080                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
2081                 assert_eq!(channels_with_announcements.len(), 1);
2082                 if let Some(channel_announcements) = channels_with_announcements.first() {
2083                         let &(_, ref update_1, ref update_2) = channel_announcements;
2084                         assert_eq!(update_1, &None);
2085                         assert_eq!(update_2, &None);
2086                 } else {
2087                         panic!();
2088                 }
2089
2090
2091                 {
2092                         // Valid channel update
2093                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2094                                 unsigned_channel_update.timestamp = 101;
2095                         }, node_1_privkey, &secp_ctx);
2096                         match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
2097                                 Ok(_) => (),
2098                                 Err(_) => panic!()
2099                         };
2100                 }
2101
2102                 // Now contains an initial announcement and an update.
2103                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
2104                 assert_eq!(channels_with_announcements.len(), 1);
2105                 if let Some(channel_announcements) = channels_with_announcements.first() {
2106                         let &(_, ref update_1, ref update_2) = channel_announcements;
2107                         assert_ne!(update_1, &None);
2108                         assert_eq!(update_2, &None);
2109                 } else {
2110                         panic!();
2111                 }
2112
2113                 {
2114                         // Channel update with excess data.
2115                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2116                                 unsigned_channel_update.timestamp = 102;
2117                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2118                         }, node_1_privkey, &secp_ctx);
2119                         match net_graph_msg_handler.handle_channel_update(&valid_channel_update) {
2120                                 Ok(_) => (),
2121                                 Err(_) => panic!()
2122                         };
2123                 }
2124
2125                 // Test that announcements with excess data won't be returned
2126                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id, 1);
2127                 assert_eq!(channels_with_announcements.len(), 1);
2128                 if let Some(channel_announcements) = channels_with_announcements.first() {
2129                         let &(_, ref update_1, ref update_2) = channel_announcements;
2130                         assert_eq!(update_1, &None);
2131                         assert_eq!(update_2, &None);
2132                 } else {
2133                         panic!();
2134                 }
2135
2136                 // Further starting point have no channels after it
2137                 let channels_with_announcements = net_graph_msg_handler.get_next_channel_announcements(short_channel_id + 1000, 1);
2138                 assert_eq!(channels_with_announcements.len(), 0);
2139         }
2140
2141         #[test]
2142         fn getting_next_node_announcements() {
2143                 let network_graph = create_network_graph();
2144                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2145                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2146                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2147                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2148
2149                 // No nodes yet.
2150                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 10);
2151                 assert_eq!(next_announcements.len(), 0);
2152
2153                 {
2154                         // Announce a channel to add 2 nodes
2155                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2156                         match net_graph_msg_handler.handle_channel_announcement(&valid_channel_announcement) {
2157                                 Ok(_) => (),
2158                                 Err(_) => panic!()
2159                         };
2160                 }
2161
2162
2163                 // Nodes were never announced
2164                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
2165                 assert_eq!(next_announcements.len(), 0);
2166
2167                 {
2168                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2169                         match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2170                                 Ok(_) => (),
2171                                 Err(_) => panic!()
2172                         };
2173
2174                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2175                         match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2176                                 Ok(_) => (),
2177                                 Err(_) => panic!()
2178                         };
2179                 }
2180
2181                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(None, 3);
2182                 assert_eq!(next_announcements.len(), 2);
2183
2184                 // Skip the first node.
2185                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2186                 assert_eq!(next_announcements.len(), 1);
2187
2188                 {
2189                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2190                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2191                                 unsigned_announcement.timestamp += 10;
2192                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2193                         }, node_2_privkey, &secp_ctx);
2194                         match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2195                                 Ok(res) => assert!(!res),
2196                                 Err(_) => panic!()
2197                         };
2198                 }
2199
2200                 let next_announcements = net_graph_msg_handler.get_next_node_announcements(Some(&node_id_1), 2);
2201                 assert_eq!(next_announcements.len(), 0);
2202         }
2203
2204         #[test]
2205         fn network_graph_serialization() {
2206                 let network_graph = create_network_graph();
2207                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2208
2209                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2210                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2211
2212                 // Announce a channel to add a corresponding node.
2213                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2214                 match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2215                         Ok(res) => assert!(res),
2216                         _ => panic!()
2217                 };
2218
2219                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2220                 match net_graph_msg_handler.handle_node_announcement(&valid_announcement) {
2221                         Ok(_) => (),
2222                         Err(_) => panic!()
2223                 };
2224
2225                 let mut w = test_utils::TestVecWriter(Vec::new());
2226                 assert!(!network_graph.read_only().nodes().is_empty());
2227                 assert!(!network_graph.read_only().channels().is_empty());
2228                 network_graph.write(&mut w).unwrap();
2229                 assert!(<NetworkGraph>::read(&mut io::Cursor::new(&w.0)).unwrap() == network_graph);
2230         }
2231
2232         #[test]
2233         fn calling_sync_routing_table() {
2234                 let network_graph = create_network_graph();
2235                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2236                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2237                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2238
2239                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2240                 let first_blocknum = 0;
2241                 let number_of_blocks = 0xffff_ffff;
2242
2243                 // It should ignore if gossip_queries feature is not enabled
2244                 {
2245                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries() };
2246                         net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2247                         let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2248                         assert_eq!(events.len(), 0);
2249                 }
2250
2251                 // It should send a query_channel_message with the correct information
2252                 {
2253                         let init_msg = Init { features: InitFeatures::known() };
2254                         net_graph_msg_handler.sync_routing_table(&node_id_1, &init_msg);
2255                         let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2256                         assert_eq!(events.len(), 1);
2257                         match &events[0] {
2258                                 MessageSendEvent::SendChannelRangeQuery{ node_id, msg } => {
2259                                         assert_eq!(node_id, &node_id_1);
2260                                         assert_eq!(msg.chain_hash, chain_hash);
2261                                         assert_eq!(msg.first_blocknum, first_blocknum);
2262                                         assert_eq!(msg.number_of_blocks, number_of_blocks);
2263                                 },
2264                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2265                         };
2266                 }
2267
2268                 // It should not enqueue a query when should_request_full_sync return false.
2269                 // The initial implementation allows syncing with the first 5 peers after
2270                 // which should_request_full_sync will return false
2271                 {
2272                         let network_graph = create_network_graph();
2273                         let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2274                         let init_msg = Init { features: InitFeatures::known() };
2275                         for n in 1..7 {
2276                                 let node_privkey = &SecretKey::from_slice(&[n; 32]).unwrap();
2277                                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2278                                 net_graph_msg_handler.sync_routing_table(&node_id, &init_msg);
2279                                 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2280                                 if n <= 5 {
2281                                         assert_eq!(events.len(), 1);
2282                                 } else {
2283                                         assert_eq!(events.len(), 0);
2284                                 }
2285
2286                         }
2287                 }
2288         }
2289
2290         #[test]
2291         fn handling_reply_channel_range() {
2292                 let network_graph = create_network_graph();
2293                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2294                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2295                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2296
2297                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2298
2299                 // Test receipt of a single reply that should enqueue an SCID query
2300                 // matching the SCIDs in the reply
2301                 {
2302                         let result = net_graph_msg_handler.handle_reply_channel_range(&node_id_1, ReplyChannelRange {
2303                                 chain_hash,
2304                                 sync_complete: true,
2305                                 first_blocknum: 0,
2306                                 number_of_blocks: 2000,
2307                                 short_channel_ids: vec![
2308                                         0x0003e0_000000_0000, // 992x0x0
2309                                         0x0003e8_000000_0000, // 1000x0x0
2310                                         0x0003e9_000000_0000, // 1001x0x0
2311                                         0x0003f0_000000_0000, // 1008x0x0
2312                                         0x00044c_000000_0000, // 1100x0x0
2313                                         0x0006e0_000000_0000, // 1760x0x0
2314                                 ],
2315                         });
2316                         assert!(result.is_ok());
2317
2318                         // We expect to emit a query_short_channel_ids message with the received scids
2319                         let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2320                         assert_eq!(events.len(), 1);
2321                         match &events[0] {
2322                                 MessageSendEvent::SendShortIdsQuery { node_id, msg } => {
2323                                         assert_eq!(node_id, &node_id_1);
2324                                         assert_eq!(msg.chain_hash, chain_hash);
2325                                         assert_eq!(msg.short_channel_ids, vec![
2326                                                 0x0003e0_000000_0000, // 992x0x0
2327                                                 0x0003e8_000000_0000, // 1000x0x0
2328                                                 0x0003e9_000000_0000, // 1001x0x0
2329                                                 0x0003f0_000000_0000, // 1008x0x0
2330                                                 0x00044c_000000_0000, // 1100x0x0
2331                                                 0x0006e0_000000_0000, // 1760x0x0
2332                                         ]);
2333                                 },
2334                                 _ => panic!("expected MessageSendEvent::SendShortIdsQuery"),
2335                         }
2336                 }
2337         }
2338
2339         #[test]
2340         fn handling_reply_short_channel_ids() {
2341                 let network_graph = create_network_graph();
2342                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2343                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2344                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2345
2346                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2347
2348                 // Test receipt of a successful reply
2349                 {
2350                         let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2351                                 chain_hash,
2352                                 full_information: true,
2353                         });
2354                         assert!(result.is_ok());
2355                 }
2356
2357                 // Test receipt of a reply that indicates the peer does not maintain up-to-date information
2358                 // for the chain_hash requested in the query.
2359                 {
2360                         let result = net_graph_msg_handler.handle_reply_short_channel_ids_end(&node_id, ReplyShortChannelIdsEnd {
2361                                 chain_hash,
2362                                 full_information: false,
2363                         });
2364                         assert!(result.is_err());
2365                         assert_eq!(result.err().unwrap().err, "Received reply_short_channel_ids_end with no information");
2366                 }
2367         }
2368
2369         #[test]
2370         fn handling_query_channel_range() {
2371                 let network_graph = create_network_graph();
2372                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2373
2374                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2375                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2376                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2377                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2378
2379                 let mut scids: Vec<u64> = vec![
2380                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2381                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2382                 ];
2383
2384                 // used for testing multipart reply across blocks
2385                 for block in 100000..=108001 {
2386                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2387                 }
2388
2389                 // used for testing resumption on same block
2390                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2391
2392                 for scid in scids {
2393                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2394                                 unsigned_announcement.short_channel_id = scid;
2395                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2396                         match net_graph_msg_handler.handle_channel_announcement(&valid_announcement) {
2397                                 Ok(_) => (),
2398                                 _ => panic!()
2399                         };
2400                 }
2401
2402                 // Error when number_of_blocks=0
2403                 do_handling_query_channel_range(
2404                         &net_graph_msg_handler,
2405                         &node_id_2,
2406                         QueryChannelRange {
2407                                 chain_hash: chain_hash.clone(),
2408                                 first_blocknum: 0,
2409                                 number_of_blocks: 0,
2410                         },
2411                         false,
2412                         vec![ReplyChannelRange {
2413                                 chain_hash: chain_hash.clone(),
2414                                 first_blocknum: 0,
2415                                 number_of_blocks: 0,
2416                                 sync_complete: true,
2417                                 short_channel_ids: vec![]
2418                         }]
2419                 );
2420
2421                 // Error when wrong chain
2422                 do_handling_query_channel_range(
2423                         &net_graph_msg_handler,
2424                         &node_id_2,
2425                         QueryChannelRange {
2426                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2427                                 first_blocknum: 0,
2428                                 number_of_blocks: 0xffff_ffff,
2429                         },
2430                         false,
2431                         vec![ReplyChannelRange {
2432                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2433                                 first_blocknum: 0,
2434                                 number_of_blocks: 0xffff_ffff,
2435                                 sync_complete: true,
2436                                 short_channel_ids: vec![],
2437                         }]
2438                 );
2439
2440                 // Error when first_blocknum > 0xffffff
2441                 do_handling_query_channel_range(
2442                         &net_graph_msg_handler,
2443                         &node_id_2,
2444                         QueryChannelRange {
2445                                 chain_hash: chain_hash.clone(),
2446                                 first_blocknum: 0x01000000,
2447                                 number_of_blocks: 0xffff_ffff,
2448                         },
2449                         false,
2450                         vec![ReplyChannelRange {
2451                                 chain_hash: chain_hash.clone(),
2452                                 first_blocknum: 0x01000000,
2453                                 number_of_blocks: 0xffff_ffff,
2454                                 sync_complete: true,
2455                                 short_channel_ids: vec![]
2456                         }]
2457                 );
2458
2459                 // Empty reply when max valid SCID block num
2460                 do_handling_query_channel_range(
2461                         &net_graph_msg_handler,
2462                         &node_id_2,
2463                         QueryChannelRange {
2464                                 chain_hash: chain_hash.clone(),
2465                                 first_blocknum: 0xffffff,
2466                                 number_of_blocks: 1,
2467                         },
2468                         true,
2469                         vec![
2470                                 ReplyChannelRange {
2471                                         chain_hash: chain_hash.clone(),
2472                                         first_blocknum: 0xffffff,
2473                                         number_of_blocks: 1,
2474                                         sync_complete: true,
2475                                         short_channel_ids: vec![]
2476                                 },
2477                         ]
2478                 );
2479
2480                 // No results in valid query range
2481                 do_handling_query_channel_range(
2482                         &net_graph_msg_handler,
2483                         &node_id_2,
2484                         QueryChannelRange {
2485                                 chain_hash: chain_hash.clone(),
2486                                 first_blocknum: 1000,
2487                                 number_of_blocks: 1000,
2488                         },
2489                         true,
2490                         vec![
2491                                 ReplyChannelRange {
2492                                         chain_hash: chain_hash.clone(),
2493                                         first_blocknum: 1000,
2494                                         number_of_blocks: 1000,
2495                                         sync_complete: true,
2496                                         short_channel_ids: vec![],
2497                                 }
2498                         ]
2499                 );
2500
2501                 // Overflow first_blocknum + number_of_blocks
2502                 do_handling_query_channel_range(
2503                         &net_graph_msg_handler,
2504                         &node_id_2,
2505                         QueryChannelRange {
2506                                 chain_hash: chain_hash.clone(),
2507                                 first_blocknum: 0xfe0000,
2508                                 number_of_blocks: 0xffffffff,
2509                         },
2510                         true,
2511                         vec![
2512                                 ReplyChannelRange {
2513                                         chain_hash: chain_hash.clone(),
2514                                         first_blocknum: 0xfe0000,
2515                                         number_of_blocks: 0xffffffff - 0xfe0000,
2516                                         sync_complete: true,
2517                                         short_channel_ids: vec![
2518                                                 0xfffffe_ffffff_ffff, // max
2519                                         ]
2520                                 }
2521                         ]
2522                 );
2523
2524                 // Single block exactly full
2525                 do_handling_query_channel_range(
2526                         &net_graph_msg_handler,
2527                         &node_id_2,
2528                         QueryChannelRange {
2529                                 chain_hash: chain_hash.clone(),
2530                                 first_blocknum: 100000,
2531                                 number_of_blocks: 8000,
2532                         },
2533                         true,
2534                         vec![
2535                                 ReplyChannelRange {
2536                                         chain_hash: chain_hash.clone(),
2537                                         first_blocknum: 100000,
2538                                         number_of_blocks: 8000,
2539                                         sync_complete: true,
2540                                         short_channel_ids: (100000..=107999)
2541                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2542                                                 .collect(),
2543                                 },
2544                         ]
2545                 );
2546
2547                 // Multiple split on new block
2548                 do_handling_query_channel_range(
2549                         &net_graph_msg_handler,
2550                         &node_id_2,
2551                         QueryChannelRange {
2552                                 chain_hash: chain_hash.clone(),
2553                                 first_blocknum: 100000,
2554                                 number_of_blocks: 8001,
2555                         },
2556                         true,
2557                         vec![
2558                                 ReplyChannelRange {
2559                                         chain_hash: chain_hash.clone(),
2560                                         first_blocknum: 100000,
2561                                         number_of_blocks: 7999,
2562                                         sync_complete: false,
2563                                         short_channel_ids: (100000..=107999)
2564                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2565                                                 .collect(),
2566                                 },
2567                                 ReplyChannelRange {
2568                                         chain_hash: chain_hash.clone(),
2569                                         first_blocknum: 107999,
2570                                         number_of_blocks: 2,
2571                                         sync_complete: true,
2572                                         short_channel_ids: vec![
2573                                                 scid_from_parts(108000, 0, 0).unwrap(),
2574                                         ],
2575                                 }
2576                         ]
2577                 );
2578
2579                 // Multiple split on same block
2580                 do_handling_query_channel_range(
2581                         &net_graph_msg_handler,
2582                         &node_id_2,
2583                         QueryChannelRange {
2584                                 chain_hash: chain_hash.clone(),
2585                                 first_blocknum: 100002,
2586                                 number_of_blocks: 8000,
2587                         },
2588                         true,
2589                         vec![
2590                                 ReplyChannelRange {
2591                                         chain_hash: chain_hash.clone(),
2592                                         first_blocknum: 100002,
2593                                         number_of_blocks: 7999,
2594                                         sync_complete: false,
2595                                         short_channel_ids: (100002..=108001)
2596                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2597                                                 .collect(),
2598                                 },
2599                                 ReplyChannelRange {
2600                                         chain_hash: chain_hash.clone(),
2601                                         first_blocknum: 108001,
2602                                         number_of_blocks: 1,
2603                                         sync_complete: true,
2604                                         short_channel_ids: vec![
2605                                                 scid_from_parts(108001, 1, 0).unwrap(),
2606                                         ],
2607                                 }
2608                         ]
2609                 );
2610         }
2611
2612         fn do_handling_query_channel_range(
2613                 net_graph_msg_handler: &NetGraphMsgHandler<&NetworkGraph, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2614                 test_node_id: &PublicKey,
2615                 msg: QueryChannelRange,
2616                 expected_ok: bool,
2617                 expected_replies: Vec<ReplyChannelRange>
2618         ) {
2619                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2620                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2621                 let query_end_blocknum = msg.end_blocknum();
2622                 let result = net_graph_msg_handler.handle_query_channel_range(test_node_id, msg);
2623
2624                 if expected_ok {
2625                         assert!(result.is_ok());
2626                 } else {
2627                         assert!(result.is_err());
2628                 }
2629
2630                 let events = net_graph_msg_handler.get_and_clear_pending_msg_events();
2631                 assert_eq!(events.len(), expected_replies.len());
2632
2633                 for i in 0..events.len() {
2634                         let expected_reply = &expected_replies[i];
2635                         match &events[i] {
2636                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2637                                         assert_eq!(node_id, test_node_id);
2638                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2639                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2640                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2641                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2642                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2643
2644                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2645                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2646                                         assert!(msg.first_blocknum >= max_firstblocknum);
2647                                         max_firstblocknum = msg.first_blocknum;
2648                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2649
2650                                         // Check that the last block count is >= the query's end_blocknum
2651                                         if i == events.len() - 1 {
2652                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2653                                         }
2654                                 },
2655                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2656                         }
2657                 }
2658         }
2659
2660         #[test]
2661         fn handling_query_short_channel_ids() {
2662                 let network_graph = create_network_graph();
2663                 let (secp_ctx, net_graph_msg_handler) = create_net_graph_msg_handler(&network_graph);
2664                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2665                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2666
2667                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2668
2669                 let result = net_graph_msg_handler.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2670                         chain_hash,
2671                         short_channel_ids: vec![0x0003e8_000000_0000],
2672                 });
2673                 assert!(result.is_err());
2674         }
2675 }
2676
2677 #[cfg(all(test, feature = "unstable"))]
2678 mod benches {
2679         use super::*;
2680
2681         use test::Bencher;
2682         use std::io::Read;
2683
2684         #[bench]
2685         fn read_network_graph(bench: &mut Bencher) {
2686                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2687                 let mut v = Vec::new();
2688                 d.read_to_end(&mut v).unwrap();
2689                 bench.iter(|| {
2690                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v)).unwrap();
2691                 });
2692         }
2693
2694         #[bench]
2695         fn write_network_graph(bench: &mut Bencher) {
2696                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
2697                 let net_graph = NetworkGraph::read(&mut d).unwrap();
2698                 bench.iter(|| {
2699                         let _ = net_graph.encode();
2700                 });
2701         }
2702 }