Change the directed history tracker's storage of its direction
[rust-lightning] / lightning / src / routing / scoring.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Utilities for scoring payment channels.
11 //!
12 //! [`ProbabilisticScorer`] may be given to [`find_route`] to score payment channels during path
13 //! finding when a custom [`ScoreLookUp`] implementation is not needed.
14 //!
15 //! # Example
16 //!
17 //! ```
18 //! # extern crate bitcoin;
19 //! #
20 //! # use lightning::routing::gossip::NetworkGraph;
21 //! # use lightning::routing::router::{RouteParameters, find_route};
22 //! # use lightning::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters, ProbabilisticScoringDecayParameters};
23 //! # use lightning::sign::KeysManager;
24 //! # use lightning::util::logger::{Logger, Record};
25 //! # use bitcoin::secp256k1::PublicKey;
26 //! #
27 //! # struct FakeLogger {};
28 //! # impl Logger for FakeLogger {
29 //! #     fn log(&self, record: Record) { unimplemented!() }
30 //! # }
31 //! # fn find_scored_route(payer: PublicKey, route_params: RouteParameters, network_graph: NetworkGraph<&FakeLogger>) {
32 //! # let logger = FakeLogger {};
33 //! #
34 //! // Use the default channel penalties.
35 //! let params = ProbabilisticScoringFeeParameters::default();
36 //! let decay_params = ProbabilisticScoringDecayParameters::default();
37 //! let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
38 //!
39 //! // Or use custom channel penalties.
40 //! let params = ProbabilisticScoringFeeParameters {
41 //!     liquidity_penalty_multiplier_msat: 2 * 1000,
42 //!     ..ProbabilisticScoringFeeParameters::default()
43 //! };
44 //! let decay_params = ProbabilisticScoringDecayParameters::default();
45 //! let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
46 //! # let random_seed_bytes = [42u8; 32];
47 //!
48 //! let route = find_route(&payer, &route_params, &network_graph, None, &logger, &scorer, &params, &random_seed_bytes);
49 //! # }
50 //! ```
51 //!
52 //! # Note
53 //!
54 //! Persisting when built with feature `no-std` and restoring without it, or vice versa, uses
55 //! different types and thus is undefined.
56 //!
57 //! [`find_route`]: crate::routing::router::find_route
58
59 use crate::ln::msgs::DecodeError;
60 use crate::routing::gossip::{EffectiveCapacity, NetworkGraph, NodeId};
61 use crate::routing::router::{Path, CandidateRouteHop};
62 use crate::routing::log_approx;
63 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer};
64 use crate::util::logger::Logger;
65
66 use crate::prelude::*;
67 use core::{cmp, fmt};
68 use core::cell::{RefCell, RefMut, Ref};
69 use core::convert::TryInto;
70 use core::ops::{Deref, DerefMut};
71 use core::time::Duration;
72 use crate::io::{self, Read};
73 use crate::sync::{Mutex, MutexGuard, RwLock, RwLockReadGuard, RwLockWriteGuard};
74
75 /// We define Score ever-so-slightly differently based on whether we are being built for C bindings
76 /// or not. For users, `LockableScore` must somehow be writeable to disk. For Rust users, this is
77 /// no problem - you move a `Score` that implements `Writeable` into a `Mutex`, lock it, and now
78 /// you have the original, concrete, `Score` type, which presumably implements `Writeable`.
79 ///
80 /// For C users, once you've moved the `Score` into a `LockableScore` all you have after locking it
81 /// is an opaque trait object with an opaque pointer with no type info. Users could take the unsafe
82 /// approach of blindly casting that opaque pointer to a concrete type and calling `Writeable` from
83 /// there, but other languages downstream of the C bindings (e.g. Java) can't even do that.
84 /// Instead, we really want `Score` and `LockableScore` to implement `Writeable` directly, which we
85 /// do here by defining `Score` differently for `cfg(c_bindings)`.
86 macro_rules! define_score { ($($supertrait: path)*) => {
87 /// An interface used to score payment channels for path finding.
88 ///
89 /// `ScoreLookUp` is used to determine the penalty for a given channel.
90 ///
91 /// Scoring is in terms of fees willing to be paid in order to avoid routing through a channel.
92 pub trait ScoreLookUp {
93         /// A configurable type which should contain various passed-in parameters for configuring the scorer,
94         /// on a per-routefinding-call basis through to the scorer methods,
95         /// which are used to determine the parameters for the suitability of channels for use.
96         type ScoreParams;
97         /// Returns the fee in msats willing to be paid to avoid routing `send_amt_msat` through the
98         /// given channel in the direction from `source` to `target`.
99         ///
100         /// The channel's capacity (less any other MPP parts that are also being considered for use in
101         /// the same payment) is given by `capacity_msat`. It may be determined from various sources
102         /// such as a chain data, network gossip, or invoice hints. For invoice hints, a capacity near
103         /// [`u64::max_value`] is given to indicate sufficient capacity for the invoice's full amount.
104         /// Thus, implementations should be overflow-safe.
105         fn channel_penalty_msat(
106                 &self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
107         ) -> u64;
108 }
109
110 /// `ScoreUpdate` is used to update the scorer's internal state after a payment attempt.
111 pub trait ScoreUpdate {
112         /// Handles updating channel penalties after failing to route through a channel.
113         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration);
114
115         /// Handles updating channel penalties after successfully routing along a path.
116         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration);
117
118         /// Handles updating channel penalties after a probe over the given path failed.
119         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration);
120
121         /// Handles updating channel penalties after a probe over the given path succeeded.
122         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration);
123
124         /// Scorers may wish to reduce their certainty of channel liquidity information over time.
125         /// Thus, this method is provided to allow scorers to observe the passage of time - the holder
126         /// of this object should call this method regularly (generally via the
127         /// `lightning-background-processor` crate).
128         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration);
129 }
130
131 /// A trait which can both lookup and update routing channel penalty scores.
132 ///
133 /// This is used in places where both bounds are required and implemented for all types which
134 /// implement [`ScoreLookUp`] and [`ScoreUpdate`].
135 ///
136 /// Bindings users may need to manually implement this for their custom scoring implementations.
137 pub trait Score : ScoreLookUp + ScoreUpdate $(+ $supertrait)* {}
138
139 #[cfg(not(c_bindings))]
140 impl<T: ScoreLookUp + ScoreUpdate $(+ $supertrait)*> Score for T {}
141
142 #[cfg(not(c_bindings))]
143 impl<S: ScoreLookUp, T: Deref<Target=S>> ScoreLookUp for T {
144         type ScoreParams = S::ScoreParams;
145         fn channel_penalty_msat(
146                 &self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
147         ) -> u64 {
148                 self.deref().channel_penalty_msat(candidate, usage, score_params)
149         }
150 }
151
152 #[cfg(not(c_bindings))]
153 impl<S: ScoreUpdate, T: DerefMut<Target=S>> ScoreUpdate for T {
154         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
155                 self.deref_mut().payment_path_failed(path, short_channel_id, duration_since_epoch)
156         }
157
158         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
159                 self.deref_mut().payment_path_successful(path, duration_since_epoch)
160         }
161
162         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
163                 self.deref_mut().probe_failed(path, short_channel_id, duration_since_epoch)
164         }
165
166         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
167                 self.deref_mut().probe_successful(path, duration_since_epoch)
168         }
169
170         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration) {
171                 self.deref_mut().decay_liquidity_certainty(duration_since_epoch)
172         }
173 }
174 } }
175
176 #[cfg(c_bindings)]
177 define_score!(Writeable);
178
179 #[cfg(not(c_bindings))]
180 define_score!();
181
182 /// A scorer that is accessed under a lock.
183 ///
184 /// Needed so that calls to [`ScoreLookUp::channel_penalty_msat`] in [`find_route`] can be made while
185 /// having shared ownership of a scorer but without requiring internal locking in [`ScoreUpdate`]
186 /// implementations. Internal locking would be detrimental to route finding performance and could
187 /// result in [`ScoreLookUp::channel_penalty_msat`] returning a different value for the same channel.
188 ///
189 /// [`find_route`]: crate::routing::router::find_route
190 pub trait LockableScore<'a> {
191         /// The [`ScoreUpdate`] type.
192         type ScoreUpdate: 'a + ScoreUpdate;
193         /// The [`ScoreLookUp`] type.
194         type ScoreLookUp: 'a + ScoreLookUp;
195
196         /// The write locked [`ScoreUpdate`] type.
197         type WriteLocked: DerefMut<Target = Self::ScoreUpdate> + Sized;
198
199         /// The read locked [`ScoreLookUp`] type.
200         type ReadLocked: Deref<Target = Self::ScoreLookUp> + Sized;
201
202         /// Returns read locked scorer.
203         fn read_lock(&'a self) -> Self::ReadLocked;
204
205         /// Returns write locked scorer.
206         fn write_lock(&'a self) -> Self::WriteLocked;
207 }
208
209 /// Refers to a scorer that is accessible under lock and also writeable to disk
210 ///
211 /// We need this trait to be able to pass in a scorer to `lightning-background-processor` that will enable us to
212 /// use the Persister to persist it.
213 pub trait WriteableScore<'a>: LockableScore<'a> + Writeable {}
214
215 #[cfg(not(c_bindings))]
216 impl<'a, T> WriteableScore<'a> for T where T: LockableScore<'a> + Writeable {}
217 #[cfg(not(c_bindings))]
218 impl<'a, T: Score + 'a> LockableScore<'a> for Mutex<T> {
219         type ScoreUpdate = T;
220         type ScoreLookUp = T;
221
222         type WriteLocked = MutexGuard<'a, Self::ScoreUpdate>;
223         type ReadLocked = MutexGuard<'a, Self::ScoreLookUp>;
224
225         fn read_lock(&'a self) -> Self::ReadLocked {
226                 Mutex::lock(self).unwrap()
227         }
228
229         fn write_lock(&'a self) -> Self::WriteLocked {
230                 Mutex::lock(self).unwrap()
231         }
232 }
233
234 #[cfg(not(c_bindings))]
235 impl<'a, T: Score + 'a> LockableScore<'a> for RefCell<T> {
236         type ScoreUpdate = T;
237         type ScoreLookUp = T;
238
239         type WriteLocked = RefMut<'a, Self::ScoreUpdate>;
240         type ReadLocked = Ref<'a, Self::ScoreLookUp>;
241
242         fn write_lock(&'a self) -> Self::WriteLocked {
243                 self.borrow_mut()
244         }
245
246         fn read_lock(&'a self) -> Self::ReadLocked {
247                 self.borrow()
248         }
249 }
250
251 #[cfg(not(c_bindings))]
252 impl<'a, T: Score + 'a> LockableScore<'a> for RwLock<T> {
253         type ScoreUpdate = T;
254         type ScoreLookUp = T;
255
256         type WriteLocked = RwLockWriteGuard<'a, Self::ScoreLookUp>;
257         type ReadLocked = RwLockReadGuard<'a, Self::ScoreUpdate>;
258
259         fn read_lock(&'a self) -> Self::ReadLocked {
260                 RwLock::read(self).unwrap()
261         }
262
263         fn write_lock(&'a self) -> Self::WriteLocked {
264                 RwLock::write(self).unwrap()
265         }
266 }
267
268 #[cfg(c_bindings)]
269 /// A concrete implementation of [`LockableScore`] which supports multi-threading.
270 pub struct MultiThreadedLockableScore<T: Score> {
271         score: RwLock<T>,
272 }
273
274 #[cfg(c_bindings)]
275 impl<'a, T: Score + 'a> LockableScore<'a> for MultiThreadedLockableScore<T> {
276         type ScoreUpdate = T;
277         type ScoreLookUp = T;
278         type WriteLocked = MultiThreadedScoreLockWrite<'a, Self::ScoreUpdate>;
279         type ReadLocked = MultiThreadedScoreLockRead<'a, Self::ScoreLookUp>;
280
281         fn read_lock(&'a self) -> Self::ReadLocked {
282                 MultiThreadedScoreLockRead(self.score.read().unwrap())
283         }
284
285         fn write_lock(&'a self) -> Self::WriteLocked {
286                 MultiThreadedScoreLockWrite(self.score.write().unwrap())
287         }
288 }
289
290 #[cfg(c_bindings)]
291 impl<T: Score> Writeable for MultiThreadedLockableScore<T> {
292         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
293                 self.score.read().unwrap().write(writer)
294         }
295 }
296
297 #[cfg(c_bindings)]
298 impl<'a, T: Score + 'a> WriteableScore<'a> for MultiThreadedLockableScore<T> {}
299
300 #[cfg(c_bindings)]
301 impl<T: Score> MultiThreadedLockableScore<T> {
302         /// Creates a new [`MultiThreadedLockableScore`] given an underlying [`Score`].
303         pub fn new(score: T) -> Self {
304                 MultiThreadedLockableScore { score: RwLock::new(score) }
305         }
306 }
307
308 #[cfg(c_bindings)]
309 /// A locked `MultiThreadedLockableScore`.
310 pub struct MultiThreadedScoreLockRead<'a, T: Score>(RwLockReadGuard<'a, T>);
311
312 #[cfg(c_bindings)]
313 /// A locked `MultiThreadedLockableScore`.
314 pub struct MultiThreadedScoreLockWrite<'a, T: Score>(RwLockWriteGuard<'a, T>);
315
316 #[cfg(c_bindings)]
317 impl<'a, T: 'a + Score> Deref for MultiThreadedScoreLockRead<'a, T> {
318         type Target = T;
319
320         fn deref(&self) -> &Self::Target {
321                 self.0.deref()
322         }
323 }
324
325 #[cfg(c_bindings)]
326 impl<'a, T: Score> ScoreLookUp for MultiThreadedScoreLockRead<'a, T> {
327         type ScoreParams = T::ScoreParams;
328         fn channel_penalty_msat(&self, candidate:&CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
329         ) -> u64 {
330                 self.0.channel_penalty_msat(candidate, usage, score_params)
331         }
332 }
333
334 #[cfg(c_bindings)]
335 impl<'a, T: Score> Writeable for MultiThreadedScoreLockWrite<'a, T> {
336         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
337                 self.0.write(writer)
338         }
339 }
340
341 #[cfg(c_bindings)]
342 impl<'a, T: 'a + Score> Deref for MultiThreadedScoreLockWrite<'a, T> {
343         type Target = T;
344
345         fn deref(&self) -> &Self::Target {
346                 self.0.deref()
347         }
348 }
349
350 #[cfg(c_bindings)]
351 impl<'a, T: 'a + Score> DerefMut for MultiThreadedScoreLockWrite<'a, T> {
352         fn deref_mut(&mut self) -> &mut Self::Target {
353                 self.0.deref_mut()
354         }
355 }
356
357 #[cfg(c_bindings)]
358 impl<'a, T: Score> ScoreUpdate for MultiThreadedScoreLockWrite<'a, T> {
359         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
360                 self.0.payment_path_failed(path, short_channel_id, duration_since_epoch)
361         }
362
363         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
364                 self.0.payment_path_successful(path, duration_since_epoch)
365         }
366
367         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
368                 self.0.probe_failed(path, short_channel_id, duration_since_epoch)
369         }
370
371         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
372                 self.0.probe_successful(path, duration_since_epoch)
373         }
374
375         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration) {
376                 self.0.decay_liquidity_certainty(duration_since_epoch)
377         }
378 }
379
380
381 /// Proposed use of a channel passed as a parameter to [`ScoreLookUp::channel_penalty_msat`].
382 #[derive(Clone, Copy, Debug, PartialEq)]
383 pub struct ChannelUsage {
384         /// The amount to send through the channel, denominated in millisatoshis.
385         pub amount_msat: u64,
386
387         /// Total amount, denominated in millisatoshis, already allocated to send through the channel
388         /// as part of a multi-path payment.
389         pub inflight_htlc_msat: u64,
390
391         /// The effective capacity of the channel.
392         pub effective_capacity: EffectiveCapacity,
393 }
394
395 #[derive(Clone)]
396 /// [`ScoreLookUp`] implementation that uses a fixed penalty.
397 pub struct FixedPenaltyScorer {
398         penalty_msat: u64,
399 }
400
401 impl FixedPenaltyScorer {
402         /// Creates a new scorer using `penalty_msat`.
403         pub fn with_penalty(penalty_msat: u64) -> Self {
404                 Self { penalty_msat }
405         }
406 }
407
408 impl ScoreLookUp for FixedPenaltyScorer {
409         type ScoreParams = ();
410         fn channel_penalty_msat(&self, _: &CandidateRouteHop, _: ChannelUsage, _score_params: &Self::ScoreParams) -> u64 {
411                 self.penalty_msat
412         }
413 }
414
415 impl ScoreUpdate for FixedPenaltyScorer {
416         fn payment_path_failed(&mut self, _path: &Path, _short_channel_id: u64, _duration_since_epoch: Duration) {}
417
418         fn payment_path_successful(&mut self, _path: &Path, _duration_since_epoch: Duration) {}
419
420         fn probe_failed(&mut self, _path: &Path, _short_channel_id: u64, _duration_since_epoch: Duration) {}
421
422         fn probe_successful(&mut self, _path: &Path, _duration_since_epoch: Duration) {}
423
424         fn decay_liquidity_certainty(&mut self, _duration_since_epoch: Duration) {}
425 }
426
427 impl Writeable for FixedPenaltyScorer {
428         #[inline]
429         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
430                 write_tlv_fields!(w, {});
431                 Ok(())
432         }
433 }
434
435 impl ReadableArgs<u64> for FixedPenaltyScorer {
436         #[inline]
437         fn read<R: Read>(r: &mut R, penalty_msat: u64) -> Result<Self, DecodeError> {
438                 read_tlv_fields!(r, {});
439                 Ok(Self { penalty_msat })
440         }
441 }
442
443 /// [`ScoreLookUp`] implementation using channel success probability distributions.
444 ///
445 /// Channels are tracked with upper and lower liquidity bounds - when an HTLC fails at a channel,
446 /// we learn that the upper-bound on the available liquidity is lower than the amount of the HTLC.
447 /// When a payment is forwarded through a channel (but fails later in the route), we learn the
448 /// lower-bound on the channel's available liquidity must be at least the value of the HTLC.
449 ///
450 /// These bounds are then used to determine a success probability using the formula from
451 /// *Optimally Reliable & Cheap Payment Flows on the Lightning Network* by Rene Pickhardt
452 /// and Stefan Richter [[1]] (i.e. `(upper_bound - payment_amount) / (upper_bound - lower_bound)`).
453 ///
454 /// This probability is combined with the [`liquidity_penalty_multiplier_msat`] and
455 /// [`liquidity_penalty_amount_multiplier_msat`] parameters to calculate a concrete penalty in
456 /// milli-satoshis. The penalties, when added across all hops, have the property of being linear in
457 /// terms of the entire path's success probability. This allows the router to directly compare
458 /// penalties for different paths. See the documentation of those parameters for the exact formulas.
459 ///
460 /// The liquidity bounds are decayed by halving them every [`liquidity_offset_half_life`].
461 ///
462 /// Further, we track the history of our upper and lower liquidity bounds for each channel,
463 /// allowing us to assign a second penalty (using [`historical_liquidity_penalty_multiplier_msat`]
464 /// and [`historical_liquidity_penalty_amount_multiplier_msat`]) based on the same probability
465 /// formula, but using the history of a channel rather than our latest estimates for the liquidity
466 /// bounds.
467 ///
468 /// [1]: https://arxiv.org/abs/2107.05322
469 /// [`liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_multiplier_msat
470 /// [`liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_amount_multiplier_msat
471 /// [`liquidity_offset_half_life`]: ProbabilisticScoringDecayParameters::liquidity_offset_half_life
472 /// [`historical_liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_multiplier_msat
473 /// [`historical_liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_amount_multiplier_msat
474 pub struct ProbabilisticScorer<G: Deref<Target = NetworkGraph<L>>, L: Deref>
475 where L::Target: Logger {
476         decay_params: ProbabilisticScoringDecayParameters,
477         network_graph: G,
478         logger: L,
479         channel_liquidities: HashMap<u64, ChannelLiquidity>,
480 }
481
482 /// Parameters for configuring [`ProbabilisticScorer`].
483 ///
484 /// Used to configure base, liquidity, and amount penalties, the sum of which comprises the channel
485 /// penalty (i.e., the amount in msats willing to be paid to avoid routing through the channel).
486 ///
487 /// The penalty applied to any channel by the [`ProbabilisticScorer`] is the sum of each of the
488 /// parameters here.
489 #[derive(Clone)]
490 pub struct ProbabilisticScoringFeeParameters {
491         /// A fixed penalty in msats to apply to each channel.
492         ///
493         /// Default value: 500 msat
494         pub base_penalty_msat: u64,
495
496         /// A multiplier used with the total amount flowing over a channel to calculate a fixed penalty
497         /// applied to each channel, in excess of the [`base_penalty_msat`].
498         ///
499         /// The purpose of the amount penalty is to avoid having fees dominate the channel cost (i.e.,
500         /// fees plus penalty) for large payments. The penalty is computed as the product of this
501         /// multiplier and `2^30`ths of the total amount flowing over a channel (i.e. the payment
502         /// amount plus the amount of any other HTLCs flowing we sent over the same channel).
503         ///
504         /// ie `base_penalty_amount_multiplier_msat * amount_msat / 2^30`
505         ///
506         /// Default value: 8,192 msat
507         ///
508         /// [`base_penalty_msat`]: Self::base_penalty_msat
509         pub base_penalty_amount_multiplier_msat: u64,
510
511         /// A multiplier used in conjunction with the negative `log10` of the channel's success
512         /// probability for a payment, as determined by our latest estimates of the channel's
513         /// liquidity, to determine the liquidity penalty.
514         ///
515         /// The penalty is based in part on the knowledge learned from prior successful and unsuccessful
516         /// payments. This knowledge is decayed over time based on [`liquidity_offset_half_life`]. The
517         /// penalty is effectively limited to `2 * liquidity_penalty_multiplier_msat` (corresponding to
518         /// lower bounding the success probability to `0.01`) when the amount falls within the
519         /// uncertainty bounds of the channel liquidity balance. Amounts above the upper bound will
520         /// result in a `u64::max_value` penalty, however.
521         ///
522         /// `-log10(success_probability) * liquidity_penalty_multiplier_msat`
523         ///
524         /// Default value: 30,000 msat
525         ///
526         /// [`liquidity_offset_half_life`]: ProbabilisticScoringDecayParameters::liquidity_offset_half_life
527         pub liquidity_penalty_multiplier_msat: u64,
528
529         /// A multiplier used in conjunction with the total amount flowing over a channel and the
530         /// negative `log10` of the channel's success probability for the payment, as determined by our
531         /// latest estimates of the channel's liquidity, to determine the amount penalty.
532         ///
533         /// The purpose of the amount penalty is to avoid having fees dominate the channel cost (i.e.,
534         /// fees plus penalty) for large payments. The penalty is computed as the product of this
535         /// multiplier and `2^20`ths of the amount flowing over this channel, weighted by the negative
536         /// `log10` of the success probability.
537         ///
538         /// `-log10(success_probability) * liquidity_penalty_amount_multiplier_msat * amount_msat / 2^20`
539         ///
540         /// In practice, this means for 0.1 success probability (`-log10(0.1) == 1`) each `2^20`th of
541         /// the amount will result in a penalty of the multiplier. And, as the success probability
542         /// decreases, the negative `log10` weighting will increase dramatically. For higher success
543         /// probabilities, the multiplier will have a decreasing effect as the negative `log10` will
544         /// fall below `1`.
545         ///
546         /// Default value: 192 msat
547         pub liquidity_penalty_amount_multiplier_msat: u64,
548
549         /// A multiplier used in conjunction with the negative `log10` of the channel's success
550         /// probability for the payment, as determined based on the history of our estimates of the
551         /// channel's available liquidity, to determine a penalty.
552         ///
553         /// This penalty is similar to [`liquidity_penalty_multiplier_msat`], however, instead of using
554         /// only our latest estimate for the current liquidity available in the channel, it estimates
555         /// success probability based on the estimated liquidity available in the channel through
556         /// history. Specifically, every time we update our liquidity bounds on a given channel, we
557         /// track which of several buckets those bounds fall into, exponentially decaying the
558         /// probability of each bucket as new samples are added.
559         ///
560         /// Default value: 10,000 msat
561         ///
562         /// [`liquidity_penalty_multiplier_msat`]: Self::liquidity_penalty_multiplier_msat
563         pub historical_liquidity_penalty_multiplier_msat: u64,
564
565         /// A multiplier used in conjunction with the total amount flowing over a channel and the
566         /// negative `log10` of the channel's success probability for the payment, as determined based
567         /// on the history of our estimates of the channel's available liquidity, to determine a
568         /// penalty.
569         ///
570         /// The purpose of the amount penalty is to avoid having fees dominate the channel cost for
571         /// large payments. The penalty is computed as the product of this multiplier and `2^20`ths
572         /// of the amount flowing over this channel, weighted by the negative `log10` of the success
573         /// probability.
574         ///
575         /// This penalty is similar to [`liquidity_penalty_amount_multiplier_msat`], however, instead
576         /// of using only our latest estimate for the current liquidity available in the channel, it
577         /// estimates success probability based on the estimated liquidity available in the channel
578         /// through history. Specifically, every time we update our liquidity bounds on a given
579         /// channel, we track which of several buckets those bounds fall into, exponentially decaying
580         /// the probability of each bucket as new samples are added.
581         ///
582         /// Default value: 64 msat
583         ///
584         /// [`liquidity_penalty_amount_multiplier_msat`]: Self::liquidity_penalty_amount_multiplier_msat
585         pub historical_liquidity_penalty_amount_multiplier_msat: u64,
586
587         /// Manual penalties used for the given nodes. Allows to set a particular penalty for a given
588         /// node. Note that a manual penalty of `u64::max_value()` means the node would not ever be
589         /// considered during path finding.
590         ///
591         /// This is not exported to bindings users
592         pub manual_node_penalties: HashMap<NodeId, u64>,
593
594         /// This penalty is applied when `htlc_maximum_msat` is equal to or larger than half of the
595         /// channel's capacity, (ie. htlc_maximum_msat >= 0.5 * channel_capacity) which makes us
596         /// prefer nodes with a smaller `htlc_maximum_msat`. We treat such nodes preferentially
597         /// as this makes balance discovery attacks harder to execute, thereby creating an incentive
598         /// to restrict `htlc_maximum_msat` and improve privacy.
599         ///
600         /// Default value: 250 msat
601         pub anti_probing_penalty_msat: u64,
602
603         /// This penalty is applied when the total amount flowing over a channel exceeds our current
604         /// estimate of the channel's available liquidity. The total amount is the amount of the
605         /// current HTLC plus any HTLCs which we've sent over the same channel.
606         ///
607         /// Note that in this case all other penalties, including the
608         /// [`liquidity_penalty_multiplier_msat`] and [`liquidity_penalty_amount_multiplier_msat`]-based
609         /// penalties, as well as the [`base_penalty_msat`] and the [`anti_probing_penalty_msat`], if
610         /// applicable, are still included in the overall penalty.
611         ///
612         /// If you wish to avoid creating paths with such channels entirely, setting this to a value of
613         /// `u64::max_value()` will guarantee that.
614         ///
615         /// Default value: 1_0000_0000_000 msat (1 Bitcoin)
616         ///
617         /// [`liquidity_penalty_multiplier_msat`]: Self::liquidity_penalty_multiplier_msat
618         /// [`liquidity_penalty_amount_multiplier_msat`]: Self::liquidity_penalty_amount_multiplier_msat
619         /// [`base_penalty_msat`]: Self::base_penalty_msat
620         /// [`anti_probing_penalty_msat`]: Self::anti_probing_penalty_msat
621         pub considered_impossible_penalty_msat: u64,
622
623         /// In order to calculate most of the scores above, we must first convert a lower and upper
624         /// bound on the available liquidity in a channel into the probability that we think a payment
625         /// will succeed. That probability is derived from a Probability Density Function for where we
626         /// think the liquidity in a channel likely lies, given such bounds.
627         ///
628         /// If this flag is set, that PDF is simply a constant - we assume that the actual available
629         /// liquidity in a channel is just as likely to be at any point between our lower and upper
630         /// bounds.
631         ///
632         /// If this flag is *not* set, that PDF is `(x - 0.5*capacity) ^ 2`. That is, we use an
633         /// exponential curve which expects the liquidity of a channel to lie "at the edges". This
634         /// matches experimental results - most routing nodes do not aggressively rebalance their
635         /// channels and flows in the network are often unbalanced, leaving liquidity usually
636         /// unavailable.
637         ///
638         /// Thus, for the "best" routes, leave this flag `false`. However, the flag does imply a number
639         /// of floating-point multiplications in the hottest routing code, which may lead to routing
640         /// performance degradation on some machines.
641         ///
642         /// Default value: false
643         pub linear_success_probability: bool,
644 }
645
646 impl Default for ProbabilisticScoringFeeParameters {
647         fn default() -> Self {
648                 Self {
649                         base_penalty_msat: 500,
650                         base_penalty_amount_multiplier_msat: 8192,
651                         liquidity_penalty_multiplier_msat: 30_000,
652                         liquidity_penalty_amount_multiplier_msat: 192,
653                         manual_node_penalties: HashMap::new(),
654                         anti_probing_penalty_msat: 250,
655                         considered_impossible_penalty_msat: 1_0000_0000_000,
656                         historical_liquidity_penalty_multiplier_msat: 10_000,
657                         historical_liquidity_penalty_amount_multiplier_msat: 64,
658                         linear_success_probability: false,
659                 }
660         }
661 }
662
663 impl ProbabilisticScoringFeeParameters {
664         /// Marks the node with the given `node_id` as banned,
665         /// i.e it will be avoided during path finding.
666         pub fn add_banned(&mut self, node_id: &NodeId) {
667                 self.manual_node_penalties.insert(*node_id, u64::max_value());
668         }
669
670         /// Marks all nodes in the given list as banned, i.e.,
671         /// they will be avoided during path finding.
672         pub fn add_banned_from_list(&mut self, node_ids: Vec<NodeId>) {
673                 for id in node_ids {
674                         self.manual_node_penalties.insert(id, u64::max_value());
675                 }
676         }
677
678         /// Removes the node with the given `node_id` from the list of nodes to avoid.
679         pub fn remove_banned(&mut self, node_id: &NodeId) {
680                 self.manual_node_penalties.remove(node_id);
681         }
682
683         /// Sets a manual penalty for the given node.
684         pub fn set_manual_penalty(&mut self, node_id: &NodeId, penalty: u64) {
685                 self.manual_node_penalties.insert(*node_id, penalty);
686         }
687
688         /// Removes the node with the given `node_id` from the list of manual penalties.
689         pub fn remove_manual_penalty(&mut self, node_id: &NodeId) {
690                 self.manual_node_penalties.remove(node_id);
691         }
692
693         /// Clears the list of manual penalties that are applied during path finding.
694         pub fn clear_manual_penalties(&mut self) {
695                 self.manual_node_penalties = HashMap::new();
696         }
697 }
698
699 #[cfg(test)]
700 impl ProbabilisticScoringFeeParameters {
701         fn zero_penalty() -> Self {
702                 Self {
703                         base_penalty_msat: 0,
704                         base_penalty_amount_multiplier_msat: 0,
705                         liquidity_penalty_multiplier_msat: 0,
706                         liquidity_penalty_amount_multiplier_msat: 0,
707                         historical_liquidity_penalty_multiplier_msat: 0,
708                         historical_liquidity_penalty_amount_multiplier_msat: 0,
709                         manual_node_penalties: HashMap::new(),
710                         anti_probing_penalty_msat: 0,
711                         considered_impossible_penalty_msat: 0,
712                         linear_success_probability: true,
713                 }
714         }
715 }
716
717 /// Parameters for configuring [`ProbabilisticScorer`].
718 ///
719 /// Used to configure decay parameters that are static throughout the lifetime of the scorer.
720 /// these decay parameters affect the score of the channel penalty and are not changed on a
721 /// per-route penalty cost call.
722 #[derive(Copy, Clone)]
723 pub struct ProbabilisticScoringDecayParameters {
724         /// If we aren't learning any new datapoints for a channel, the historical liquidity bounds
725         /// tracking can simply live on with increasingly stale data. Instead, when a channel has not
726         /// seen a liquidity estimate update for this amount of time, the historical datapoints are
727         /// decayed by half.
728         /// For an example of historical_no_updates_half_life being used see [`historical_estimated_channel_liquidity_probabilities`]
729         ///
730         /// Note that after 16 or more half lives all historical data will be completely gone.
731         ///
732         /// Default value: 14 days
733         ///
734         /// [`historical_estimated_channel_liquidity_probabilities`]: ProbabilisticScorer::historical_estimated_channel_liquidity_probabilities
735         pub historical_no_updates_half_life: Duration,
736
737         /// Whenever this amount of time elapses since the last update to a channel's liquidity bounds,
738         /// the distance from the bounds to "zero" is cut in half. In other words, the lower-bound on
739         /// the available liquidity is halved and the upper-bound moves half-way to the channel's total
740         /// capacity.
741         ///
742         /// Because halving the liquidity bounds grows the uncertainty on the channel's liquidity,
743         /// the penalty for an amount within the new bounds may change. See the [`ProbabilisticScorer`]
744         /// struct documentation for more info on the way the liquidity bounds are used.
745         ///
746         /// For example, if the channel's capacity is 1 million sats, and the current upper and lower
747         /// liquidity bounds are 200,000 sats and 600,000 sats, after this amount of time the upper
748         /// and lower liquidity bounds will be decayed to 100,000 and 800,000 sats.
749         ///
750         /// Default value: 6 hours
751         ///
752         /// # Note
753         ///
754         /// When built with the `no-std` feature, time will never elapse. Therefore, the channel
755         /// liquidity knowledge will never decay except when the bounds cross.
756         pub liquidity_offset_half_life: Duration,
757 }
758
759 impl Default for ProbabilisticScoringDecayParameters {
760         fn default() -> Self {
761                 Self {
762                         liquidity_offset_half_life: Duration::from_secs(6 * 60 * 60),
763                         historical_no_updates_half_life: Duration::from_secs(60 * 60 * 24 * 14),
764                 }
765         }
766 }
767
768 #[cfg(test)]
769 impl ProbabilisticScoringDecayParameters {
770         fn zero_penalty() -> Self {
771                 Self {
772                         liquidity_offset_half_life: Duration::from_secs(6 * 60 * 60),
773                         historical_no_updates_half_life: Duration::from_secs(60 * 60 * 24 * 14),
774                 }
775         }
776 }
777
778 /// Accounting for channel liquidity balance uncertainty.
779 ///
780 /// Direction is defined in terms of [`NodeId`] partial ordering, where the source node is the
781 /// first node in the ordering of the channel's counterparties. Thus, swapping the two liquidity
782 /// offset fields gives the opposite direction.
783 struct ChannelLiquidity {
784         /// Lower channel liquidity bound in terms of an offset from zero.
785         min_liquidity_offset_msat: u64,
786
787         /// Upper channel liquidity bound in terms of an offset from the effective capacity.
788         max_liquidity_offset_msat: u64,
789
790         liquidity_history: HistoricalLiquidityTracker,
791
792         /// Time when the liquidity bounds were last modified as an offset since the unix epoch.
793         last_updated: Duration,
794
795         /// Time when the historical liquidity bounds were last modified as an offset against the unix
796         /// epoch.
797         offset_history_last_updated: Duration,
798 }
799
800 /// A snapshot of [`ChannelLiquidity`] in one direction assuming a certain channel capacity and
801 /// decayed with a given half life.
802 struct DirectedChannelLiquidity<L: Deref<Target = u64>, HT: Deref<Target = HistoricalLiquidityTracker>, T: Deref<Target = Duration>> {
803         min_liquidity_offset_msat: L,
804         max_liquidity_offset_msat: L,
805         liquidity_history: DirectedHistoricalLiquidityTracker<HT>,
806         capacity_msat: u64,
807         last_updated: T,
808         offset_history_last_updated: T,
809 }
810
811 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ProbabilisticScorer<G, L> where L::Target: Logger {
812         /// Creates a new scorer using the given scoring parameters for sending payments from a node
813         /// through a network graph.
814         pub fn new(decay_params: ProbabilisticScoringDecayParameters, network_graph: G, logger: L) -> Self {
815                 Self {
816                         decay_params,
817                         network_graph,
818                         logger,
819                         channel_liquidities: HashMap::new(),
820                 }
821         }
822
823         #[cfg(test)]
824         fn with_channel(mut self, short_channel_id: u64, liquidity: ChannelLiquidity) -> Self {
825                 assert!(self.channel_liquidities.insert(short_channel_id, liquidity).is_none());
826                 self
827         }
828
829         /// Dump the contents of this scorer into the configured logger.
830         ///
831         /// Note that this writes roughly one line per channel for which we have a liquidity estimate,
832         /// which may be a substantial amount of log output.
833         pub fn debug_log_liquidity_stats(&self) {
834                 let graph = self.network_graph.read_only();
835                 for (scid, liq) in self.channel_liquidities.iter() {
836                         if let Some(chan_debug) = graph.channels().get(scid) {
837                                 let log_direction = |source, target| {
838                                         if let Some((directed_info, _)) = chan_debug.as_directed_to(target) {
839                                                 let amt = directed_info.effective_capacity().as_msat();
840                                                 let dir_liq = liq.as_directed(source, target, amt);
841
842                                                 let min_buckets = &dir_liq.liquidity_history.min_liquidity_offset_history_buckets();
843                                                 let max_buckets = &dir_liq.liquidity_history.max_liquidity_offset_history_buckets();
844
845                                                 log_debug!(self.logger, core::concat!(
846                                                         "Liquidity from {} to {} via {} is in the range ({}, {}).\n",
847                                                         "\tHistorical min liquidity bucket relative probabilities:\n",
848                                                         "\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\n",
849                                                         "\tHistorical max liquidity bucket relative probabilities:\n",
850                                                         "\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}"),
851                                                         source, target, scid, dir_liq.min_liquidity_msat(), dir_liq.max_liquidity_msat(),
852                                                         min_buckets[ 0], min_buckets[ 1], min_buckets[ 2], min_buckets[ 3],
853                                                         min_buckets[ 4], min_buckets[ 5], min_buckets[ 6], min_buckets[ 7],
854                                                         min_buckets[ 8], min_buckets[ 9], min_buckets[10], min_buckets[11],
855                                                         min_buckets[12], min_buckets[13], min_buckets[14], min_buckets[15],
856                                                         min_buckets[16], min_buckets[17], min_buckets[18], min_buckets[19],
857                                                         min_buckets[20], min_buckets[21], min_buckets[22], min_buckets[23],
858                                                         min_buckets[24], min_buckets[25], min_buckets[26], min_buckets[27],
859                                                         min_buckets[28], min_buckets[29], min_buckets[30], min_buckets[31],
860                                                         // Note that the liquidity buckets are an offset from the edge, so we
861                                                         // inverse the max order to get the probabilities from zero.
862                                                         max_buckets[31], max_buckets[30], max_buckets[29], max_buckets[28],
863                                                         max_buckets[27], max_buckets[26], max_buckets[25], max_buckets[24],
864                                                         max_buckets[23], max_buckets[22], max_buckets[21], max_buckets[20],
865                                                         max_buckets[19], max_buckets[18], max_buckets[17], max_buckets[16],
866                                                         max_buckets[15], max_buckets[14], max_buckets[13], max_buckets[12],
867                                                         max_buckets[11], max_buckets[10], max_buckets[ 9], max_buckets[ 8],
868                                                         max_buckets[ 7], max_buckets[ 6], max_buckets[ 5], max_buckets[ 4],
869                                                         max_buckets[ 3], max_buckets[ 2], max_buckets[ 1], max_buckets[ 0]);
870                                         } else {
871                                                 log_debug!(self.logger, "No amount known for SCID {} from {:?} to {:?}", scid, source, target);
872                                         }
873                                 };
874
875                                 log_direction(&chan_debug.node_one, &chan_debug.node_two);
876                                 log_direction(&chan_debug.node_two, &chan_debug.node_one);
877                         } else {
878                                 log_debug!(self.logger, "No network graph entry for SCID {}", scid);
879                         }
880                 }
881         }
882
883         /// Query the estimated minimum and maximum liquidity available for sending a payment over the
884         /// channel with `scid` towards the given `target` node.
885         pub fn estimated_channel_liquidity_range(&self, scid: u64, target: &NodeId) -> Option<(u64, u64)> {
886                 let graph = self.network_graph.read_only();
887
888                 if let Some(chan) = graph.channels().get(&scid) {
889                         if let Some(liq) = self.channel_liquidities.get(&scid) {
890                                 if let Some((directed_info, source)) = chan.as_directed_to(target) {
891                                         let amt = directed_info.effective_capacity().as_msat();
892                                         let dir_liq = liq.as_directed(source, target, amt);
893                                         return Some((dir_liq.min_liquidity_msat(), dir_liq.max_liquidity_msat()));
894                                 }
895                         }
896                 }
897                 None
898         }
899
900         /// Query the historical estimated minimum and maximum liquidity available for sending a
901         /// payment over the channel with `scid` towards the given `target` node.
902         ///
903         /// Returns two sets of 32 buckets. The first set describes the lower-bound liquidity history,
904         /// the second set describes the upper-bound liquidity history. Each bucket describes the
905         /// relative frequency at which we've seen a liquidity bound in the bucket's range relative to
906         /// the channel's total capacity, on an arbitrary scale. Because the values are slowly decayed,
907         /// more recent data points are weighted more heavily than older datapoints.
908         ///
909         /// Note that the range of each bucket varies by its location to provide more granular results
910         /// at the edges of a channel's capacity, where it is more likely to sit.
911         ///
912         /// When scoring, the estimated probability that an upper-/lower-bound lies in a given bucket
913         /// is calculated by dividing that bucket's value with the total value of all buckets.
914         ///
915         /// For example, using a lower bucket count for illustrative purposes, a value of
916         /// `[0, 0, 0, ..., 0, 32]` indicates that we believe the probability of a bound being very
917         /// close to the channel's capacity to be 100%, and have never (recently) seen it in any other
918         /// bucket. A value of `[31, 0, 0, ..., 0, 0, 32]` indicates we've seen the bound being both
919         /// in the top and bottom bucket, and roughly with similar (recent) frequency.
920         ///
921         /// Because the datapoints are decayed slowly over time, values will eventually return to
922         /// `Some(([0; 32], [0; 32]))` or `None` if no data remains for a channel.
923         ///
924         /// In order to fetch a single success probability from the buckets provided here, as used in
925         /// the scoring model, see [`Self::historical_estimated_payment_success_probability`].
926         pub fn historical_estimated_channel_liquidity_probabilities(&self, scid: u64, target: &NodeId)
927         -> Option<([u16; 32], [u16; 32])> {
928                 let graph = self.network_graph.read_only();
929
930                 if let Some(chan) = graph.channels().get(&scid) {
931                         if let Some(liq) = self.channel_liquidities.get(&scid) {
932                                 if let Some((directed_info, source)) = chan.as_directed_to(target) {
933                                         let amt = directed_info.effective_capacity().as_msat();
934                                         let dir_liq = liq.as_directed(source, target, amt);
935
936                                         let min_buckets = *dir_liq.liquidity_history.min_liquidity_offset_history_buckets();
937                                         let mut max_buckets = *dir_liq.liquidity_history.max_liquidity_offset_history_buckets();
938
939                                         // Note that the liquidity buckets are an offset from the edge, so we inverse
940                                         // the max order to get the probabilities from zero.
941                                         max_buckets.reverse();
942                                         return Some((min_buckets, max_buckets));
943                                 }
944                         }
945                 }
946                 None
947         }
948
949         /// Query the probability of payment success sending the given `amount_msat` over the channel
950         /// with `scid` towards the given `target` node, based on the historical estimated liquidity
951         /// bounds.
952         ///
953         /// These are the same bounds as returned by
954         /// [`Self::historical_estimated_channel_liquidity_probabilities`] (but not those returned by
955         /// [`Self::estimated_channel_liquidity_range`]).
956         pub fn historical_estimated_payment_success_probability(
957                 &self, scid: u64, target: &NodeId, amount_msat: u64, params: &ProbabilisticScoringFeeParameters)
958         -> Option<f64> {
959                 let graph = self.network_graph.read_only();
960
961                 if let Some(chan) = graph.channels().get(&scid) {
962                         if let Some(liq) = self.channel_liquidities.get(&scid) {
963                                 if let Some((directed_info, source)) = chan.as_directed_to(target) {
964                                         let capacity_msat = directed_info.effective_capacity().as_msat();
965                                         let dir_liq = liq.as_directed(source, target, capacity_msat);
966
967                                         return dir_liq.liquidity_history.calculate_success_probability_times_billion(
968                                                 &params, amount_msat, capacity_msat
969                                         ).map(|p| p as f64 / (1024 * 1024 * 1024) as f64);
970                                 }
971                         }
972                 }
973                 None
974         }
975 }
976
977 impl ChannelLiquidity {
978         fn new(last_updated: Duration) -> Self {
979                 Self {
980                         min_liquidity_offset_msat: 0,
981                         max_liquidity_offset_msat: 0,
982                         liquidity_history: HistoricalLiquidityTracker::new(),
983                         last_updated,
984                         offset_history_last_updated: last_updated,
985                 }
986         }
987
988         /// Returns a view of the channel liquidity directed from `source` to `target` assuming
989         /// `capacity_msat`.
990         fn as_directed(
991                 &self, source: &NodeId, target: &NodeId, capacity_msat: u64,
992         ) -> DirectedChannelLiquidity<&u64, &HistoricalLiquidityTracker, &Duration> {
993                 let source_less_than_target = source < target;
994                 let (min_liquidity_offset_msat, max_liquidity_offset_msat) =
995                         if source_less_than_target {
996                                 (&self.min_liquidity_offset_msat, &self.max_liquidity_offset_msat)
997                         } else {
998                                 (&self.max_liquidity_offset_msat, &self.min_liquidity_offset_msat)
999                         };
1000
1001                 DirectedChannelLiquidity {
1002                         min_liquidity_offset_msat,
1003                         max_liquidity_offset_msat,
1004                         liquidity_history: self.liquidity_history.as_directed(source_less_than_target),
1005                         capacity_msat,
1006                         last_updated: &self.last_updated,
1007                         offset_history_last_updated: &self.offset_history_last_updated,
1008                 }
1009         }
1010
1011         /// Returns a mutable view of the channel liquidity directed from `source` to `target` assuming
1012         /// `capacity_msat`.
1013         fn as_directed_mut(
1014                 &mut self, source: &NodeId, target: &NodeId, capacity_msat: u64,
1015         ) -> DirectedChannelLiquidity<&mut u64, &mut HistoricalLiquidityTracker, &mut Duration> {
1016                 let source_less_than_target = source < target;
1017                 let (min_liquidity_offset_msat, max_liquidity_offset_msat) =
1018                         if source_less_than_target {
1019                                 (&mut self.min_liquidity_offset_msat, &mut self.max_liquidity_offset_msat)
1020                         } else {
1021                                 (&mut self.max_liquidity_offset_msat, &mut self.min_liquidity_offset_msat)
1022                         };
1023
1024                 DirectedChannelLiquidity {
1025                         min_liquidity_offset_msat,
1026                         max_liquidity_offset_msat,
1027                         liquidity_history: self.liquidity_history.as_directed_mut(source_less_than_target),
1028                         capacity_msat,
1029                         last_updated: &mut self.last_updated,
1030                         offset_history_last_updated: &mut self.offset_history_last_updated,
1031                 }
1032         }
1033
1034         fn decayed_offset(&self, offset: u64, duration_since_epoch: Duration,
1035                 decay_params: ProbabilisticScoringDecayParameters
1036         ) -> u64 {
1037                 let half_life = decay_params.liquidity_offset_half_life.as_secs_f64();
1038                 if half_life != 0.0 {
1039                         let elapsed_time = duration_since_epoch.saturating_sub(self.last_updated).as_secs_f64();
1040                         ((offset as f64) * powf64(0.5, elapsed_time / half_life)) as u64
1041                 } else {
1042                         0
1043                 }
1044         }
1045 }
1046
1047 /// Bounds `-log10` to avoid excessive liquidity penalties for payments with low success
1048 /// probabilities.
1049 const NEGATIVE_LOG10_UPPER_BOUND: u64 = 2;
1050
1051 /// The rough cutoff at which our precision falls off and we should stop bothering to try to log a
1052 /// ratio, as X in 1/X.
1053 const PRECISION_LOWER_BOUND_DENOMINATOR: u64 = log_approx::LOWER_BITS_BOUND;
1054
1055 /// The divisor used when computing the amount penalty.
1056 const AMOUNT_PENALTY_DIVISOR: u64 = 1 << 20;
1057 const BASE_AMOUNT_PENALTY_DIVISOR: u64 = 1 << 30;
1058
1059 /// Raises three `f64`s to the 3rd power, without `powi` because it requires `std` (dunno why).
1060 #[inline(always)]
1061 fn three_f64_pow_3(a: f64, b: f64, c: f64) -> (f64, f64, f64) {
1062         (a * a * a, b * b * b, c * c * c)
1063 }
1064
1065 /// Given liquidity bounds, calculates the success probability (in the form of a numerator and
1066 /// denominator) of an HTLC. This is a key assumption in our scoring models.
1067 ///
1068 /// Must not return a numerator or denominator greater than 2^31 for arguments less than 2^31.
1069 ///
1070 /// min_zero_implies_no_successes signals that a `min_liquidity_msat` of 0 means we've not
1071 /// (recently) seen an HTLC successfully complete over this channel.
1072 #[inline(always)]
1073 fn success_probability(
1074         amount_msat: u64, min_liquidity_msat: u64, max_liquidity_msat: u64, capacity_msat: u64,
1075         params: &ProbabilisticScoringFeeParameters, min_zero_implies_no_successes: bool,
1076 ) -> (u64, u64) {
1077         debug_assert!(min_liquidity_msat <= amount_msat);
1078         debug_assert!(amount_msat < max_liquidity_msat);
1079         debug_assert!(max_liquidity_msat <= capacity_msat);
1080
1081         let (numerator, mut denominator) =
1082                 if params.linear_success_probability {
1083                         (max_liquidity_msat - amount_msat,
1084                                 (max_liquidity_msat - min_liquidity_msat).saturating_add(1))
1085                 } else {
1086                         let capacity = capacity_msat as f64;
1087                         let min = (min_liquidity_msat as f64) / capacity;
1088                         let max = (max_liquidity_msat as f64) / capacity;
1089                         let amount = (amount_msat as f64) / capacity;
1090
1091                         // Assume the channel has a probability density function of (x - 0.5)^2 for values from
1092                         // 0 to 1 (where 1 is the channel's full capacity). The success probability given some
1093                         // liquidity bounds is thus the integral under the curve from the amount to maximum
1094                         // estimated liquidity, divided by the same integral from the minimum to the maximum
1095                         // estimated liquidity bounds.
1096                         //
1097                         // Because the integral from x to y is simply (y - 0.5)^3 - (x - 0.5)^3, we can
1098                         // calculate the cumulative density function between the min/max bounds trivially. Note
1099                         // that we don't bother to normalize the CDF to total to 1, as it will come out in the
1100                         // division of num / den.
1101                         let (max_pow, amt_pow, min_pow) = three_f64_pow_3(max - 0.5, amount - 0.5, min - 0.5);
1102                         let num = max_pow - amt_pow;
1103                         let den = max_pow - min_pow;
1104
1105                         // Because our numerator and denominator max out at 0.5^3 we need to multiply them by
1106                         // quite a large factor to get something useful (ideally in the 2^30 range).
1107                         const BILLIONISH: f64 = 1024.0 * 1024.0 * 1024.0;
1108                         let numerator = (num * BILLIONISH) as u64 + 1;
1109                         let denominator = (den * BILLIONISH) as u64 + 1;
1110                         debug_assert!(numerator <= 1 << 30, "Got large numerator ({}) from float {}.", numerator, num);
1111                         debug_assert!(denominator <= 1 << 30, "Got large denominator ({}) from float {}.", denominator, den);
1112                         (numerator, denominator)
1113                 };
1114
1115         if min_zero_implies_no_successes && min_liquidity_msat == 0 &&
1116                 denominator < u64::max_value() / 21
1117         {
1118                 // If we have no knowledge of the channel, scale probability down by ~75%
1119                 // Note that we prefer to increase the denominator rather than decrease the numerator as
1120                 // the denominator is more likely to be larger and thus provide greater precision. This is
1121                 // mostly an overoptimization but makes a large difference in tests.
1122                 denominator = denominator * 21 / 16
1123         }
1124
1125         (numerator, denominator)
1126 }
1127
1128 impl<L: Deref<Target = u64>, HT: Deref<Target = HistoricalLiquidityTracker>, T: Deref<Target = Duration>>
1129 DirectedChannelLiquidity< L, HT, T> {
1130         /// Returns a liquidity penalty for routing the given HTLC `amount_msat` through the channel in
1131         /// this direction.
1132         fn penalty_msat(&self, amount_msat: u64, score_params: &ProbabilisticScoringFeeParameters) -> u64 {
1133                 let available_capacity = self.capacity_msat;
1134                 let max_liquidity_msat = self.max_liquidity_msat();
1135                 let min_liquidity_msat = core::cmp::min(self.min_liquidity_msat(), max_liquidity_msat);
1136
1137                 let mut res = if amount_msat <= min_liquidity_msat {
1138                         0
1139                 } else if amount_msat >= max_liquidity_msat {
1140                         // Equivalent to hitting the else clause below with the amount equal to the effective
1141                         // capacity and without any certainty on the liquidity upper bound, plus the
1142                         // impossibility penalty.
1143                         let negative_log10_times_2048 = NEGATIVE_LOG10_UPPER_BOUND * 2048;
1144                         Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
1145                                         score_params.liquidity_penalty_multiplier_msat,
1146                                         score_params.liquidity_penalty_amount_multiplier_msat)
1147                                 .saturating_add(score_params.considered_impossible_penalty_msat)
1148                 } else {
1149                         let (numerator, denominator) = success_probability(amount_msat,
1150                                 min_liquidity_msat, max_liquidity_msat, available_capacity, score_params, false);
1151                         if denominator - numerator < denominator / PRECISION_LOWER_BOUND_DENOMINATOR {
1152                                 // If the failure probability is < 1.5625% (as 1 - numerator/denominator < 1/64),
1153                                 // don't bother trying to use the log approximation as it gets too noisy to be
1154                                 // particularly helpful, instead just round down to 0.
1155                                 0
1156                         } else {
1157                                 let negative_log10_times_2048 =
1158                                         log_approx::negative_log10_times_2048(numerator, denominator);
1159                                 Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
1160                                         score_params.liquidity_penalty_multiplier_msat,
1161                                         score_params.liquidity_penalty_amount_multiplier_msat)
1162                         }
1163                 };
1164
1165                 if amount_msat >= available_capacity {
1166                         // We're trying to send more than the capacity, use a max penalty.
1167                         res = res.saturating_add(Self::combined_penalty_msat(amount_msat,
1168                                 NEGATIVE_LOG10_UPPER_BOUND * 2048,
1169                                 score_params.historical_liquidity_penalty_multiplier_msat,
1170                                 score_params.historical_liquidity_penalty_amount_multiplier_msat));
1171                         return res;
1172                 }
1173
1174                 if score_params.historical_liquidity_penalty_multiplier_msat != 0 ||
1175                    score_params.historical_liquidity_penalty_amount_multiplier_msat != 0 {
1176                         if let Some(cumulative_success_prob_times_billion) = self.liquidity_history
1177                                 .calculate_success_probability_times_billion(
1178                                         score_params, amount_msat, self.capacity_msat)
1179                         {
1180                                 let historical_negative_log10_times_2048 =
1181                                         log_approx::negative_log10_times_2048(cumulative_success_prob_times_billion + 1, 1024 * 1024 * 1024);
1182                                 res = res.saturating_add(Self::combined_penalty_msat(amount_msat,
1183                                         historical_negative_log10_times_2048, score_params.historical_liquidity_penalty_multiplier_msat,
1184                                         score_params.historical_liquidity_penalty_amount_multiplier_msat));
1185                         } else {
1186                                 // If we don't have any valid points (or, once decayed, we have less than a full
1187                                 // point), redo the non-historical calculation with no liquidity bounds tracked and
1188                                 // the historical penalty multipliers.
1189                                 let (numerator, denominator) = success_probability(amount_msat, 0,
1190                                         available_capacity, available_capacity, score_params, true);
1191                                 let negative_log10_times_2048 =
1192                                         log_approx::negative_log10_times_2048(numerator, denominator);
1193                                 res = res.saturating_add(Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
1194                                         score_params.historical_liquidity_penalty_multiplier_msat,
1195                                         score_params.historical_liquidity_penalty_amount_multiplier_msat));
1196                         }
1197                 }
1198
1199                 res
1200         }
1201
1202         /// Computes the liquidity penalty from the penalty multipliers.
1203         #[inline(always)]
1204         fn combined_penalty_msat(amount_msat: u64, mut negative_log10_times_2048: u64,
1205                 liquidity_penalty_multiplier_msat: u64, liquidity_penalty_amount_multiplier_msat: u64,
1206         ) -> u64 {
1207                 negative_log10_times_2048 =
1208                         negative_log10_times_2048.min(NEGATIVE_LOG10_UPPER_BOUND * 2048);
1209
1210                 // Upper bound the liquidity penalty to ensure some channel is selected.
1211                 let liquidity_penalty_msat = negative_log10_times_2048
1212                         .saturating_mul(liquidity_penalty_multiplier_msat) / 2048;
1213                 let amount_penalty_msat = negative_log10_times_2048
1214                         .saturating_mul(liquidity_penalty_amount_multiplier_msat)
1215                         .saturating_mul(amount_msat) / 2048 / AMOUNT_PENALTY_DIVISOR;
1216
1217                 liquidity_penalty_msat.saturating_add(amount_penalty_msat)
1218         }
1219
1220         /// Returns the lower bound of the channel liquidity balance in this direction.
1221         #[inline(always)]
1222         fn min_liquidity_msat(&self) -> u64 {
1223                 *self.min_liquidity_offset_msat
1224         }
1225
1226         /// Returns the upper bound of the channel liquidity balance in this direction.
1227         #[inline(always)]
1228         fn max_liquidity_msat(&self) -> u64 {
1229                 self.capacity_msat
1230                         .saturating_sub(*self.max_liquidity_offset_msat)
1231         }
1232 }
1233
1234 impl<L: DerefMut<Target = u64>, HT: DerefMut<Target = HistoricalLiquidityTracker>, T: DerefMut<Target = Duration>>
1235 DirectedChannelLiquidity<L, HT, T> {
1236         /// Adjusts the channel liquidity balance bounds when failing to route `amount_msat`.
1237         fn failed_at_channel<Log: Deref>(
1238                 &mut self, amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
1239         ) where Log::Target: Logger {
1240                 let existing_max_msat = self.max_liquidity_msat();
1241                 if amount_msat < existing_max_msat {
1242                         log_debug!(logger, "Setting max liquidity of {} from {} to {}", chan_descr, existing_max_msat, amount_msat);
1243                         self.set_max_liquidity_msat(amount_msat, duration_since_epoch);
1244                 } else {
1245                         log_trace!(logger, "Max liquidity of {} is {} (already less than or equal to {})",
1246                                 chan_descr, existing_max_msat, amount_msat);
1247                 }
1248                 self.update_history_buckets(0, duration_since_epoch);
1249         }
1250
1251         /// Adjusts the channel liquidity balance bounds when failing to route `amount_msat` downstream.
1252         fn failed_downstream<Log: Deref>(
1253                 &mut self, amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
1254         ) where Log::Target: Logger {
1255                 let existing_min_msat = self.min_liquidity_msat();
1256                 if amount_msat > existing_min_msat {
1257                         log_debug!(logger, "Setting min liquidity of {} from {} to {}", existing_min_msat, chan_descr, amount_msat);
1258                         self.set_min_liquidity_msat(amount_msat, duration_since_epoch);
1259                 } else {
1260                         log_trace!(logger, "Min liquidity of {} is {} (already greater than or equal to {})",
1261                                 chan_descr, existing_min_msat, amount_msat);
1262                 }
1263                 self.update_history_buckets(0, duration_since_epoch);
1264         }
1265
1266         /// Adjusts the channel liquidity balance bounds when successfully routing `amount_msat`.
1267         fn successful<Log: Deref>(&mut self,
1268                 amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
1269         ) where Log::Target: Logger {
1270                 let max_liquidity_msat = self.max_liquidity_msat().checked_sub(amount_msat).unwrap_or(0);
1271                 log_debug!(logger, "Subtracting {} from max liquidity of {} (setting it to {})", amount_msat, chan_descr, max_liquidity_msat);
1272                 self.set_max_liquidity_msat(max_liquidity_msat, duration_since_epoch);
1273                 self.update_history_buckets(amount_msat, duration_since_epoch);
1274         }
1275
1276         /// Updates the history buckets for this channel. Because the history buckets track what we now
1277         /// know about the channel's state *prior to our payment* (i.e. what we assume is "steady
1278         /// state"), we allow the caller to set an offset applied to our liquidity bounds which
1279         /// represents the amount of the successful payment we just made.
1280         fn update_history_buckets(&mut self, bucket_offset_msat: u64, duration_since_epoch: Duration) {
1281                 self.liquidity_history.track_datapoint(
1282                         *self.min_liquidity_offset_msat + bucket_offset_msat,
1283                         self.max_liquidity_offset_msat.saturating_sub(bucket_offset_msat),
1284                         self.capacity_msat,
1285                 );
1286                 *self.offset_history_last_updated = duration_since_epoch;
1287         }
1288
1289         /// Adjusts the lower bound of the channel liquidity balance in this direction.
1290         fn set_min_liquidity_msat(&mut self, amount_msat: u64, duration_since_epoch: Duration) {
1291                 *self.min_liquidity_offset_msat = amount_msat;
1292                 if amount_msat > self.max_liquidity_msat() {
1293                         *self.max_liquidity_offset_msat = 0;
1294                 }
1295                 *self.last_updated = duration_since_epoch;
1296         }
1297
1298         /// Adjusts the upper bound of the channel liquidity balance in this direction.
1299         fn set_max_liquidity_msat(&mut self, amount_msat: u64, duration_since_epoch: Duration) {
1300                 *self.max_liquidity_offset_msat = self.capacity_msat.checked_sub(amount_msat).unwrap_or(0);
1301                 if amount_msat < *self.min_liquidity_offset_msat {
1302                         *self.min_liquidity_offset_msat = 0;
1303                 }
1304                 *self.last_updated = duration_since_epoch;
1305         }
1306 }
1307
1308 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ScoreLookUp for ProbabilisticScorer<G, L> where L::Target: Logger {
1309         type ScoreParams = ProbabilisticScoringFeeParameters;
1310         fn channel_penalty_msat(
1311                 &self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &ProbabilisticScoringFeeParameters
1312         ) -> u64 {
1313                 let (scid, target) = match candidate {
1314                         CandidateRouteHop::PublicHop { info, short_channel_id } => {
1315                                 (short_channel_id, info.target())
1316                         },
1317                         _ => return 0,
1318                 };
1319                 let source = candidate.source();
1320                 if let Some(penalty) = score_params.manual_node_penalties.get(&target) {
1321                         return *penalty;
1322                 }
1323
1324                 let base_penalty_msat = score_params.base_penalty_msat.saturating_add(
1325                         score_params.base_penalty_amount_multiplier_msat
1326                                 .saturating_mul(usage.amount_msat) / BASE_AMOUNT_PENALTY_DIVISOR);
1327
1328                 let mut anti_probing_penalty_msat = 0;
1329                 match usage.effective_capacity {
1330                         EffectiveCapacity::ExactLiquidity { liquidity_msat: amount_msat } |
1331                                 EffectiveCapacity::HintMaxHTLC { amount_msat } =>
1332                         {
1333                                 if usage.amount_msat > amount_msat {
1334                                         return u64::max_value();
1335                                 } else {
1336                                         return base_penalty_msat;
1337                                 }
1338                         },
1339                         EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat } => {
1340                                 if htlc_maximum_msat >= capacity_msat/2 {
1341                                         anti_probing_penalty_msat = score_params.anti_probing_penalty_msat;
1342                                 }
1343                         },
1344                         _ => {},
1345                 }
1346
1347                 let amount_msat = usage.amount_msat.saturating_add(usage.inflight_htlc_msat);
1348                 let capacity_msat = usage.effective_capacity.as_msat();
1349                 self.channel_liquidities
1350                         .get(&scid)
1351                         .unwrap_or(&ChannelLiquidity::new(Duration::ZERO))
1352                         .as_directed(&source, &target, capacity_msat)
1353                         .penalty_msat(amount_msat, score_params)
1354                         .saturating_add(anti_probing_penalty_msat)
1355                         .saturating_add(base_penalty_msat)
1356         }
1357 }
1358
1359 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ScoreUpdate for ProbabilisticScorer<G, L> where L::Target: Logger {
1360         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
1361                 let amount_msat = path.final_value_msat();
1362                 log_trace!(self.logger, "Scoring path through to SCID {} as having failed at {} msat", short_channel_id, amount_msat);
1363                 let network_graph = self.network_graph.read_only();
1364                 for (hop_idx, hop) in path.hops.iter().enumerate() {
1365                         let target = NodeId::from_pubkey(&hop.pubkey);
1366                         let channel_directed_from_source = network_graph.channels()
1367                                 .get(&hop.short_channel_id)
1368                                 .and_then(|channel| channel.as_directed_to(&target));
1369
1370                         let at_failed_channel = hop.short_channel_id == short_channel_id;
1371                         if at_failed_channel && hop_idx == 0 {
1372                                 log_warn!(self.logger, "Payment failed at the first hop - we do not attempt to learn channel info in such cases as we can directly observe local state.\n\tBecause we know the local state, we should generally not see failures here - this may be an indication that your channel peer on channel {} is broken and you may wish to close the channel.", hop.short_channel_id);
1373                         }
1374
1375                         // Only score announced channels.
1376                         if let Some((channel, source)) = channel_directed_from_source {
1377                                 let capacity_msat = channel.effective_capacity().as_msat();
1378                                 if at_failed_channel {
1379                                         self.channel_liquidities
1380                                                 .entry(hop.short_channel_id)
1381                                                 .or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
1382                                                 .as_directed_mut(source, &target, capacity_msat)
1383                                                 .failed_at_channel(amount_msat, duration_since_epoch,
1384                                                         format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
1385                                 } else {
1386                                         self.channel_liquidities
1387                                                 .entry(hop.short_channel_id)
1388                                                 .or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
1389                                                 .as_directed_mut(source, &target, capacity_msat)
1390                                                 .failed_downstream(amount_msat, duration_since_epoch,
1391                                                         format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
1392                                 }
1393                         } else {
1394                                 log_debug!(self.logger, "Not able to penalize channel with SCID {} as we do not have graph info for it (likely a route-hint last-hop).",
1395                                         hop.short_channel_id);
1396                         }
1397                         if at_failed_channel { break; }
1398                 }
1399         }
1400
1401         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
1402                 let amount_msat = path.final_value_msat();
1403                 log_trace!(self.logger, "Scoring path through SCID {} as having succeeded at {} msat.",
1404                         path.hops.split_last().map(|(hop, _)| hop.short_channel_id).unwrap_or(0), amount_msat);
1405                 let network_graph = self.network_graph.read_only();
1406                 for hop in &path.hops {
1407                         let target = NodeId::from_pubkey(&hop.pubkey);
1408                         let channel_directed_from_source = network_graph.channels()
1409                                 .get(&hop.short_channel_id)
1410                                 .and_then(|channel| channel.as_directed_to(&target));
1411
1412                         // Only score announced channels.
1413                         if let Some((channel, source)) = channel_directed_from_source {
1414                                 let capacity_msat = channel.effective_capacity().as_msat();
1415                                 self.channel_liquidities
1416                                         .entry(hop.short_channel_id)
1417                                         .or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
1418                                         .as_directed_mut(source, &target, capacity_msat)
1419                                         .successful(amount_msat, duration_since_epoch,
1420                                                 format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
1421                         } else {
1422                                 log_debug!(self.logger, "Not able to learn for channel with SCID {} as we do not have graph info for it (likely a route-hint last-hop).",
1423                                         hop.short_channel_id);
1424                         }
1425                 }
1426         }
1427
1428         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
1429                 self.payment_path_failed(path, short_channel_id, duration_since_epoch)
1430         }
1431
1432         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
1433                 self.payment_path_failed(path, u64::max_value(), duration_since_epoch)
1434         }
1435
1436         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration) {
1437                 let decay_params = self.decay_params;
1438                 self.channel_liquidities.retain(|_scid, liquidity| {
1439                         liquidity.min_liquidity_offset_msat =
1440                                 liquidity.decayed_offset(liquidity.min_liquidity_offset_msat, duration_since_epoch, decay_params);
1441                         liquidity.max_liquidity_offset_msat =
1442                                 liquidity.decayed_offset(liquidity.max_liquidity_offset_msat, duration_since_epoch, decay_params);
1443                         liquidity.last_updated = duration_since_epoch;
1444
1445                         let elapsed_time =
1446                                 duration_since_epoch.saturating_sub(liquidity.offset_history_last_updated);
1447                         if elapsed_time > decay_params.historical_no_updates_half_life {
1448                                 let half_life = decay_params.historical_no_updates_half_life.as_secs_f64();
1449                                 if half_life != 0.0 {
1450                                         liquidity.liquidity_history.decay_buckets(elapsed_time.as_secs_f64() / half_life);
1451                                         liquidity.offset_history_last_updated = duration_since_epoch;
1452                                 }
1453                         }
1454                         liquidity.min_liquidity_offset_msat != 0 || liquidity.max_liquidity_offset_msat != 0 ||
1455                                 liquidity.liquidity_history.has_datapoints()
1456                 });
1457         }
1458 }
1459
1460 #[cfg(c_bindings)]
1461 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> Score for ProbabilisticScorer<G, L>
1462 where L::Target: Logger {}
1463
1464 #[cfg(feature = "std")]
1465 #[inline]
1466 fn powf64(n: f64, exp: f64) -> f64 {
1467         n.powf(exp)
1468 }
1469 #[cfg(not(feature = "std"))]
1470 fn powf64(n: f64, exp: f64) -> f64 {
1471         libm::powf(n as f32, exp as f32) as f64
1472 }
1473
1474 mod bucketed_history {
1475         use super::*;
1476
1477         // Because liquidity is often skewed heavily in one direction, we store historical state
1478         // distribution in buckets of different size. For backwards compatibility, buckets of size 1/8th
1479         // must fit evenly into the buckets here.
1480         //
1481         // The smallest bucket is 2^-14th of the channel, for each of our 32 buckets here we define the
1482         // width of the bucket in 2^14'ths of the channel. This increases exponentially until we reach
1483         // a full 16th of the channel's capacity, which is reapeated a few times for backwards
1484         // compatibility. The four middle buckets represent full octiles of the channel's capacity.
1485         //
1486         // For a 1 BTC channel, this let's us differentiate between failures in the bottom 6k sats, or
1487         // between the 12,000th sat and 24,000th sat, while only needing to store and operate on 32
1488         // buckets in total.
1489
1490         const BUCKET_START_POS: [u16; 33] = [
1491                 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096, 6144, 8192, 10240, 12288,
1492                 13312, 14336, 15360, 15872, 16128, 16256, 16320, 16352, 16368, 16376, 16380, 16382, 16383, 16384,
1493         ];
1494
1495         const LEGACY_TO_BUCKET_RANGE: [(u8, u8); 8] = [
1496                 (0, 12), (12, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 20), (20, 32)
1497         ];
1498
1499         const POSITION_TICKS: u16 = 1 << 14;
1500
1501         fn pos_to_bucket(pos: u16) -> usize {
1502                 for bucket in 0..32 {
1503                         if pos < BUCKET_START_POS[bucket + 1] {
1504                                 return bucket;
1505                         }
1506                 }
1507                 debug_assert!(false);
1508                 return 32;
1509         }
1510
1511         #[cfg(test)]
1512         #[test]
1513         fn check_bucket_maps() {
1514                 const BUCKET_WIDTH_IN_16384S: [u16; 32] = [
1515                         1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1024, 1024, 2048, 2048,
1516                         2048, 2048, 1024, 1024, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1];
1517
1518                 let mut min_size_iter = 0;
1519                 let mut legacy_bucket_iter = 0;
1520                 for (bucket, width) in BUCKET_WIDTH_IN_16384S.iter().enumerate() {
1521                         assert_eq!(BUCKET_START_POS[bucket], min_size_iter);
1522                         for i in 0..*width {
1523                                 assert_eq!(pos_to_bucket(min_size_iter + i) as usize, bucket);
1524                         }
1525                         min_size_iter += *width;
1526                         if min_size_iter % (POSITION_TICKS / 8) == 0 {
1527                                 assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter].1 as usize, bucket + 1);
1528                                 if legacy_bucket_iter + 1 < 8 {
1529                                         assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter + 1].0 as usize, bucket + 1);
1530                                 }
1531                                 legacy_bucket_iter += 1;
1532                         }
1533                 }
1534                 assert_eq!(BUCKET_START_POS[32], POSITION_TICKS);
1535                 assert_eq!(min_size_iter, POSITION_TICKS);
1536         }
1537
1538         #[inline]
1539         fn amount_to_pos(amount_msat: u64, capacity_msat: u64) -> u16 {
1540                 let pos = if amount_msat < u64::max_value() / (POSITION_TICKS as u64) {
1541                         (amount_msat * (POSITION_TICKS as u64) / capacity_msat.saturating_add(1))
1542                                 .try_into().unwrap_or(POSITION_TICKS)
1543                 } else {
1544                         // Only use 128-bit arithmetic when multiplication will overflow to avoid 128-bit
1545                         // division. This branch should only be hit in fuzz testing since the amount would
1546                         // need to be over 2.88 million BTC in practice.
1547                         ((amount_msat as u128) * (POSITION_TICKS as u128)
1548                                         / (capacity_msat as u128).saturating_add(1))
1549                                 .try_into().unwrap_or(POSITION_TICKS)
1550                 };
1551                 // If we are running in a client that doesn't validate gossip, its possible for a channel's
1552                 // capacity to change due to a `channel_update` message which, if received while a payment
1553                 // is in-flight, could cause this to fail. Thus, we only assert in test.
1554                 #[cfg(test)]
1555                 debug_assert!(pos < POSITION_TICKS);
1556                 pos
1557         }
1558
1559         /// Prior to LDK 0.0.117 we used eight buckets which were split evenly across the either
1560         /// octiles. This was changed to use 32 buckets for accuracy reasons in 0.0.117, however we
1561         /// support reading the legacy values here for backwards compatibility.
1562         pub(super) struct LegacyHistoricalBucketRangeTracker {
1563                 buckets: [u16; 8],
1564         }
1565
1566         impl LegacyHistoricalBucketRangeTracker {
1567                 pub(crate) fn into_current(&self) -> HistoricalBucketRangeTracker {
1568                         let mut buckets = [0; 32];
1569                         for (idx, legacy_bucket) in self.buckets.iter().enumerate() {
1570                                 let mut new_val = *legacy_bucket;
1571                                 let (start, end) = LEGACY_TO_BUCKET_RANGE[idx];
1572                                 new_val /= (end - start) as u16;
1573                                 for i in start..end {
1574                                         buckets[i as usize] = new_val;
1575                                 }
1576                         }
1577                         HistoricalBucketRangeTracker { buckets }
1578                 }
1579         }
1580
1581         /// Tracks the historical state of a distribution as a weighted average of how much time was spent
1582         /// in each of 32 buckets.
1583         #[derive(Clone, Copy)]
1584         pub(super) struct HistoricalBucketRangeTracker {
1585                 buckets: [u16; 32],
1586         }
1587
1588         /// Buckets are stored in fixed point numbers with a 5 bit fractional part. Thus, the value
1589         /// "one" is 32, or this constant.
1590         pub const BUCKET_FIXED_POINT_ONE: u16 = 32;
1591
1592         impl HistoricalBucketRangeTracker {
1593                 pub(super) fn new() -> Self { Self { buckets: [0; 32] } }
1594                 fn track_datapoint(&mut self, liquidity_offset_msat: u64, capacity_msat: u64) {
1595                         // We have 32 leaky buckets for min and max liquidity. Each bucket tracks the amount of time
1596                         // we spend in each bucket as a 16-bit fixed-point number with a 5 bit fractional part.
1597                         //
1598                         // Each time we update our liquidity estimate, we add 32 (1.0 in our fixed-point system) to
1599                         // the buckets for the current min and max liquidity offset positions.
1600                         //
1601                         // We then decay each bucket by multiplying by 2047/2048 (avoiding dividing by a
1602                         // non-power-of-two). This ensures we can't actually overflow the u16 - when we get to
1603                         // 63,457 adding 32 and decaying by 2047/2048 leaves us back at 63,457.
1604                         //
1605                         // In total, this allows us to track data for the last 8,000 or so payments across a given
1606                         // channel.
1607                         //
1608                         // These constants are a balance - we try to fit in 2 bytes per bucket to reduce overhead,
1609                         // and need to balance having more bits in the decimal part (to ensure decay isn't too
1610                         // non-linear) with having too few bits in the mantissa, causing us to not store very many
1611                         // datapoints.
1612                         //
1613                         // The constants were picked experimentally, selecting a decay amount that restricts us
1614                         // from overflowing buckets without having to cap them manually.
1615
1616                         let pos: u16 = amount_to_pos(liquidity_offset_msat, capacity_msat);
1617                         if pos < POSITION_TICKS {
1618                                 for e in self.buckets.iter_mut() {
1619                                         *e = ((*e as u32) * 2047 / 2048) as u16;
1620                                 }
1621                                 let bucket = pos_to_bucket(pos);
1622                                 self.buckets[bucket] = self.buckets[bucket].saturating_add(BUCKET_FIXED_POINT_ONE);
1623                         }
1624                 }
1625         }
1626
1627         impl_writeable_tlv_based!(HistoricalBucketRangeTracker, { (0, buckets, required) });
1628         impl_writeable_tlv_based!(LegacyHistoricalBucketRangeTracker, { (0, buckets, required) });
1629
1630         #[derive(Clone, Copy)]
1631         pub(super) struct HistoricalLiquidityTracker {
1632                 min_liquidity_offset_history: HistoricalBucketRangeTracker,
1633                 max_liquidity_offset_history: HistoricalBucketRangeTracker,
1634         }
1635
1636         impl HistoricalLiquidityTracker {
1637                 pub(super) fn new() -> HistoricalLiquidityTracker {
1638                         HistoricalLiquidityTracker {
1639                                 min_liquidity_offset_history: HistoricalBucketRangeTracker::new(),
1640                                 max_liquidity_offset_history: HistoricalBucketRangeTracker::new(),
1641                         }
1642                 }
1643
1644                 pub(super) fn from_min_max(
1645                         min_liquidity_offset_history: HistoricalBucketRangeTracker,
1646                         max_liquidity_offset_history: HistoricalBucketRangeTracker,
1647                 ) -> HistoricalLiquidityTracker {
1648                         HistoricalLiquidityTracker {
1649                                 min_liquidity_offset_history,
1650                                 max_liquidity_offset_history,
1651                         }
1652                 }
1653
1654                 pub(super) fn has_datapoints(&self) -> bool {
1655                         self.min_liquidity_offset_history.buckets != [0; 32] ||
1656                                 self.max_liquidity_offset_history.buckets != [0; 32]
1657                 }
1658
1659                 pub(super) fn decay_buckets(&mut self, half_lives: f64) {
1660                         let divisor = powf64(2048.0, half_lives) as u64;
1661                         for bucket in self.min_liquidity_offset_history.buckets.iter_mut() {
1662                                 *bucket = ((*bucket as u64) * 1024 / divisor) as u16;
1663                         }
1664                         for bucket in self.max_liquidity_offset_history.buckets.iter_mut() {
1665                                 *bucket = ((*bucket as u64) * 1024 / divisor) as u16;
1666                         }
1667                 }
1668
1669                 pub(super) fn writeable_min_offset_history(&self) -> &HistoricalBucketRangeTracker {
1670                         &self.min_liquidity_offset_history
1671                 }
1672
1673                 pub(super) fn writeable_max_offset_history(&self) -> &HistoricalBucketRangeTracker {
1674                         &self.max_liquidity_offset_history
1675                 }
1676
1677                 pub(super) fn as_directed<'a>(&'a self, source_less_than_target: bool)
1678                 -> DirectedHistoricalLiquidityTracker<&'a HistoricalLiquidityTracker> {
1679                         DirectedHistoricalLiquidityTracker { source_less_than_target, tracker: self }
1680                 }
1681
1682                 pub(super) fn as_directed_mut<'a>(&'a mut self, source_less_than_target: bool)
1683                 -> DirectedHistoricalLiquidityTracker<&'a mut HistoricalLiquidityTracker> {
1684                         DirectedHistoricalLiquidityTracker { source_less_than_target, tracker: self }
1685                 }
1686         }
1687
1688         /// A set of buckets representing the history of where we've seen the minimum- and maximum-
1689         /// liquidity bounds for a given channel.
1690         pub(super) struct DirectedHistoricalLiquidityTracker<D: Deref<Target = HistoricalLiquidityTracker>> {
1691                 source_less_than_target: bool,
1692                 tracker: D,
1693         }
1694
1695         impl<D: DerefMut<Target = HistoricalLiquidityTracker>> DirectedHistoricalLiquidityTracker<D> {
1696                 pub(super) fn track_datapoint(
1697                         &mut self, min_offset_msat: u64, max_offset_msat: u64, capacity_msat: u64,
1698                 ) {
1699                         if self.source_less_than_target {
1700                                 self.tracker.min_liquidity_offset_history.track_datapoint(min_offset_msat, capacity_msat);
1701                                 self.tracker.max_liquidity_offset_history.track_datapoint(max_offset_msat, capacity_msat);
1702                         } else {
1703                                 self.tracker.max_liquidity_offset_history.track_datapoint(min_offset_msat, capacity_msat);
1704                                 self.tracker.min_liquidity_offset_history.track_datapoint(max_offset_msat, capacity_msat);
1705                         }
1706                 }
1707         }
1708
1709         impl<D: Deref<Target = HistoricalLiquidityTracker>> DirectedHistoricalLiquidityTracker<D> {
1710                 pub(super) fn min_liquidity_offset_history_buckets(&self) -> &[u16; 32] {
1711                         if self.source_less_than_target {
1712                                 &self.tracker.min_liquidity_offset_history.buckets
1713                         } else {
1714                                 &self.tracker.max_liquidity_offset_history.buckets
1715                         }
1716                 }
1717
1718                 pub(super) fn max_liquidity_offset_history_buckets(&self) -> &[u16; 32] {
1719                         if self.source_less_than_target {
1720                                 &self.tracker.max_liquidity_offset_history.buckets
1721                         } else {
1722                                 &self.tracker.min_liquidity_offset_history.buckets
1723                         }
1724                 }
1725
1726                 #[inline]
1727                 pub(super) fn calculate_success_probability_times_billion(
1728                         &self, params: &ProbabilisticScoringFeeParameters, amount_msat: u64,
1729                         capacity_msat: u64
1730                 ) -> Option<u64> {
1731                         // If historical penalties are enabled, we try to calculate a probability of success
1732                         // given our historical distribution of min- and max-liquidity bounds in a channel.
1733                         // To do so, we walk the set of historical liquidity bucket (min, max) combinations
1734                         // (where min_idx < max_idx, as having a minimum above our maximum is an invalid
1735                         // state). For each pair, we calculate the probability as if the bucket's corresponding
1736                         // min- and max- liquidity bounds were our current liquidity bounds and then multiply
1737                         // that probability by the weight of the selected buckets.
1738                         let payment_pos = amount_to_pos(amount_msat, capacity_msat);
1739                         if payment_pos >= POSITION_TICKS { return None; }
1740
1741                         let min_liquidity_offset_history_buckets =
1742                                 self.min_liquidity_offset_history_buckets();
1743                         let max_liquidity_offset_history_buckets =
1744                                 self.max_liquidity_offset_history_buckets();
1745
1746                         let mut total_valid_points_tracked = 0;
1747                         for (min_idx, min_bucket) in min_liquidity_offset_history_buckets.iter().enumerate() {
1748                                 for max_bucket in max_liquidity_offset_history_buckets.iter().take(32 - min_idx) {
1749                                         total_valid_points_tracked += (*min_bucket as u64) * (*max_bucket as u64);
1750                                 }
1751                         }
1752
1753                         // If the total valid points is smaller than 1.0 (i.e. 32 in our fixed-point scheme),
1754                         // treat it as if we were fully decayed.
1755                         const FULLY_DECAYED: u16 = BUCKET_FIXED_POINT_ONE * BUCKET_FIXED_POINT_ONE;
1756                         if total_valid_points_tracked < FULLY_DECAYED.into() {
1757                                 return None;
1758                         }
1759
1760                         let mut cumulative_success_prob_times_billion = 0;
1761                         // Special-case the 0th min bucket - it generally means we failed a payment, so only
1762                         // consider the highest (i.e. largest-offset-from-max-capacity) max bucket for all
1763                         // points against the 0th min bucket. This avoids the case where we fail to route
1764                         // increasingly lower values over a channel, but treat each failure as a separate
1765                         // datapoint, many of which may have relatively high maximum-available-liquidity
1766                         // values, which will result in us thinking we have some nontrivial probability of
1767                         // routing up to that amount.
1768                         if min_liquidity_offset_history_buckets[0] != 0 {
1769                                 let mut highest_max_bucket_with_points = 0; // The highest max-bucket with any data
1770                                 let mut total_max_points = 0; // Total points in max-buckets to consider
1771                                 for (max_idx, max_bucket) in max_liquidity_offset_history_buckets.iter().enumerate() {
1772                                         if *max_bucket >= BUCKET_FIXED_POINT_ONE {
1773                                                 highest_max_bucket_with_points = cmp::max(highest_max_bucket_with_points, max_idx);
1774                                         }
1775                                         total_max_points += *max_bucket as u64;
1776                                 }
1777                                 let max_bucket_end_pos = BUCKET_START_POS[32 - highest_max_bucket_with_points] - 1;
1778                                 if payment_pos < max_bucket_end_pos {
1779                                         let (numerator, denominator) = success_probability(payment_pos as u64, 0,
1780                                                 max_bucket_end_pos as u64, POSITION_TICKS as u64 - 1, params, true);
1781                                         let bucket_prob_times_billion =
1782                                                 (min_liquidity_offset_history_buckets[0] as u64) * total_max_points
1783                                                         * 1024 * 1024 * 1024 / total_valid_points_tracked;
1784                                         cumulative_success_prob_times_billion += bucket_prob_times_billion *
1785                                                 numerator / denominator;
1786                                 }
1787                         }
1788
1789                         for (min_idx, min_bucket) in min_liquidity_offset_history_buckets.iter().enumerate().skip(1) {
1790                                 let min_bucket_start_pos = BUCKET_START_POS[min_idx];
1791                                 for (max_idx, max_bucket) in max_liquidity_offset_history_buckets.iter().enumerate().take(32 - min_idx) {
1792                                         let max_bucket_end_pos = BUCKET_START_POS[32 - max_idx] - 1;
1793                                         // Note that this multiply can only barely not overflow - two 16 bit ints plus
1794                                         // 30 bits is 62 bits.
1795                                         let bucket_prob_times_billion = (*min_bucket as u64) * (*max_bucket as u64)
1796                                                 * 1024 * 1024 * 1024 / total_valid_points_tracked;
1797                                         if payment_pos >= max_bucket_end_pos {
1798                                                 // Success probability 0, the payment amount may be above the max liquidity
1799                                                 break;
1800                                         } else if payment_pos < min_bucket_start_pos {
1801                                                 cumulative_success_prob_times_billion += bucket_prob_times_billion;
1802                                         } else {
1803                                                 let (numerator, denominator) = success_probability(payment_pos as u64,
1804                                                         min_bucket_start_pos as u64, max_bucket_end_pos as u64,
1805                                                         POSITION_TICKS as u64 - 1, params, true);
1806                                                 cumulative_success_prob_times_billion += bucket_prob_times_billion *
1807                                                         numerator / denominator;
1808                                         }
1809                                 }
1810                         }
1811
1812                         Some(cumulative_success_prob_times_billion)
1813                 }
1814         }
1815 }
1816 use bucketed_history::{LegacyHistoricalBucketRangeTracker, HistoricalBucketRangeTracker, DirectedHistoricalLiquidityTracker, HistoricalLiquidityTracker};
1817
1818 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> Writeable for ProbabilisticScorer<G, L> where L::Target: Logger {
1819         #[inline]
1820         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1821                 write_tlv_fields!(w, {
1822                         (0, self.channel_liquidities, required),
1823                 });
1824                 Ok(())
1825         }
1826 }
1827
1828 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref>
1829 ReadableArgs<(ProbabilisticScoringDecayParameters, G, L)> for ProbabilisticScorer<G, L> where L::Target: Logger {
1830         #[inline]
1831         fn read<R: Read>(
1832                 r: &mut R, args: (ProbabilisticScoringDecayParameters, G, L)
1833         ) -> Result<Self, DecodeError> {
1834                 let (decay_params, network_graph, logger) = args;
1835                 let mut channel_liquidities = HashMap::new();
1836                 read_tlv_fields!(r, {
1837                         (0, channel_liquidities, required),
1838                 });
1839                 Ok(Self {
1840                         decay_params,
1841                         network_graph,
1842                         logger,
1843                         channel_liquidities,
1844                 })
1845         }
1846 }
1847
1848 impl Writeable for ChannelLiquidity {
1849         #[inline]
1850         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1851                 write_tlv_fields!(w, {
1852                         (0, self.min_liquidity_offset_msat, required),
1853                         // 1 was the min_liquidity_offset_history in octile form
1854                         (2, self.max_liquidity_offset_msat, required),
1855                         // 3 was the max_liquidity_offset_history in octile form
1856                         (4, self.last_updated, required),
1857                         (5, self.liquidity_history.writeable_min_offset_history(), required),
1858                         (7, self.liquidity_history.writeable_max_offset_history(), required),
1859                         (9, self.offset_history_last_updated, required),
1860                 });
1861                 Ok(())
1862         }
1863 }
1864
1865 impl Readable for ChannelLiquidity {
1866         #[inline]
1867         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1868                 let mut min_liquidity_offset_msat = 0;
1869                 let mut max_liquidity_offset_msat = 0;
1870                 let mut legacy_min_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
1871                 let mut legacy_max_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
1872                 let mut min_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
1873                 let mut max_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
1874                 let mut last_updated = Duration::from_secs(0);
1875                 let mut offset_history_last_updated = None;
1876                 read_tlv_fields!(r, {
1877                         (0, min_liquidity_offset_msat, required),
1878                         (1, legacy_min_liq_offset_history, option),
1879                         (2, max_liquidity_offset_msat, required),
1880                         (3, legacy_max_liq_offset_history, option),
1881                         (4, last_updated, required),
1882                         (5, min_liquidity_offset_history, option),
1883                         (7, max_liquidity_offset_history, option),
1884                         (9, offset_history_last_updated, option),
1885                 });
1886
1887                 if min_liquidity_offset_history.is_none() {
1888                         if let Some(legacy_buckets) = legacy_min_liq_offset_history {
1889                                 min_liquidity_offset_history = Some(legacy_buckets.into_current());
1890                         } else {
1891                                 min_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
1892                         }
1893                 }
1894                 if max_liquidity_offset_history.is_none() {
1895                         if let Some(legacy_buckets) = legacy_max_liq_offset_history {
1896                                 max_liquidity_offset_history = Some(legacy_buckets.into_current());
1897                         } else {
1898                                 max_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
1899                         }
1900                 }
1901                 Ok(Self {
1902                         min_liquidity_offset_msat,
1903                         max_liquidity_offset_msat,
1904                         liquidity_history: HistoricalLiquidityTracker::from_min_max(
1905                                 min_liquidity_offset_history.unwrap(), max_liquidity_offset_history.unwrap()
1906                         ),
1907                         last_updated,
1908                         offset_history_last_updated: offset_history_last_updated.unwrap_or(last_updated),
1909                 })
1910         }
1911 }
1912
1913 #[cfg(test)]
1914 mod tests {
1915         use super::{ChannelLiquidity, HistoricalLiquidityTracker, ProbabilisticScoringFeeParameters, ProbabilisticScoringDecayParameters, ProbabilisticScorer};
1916         use crate::blinded_path::{BlindedHop, BlindedPath};
1917         use crate::util::config::UserConfig;
1918
1919         use crate::ln::channelmanager;
1920         use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, UnsignedChannelAnnouncement, UnsignedChannelUpdate};
1921         use crate::routing::gossip::{EffectiveCapacity, NetworkGraph, NodeId};
1922         use crate::routing::router::{BlindedTail, Path, RouteHop, CandidateRouteHop};
1923         use crate::routing::scoring::{ChannelUsage, ScoreLookUp, ScoreUpdate};
1924         use crate::util::ser::{ReadableArgs, Writeable};
1925         use crate::util::test_utils::{self, TestLogger};
1926
1927         use bitcoin::blockdata::constants::ChainHash;
1928         use bitcoin::hashes::Hash;
1929         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1930         use bitcoin::network::constants::Network;
1931         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
1932         use core::time::Duration;
1933         use crate::io;
1934
1935         fn source_privkey() -> SecretKey {
1936                 SecretKey::from_slice(&[42; 32]).unwrap()
1937         }
1938
1939         fn target_privkey() -> SecretKey {
1940                 SecretKey::from_slice(&[43; 32]).unwrap()
1941         }
1942
1943         fn source_pubkey() -> PublicKey {
1944                 let secp_ctx = Secp256k1::new();
1945                 PublicKey::from_secret_key(&secp_ctx, &source_privkey())
1946         }
1947
1948         fn target_pubkey() -> PublicKey {
1949                 let secp_ctx = Secp256k1::new();
1950                 PublicKey::from_secret_key(&secp_ctx, &target_privkey())
1951         }
1952
1953         fn source_node_id() -> NodeId {
1954                 NodeId::from_pubkey(&source_pubkey())
1955         }
1956
1957         fn target_node_id() -> NodeId {
1958                 NodeId::from_pubkey(&target_pubkey())
1959         }
1960
1961         // `ProbabilisticScorer` tests
1962
1963         fn sender_privkey() -> SecretKey {
1964                 SecretKey::from_slice(&[41; 32]).unwrap()
1965         }
1966
1967         fn recipient_privkey() -> SecretKey {
1968                 SecretKey::from_slice(&[45; 32]).unwrap()
1969         }
1970
1971         fn sender_pubkey() -> PublicKey {
1972                 let secp_ctx = Secp256k1::new();
1973                 PublicKey::from_secret_key(&secp_ctx, &sender_privkey())
1974         }
1975
1976         fn recipient_pubkey() -> PublicKey {
1977                 let secp_ctx = Secp256k1::new();
1978                 PublicKey::from_secret_key(&secp_ctx, &recipient_privkey())
1979         }
1980
1981         fn recipient_node_id() -> NodeId {
1982                 NodeId::from_pubkey(&recipient_pubkey())
1983         }
1984
1985         fn network_graph(logger: &TestLogger) -> NetworkGraph<&TestLogger> {
1986                 let mut network_graph = NetworkGraph::new(Network::Testnet, logger);
1987                 add_channel(&mut network_graph, 42, source_privkey(), target_privkey());
1988                 add_channel(&mut network_graph, 43, target_privkey(), recipient_privkey());
1989
1990                 network_graph
1991         }
1992
1993         fn add_channel(
1994                 network_graph: &mut NetworkGraph<&TestLogger>, short_channel_id: u64, node_1_key: SecretKey,
1995                 node_2_key: SecretKey
1996         ) {
1997                 let genesis_hash = ChainHash::using_genesis_block(Network::Testnet);
1998                 let node_1_secret = &SecretKey::from_slice(&[39; 32]).unwrap();
1999                 let node_2_secret = &SecretKey::from_slice(&[40; 32]).unwrap();
2000                 let secp_ctx = Secp256k1::new();
2001                 let unsigned_announcement = UnsignedChannelAnnouncement {
2002                         features: channelmanager::provided_channel_features(&UserConfig::default()),
2003                         chain_hash: genesis_hash,
2004                         short_channel_id,
2005                         node_id_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_1_key)),
2006                         node_id_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_2_key)),
2007                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_1_secret)),
2008                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_2_secret)),
2009                         excess_data: Vec::new(),
2010                 };
2011                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
2012                 let signed_announcement = ChannelAnnouncement {
2013                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, &node_1_key),
2014                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, &node_2_key),
2015                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, &node_1_secret),
2016                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, &node_2_secret),
2017                         contents: unsigned_announcement,
2018                 };
2019                 let chain_source: Option<&crate::util::test_utils::TestChainSource> = None;
2020                 network_graph.update_channel_from_announcement(
2021                         &signed_announcement, &chain_source).unwrap();
2022                 update_channel(network_graph, short_channel_id, node_1_key, 0, 1_000, 100);
2023                 update_channel(network_graph, short_channel_id, node_2_key, 1, 0, 100);
2024         }
2025
2026         fn update_channel(
2027                 network_graph: &mut NetworkGraph<&TestLogger>, short_channel_id: u64, node_key: SecretKey,
2028                 flags: u8, htlc_maximum_msat: u64, timestamp: u32,
2029         ) {
2030                 let genesis_hash = ChainHash::using_genesis_block(Network::Testnet);
2031                 let secp_ctx = Secp256k1::new();
2032                 let unsigned_update = UnsignedChannelUpdate {
2033                         chain_hash: genesis_hash,
2034                         short_channel_id,
2035                         timestamp,
2036                         flags,
2037                         cltv_expiry_delta: 18,
2038                         htlc_minimum_msat: 0,
2039                         htlc_maximum_msat,
2040                         fee_base_msat: 1,
2041                         fee_proportional_millionths: 0,
2042                         excess_data: Vec::new(),
2043                 };
2044                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_update.encode()[..])[..]);
2045                 let signed_update = ChannelUpdate {
2046                         signature: secp_ctx.sign_ecdsa(&msghash, &node_key),
2047                         contents: unsigned_update,
2048                 };
2049                 network_graph.update_channel(&signed_update).unwrap();
2050         }
2051
2052         fn path_hop(pubkey: PublicKey, short_channel_id: u64, fee_msat: u64) -> RouteHop {
2053                 let config = UserConfig::default();
2054                 RouteHop {
2055                         pubkey,
2056                         node_features: channelmanager::provided_node_features(&config),
2057                         short_channel_id,
2058                         channel_features: channelmanager::provided_channel_features(&config),
2059                         fee_msat,
2060                         cltv_expiry_delta: 18,
2061                         maybe_announced_channel: true,
2062                 }
2063         }
2064
2065         fn payment_path_for_amount(amount_msat: u64) -> Path {
2066                 Path {
2067                         hops: vec![
2068                                 path_hop(source_pubkey(), 41, 1),
2069                                 path_hop(target_pubkey(), 42, 2),
2070                                 path_hop(recipient_pubkey(), 43, amount_msat),
2071                         ], blinded_tail: None,
2072                 }
2073         }
2074
2075         #[test]
2076         fn liquidity_bounds_directed_from_lowest_node_id() {
2077                 let logger = TestLogger::new();
2078                 let last_updated = Duration::ZERO;
2079                 let offset_history_last_updated = Duration::ZERO;
2080                 let network_graph = network_graph(&logger);
2081                 let decay_params = ProbabilisticScoringDecayParameters::default();
2082                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2083                         .with_channel(42,
2084                                 ChannelLiquidity {
2085                                         min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100,
2086                                         last_updated, offset_history_last_updated,
2087                                         liquidity_history: HistoricalLiquidityTracker::new(),
2088                                 })
2089                         .with_channel(43,
2090                                 ChannelLiquidity {
2091                                         min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100,
2092                                         last_updated, offset_history_last_updated,
2093                                         liquidity_history: HistoricalLiquidityTracker::new(),
2094                                 });
2095                 let source = source_node_id();
2096                 let target = target_node_id();
2097                 let recipient = recipient_node_id();
2098                 assert!(source > target);
2099                 assert!(target < recipient);
2100
2101                 // Update minimum liquidity.
2102
2103                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2104                         .as_directed(&source, &target, 1_000);
2105                 assert_eq!(liquidity.min_liquidity_msat(), 100);
2106                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2107
2108                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2109                         .as_directed(&target, &source, 1_000);
2110                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2111                 assert_eq!(liquidity.max_liquidity_msat(), 900);
2112
2113                 scorer.channel_liquidities.get_mut(&42).unwrap()
2114                         .as_directed_mut(&source, &target, 1_000)
2115                         .set_min_liquidity_msat(200, Duration::ZERO);
2116
2117                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2118                         .as_directed(&source, &target, 1_000);
2119                 assert_eq!(liquidity.min_liquidity_msat(), 200);
2120                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2121
2122                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2123                         .as_directed(&target, &source, 1_000);
2124                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2125                 assert_eq!(liquidity.max_liquidity_msat(), 800);
2126
2127                 // Update maximum liquidity.
2128
2129                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2130                         .as_directed(&target, &recipient, 1_000);
2131                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2132                 assert_eq!(liquidity.max_liquidity_msat(), 900);
2133
2134                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2135                         .as_directed(&recipient, &target, 1_000);
2136                 assert_eq!(liquidity.min_liquidity_msat(), 100);
2137                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2138
2139                 scorer.channel_liquidities.get_mut(&43).unwrap()
2140                         .as_directed_mut(&target, &recipient, 1_000)
2141                         .set_max_liquidity_msat(200, Duration::ZERO);
2142
2143                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2144                         .as_directed(&target, &recipient, 1_000);
2145                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2146                 assert_eq!(liquidity.max_liquidity_msat(), 200);
2147
2148                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2149                         .as_directed(&recipient, &target, 1_000);
2150                 assert_eq!(liquidity.min_liquidity_msat(), 800);
2151                 assert_eq!(liquidity.max_liquidity_msat(), 1000);
2152         }
2153
2154         #[test]
2155         fn resets_liquidity_upper_bound_when_crossed_by_lower_bound() {
2156                 let logger = TestLogger::new();
2157                 let last_updated = Duration::ZERO;
2158                 let offset_history_last_updated = Duration::ZERO;
2159                 let network_graph = network_graph(&logger);
2160                 let decay_params = ProbabilisticScoringDecayParameters::default();
2161                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2162                         .with_channel(42,
2163                                 ChannelLiquidity {
2164                                         min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400,
2165                                         last_updated, offset_history_last_updated,
2166                                         liquidity_history: HistoricalLiquidityTracker::new(),
2167                                 });
2168                 let source = source_node_id();
2169                 let target = target_node_id();
2170                 assert!(source > target);
2171
2172                 // Check initial bounds.
2173                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2174                         .as_directed(&source, &target, 1_000);
2175                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2176                 assert_eq!(liquidity.max_liquidity_msat(), 800);
2177
2178                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2179                         .as_directed(&target, &source, 1_000);
2180                 assert_eq!(liquidity.min_liquidity_msat(), 200);
2181                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2182
2183                 // Reset from source to target.
2184                 scorer.channel_liquidities.get_mut(&42).unwrap()
2185                         .as_directed_mut(&source, &target, 1_000)
2186                         .set_min_liquidity_msat(900, Duration::ZERO);
2187
2188                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2189                         .as_directed(&source, &target, 1_000);
2190                 assert_eq!(liquidity.min_liquidity_msat(), 900);
2191                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2192
2193                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2194                         .as_directed(&target, &source, 1_000);
2195                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2196                 assert_eq!(liquidity.max_liquidity_msat(), 100);
2197
2198                 // Reset from target to source.
2199                 scorer.channel_liquidities.get_mut(&42).unwrap()
2200                         .as_directed_mut(&target, &source, 1_000)
2201                         .set_min_liquidity_msat(400, Duration::ZERO);
2202
2203                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2204                         .as_directed(&source, &target, 1_000);
2205                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2206                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2207
2208                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2209                         .as_directed(&target, &source, 1_000);
2210                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2211                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2212         }
2213
2214         #[test]
2215         fn resets_liquidity_lower_bound_when_crossed_by_upper_bound() {
2216                 let logger = TestLogger::new();
2217                 let last_updated = Duration::ZERO;
2218                 let offset_history_last_updated = Duration::ZERO;
2219                 let network_graph = network_graph(&logger);
2220                 let decay_params = ProbabilisticScoringDecayParameters::default();
2221                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2222                         .with_channel(42,
2223                                 ChannelLiquidity {
2224                                         min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400,
2225                                         last_updated, offset_history_last_updated,
2226                                         liquidity_history: HistoricalLiquidityTracker::new(),
2227                                 });
2228                 let source = source_node_id();
2229                 let target = target_node_id();
2230                 assert!(source > target);
2231
2232                 // Check initial bounds.
2233                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2234                         .as_directed(&source, &target, 1_000);
2235                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2236                 assert_eq!(liquidity.max_liquidity_msat(), 800);
2237
2238                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2239                         .as_directed(&target, &source, 1_000);
2240                 assert_eq!(liquidity.min_liquidity_msat(), 200);
2241                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2242
2243                 // Reset from source to target.
2244                 scorer.channel_liquidities.get_mut(&42).unwrap()
2245                         .as_directed_mut(&source, &target, 1_000)
2246                         .set_max_liquidity_msat(300, Duration::ZERO);
2247
2248                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2249                         .as_directed(&source, &target, 1_000);
2250                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2251                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2252
2253                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2254                         .as_directed(&target, &source, 1_000);
2255                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2256                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2257
2258                 // Reset from target to source.
2259                 scorer.channel_liquidities.get_mut(&42).unwrap()
2260                         .as_directed_mut(&target, &source, 1_000)
2261                         .set_max_liquidity_msat(600, Duration::ZERO);
2262
2263                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2264                         .as_directed(&source, &target, 1_000);
2265                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2266                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2267
2268                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2269                         .as_directed(&target, &source, 1_000);
2270                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2271                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2272         }
2273
2274         #[test]
2275         fn increased_penalty_nearing_liquidity_upper_bound() {
2276                 let logger = TestLogger::new();
2277                 let network_graph = network_graph(&logger);
2278                 let params = ProbabilisticScoringFeeParameters {
2279                         liquidity_penalty_multiplier_msat: 1_000,
2280                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2281                 };
2282                 let decay_params = ProbabilisticScoringDecayParameters::default();
2283                 let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2284                 let source = source_node_id();
2285
2286                 let usage = ChannelUsage {
2287                         amount_msat: 1_024,
2288                         inflight_htlc_msat: 0,
2289                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
2290                 };
2291                 let network_graph = network_graph.read_only();
2292                 let channel = network_graph.channel(42).unwrap();
2293                 let (info, _) = channel.as_directed_from(&source).unwrap();
2294                 let candidate = CandidateRouteHop::PublicHop {
2295                         info,
2296                         short_channel_id: 42,
2297                 };
2298                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2299                 let usage = ChannelUsage { amount_msat: 10_240, ..usage };
2300                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2301                 let usage = ChannelUsage { amount_msat: 102_400, ..usage };
2302                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 47);
2303                 let usage = ChannelUsage { amount_msat: 1_023_999, ..usage };
2304                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);
2305
2306                 let usage = ChannelUsage {
2307                         amount_msat: 128,
2308                         inflight_htlc_msat: 0,
2309                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
2310                 };
2311                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 58);
2312                 let usage = ChannelUsage { amount_msat: 256, ..usage };
2313                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 125);
2314                 let usage = ChannelUsage { amount_msat: 374, ..usage };
2315                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 198);
2316                 let usage = ChannelUsage { amount_msat: 512, ..usage };
2317                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2318                 let usage = ChannelUsage { amount_msat: 640, ..usage };
2319                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 425);
2320                 let usage = ChannelUsage { amount_msat: 768, ..usage };
2321                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);
2322                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2323                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 902);
2324         }
2325
2326         #[test]
2327         fn constant_penalty_outside_liquidity_bounds() {
2328                 let logger = TestLogger::new();
2329                 let last_updated = Duration::ZERO;
2330                 let offset_history_last_updated = Duration::ZERO;
2331                 let network_graph = network_graph(&logger);
2332                 let params = ProbabilisticScoringFeeParameters {
2333                         liquidity_penalty_multiplier_msat: 1_000,
2334                         considered_impossible_penalty_msat: u64::max_value(),
2335                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2336                 };
2337                 let decay_params = ProbabilisticScoringDecayParameters {
2338                         ..ProbabilisticScoringDecayParameters::zero_penalty()
2339                 };
2340                 let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2341                         .with_channel(42,
2342                                 ChannelLiquidity {
2343                                         min_liquidity_offset_msat: 40, max_liquidity_offset_msat: 40,
2344                                         last_updated, offset_history_last_updated,
2345                                         liquidity_history: HistoricalLiquidityTracker::new(),
2346                                 });
2347                 let source = source_node_id();
2348
2349                 let usage = ChannelUsage {
2350                         amount_msat: 39,
2351                         inflight_htlc_msat: 0,
2352                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 100, htlc_maximum_msat: 1_000 },
2353                 };
2354                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2355                 let (info, _) = channel.as_directed_from(&source).unwrap();
2356                 let candidate = CandidateRouteHop::PublicHop {
2357                         info,
2358                         short_channel_id: 42,
2359                 };
2360                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2361                 let usage = ChannelUsage { amount_msat: 50, ..usage };
2362                 assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2363                 assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2364                 let usage = ChannelUsage { amount_msat: 61, ..usage };
2365                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2366         }
2367
2368         #[test]
2369         fn does_not_further_penalize_own_channel() {
2370                 let logger = TestLogger::new();
2371                 let network_graph = network_graph(&logger);
2372                 let params = ProbabilisticScoringFeeParameters {
2373                         liquidity_penalty_multiplier_msat: 1_000,
2374                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2375                 };
2376                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2377                 let source = source_node_id();
2378                 let usage = ChannelUsage {
2379                         amount_msat: 500,
2380                         inflight_htlc_msat: 0,
2381                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2382                 };
2383                 let failed_path = payment_path_for_amount(500);
2384                 let successful_path = payment_path_for_amount(200);
2385                 let channel = &network_graph.read_only().channel(42).unwrap().to_owned();
2386                 let (info, _) = channel.as_directed_from(&source).unwrap();
2387                 let candidate = CandidateRouteHop::PublicHop {
2388                         info,
2389                         short_channel_id: 41,
2390                 };
2391
2392                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2393
2394                 scorer.payment_path_failed(&failed_path, 41, Duration::ZERO);
2395                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2396
2397                 scorer.payment_path_successful(&successful_path, Duration::ZERO);
2398                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2399         }
2400
2401         #[test]
2402         fn sets_liquidity_lower_bound_on_downstream_failure() {
2403                 let logger = TestLogger::new();
2404                 let network_graph = network_graph(&logger);
2405                 let params = ProbabilisticScoringFeeParameters {
2406                         liquidity_penalty_multiplier_msat: 1_000,
2407                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2408                 };
2409                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2410                 let source = source_node_id();
2411                 let path = payment_path_for_amount(500);
2412
2413                 let usage = ChannelUsage {
2414                         amount_msat: 250,
2415                         inflight_htlc_msat: 0,
2416                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2417                 };
2418                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2419                 let (info, _) = channel.as_directed_from(&source).unwrap();
2420                 let candidate = CandidateRouteHop::PublicHop {
2421                         info,
2422                         short_channel_id: 42,
2423                 };
2424                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2425                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2426                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2427                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2428                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);
2429
2430                 scorer.payment_path_failed(&path, 43, Duration::ZERO);
2431
2432                 let usage = ChannelUsage { amount_msat: 250, ..usage };
2433                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2434                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2435                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2436                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2437                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2438         }
2439
2440         #[test]
2441         fn sets_liquidity_upper_bound_on_failure() {
2442                 let logger = TestLogger::new();
2443                 let network_graph = network_graph(&logger);
2444                 let params = ProbabilisticScoringFeeParameters {
2445                         liquidity_penalty_multiplier_msat: 1_000,
2446                         considered_impossible_penalty_msat: u64::max_value(),
2447                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2448                 };
2449                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2450                 let source = source_node_id();
2451                 let path = payment_path_for_amount(500);
2452
2453                 let usage = ChannelUsage {
2454                         amount_msat: 250,
2455                         inflight_htlc_msat: 0,
2456                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2457                 };
2458                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2459                 let (info, _) = channel.as_directed_from(&source).unwrap();
2460                 let candidate = CandidateRouteHop::PublicHop {
2461                         info,
2462                         short_channel_id: 42,
2463                 };
2464                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2465                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2466                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2467                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2468                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);
2469
2470                 scorer.payment_path_failed(&path, 42, Duration::ZERO);
2471
2472                 let usage = ChannelUsage { amount_msat: 250, ..usage };
2473                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2474                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2475                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2476                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2477                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2478         }
2479
2480         #[test]
2481         fn ignores_channels_after_removed_failed_channel() {
2482                 // Previously, if we'd tried to send over a channel which was removed from the network
2483                 // graph before we call `payment_path_failed` (which is the default if the we get a "no
2484                 // such channel" error in the `InvoicePayer`), we would call `failed_downstream` on all
2485                 // channels in the route, even ones which they payment never reached. This tests to ensure
2486                 // we do not score such channels.
2487                 let secp_ctx = Secp256k1::new();
2488                 let logger = TestLogger::new();
2489                 let mut network_graph = NetworkGraph::new(Network::Testnet, &logger);
2490                 let secret_a = SecretKey::from_slice(&[42; 32]).unwrap();
2491                 let secret_b = SecretKey::from_slice(&[43; 32]).unwrap();
2492                 let secret_c = SecretKey::from_slice(&[44; 32]).unwrap();
2493                 let secret_d = SecretKey::from_slice(&[45; 32]).unwrap();
2494                 add_channel(&mut network_graph, 42, secret_a, secret_b);
2495                 // Don't add the channel from B -> C.
2496                 add_channel(&mut network_graph, 44, secret_c, secret_d);
2497
2498                 let pub_a = PublicKey::from_secret_key(&secp_ctx, &secret_a);
2499                 let pub_b = PublicKey::from_secret_key(&secp_ctx, &secret_b);
2500                 let pub_c = PublicKey::from_secret_key(&secp_ctx, &secret_c);
2501                 let pub_d = PublicKey::from_secret_key(&secp_ctx, &secret_d);
2502
2503                 let path = vec![
2504                         path_hop(pub_b, 42, 1),
2505                         path_hop(pub_c, 43, 2),
2506                         path_hop(pub_d, 44, 100),
2507                 ];
2508
2509                 let node_a = NodeId::from_pubkey(&pub_a);
2510                 let node_b = NodeId::from_pubkey(&pub_b);
2511                 let node_c = NodeId::from_pubkey(&pub_c);
2512
2513                 let params = ProbabilisticScoringFeeParameters {
2514                         liquidity_penalty_multiplier_msat: 1_000,
2515                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2516                 };
2517                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2518
2519                 let usage = ChannelUsage {
2520                         amount_msat: 250,
2521                         inflight_htlc_msat: 0,
2522                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2523                 };
2524                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2525                 let (info, _) = channel.as_directed_from(&node_a).unwrap();
2526                 let candidate = CandidateRouteHop::PublicHop {
2527                         info,
2528                         short_channel_id: 42,
2529                 };
2530                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2531                 // Note that a default liquidity bound is used for B -> C as no channel exists
2532                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2533                 let (info, _) = channel.as_directed_from(&node_b).unwrap();
2534                 let candidate = CandidateRouteHop::PublicHop {
2535                         info,
2536                         short_channel_id: 43,
2537                 };
2538                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2539                 let channel = network_graph.read_only().channel(44).unwrap().to_owned();
2540                 let (info, _) = channel.as_directed_from(&node_c).unwrap();
2541                 let candidate = CandidateRouteHop::PublicHop {
2542                         info,
2543                         short_channel_id: 44,
2544                 };
2545                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2546
2547                 scorer.payment_path_failed(&Path { hops: path, blinded_tail: None }, 43, Duration::ZERO);
2548
2549                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2550                 let (info, _) = channel.as_directed_from(&node_a).unwrap();
2551                 let candidate = CandidateRouteHop::PublicHop {
2552                         info,
2553                         short_channel_id: 42,
2554                 };
2555                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 80);
2556                 // Note that a default liquidity bound is used for B -> C as no channel exists
2557                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2558                 let (info, _) = channel.as_directed_from(&node_b).unwrap();
2559                 let candidate = CandidateRouteHop::PublicHop {
2560                         info,
2561                         short_channel_id: 43,
2562                 };
2563                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2564                 let channel = network_graph.read_only().channel(44).unwrap().to_owned();
2565                 let (info, _) = channel.as_directed_from(&node_c).unwrap();
2566                 let candidate = CandidateRouteHop::PublicHop {
2567                         info,
2568                         short_channel_id: 44,
2569                 };
2570                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2571         }
2572
2573         #[test]
2574         fn reduces_liquidity_upper_bound_along_path_on_success() {
2575                 let logger = TestLogger::new();
2576                 let network_graph = network_graph(&logger);
2577                 let params = ProbabilisticScoringFeeParameters {
2578                         liquidity_penalty_multiplier_msat: 1_000,
2579                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2580                 };
2581                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2582                 let source = source_node_id();
2583                 let usage = ChannelUsage {
2584                         amount_msat: 250,
2585                         inflight_htlc_msat: 0,
2586                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2587                 };
2588                 let network_graph = network_graph.read_only().channels().clone();
2589                 let channel_42 = network_graph.get(&42).unwrap();
2590                 let channel_43 = network_graph.get(&43).unwrap();
2591                 let (info, _) = channel_42.as_directed_from(&source).unwrap();
2592                 let candidate_41 = CandidateRouteHop::PublicHop {
2593                         info,
2594                         short_channel_id: 41,
2595                 };
2596                 let (info, target) = channel_42.as_directed_from(&source).unwrap();
2597                 let candidate_42 = CandidateRouteHop::PublicHop {
2598                         info,
2599                         short_channel_id: 42,
2600                 };
2601                 let (info, _) = channel_43.as_directed_from(&target).unwrap();
2602                 let candidate_43 = CandidateRouteHop::PublicHop {
2603                         info,
2604                         short_channel_id: 43,
2605                 };
2606                 assert_eq!(scorer.channel_penalty_msat(&candidate_41, usage, &params), 128);
2607                 assert_eq!(scorer.channel_penalty_msat(&candidate_42, usage, &params), 128);
2608                 assert_eq!(scorer.channel_penalty_msat(&candidate_43, usage, &params), 128);
2609
2610                 scorer.payment_path_successful(&payment_path_for_amount(500), Duration::ZERO);
2611
2612                 assert_eq!(scorer.channel_penalty_msat(&candidate_41, usage, &params), 128);
2613                 assert_eq!(scorer.channel_penalty_msat(&candidate_42, usage, &params), 300);
2614                 assert_eq!(scorer.channel_penalty_msat(&candidate_43, usage, &params), 300);
2615         }
2616
2617         #[test]
2618         fn decays_liquidity_bounds_over_time() {
2619                 let logger = TestLogger::new();
2620                 let network_graph = network_graph(&logger);
2621                 let params = ProbabilisticScoringFeeParameters {
2622                         liquidity_penalty_multiplier_msat: 1_000,
2623                         considered_impossible_penalty_msat: u64::max_value(),
2624                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2625                 };
2626                 let decay_params = ProbabilisticScoringDecayParameters {
2627                         liquidity_offset_half_life: Duration::from_secs(10),
2628                         ..ProbabilisticScoringDecayParameters::zero_penalty()
2629                 };
2630                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2631                 let source = source_node_id();
2632
2633                 let usage = ChannelUsage {
2634                         amount_msat: 0,
2635                         inflight_htlc_msat: 0,
2636                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
2637                 };
2638                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2639                 let (info, _) = channel.as_directed_from(&source).unwrap();
2640                 let candidate = CandidateRouteHop::PublicHop {
2641                         info,
2642                         short_channel_id: 42,
2643                 };
2644                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2645                 let usage = ChannelUsage { amount_msat: 1_023, ..usage };
2646                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);
2647
2648                 scorer.payment_path_failed(&payment_path_for_amount(768), 42, Duration::ZERO);
2649                 scorer.payment_path_failed(&payment_path_for_amount(128), 43, Duration::ZERO);
2650
2651                 // Initial penalties
2652                 let usage = ChannelUsage { amount_msat: 128, ..usage };
2653                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2654                 let usage = ChannelUsage { amount_msat: 256, ..usage };
2655                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 93);
2656                 let usage = ChannelUsage { amount_msat: 768, ..usage };
2657                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1_479);
2658                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2659                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2660
2661                 // Half decay (i.e., three-quarter life)
2662                 scorer.decay_liquidity_certainty(Duration::from_secs(5));
2663                 let usage = ChannelUsage { amount_msat: 128, ..usage };
2664                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 22);
2665                 let usage = ChannelUsage { amount_msat: 256, ..usage };
2666                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 106);
2667                 let usage = ChannelUsage { amount_msat: 768, ..usage };
2668                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 921);
2669                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2670                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2671
2672                 // One decay (i.e., half life)
2673                 scorer.decay_liquidity_certainty(Duration::from_secs(10));
2674                 let usage = ChannelUsage { amount_msat: 64, ..usage };
2675                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2676                 let usage = ChannelUsage { amount_msat: 128, ..usage };
2677                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 34);
2678                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2679                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1_970);
2680                 let usage = ChannelUsage { amount_msat: 960, ..usage };
2681                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2682
2683                 // Fully decay liquidity lower bound.
2684                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 8));
2685                 let usage = ChannelUsage { amount_msat: 0, ..usage };
2686                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2687                 let usage = ChannelUsage { amount_msat: 1, ..usage };
2688                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2689                 let usage = ChannelUsage { amount_msat: 1_023, ..usage };
2690                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);
2691                 let usage = ChannelUsage { amount_msat: 1_024, ..usage };
2692                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2693
2694                 // Fully decay liquidity upper bound.
2695                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 9));
2696                 let usage = ChannelUsage { amount_msat: 0, ..usage };
2697                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2698                 let usage = ChannelUsage { amount_msat: 1_024, ..usage };
2699                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2700
2701                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 10));
2702                 let usage = ChannelUsage { amount_msat: 0, ..usage };
2703                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2704                 let usage = ChannelUsage { amount_msat: 1_024, ..usage };
2705                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2706         }
2707
2708         #[test]
2709         fn restricts_liquidity_bounds_after_decay() {
2710                 let logger = TestLogger::new();
2711                 let network_graph = network_graph(&logger);
2712                 let params = ProbabilisticScoringFeeParameters {
2713                         liquidity_penalty_multiplier_msat: 1_000,
2714                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2715                 };
2716                 let decay_params = ProbabilisticScoringDecayParameters {
2717                         liquidity_offset_half_life: Duration::from_secs(10),
2718                         ..ProbabilisticScoringDecayParameters::default()
2719                 };
2720                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2721                 let source = source_node_id();
2722                 let usage = ChannelUsage {
2723                         amount_msat: 512,
2724                         inflight_htlc_msat: 0,
2725                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
2726                 };
2727                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2728                 let (info, _) = channel.as_directed_from(&source).unwrap();
2729                 let candidate = CandidateRouteHop::PublicHop {
2730                         info,
2731                         short_channel_id: 42,
2732                 };
2733
2734                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2735
2736                 // More knowledge gives higher confidence (256, 768), meaning a lower penalty.
2737                 scorer.payment_path_failed(&payment_path_for_amount(768), 42, Duration::ZERO);
2738                 scorer.payment_path_failed(&payment_path_for_amount(256), 43, Duration::ZERO);
2739                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 281);
2740
2741                 // Decaying knowledge gives less confidence (128, 896), meaning a higher penalty.
2742                 scorer.decay_liquidity_certainty(Duration::from_secs(10));
2743                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 291);
2744
2745                 // Reducing the upper bound gives more confidence (128, 832) that the payment amount (512)
2746                 // is closer to the upper bound, meaning a higher penalty.
2747                 scorer.payment_path_successful(&payment_path_for_amount(64), Duration::from_secs(10));
2748                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 331);
2749
2750                 // Increasing the lower bound gives more confidence (256, 832) that the payment amount (512)
2751                 // is closer to the lower bound, meaning a lower penalty.
2752                 scorer.payment_path_failed(&payment_path_for_amount(256), 43, Duration::from_secs(10));
2753                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 245);
2754
2755                 // Further decaying affects the lower bound more than the upper bound (128, 928).
2756                 scorer.decay_liquidity_certainty(Duration::from_secs(20));
2757                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 280);
2758         }
2759
2760         #[test]
2761         fn restores_persisted_liquidity_bounds() {
2762                 let logger = TestLogger::new();
2763                 let network_graph = network_graph(&logger);
2764                 let params = ProbabilisticScoringFeeParameters {
2765                         liquidity_penalty_multiplier_msat: 1_000,
2766                         considered_impossible_penalty_msat: u64::max_value(),
2767                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2768                 };
2769                 let decay_params = ProbabilisticScoringDecayParameters {
2770                         liquidity_offset_half_life: Duration::from_secs(10),
2771                         ..ProbabilisticScoringDecayParameters::default()
2772                 };
2773                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2774                 let source = source_node_id();
2775                 let usage = ChannelUsage {
2776                         amount_msat: 500,
2777                         inflight_htlc_msat: 0,
2778                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2779                 };
2780
2781                 scorer.payment_path_failed(&payment_path_for_amount(500), 42, Duration::ZERO);
2782                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2783                 let (info, _) = channel.as_directed_from(&source).unwrap();
2784                 let candidate = CandidateRouteHop::PublicHop {
2785                         info,
2786                         short_channel_id: 42,
2787                 };
2788                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2789
2790                 scorer.decay_liquidity_certainty(Duration::from_secs(10));
2791                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 473);
2792
2793                 scorer.payment_path_failed(&payment_path_for_amount(250), 43, Duration::from_secs(10));
2794                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2795
2796                 let mut serialized_scorer = Vec::new();
2797                 scorer.write(&mut serialized_scorer).unwrap();
2798
2799                 let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
2800                 let deserialized_scorer =
2801                         <ProbabilisticScorer<_, _>>::read(&mut serialized_scorer, (decay_params, &network_graph, &logger)).unwrap();
2802                 assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2803         }
2804
2805         fn do_decays_persisted_liquidity_bounds(decay_before_reload: bool) {
2806                 let logger = TestLogger::new();
2807                 let network_graph = network_graph(&logger);
2808                 let params = ProbabilisticScoringFeeParameters {
2809                         liquidity_penalty_multiplier_msat: 1_000,
2810                         considered_impossible_penalty_msat: u64::max_value(),
2811                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2812                 };
2813                 let decay_params = ProbabilisticScoringDecayParameters {
2814                         liquidity_offset_half_life: Duration::from_secs(10),
2815                         ..ProbabilisticScoringDecayParameters::zero_penalty()
2816                 };
2817                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2818                 let source = source_node_id();
2819                 let usage = ChannelUsage {
2820                         amount_msat: 500,
2821                         inflight_htlc_msat: 0,
2822                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2823                 };
2824
2825                 scorer.payment_path_failed(&payment_path_for_amount(500), 42, Duration::ZERO);
2826                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2827                 let (info, _) = channel.as_directed_from(&source).unwrap();
2828                 let candidate = CandidateRouteHop::PublicHop {
2829                         info,
2830                         short_channel_id: 42,
2831                 };
2832                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2833
2834                 if decay_before_reload {
2835                         scorer.decay_liquidity_certainty(Duration::from_secs(10));
2836                 }
2837
2838                 let mut serialized_scorer = Vec::new();
2839                 scorer.write(&mut serialized_scorer).unwrap();
2840
2841                 let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
2842                 let mut deserialized_scorer =
2843                         <ProbabilisticScorer<_, _>>::read(&mut serialized_scorer, (decay_params, &network_graph, &logger)).unwrap();
2844                 if !decay_before_reload {
2845                         scorer.decay_liquidity_certainty(Duration::from_secs(10));
2846                         deserialized_scorer.decay_liquidity_certainty(Duration::from_secs(10));
2847                 }
2848                 assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 473);
2849
2850                 scorer.payment_path_failed(&payment_path_for_amount(250), 43, Duration::from_secs(10));
2851                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2852
2853                 deserialized_scorer.decay_liquidity_certainty(Duration::from_secs(20));
2854                 assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 370);
2855         }
2856
2857         #[test]
2858         fn decays_persisted_liquidity_bounds() {
2859                 do_decays_persisted_liquidity_bounds(false);
2860                 do_decays_persisted_liquidity_bounds(true);
2861         }
2862
2863         #[test]
2864         fn scores_realistic_payments() {
2865                 // Shows the scores of "realistic" sends of 100k sats over channels of 1-10m sats (with a
2866                 // 50k sat reserve).
2867                 let logger = TestLogger::new();
2868                 let network_graph = network_graph(&logger);
2869                 let params = ProbabilisticScoringFeeParameters::default();
2870                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2871                 let source = source_node_id();
2872
2873                 let usage = ChannelUsage {
2874                         amount_msat: 100_000_000,
2875                         inflight_htlc_msat: 0,
2876                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 950_000_000, htlc_maximum_msat: 1_000 },
2877                 };
2878                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2879                 let (info, _) = channel.as_directed_from(&source).unwrap();
2880                 let candidate = CandidateRouteHop::PublicHop {
2881                         info,
2882                         short_channel_id: 42,
2883                 };
2884                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 11497);
2885                 let usage = ChannelUsage {
2886                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2887                 };
2888                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 7408);
2889                 let usage = ChannelUsage {
2890                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 2_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2891                 };
2892                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 6151);
2893                 let usage = ChannelUsage {
2894                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 3_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2895                 };
2896                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 5427);
2897                 let usage = ChannelUsage {
2898                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 4_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2899                 };
2900                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4955);
2901                 let usage = ChannelUsage {
2902                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 5_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2903                 };
2904                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4736);
2905                 let usage = ChannelUsage {
2906                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 6_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2907                 };
2908                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4484);
2909                 let usage = ChannelUsage {
2910                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 7_450_000_000, htlc_maximum_msat: 1_000 }, ..usage
2911                 };
2912                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4484);
2913                 let usage = ChannelUsage {
2914                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 7_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2915                 };
2916                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4263);
2917                 let usage = ChannelUsage {
2918                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 8_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2919                 };
2920                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4263);
2921                 let usage = ChannelUsage {
2922                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 9_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2923                 };
2924                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4044);
2925         }
2926
2927         #[test]
2928         fn adds_base_penalty_to_liquidity_penalty() {
2929                 let logger = TestLogger::new();
2930                 let network_graph = network_graph(&logger);
2931                 let source = source_node_id();
2932                 let usage = ChannelUsage {
2933                         amount_msat: 128,
2934                         inflight_htlc_msat: 0,
2935                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
2936                 };
2937
2938                 let params = ProbabilisticScoringFeeParameters {
2939                         liquidity_penalty_multiplier_msat: 1_000,
2940                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2941                 };
2942                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2943                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2944                 let (info, _) = channel.as_directed_from(&source).unwrap();
2945                 let candidate = CandidateRouteHop::PublicHop {
2946                         info,
2947                         short_channel_id: 42,
2948                 };
2949                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 58);
2950
2951                 let params = ProbabilisticScoringFeeParameters {
2952                         base_penalty_msat: 500, liquidity_penalty_multiplier_msat: 1_000,
2953                         anti_probing_penalty_msat: 0, ..ProbabilisticScoringFeeParameters::zero_penalty()
2954                 };
2955                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2956                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 558);
2957
2958                 let params = ProbabilisticScoringFeeParameters {
2959                         base_penalty_msat: 500, liquidity_penalty_multiplier_msat: 1_000,
2960                         base_penalty_amount_multiplier_msat: (1 << 30),
2961                         anti_probing_penalty_msat: 0, ..ProbabilisticScoringFeeParameters::zero_penalty()
2962                 };
2963
2964                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2965                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 558 + 128);
2966         }
2967
2968         #[test]
2969         fn adds_amount_penalty_to_liquidity_penalty() {
2970                 let logger = TestLogger::new();
2971                 let network_graph = network_graph(&logger);
2972                 let source = source_node_id();
2973                 let usage = ChannelUsage {
2974                         amount_msat: 512_000,
2975                         inflight_htlc_msat: 0,
2976                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
2977                 };
2978
2979                 let params = ProbabilisticScoringFeeParameters {
2980                         liquidity_penalty_multiplier_msat: 1_000,
2981                         liquidity_penalty_amount_multiplier_msat: 0,
2982                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2983                 };
2984                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2985                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2986                 let (info, _) = channel.as_directed_from(&source).unwrap();
2987                 let candidate = CandidateRouteHop::PublicHop {
2988                         info,
2989                         short_channel_id: 42,
2990                 };
2991                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2992
2993                 let params = ProbabilisticScoringFeeParameters {
2994                         liquidity_penalty_multiplier_msat: 1_000,
2995                         liquidity_penalty_amount_multiplier_msat: 256,
2996                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2997                 };
2998                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2999                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 337);
3000         }
3001
3002         #[test]
3003         fn calculates_log10_without_overflowing_u64_max_value() {
3004                 let logger = TestLogger::new();
3005                 let network_graph = network_graph(&logger);
3006                 let source = source_node_id();
3007                 let usage = ChannelUsage {
3008                         amount_msat: u64::max_value(),
3009                         inflight_htlc_msat: 0,
3010                         effective_capacity: EffectiveCapacity::Infinite,
3011                 };
3012                 let params = ProbabilisticScoringFeeParameters {
3013                         liquidity_penalty_multiplier_msat: 40_000,
3014                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3015                 };
3016                 let decay_params = ProbabilisticScoringDecayParameters::zero_penalty();
3017                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
3018                 let (info, _) = channel.as_directed_from(&source).unwrap();
3019                 let candidate = CandidateRouteHop::PublicHop {
3020                         info,
3021                         short_channel_id: 42,
3022                 };
3023                 let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
3024                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 80_000);
3025         }
3026
3027         #[test]
3028         fn accounts_for_inflight_htlc_usage() {
3029                 let logger = TestLogger::new();
3030                 let network_graph = network_graph(&logger);
3031                 let params = ProbabilisticScoringFeeParameters {
3032                         considered_impossible_penalty_msat: u64::max_value(),
3033                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3034                 };
3035                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
3036                 let source = source_node_id();
3037
3038                 let usage = ChannelUsage {
3039                         amount_msat: 750,
3040                         inflight_htlc_msat: 0,
3041                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
3042                 };
3043                 let network_graph = network_graph.read_only();
3044                 let channel = network_graph.channel(42).unwrap();
3045                 let (info, _) = channel.as_directed_from(&source).unwrap();
3046                 let candidate = CandidateRouteHop::PublicHop {
3047                         info,
3048                         short_channel_id: 42,
3049                 };
3050                 assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
3051
3052                 let usage = ChannelUsage { inflight_htlc_msat: 251, ..usage };
3053                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
3054         }
3055
3056         #[test]
3057         fn removes_uncertainity_when_exact_liquidity_known() {
3058                 let logger = TestLogger::new();
3059                 let network_graph = network_graph(&logger);
3060                 let params = ProbabilisticScoringFeeParameters::default();
3061                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
3062                 let source = source_node_id();
3063
3064                 let base_penalty_msat = params.base_penalty_msat;
3065                 let usage = ChannelUsage {
3066                         amount_msat: 750,
3067                         inflight_htlc_msat: 0,
3068                         effective_capacity: EffectiveCapacity::ExactLiquidity { liquidity_msat: 1_000 },
3069                 };
3070                 let network_graph = network_graph.read_only();
3071                 let channel = network_graph.channel(42).unwrap();
3072                 let (info, _) = channel.as_directed_from(&source).unwrap();
3073                 let candidate = CandidateRouteHop::PublicHop {
3074                         info,
3075                         short_channel_id: 42,
3076                 };
3077                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), base_penalty_msat);
3078
3079                 let usage = ChannelUsage { amount_msat: 1_000, ..usage };
3080                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), base_penalty_msat);
3081
3082                 let usage = ChannelUsage { amount_msat: 1_001, ..usage };
3083                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
3084         }
3085
3086         #[test]
3087         fn remembers_historical_failures() {
3088                 let logger = TestLogger::new();
3089                 let network_graph = network_graph(&logger);
3090                 let params = ProbabilisticScoringFeeParameters {
3091                         historical_liquidity_penalty_multiplier_msat: 1024,
3092                         historical_liquidity_penalty_amount_multiplier_msat: 1024,
3093                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3094                 };
3095                 let decay_params = ProbabilisticScoringDecayParameters {
3096                         liquidity_offset_half_life: Duration::from_secs(60 * 60),
3097                         historical_no_updates_half_life: Duration::from_secs(10),
3098                 };
3099                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
3100                 let source = source_node_id();
3101                 let target = target_node_id();
3102
3103                 let usage = ChannelUsage {
3104                         amount_msat: 100,
3105                         inflight_htlc_msat: 0,
3106                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
3107                 };
3108                 let usage_1 = ChannelUsage {
3109                         amount_msat: 1,
3110                         inflight_htlc_msat: 0,
3111                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
3112                 };
3113
3114                 {
3115                         let network_graph = network_graph.read_only();
3116                         let channel = network_graph.channel(42).unwrap();
3117                         let (info, _) = channel.as_directed_from(&source).unwrap();
3118                         let candidate = CandidateRouteHop::PublicHop {
3119                                 info,
3120                                 short_channel_id: 42,
3121                         };
3122
3123                         // With no historical data the normal liquidity penalty calculation is used.
3124                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 168);
3125                 }
3126                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3127                 None);
3128                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 42, &params),
3129                 None);
3130
3131                 scorer.payment_path_failed(&payment_path_for_amount(1), 42, Duration::ZERO);
3132                 {
3133                         let network_graph = network_graph.read_only();
3134                         let channel = network_graph.channel(42).unwrap();
3135                         let (info, _) = channel.as_directed_from(&source).unwrap();
3136                         let candidate = CandidateRouteHop::PublicHop {
3137                                 info,
3138                                 short_channel_id: 42,
3139                         };
3140
3141                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2048);
3142                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage_1, &params), 249);
3143                 }
3144                 // The "it failed" increment is 32, where the probability should lie several buckets into
3145                 // the first octile.
3146                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3147                         Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
3148                                 [0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
3149                 assert!(scorer.historical_estimated_payment_success_probability(42, &target, 1, &params)
3150                         .unwrap() > 0.35);
3151                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 500, &params),
3152                         Some(0.0));
3153
3154                 // Even after we tell the scorer we definitely have enough available liquidity, it will
3155                 // still remember that there was some failure in the past, and assign a non-0 penalty.
3156                 scorer.payment_path_failed(&payment_path_for_amount(1000), 43, Duration::ZERO);
3157                 {
3158                         let network_graph = network_graph.read_only();
3159                         let channel = network_graph.channel(42).unwrap();
3160                         let (info, _) = channel.as_directed_from(&source).unwrap();
3161                         let candidate = CandidateRouteHop::PublicHop {
3162                                 info,
3163                                 short_channel_id: 42,
3164                         };
3165
3166                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 105);
3167                 }
3168                 // The first points should be decayed just slightly and the last bucket has a new point.
3169                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3170                         Some(([31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0],
3171                                 [0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32])));
3172
3173                 // The exact success probability is a bit complicated and involves integer rounding, so we
3174                 // simply check bounds here.
3175                 let five_hundred_prob =
3176                         scorer.historical_estimated_payment_success_probability(42, &target, 500, &params).unwrap();
3177                 assert!(five_hundred_prob > 0.59);
3178                 assert!(five_hundred_prob < 0.60);
3179                 let one_prob =
3180                         scorer.historical_estimated_payment_success_probability(42, &target, 1, &params).unwrap();
3181                 assert!(one_prob < 0.85);
3182                 assert!(one_prob > 0.84);
3183
3184                 // Advance the time forward 16 half-lives (which the docs claim will ensure all data is
3185                 // gone), and check that we're back to where we started.
3186                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 16));
3187                 {
3188                         let network_graph = network_graph.read_only();
3189                         let channel = network_graph.channel(42).unwrap();
3190                         let (info, _) = channel.as_directed_from(&source).unwrap();
3191                         let candidate = CandidateRouteHop::PublicHop {
3192                                 info,
3193                                 short_channel_id: 42,
3194                         };
3195
3196                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 168);
3197                 }
3198                 // Once fully decayed we still have data, but its all-0s. In the future we may remove the
3199                 // data entirely instead.
3200                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3201                         Some(([0; 32], [0; 32])));
3202                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 1, &params), None);
3203
3204                 let mut usage = ChannelUsage {
3205                         amount_msat: 100,
3206                         inflight_htlc_msat: 1024,
3207                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
3208                 };
3209                 scorer.payment_path_failed(&payment_path_for_amount(1), 42, Duration::from_secs(10 * 16));
3210                 {
3211                         let network_graph = network_graph.read_only();
3212                         let channel = network_graph.channel(42).unwrap();
3213                         let (info, _) = channel.as_directed_from(&source).unwrap();
3214                         let candidate = CandidateRouteHop::PublicHop {
3215                                 info,
3216                                 short_channel_id: 42,
3217                         };
3218
3219                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2050);
3220
3221                         let usage = ChannelUsage {
3222                                 amount_msat: 1,
3223                                 inflight_htlc_msat: 0,
3224                                 effective_capacity: EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: 0 },
3225                         };
3226                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2048);
3227                 }
3228
3229                 // Advance to decay all liquidity offsets to zero.
3230                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * (16 + 60 * 60)));
3231
3232                 // Once even the bounds have decayed information about the channel should be removed
3233                 // entirely.
3234                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3235                         None);
3236
3237                 // Use a path in the opposite direction, which have zero for htlc_maximum_msat. This will
3238                 // ensure that the effective capacity is zero to test division-by-zero edge cases.
3239                 let path = vec![
3240                         path_hop(target_pubkey(), 43, 2),
3241                         path_hop(source_pubkey(), 42, 1),
3242                         path_hop(sender_pubkey(), 41, 0),
3243                 ];
3244                 scorer.payment_path_failed(&Path { hops: path, blinded_tail: None }, 42, Duration::from_secs(10 * (16 + 60 * 60)));
3245         }
3246
3247         #[test]
3248         fn adds_anti_probing_penalty() {
3249                 let logger = TestLogger::new();
3250                 let network_graph = network_graph(&logger);
3251                 let source = source_node_id();
3252                 let params = ProbabilisticScoringFeeParameters {
3253                         anti_probing_penalty_msat: 500,
3254                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3255                 };
3256                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
3257
3258                 // Check we receive no penalty for a low htlc_maximum_msat.
3259                 let usage = ChannelUsage {
3260                         amount_msat: 512_000,
3261                         inflight_htlc_msat: 0,
3262                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
3263                 };
3264                 let network_graph = network_graph.read_only();
3265                 let channel = network_graph.channel(42).unwrap();
3266                 let (info, _) = channel.as_directed_from(&source).unwrap();
3267                 let candidate = CandidateRouteHop::PublicHop {
3268                         info,
3269                         short_channel_id: 42,
3270                 };
3271                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
3272
3273                 // Check we receive anti-probing penalty for htlc_maximum_msat == channel_capacity.
3274                 let usage = ChannelUsage {
3275                         amount_msat: 512_000,
3276                         inflight_htlc_msat: 0,
3277                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_024_000 },
3278                 };
3279                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 500);
3280
3281                 // Check we receive anti-probing penalty for htlc_maximum_msat == channel_capacity/2.
3282                 let usage = ChannelUsage {
3283                         amount_msat: 512_000,
3284                         inflight_htlc_msat: 0,
3285                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 512_000 },
3286                 };
3287                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 500);
3288
3289                 // Check we receive no anti-probing penalty for htlc_maximum_msat == channel_capacity/2 - 1.
3290                 let usage = ChannelUsage {
3291                         amount_msat: 512_000,
3292                         inflight_htlc_msat: 0,
3293                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 511_999 },
3294                 };
3295                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
3296         }
3297
3298         #[test]
3299         fn scores_with_blinded_path() {
3300                 // Make sure we'll account for a blinded path's final_value_msat in scoring
3301                 let logger = TestLogger::new();
3302                 let network_graph = network_graph(&logger);
3303                 let params = ProbabilisticScoringFeeParameters {
3304                         liquidity_penalty_multiplier_msat: 1_000,
3305                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3306                 };
3307                 let decay_params = ProbabilisticScoringDecayParameters::default();
3308                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
3309                 let source = source_node_id();
3310                 let usage = ChannelUsage {
3311                         amount_msat: 512,
3312                         inflight_htlc_msat: 0,
3313                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
3314                 };
3315                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
3316                 let (info, target) = channel.as_directed_from(&source).unwrap();
3317                 let candidate = CandidateRouteHop::PublicHop {
3318                         info,
3319                         short_channel_id: 42,
3320                 };
3321                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
3322
3323                 let mut path = payment_path_for_amount(768);
3324                 let recipient_hop = path.hops.pop().unwrap();
3325                 let blinded_path = BlindedPath {
3326                         introduction_node_id: path.hops.last().as_ref().unwrap().pubkey,
3327                         blinding_point: test_utils::pubkey(42),
3328                         blinded_hops: vec![
3329                                 BlindedHop { blinded_node_id: test_utils::pubkey(44), encrypted_payload: Vec::new() }
3330                         ],
3331                 };
3332                 path.blinded_tail = Some(BlindedTail {
3333                         hops: blinded_path.blinded_hops,
3334                         blinding_point: blinded_path.blinding_point,
3335                         excess_final_cltv_expiry_delta: recipient_hop.cltv_expiry_delta,
3336                         final_value_msat: recipient_hop.fee_msat,
3337                 });
3338
3339                 // Check the liquidity before and after scoring payment failures to ensure the blinded path's
3340                 // final value is taken into account.
3341                 assert!(scorer.channel_liquidities.get(&42).is_none());
3342
3343                 scorer.payment_path_failed(&path, 42, Duration::ZERO);
3344                 path.blinded_tail.as_mut().unwrap().final_value_msat = 256;
3345                 scorer.payment_path_failed(&path, 43, Duration::ZERO);
3346
3347                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
3348                         .as_directed(&source, &target, 1_000);
3349                 assert_eq!(liquidity.min_liquidity_msat(), 256);
3350                 assert_eq!(liquidity.max_liquidity_msat(), 768);
3351         }
3352
3353         #[test]
3354         fn realistic_historical_failures() {
3355                 // The motivation for the unequal sized buckets came largely from attempting to pay 10k
3356                 // sats over a one bitcoin channel. This tests that case explicitly, ensuring that we score
3357                 // properly.
3358                 let logger = TestLogger::new();
3359                 let mut network_graph = network_graph(&logger);
3360                 let params = ProbabilisticScoringFeeParameters {
3361                         historical_liquidity_penalty_multiplier_msat: 1024,
3362                         historical_liquidity_penalty_amount_multiplier_msat: 1024,
3363                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3364                 };
3365                 let decay_params = ProbabilisticScoringDecayParameters {
3366                         liquidity_offset_half_life: Duration::from_secs(60 * 60),
3367                         historical_no_updates_half_life: Duration::from_secs(10),
3368                         ..ProbabilisticScoringDecayParameters::default()
3369                 };
3370
3371                 let capacity_msat = 100_000_000_000;
3372                 update_channel(&mut network_graph, 42, source_privkey(), 0, capacity_msat, 200);
3373                 update_channel(&mut network_graph, 42, target_privkey(), 1, capacity_msat, 200);
3374
3375                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
3376                 let source = source_node_id();
3377
3378                 let mut amount_msat = 10_000_000;
3379                 let usage = ChannelUsage {
3380                         amount_msat,
3381                         inflight_htlc_msat: 0,
3382                         effective_capacity: EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: capacity_msat },
3383                 };
3384                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
3385                 let (info, target) = channel.as_directed_from(&source).unwrap();
3386                 let candidate = CandidateRouteHop::PublicHop {
3387                         info,
3388                         short_channel_id: 42,
3389                 };
3390                 // With no historical data the normal liquidity penalty calculation is used, which results
3391                 // in a success probability of ~75%.
3392                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1269);
3393                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3394                         None);
3395                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 42, &params),
3396                         None);
3397
3398                 // Fail to pay once, and then check the buckets and penalty.
3399                 scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42, Duration::ZERO);
3400                 // The penalty should be the maximum penalty, as the payment we're scoring is now in the
3401                 // same bucket which is the only maximum datapoint.
3402                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params),
3403                         2048 + 2048 * amount_msat / super::AMOUNT_PENALTY_DIVISOR);
3404                 // The "it failed" increment is 32, which we should apply to the first upper-bound (between
3405                 // 6k sats and 12k sats).
3406                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3407                         Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
3408                                 [0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
3409                 // The success probability estimate itself should be zero.
3410                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params),
3411                         Some(0.0));
3412
3413                 // Now test again with the amount in the bottom bucket.
3414                 amount_msat /= 2;
3415                 // The new amount is entirely within the only minimum bucket with score, so the probability
3416                 // we assign is 1/2.
3417                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params),
3418                         Some(0.5));
3419
3420                 // ...but once we see a failure, we consider the payment to be substantially less likely,
3421                 // even though not a probability of zero as we still look at the second max bucket which
3422                 // now shows 31.
3423                 scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42, Duration::ZERO);
3424                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3425                         Some(([63, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
3426                                 [32, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
3427                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params),
3428                         Some(0.0));
3429         }
3430 }
3431
3432 #[cfg(ldk_bench)]
3433 pub mod benches {
3434         use super::*;
3435         use criterion::Criterion;
3436         use crate::routing::router::{bench_utils, RouteHop};
3437         use crate::util::test_utils::TestLogger;
3438         use crate::ln::features::{ChannelFeatures, NodeFeatures};
3439
3440         pub fn decay_100k_channel_bounds(bench: &mut Criterion) {
3441                 let logger = TestLogger::new();
3442                 let network_graph = bench_utils::read_network_graph(&logger).unwrap();
3443                 let mut scorer = ProbabilisticScorer::new(Default::default(), &network_graph, &logger);
3444                 // Score a number of random channels
3445                 let mut seed: u64 = 0xdeadbeef;
3446                 for _ in 0..100_000 {
3447                         seed = seed.overflowing_mul(6364136223846793005).0.overflowing_add(1).0;
3448                         let (victim, victim_dst, amt) = {
3449                                 let rong = network_graph.read_only();
3450                                 let channels = rong.channels();
3451                                 let chan = channels.unordered_iter()
3452                                         .skip((seed as usize) % channels.len())
3453                                         .next().unwrap();
3454                                 seed = seed.overflowing_mul(6364136223846793005).0.overflowing_add(1).0;
3455                                 let amt = seed % chan.1.capacity_sats.map(|c| c * 1000)
3456                                         .or(chan.1.one_to_two.as_ref().map(|info| info.htlc_maximum_msat))
3457                                         .or(chan.1.two_to_one.as_ref().map(|info| info.htlc_maximum_msat))
3458                                         .unwrap_or(1_000_000_000).saturating_add(1);
3459                                 (*chan.0, chan.1.node_two, amt)
3460                         };
3461                         let path = Path {
3462                                 hops: vec![RouteHop {
3463                                         pubkey: victim_dst.as_pubkey().unwrap(),
3464                                         node_features: NodeFeatures::empty(),
3465                                         short_channel_id: victim,
3466                                         channel_features: ChannelFeatures::empty(),
3467                                         fee_msat: amt,
3468                                         cltv_expiry_delta: 42,
3469                                         maybe_announced_channel: true,
3470                                 }],
3471                                 blinded_tail: None
3472                         };
3473                         seed = seed.overflowing_mul(6364136223846793005).0.overflowing_add(1).0;
3474                         if seed % 1 == 0 {
3475                                 scorer.probe_failed(&path, victim, Duration::ZERO);
3476                         } else {
3477                                 scorer.probe_successful(&path, Duration::ZERO);
3478                         }
3479                 }
3480                 let mut cur_time = Duration::ZERO;
3481                         cur_time += Duration::from_millis(1);
3482                         scorer.decay_liquidity_certainty(cur_time);
3483                 bench.bench_function("decay_100k_channel_bounds", |b| b.iter(|| {
3484                         cur_time += Duration::from_millis(1);
3485                         scorer.decay_liquidity_certainty(cur_time);
3486                 }));
3487         }
3488 }