48d8572ce1f175f0f43f3c37d77469f3fd1f2d51
[rust-lightning] / lightning / src / routing / scoring.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Utilities for scoring payment channels.
11 //!
12 //! [`ProbabilisticScorer`] may be given to [`find_route`] to score payment channels during path
13 //! finding when a custom [`ScoreLookUp`] implementation is not needed.
14 //!
15 //! # Example
16 //!
17 //! ```
18 //! # extern crate bitcoin;
19 //! #
20 //! # use lightning::routing::gossip::NetworkGraph;
21 //! # use lightning::routing::router::{RouteParameters, find_route};
22 //! # use lightning::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters, ProbabilisticScoringDecayParameters};
23 //! # use lightning::sign::KeysManager;
24 //! # use lightning::util::logger::{Logger, Record};
25 //! # use bitcoin::secp256k1::PublicKey;
26 //! #
27 //! # struct FakeLogger {};
28 //! # impl Logger for FakeLogger {
29 //! #     fn log(&self, record: Record) { unimplemented!() }
30 //! # }
31 //! # fn find_scored_route(payer: PublicKey, route_params: RouteParameters, network_graph: NetworkGraph<&FakeLogger>) {
32 //! # let logger = FakeLogger {};
33 //! #
34 //! // Use the default channel penalties.
35 //! let params = ProbabilisticScoringFeeParameters::default();
36 //! let decay_params = ProbabilisticScoringDecayParameters::default();
37 //! let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
38 //!
39 //! // Or use custom channel penalties.
40 //! let params = ProbabilisticScoringFeeParameters {
41 //!     liquidity_penalty_multiplier_msat: 2 * 1000,
42 //!     ..ProbabilisticScoringFeeParameters::default()
43 //! };
44 //! let decay_params = ProbabilisticScoringDecayParameters::default();
45 //! let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
46 //! # let random_seed_bytes = [42u8; 32];
47 //!
48 //! let route = find_route(&payer, &route_params, &network_graph, None, &logger, &scorer, &params, &random_seed_bytes);
49 //! # }
50 //! ```
51 //!
52 //! # Note
53 //!
54 //! Persisting when built with feature `no-std` and restoring without it, or vice versa, uses
55 //! different types and thus is undefined.
56 //!
57 //! [`find_route`]: crate::routing::router::find_route
58
59 use crate::ln::msgs::DecodeError;
60 use crate::routing::gossip::{EffectiveCapacity, NetworkGraph, NodeId};
61 use crate::routing::router::{Path, CandidateRouteHop};
62 use crate::routing::log_approx;
63 use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer};
64 use crate::util::logger::Logger;
65
66 use crate::prelude::*;
67 use core::{cmp, fmt};
68 use core::cell::{RefCell, RefMut, Ref};
69 use core::convert::TryInto;
70 use core::ops::{Deref, DerefMut};
71 use core::time::Duration;
72 use crate::io::{self, Read};
73 use crate::sync::{Mutex, MutexGuard, RwLock, RwLockReadGuard, RwLockWriteGuard};
74
75 /// We define Score ever-so-slightly differently based on whether we are being built for C bindings
76 /// or not. For users, `LockableScore` must somehow be writeable to disk. For Rust users, this is
77 /// no problem - you move a `Score` that implements `Writeable` into a `Mutex`, lock it, and now
78 /// you have the original, concrete, `Score` type, which presumably implements `Writeable`.
79 ///
80 /// For C users, once you've moved the `Score` into a `LockableScore` all you have after locking it
81 /// is an opaque trait object with an opaque pointer with no type info. Users could take the unsafe
82 /// approach of blindly casting that opaque pointer to a concrete type and calling `Writeable` from
83 /// there, but other languages downstream of the C bindings (e.g. Java) can't even do that.
84 /// Instead, we really want `Score` and `LockableScore` to implement `Writeable` directly, which we
85 /// do here by defining `Score` differently for `cfg(c_bindings)`.
86 macro_rules! define_score { ($($supertrait: path)*) => {
87 /// An interface used to score payment channels for path finding.
88 ///
89 /// `ScoreLookUp` is used to determine the penalty for a given channel.
90 ///
91 /// Scoring is in terms of fees willing to be paid in order to avoid routing through a channel.
92 pub trait ScoreLookUp {
93         /// A configurable type which should contain various passed-in parameters for configuring the scorer,
94         /// on a per-routefinding-call basis through to the scorer methods,
95         /// which are used to determine the parameters for the suitability of channels for use.
96         type ScoreParams;
97         /// Returns the fee in msats willing to be paid to avoid routing `send_amt_msat` through the
98         /// given channel in the direction from `source` to `target`.
99         ///
100         /// The channel's capacity (less any other MPP parts that are also being considered for use in
101         /// the same payment) is given by `capacity_msat`. It may be determined from various sources
102         /// such as a chain data, network gossip, or invoice hints. For invoice hints, a capacity near
103         /// [`u64::max_value`] is given to indicate sufficient capacity for the invoice's full amount.
104         /// Thus, implementations should be overflow-safe.
105         fn channel_penalty_msat(
106                 &self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
107         ) -> u64;
108 }
109
110 /// `ScoreUpdate` is used to update the scorer's internal state after a payment attempt.
111 pub trait ScoreUpdate {
112         /// Handles updating channel penalties after failing to route through a channel.
113         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration);
114
115         /// Handles updating channel penalties after successfully routing along a path.
116         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration);
117
118         /// Handles updating channel penalties after a probe over the given path failed.
119         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration);
120
121         /// Handles updating channel penalties after a probe over the given path succeeded.
122         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration);
123
124         /// Scorers may wish to reduce their certainty of channel liquidity information over time.
125         /// Thus, this method is provided to allow scorers to observe the passage of time - the holder
126         /// of this object should call this method regularly (generally via the
127         /// `lightning-background-processor` crate).
128         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration);
129 }
130
131 /// A trait which can both lookup and update routing channel penalty scores.
132 ///
133 /// This is used in places where both bounds are required and implemented for all types which
134 /// implement [`ScoreLookUp`] and [`ScoreUpdate`].
135 ///
136 /// Bindings users may need to manually implement this for their custom scoring implementations.
137 pub trait Score : ScoreLookUp + ScoreUpdate $(+ $supertrait)* {}
138
139 #[cfg(not(c_bindings))]
140 impl<T: ScoreLookUp + ScoreUpdate $(+ $supertrait)*> Score for T {}
141
142 #[cfg(not(c_bindings))]
143 impl<S: ScoreLookUp, T: Deref<Target=S>> ScoreLookUp for T {
144         type ScoreParams = S::ScoreParams;
145         fn channel_penalty_msat(
146                 &self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
147         ) -> u64 {
148                 self.deref().channel_penalty_msat(candidate, usage, score_params)
149         }
150 }
151
152 #[cfg(not(c_bindings))]
153 impl<S: ScoreUpdate, T: DerefMut<Target=S>> ScoreUpdate for T {
154         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
155                 self.deref_mut().payment_path_failed(path, short_channel_id, duration_since_epoch)
156         }
157
158         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
159                 self.deref_mut().payment_path_successful(path, duration_since_epoch)
160         }
161
162         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
163                 self.deref_mut().probe_failed(path, short_channel_id, duration_since_epoch)
164         }
165
166         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
167                 self.deref_mut().probe_successful(path, duration_since_epoch)
168         }
169
170         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration) {
171                 self.deref_mut().decay_liquidity_certainty(duration_since_epoch)
172         }
173 }
174 } }
175
176 #[cfg(c_bindings)]
177 define_score!(Writeable);
178
179 #[cfg(not(c_bindings))]
180 define_score!();
181
182 /// A scorer that is accessed under a lock.
183 ///
184 /// Needed so that calls to [`ScoreLookUp::channel_penalty_msat`] in [`find_route`] can be made while
185 /// having shared ownership of a scorer but without requiring internal locking in [`ScoreUpdate`]
186 /// implementations. Internal locking would be detrimental to route finding performance and could
187 /// result in [`ScoreLookUp::channel_penalty_msat`] returning a different value for the same channel.
188 ///
189 /// [`find_route`]: crate::routing::router::find_route
190 pub trait LockableScore<'a> {
191         /// The [`ScoreUpdate`] type.
192         type ScoreUpdate: 'a + ScoreUpdate;
193         /// The [`ScoreLookUp`] type.
194         type ScoreLookUp: 'a + ScoreLookUp;
195
196         /// The write locked [`ScoreUpdate`] type.
197         type WriteLocked: DerefMut<Target = Self::ScoreUpdate> + Sized;
198
199         /// The read locked [`ScoreLookUp`] type.
200         type ReadLocked: Deref<Target = Self::ScoreLookUp> + Sized;
201
202         /// Returns read locked scorer.
203         fn read_lock(&'a self) -> Self::ReadLocked;
204
205         /// Returns write locked scorer.
206         fn write_lock(&'a self) -> Self::WriteLocked;
207 }
208
209 /// Refers to a scorer that is accessible under lock and also writeable to disk
210 ///
211 /// We need this trait to be able to pass in a scorer to `lightning-background-processor` that will enable us to
212 /// use the Persister to persist it.
213 pub trait WriteableScore<'a>: LockableScore<'a> + Writeable {}
214
215 #[cfg(not(c_bindings))]
216 impl<'a, T> WriteableScore<'a> for T where T: LockableScore<'a> + Writeable {}
217 #[cfg(not(c_bindings))]
218 impl<'a, T: Score + 'a> LockableScore<'a> for Mutex<T> {
219         type ScoreUpdate = T;
220         type ScoreLookUp = T;
221
222         type WriteLocked = MutexGuard<'a, Self::ScoreUpdate>;
223         type ReadLocked = MutexGuard<'a, Self::ScoreLookUp>;
224
225         fn read_lock(&'a self) -> Self::ReadLocked {
226                 Mutex::lock(self).unwrap()
227         }
228
229         fn write_lock(&'a self) -> Self::WriteLocked {
230                 Mutex::lock(self).unwrap()
231         }
232 }
233
234 #[cfg(not(c_bindings))]
235 impl<'a, T: Score + 'a> LockableScore<'a> for RefCell<T> {
236         type ScoreUpdate = T;
237         type ScoreLookUp = T;
238
239         type WriteLocked = RefMut<'a, Self::ScoreUpdate>;
240         type ReadLocked = Ref<'a, Self::ScoreLookUp>;
241
242         fn write_lock(&'a self) -> Self::WriteLocked {
243                 self.borrow_mut()
244         }
245
246         fn read_lock(&'a self) -> Self::ReadLocked {
247                 self.borrow()
248         }
249 }
250
251 #[cfg(not(c_bindings))]
252 impl<'a, T: Score + 'a> LockableScore<'a> for RwLock<T> {
253         type ScoreUpdate = T;
254         type ScoreLookUp = T;
255
256         type WriteLocked = RwLockWriteGuard<'a, Self::ScoreLookUp>;
257         type ReadLocked = RwLockReadGuard<'a, Self::ScoreUpdate>;
258
259         fn read_lock(&'a self) -> Self::ReadLocked {
260                 RwLock::read(self).unwrap()
261         }
262
263         fn write_lock(&'a self) -> Self::WriteLocked {
264                 RwLock::write(self).unwrap()
265         }
266 }
267
268 #[cfg(c_bindings)]
269 /// A concrete implementation of [`LockableScore`] which supports multi-threading.
270 pub struct MultiThreadedLockableScore<T: Score> {
271         score: RwLock<T>,
272 }
273
274 #[cfg(c_bindings)]
275 impl<'a, T: Score + 'a> LockableScore<'a> for MultiThreadedLockableScore<T> {
276         type ScoreUpdate = T;
277         type ScoreLookUp = T;
278         type WriteLocked = MultiThreadedScoreLockWrite<'a, Self::ScoreUpdate>;
279         type ReadLocked = MultiThreadedScoreLockRead<'a, Self::ScoreLookUp>;
280
281         fn read_lock(&'a self) -> Self::ReadLocked {
282                 MultiThreadedScoreLockRead(self.score.read().unwrap())
283         }
284
285         fn write_lock(&'a self) -> Self::WriteLocked {
286                 MultiThreadedScoreLockWrite(self.score.write().unwrap())
287         }
288 }
289
290 #[cfg(c_bindings)]
291 impl<T: Score> Writeable for MultiThreadedLockableScore<T> {
292         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
293                 self.score.read().unwrap().write(writer)
294         }
295 }
296
297 #[cfg(c_bindings)]
298 impl<'a, T: Score + 'a> WriteableScore<'a> for MultiThreadedLockableScore<T> {}
299
300 #[cfg(c_bindings)]
301 impl<T: Score> MultiThreadedLockableScore<T> {
302         /// Creates a new [`MultiThreadedLockableScore`] given an underlying [`Score`].
303         pub fn new(score: T) -> Self {
304                 MultiThreadedLockableScore { score: RwLock::new(score) }
305         }
306 }
307
308 #[cfg(c_bindings)]
309 /// A locked `MultiThreadedLockableScore`.
310 pub struct MultiThreadedScoreLockRead<'a, T: Score>(RwLockReadGuard<'a, T>);
311
312 #[cfg(c_bindings)]
313 /// A locked `MultiThreadedLockableScore`.
314 pub struct MultiThreadedScoreLockWrite<'a, T: Score>(RwLockWriteGuard<'a, T>);
315
316 #[cfg(c_bindings)]
317 impl<'a, T: 'a + Score> Deref for MultiThreadedScoreLockRead<'a, T> {
318         type Target = T;
319
320         fn deref(&self) -> &Self::Target {
321                 self.0.deref()
322         }
323 }
324
325 #[cfg(c_bindings)]
326 impl<'a, T: Score> ScoreLookUp for MultiThreadedScoreLockRead<'a, T> {
327         type ScoreParams = T::ScoreParams;
328         fn channel_penalty_msat(&self, candidate:&CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
329         ) -> u64 {
330                 self.0.channel_penalty_msat(candidate, usage, score_params)
331         }
332 }
333
334 #[cfg(c_bindings)]
335 impl<'a, T: Score> Writeable for MultiThreadedScoreLockWrite<'a, T> {
336         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
337                 self.0.write(writer)
338         }
339 }
340
341 #[cfg(c_bindings)]
342 impl<'a, T: 'a + Score> Deref for MultiThreadedScoreLockWrite<'a, T> {
343         type Target = T;
344
345         fn deref(&self) -> &Self::Target {
346                 self.0.deref()
347         }
348 }
349
350 #[cfg(c_bindings)]
351 impl<'a, T: 'a + Score> DerefMut for MultiThreadedScoreLockWrite<'a, T> {
352         fn deref_mut(&mut self) -> &mut Self::Target {
353                 self.0.deref_mut()
354         }
355 }
356
357 #[cfg(c_bindings)]
358 impl<'a, T: Score> ScoreUpdate for MultiThreadedScoreLockWrite<'a, T> {
359         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
360                 self.0.payment_path_failed(path, short_channel_id, duration_since_epoch)
361         }
362
363         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
364                 self.0.payment_path_successful(path, duration_since_epoch)
365         }
366
367         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
368                 self.0.probe_failed(path, short_channel_id, duration_since_epoch)
369         }
370
371         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
372                 self.0.probe_successful(path, duration_since_epoch)
373         }
374
375         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration) {
376                 self.0.decay_liquidity_certainty(duration_since_epoch)
377         }
378 }
379
380
381 /// Proposed use of a channel passed as a parameter to [`ScoreLookUp::channel_penalty_msat`].
382 #[derive(Clone, Copy, Debug, PartialEq)]
383 pub struct ChannelUsage {
384         /// The amount to send through the channel, denominated in millisatoshis.
385         pub amount_msat: u64,
386
387         /// Total amount, denominated in millisatoshis, already allocated to send through the channel
388         /// as part of a multi-path payment.
389         pub inflight_htlc_msat: u64,
390
391         /// The effective capacity of the channel.
392         pub effective_capacity: EffectiveCapacity,
393 }
394
395 #[derive(Clone)]
396 /// [`ScoreLookUp`] implementation that uses a fixed penalty.
397 pub struct FixedPenaltyScorer {
398         penalty_msat: u64,
399 }
400
401 impl FixedPenaltyScorer {
402         /// Creates a new scorer using `penalty_msat`.
403         pub fn with_penalty(penalty_msat: u64) -> Self {
404                 Self { penalty_msat }
405         }
406 }
407
408 impl ScoreLookUp for FixedPenaltyScorer {
409         type ScoreParams = ();
410         fn channel_penalty_msat(&self, _: &CandidateRouteHop, _: ChannelUsage, _score_params: &Self::ScoreParams) -> u64 {
411                 self.penalty_msat
412         }
413 }
414
415 impl ScoreUpdate for FixedPenaltyScorer {
416         fn payment_path_failed(&mut self, _path: &Path, _short_channel_id: u64, _duration_since_epoch: Duration) {}
417
418         fn payment_path_successful(&mut self, _path: &Path, _duration_since_epoch: Duration) {}
419
420         fn probe_failed(&mut self, _path: &Path, _short_channel_id: u64, _duration_since_epoch: Duration) {}
421
422         fn probe_successful(&mut self, _path: &Path, _duration_since_epoch: Duration) {}
423
424         fn decay_liquidity_certainty(&mut self, _duration_since_epoch: Duration) {}
425 }
426
427 impl Writeable for FixedPenaltyScorer {
428         #[inline]
429         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
430                 write_tlv_fields!(w, {});
431                 Ok(())
432         }
433 }
434
435 impl ReadableArgs<u64> for FixedPenaltyScorer {
436         #[inline]
437         fn read<R: Read>(r: &mut R, penalty_msat: u64) -> Result<Self, DecodeError> {
438                 read_tlv_fields!(r, {});
439                 Ok(Self { penalty_msat })
440         }
441 }
442
443 /// [`ScoreLookUp`] implementation using channel success probability distributions.
444 ///
445 /// Channels are tracked with upper and lower liquidity bounds - when an HTLC fails at a channel,
446 /// we learn that the upper-bound on the available liquidity is lower than the amount of the HTLC.
447 /// When a payment is forwarded through a channel (but fails later in the route), we learn the
448 /// lower-bound on the channel's available liquidity must be at least the value of the HTLC.
449 ///
450 /// These bounds are then used to determine a success probability using the formula from
451 /// *Optimally Reliable & Cheap Payment Flows on the Lightning Network* by Rene Pickhardt
452 /// and Stefan Richter [[1]] (i.e. `(upper_bound - payment_amount) / (upper_bound - lower_bound)`).
453 ///
454 /// This probability is combined with the [`liquidity_penalty_multiplier_msat`] and
455 /// [`liquidity_penalty_amount_multiplier_msat`] parameters to calculate a concrete penalty in
456 /// milli-satoshis. The penalties, when added across all hops, have the property of being linear in
457 /// terms of the entire path's success probability. This allows the router to directly compare
458 /// penalties for different paths. See the documentation of those parameters for the exact formulas.
459 ///
460 /// The liquidity bounds are decayed by halving them every [`liquidity_offset_half_life`].
461 ///
462 /// Further, we track the history of our upper and lower liquidity bounds for each channel,
463 /// allowing us to assign a second penalty (using [`historical_liquidity_penalty_multiplier_msat`]
464 /// and [`historical_liquidity_penalty_amount_multiplier_msat`]) based on the same probability
465 /// formula, but using the history of a channel rather than our latest estimates for the liquidity
466 /// bounds.
467 ///
468 /// [1]: https://arxiv.org/abs/2107.05322
469 /// [`liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_multiplier_msat
470 /// [`liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_amount_multiplier_msat
471 /// [`liquidity_offset_half_life`]: ProbabilisticScoringDecayParameters::liquidity_offset_half_life
472 /// [`historical_liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_multiplier_msat
473 /// [`historical_liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_amount_multiplier_msat
474 pub struct ProbabilisticScorer<G: Deref<Target = NetworkGraph<L>>, L: Deref>
475 where L::Target: Logger {
476         decay_params: ProbabilisticScoringDecayParameters,
477         network_graph: G,
478         logger: L,
479         channel_liquidities: HashMap<u64, ChannelLiquidity>,
480 }
481
482 /// Parameters for configuring [`ProbabilisticScorer`].
483 ///
484 /// Used to configure base, liquidity, and amount penalties, the sum of which comprises the channel
485 /// penalty (i.e., the amount in msats willing to be paid to avoid routing through the channel).
486 ///
487 /// The penalty applied to any channel by the [`ProbabilisticScorer`] is the sum of each of the
488 /// parameters here.
489 #[derive(Clone)]
490 pub struct ProbabilisticScoringFeeParameters {
491         /// A fixed penalty in msats to apply to each channel.
492         ///
493         /// Default value: 500 msat
494         pub base_penalty_msat: u64,
495
496         /// A multiplier used with the total amount flowing over a channel to calculate a fixed penalty
497         /// applied to each channel, in excess of the [`base_penalty_msat`].
498         ///
499         /// The purpose of the amount penalty is to avoid having fees dominate the channel cost (i.e.,
500         /// fees plus penalty) for large payments. The penalty is computed as the product of this
501         /// multiplier and `2^30`ths of the total amount flowing over a channel (i.e. the payment
502         /// amount plus the amount of any other HTLCs flowing we sent over the same channel).
503         ///
504         /// ie `base_penalty_amount_multiplier_msat * amount_msat / 2^30`
505         ///
506         /// Default value: 8,192 msat
507         ///
508         /// [`base_penalty_msat`]: Self::base_penalty_msat
509         pub base_penalty_amount_multiplier_msat: u64,
510
511         /// A multiplier used in conjunction with the negative `log10` of the channel's success
512         /// probability for a payment, as determined by our latest estimates of the channel's
513         /// liquidity, to determine the liquidity penalty.
514         ///
515         /// The penalty is based in part on the knowledge learned from prior successful and unsuccessful
516         /// payments. This knowledge is decayed over time based on [`liquidity_offset_half_life`]. The
517         /// penalty is effectively limited to `2 * liquidity_penalty_multiplier_msat` (corresponding to
518         /// lower bounding the success probability to `0.01`) when the amount falls within the
519         /// uncertainty bounds of the channel liquidity balance. Amounts above the upper bound will
520         /// result in a `u64::max_value` penalty, however.
521         ///
522         /// `-log10(success_probability) * liquidity_penalty_multiplier_msat`
523         ///
524         /// Default value: 30,000 msat
525         ///
526         /// [`liquidity_offset_half_life`]: ProbabilisticScoringDecayParameters::liquidity_offset_half_life
527         pub liquidity_penalty_multiplier_msat: u64,
528
529         /// A multiplier used in conjunction with the total amount flowing over a channel and the
530         /// negative `log10` of the channel's success probability for the payment, as determined by our
531         /// latest estimates of the channel's liquidity, to determine the amount penalty.
532         ///
533         /// The purpose of the amount penalty is to avoid having fees dominate the channel cost (i.e.,
534         /// fees plus penalty) for large payments. The penalty is computed as the product of this
535         /// multiplier and `2^20`ths of the amount flowing over this channel, weighted by the negative
536         /// `log10` of the success probability.
537         ///
538         /// `-log10(success_probability) * liquidity_penalty_amount_multiplier_msat * amount_msat / 2^20`
539         ///
540         /// In practice, this means for 0.1 success probability (`-log10(0.1) == 1`) each `2^20`th of
541         /// the amount will result in a penalty of the multiplier. And, as the success probability
542         /// decreases, the negative `log10` weighting will increase dramatically. For higher success
543         /// probabilities, the multiplier will have a decreasing effect as the negative `log10` will
544         /// fall below `1`.
545         ///
546         /// Default value: 192 msat
547         pub liquidity_penalty_amount_multiplier_msat: u64,
548
549         /// A multiplier used in conjunction with the negative `log10` of the channel's success
550         /// probability for the payment, as determined based on the history of our estimates of the
551         /// channel's available liquidity, to determine a penalty.
552         ///
553         /// This penalty is similar to [`liquidity_penalty_multiplier_msat`], however, instead of using
554         /// only our latest estimate for the current liquidity available in the channel, it estimates
555         /// success probability based on the estimated liquidity available in the channel through
556         /// history. Specifically, every time we update our liquidity bounds on a given channel, we
557         /// track which of several buckets those bounds fall into, exponentially decaying the
558         /// probability of each bucket as new samples are added.
559         ///
560         /// Default value: 10,000 msat
561         ///
562         /// [`liquidity_penalty_multiplier_msat`]: Self::liquidity_penalty_multiplier_msat
563         pub historical_liquidity_penalty_multiplier_msat: u64,
564
565         /// A multiplier used in conjunction with the total amount flowing over a channel and the
566         /// negative `log10` of the channel's success probability for the payment, as determined based
567         /// on the history of our estimates of the channel's available liquidity, to determine a
568         /// penalty.
569         ///
570         /// The purpose of the amount penalty is to avoid having fees dominate the channel cost for
571         /// large payments. The penalty is computed as the product of this multiplier and `2^20`ths
572         /// of the amount flowing over this channel, weighted by the negative `log10` of the success
573         /// probability.
574         ///
575         /// This penalty is similar to [`liquidity_penalty_amount_multiplier_msat`], however, instead
576         /// of using only our latest estimate for the current liquidity available in the channel, it
577         /// estimates success probability based on the estimated liquidity available in the channel
578         /// through history. Specifically, every time we update our liquidity bounds on a given
579         /// channel, we track which of several buckets those bounds fall into, exponentially decaying
580         /// the probability of each bucket as new samples are added.
581         ///
582         /// Default value: 64 msat
583         ///
584         /// [`liquidity_penalty_amount_multiplier_msat`]: Self::liquidity_penalty_amount_multiplier_msat
585         pub historical_liquidity_penalty_amount_multiplier_msat: u64,
586
587         /// Manual penalties used for the given nodes. Allows to set a particular penalty for a given
588         /// node. Note that a manual penalty of `u64::max_value()` means the node would not ever be
589         /// considered during path finding.
590         ///
591         /// This is not exported to bindings users
592         pub manual_node_penalties: HashMap<NodeId, u64>,
593
594         /// This penalty is applied when `htlc_maximum_msat` is equal to or larger than half of the
595         /// channel's capacity, (ie. htlc_maximum_msat >= 0.5 * channel_capacity) which makes us
596         /// prefer nodes with a smaller `htlc_maximum_msat`. We treat such nodes preferentially
597         /// as this makes balance discovery attacks harder to execute, thereby creating an incentive
598         /// to restrict `htlc_maximum_msat` and improve privacy.
599         ///
600         /// Default value: 250 msat
601         pub anti_probing_penalty_msat: u64,
602
603         /// This penalty is applied when the total amount flowing over a channel exceeds our current
604         /// estimate of the channel's available liquidity. The total amount is the amount of the
605         /// current HTLC plus any HTLCs which we've sent over the same channel.
606         ///
607         /// Note that in this case all other penalties, including the
608         /// [`liquidity_penalty_multiplier_msat`] and [`liquidity_penalty_amount_multiplier_msat`]-based
609         /// penalties, as well as the [`base_penalty_msat`] and the [`anti_probing_penalty_msat`], if
610         /// applicable, are still included in the overall penalty.
611         ///
612         /// If you wish to avoid creating paths with such channels entirely, setting this to a value of
613         /// `u64::max_value()` will guarantee that.
614         ///
615         /// Default value: 1_0000_0000_000 msat (1 Bitcoin)
616         ///
617         /// [`liquidity_penalty_multiplier_msat`]: Self::liquidity_penalty_multiplier_msat
618         /// [`liquidity_penalty_amount_multiplier_msat`]: Self::liquidity_penalty_amount_multiplier_msat
619         /// [`base_penalty_msat`]: Self::base_penalty_msat
620         /// [`anti_probing_penalty_msat`]: Self::anti_probing_penalty_msat
621         pub considered_impossible_penalty_msat: u64,
622
623         /// In order to calculate most of the scores above, we must first convert a lower and upper
624         /// bound on the available liquidity in a channel into the probability that we think a payment
625         /// will succeed. That probability is derived from a Probability Density Function for where we
626         /// think the liquidity in a channel likely lies, given such bounds.
627         ///
628         /// If this flag is set, that PDF is simply a constant - we assume that the actual available
629         /// liquidity in a channel is just as likely to be at any point between our lower and upper
630         /// bounds.
631         ///
632         /// If this flag is *not* set, that PDF is `(x - 0.5*capacity) ^ 2`. That is, we use an
633         /// exponential curve which expects the liquidity of a channel to lie "at the edges". This
634         /// matches experimental results - most routing nodes do not aggressively rebalance their
635         /// channels and flows in the network are often unbalanced, leaving liquidity usually
636         /// unavailable.
637         ///
638         /// Thus, for the "best" routes, leave this flag `false`. However, the flag does imply a number
639         /// of floating-point multiplications in the hottest routing code, which may lead to routing
640         /// performance degradation on some machines.
641         ///
642         /// Default value: false
643         pub linear_success_probability: bool,
644 }
645
646 impl Default for ProbabilisticScoringFeeParameters {
647         fn default() -> Self {
648                 Self {
649                         base_penalty_msat: 500,
650                         base_penalty_amount_multiplier_msat: 8192,
651                         liquidity_penalty_multiplier_msat: 30_000,
652                         liquidity_penalty_amount_multiplier_msat: 192,
653                         manual_node_penalties: HashMap::new(),
654                         anti_probing_penalty_msat: 250,
655                         considered_impossible_penalty_msat: 1_0000_0000_000,
656                         historical_liquidity_penalty_multiplier_msat: 10_000,
657                         historical_liquidity_penalty_amount_multiplier_msat: 64,
658                         linear_success_probability: false,
659                 }
660         }
661 }
662
663 impl ProbabilisticScoringFeeParameters {
664         /// Marks the node with the given `node_id` as banned,
665         /// i.e it will be avoided during path finding.
666         pub fn add_banned(&mut self, node_id: &NodeId) {
667                 self.manual_node_penalties.insert(*node_id, u64::max_value());
668         }
669
670         /// Marks all nodes in the given list as banned, i.e.,
671         /// they will be avoided during path finding.
672         pub fn add_banned_from_list(&mut self, node_ids: Vec<NodeId>) {
673                 for id in node_ids {
674                         self.manual_node_penalties.insert(id, u64::max_value());
675                 }
676         }
677
678         /// Removes the node with the given `node_id` from the list of nodes to avoid.
679         pub fn remove_banned(&mut self, node_id: &NodeId) {
680                 self.manual_node_penalties.remove(node_id);
681         }
682
683         /// Sets a manual penalty for the given node.
684         pub fn set_manual_penalty(&mut self, node_id: &NodeId, penalty: u64) {
685                 self.manual_node_penalties.insert(*node_id, penalty);
686         }
687
688         /// Removes the node with the given `node_id` from the list of manual penalties.
689         pub fn remove_manual_penalty(&mut self, node_id: &NodeId) {
690                 self.manual_node_penalties.remove(node_id);
691         }
692
693         /// Clears the list of manual penalties that are applied during path finding.
694         pub fn clear_manual_penalties(&mut self) {
695                 self.manual_node_penalties = HashMap::new();
696         }
697 }
698
699 #[cfg(test)]
700 impl ProbabilisticScoringFeeParameters {
701         fn zero_penalty() -> Self {
702                 Self {
703                         base_penalty_msat: 0,
704                         base_penalty_amount_multiplier_msat: 0,
705                         liquidity_penalty_multiplier_msat: 0,
706                         liquidity_penalty_amount_multiplier_msat: 0,
707                         historical_liquidity_penalty_multiplier_msat: 0,
708                         historical_liquidity_penalty_amount_multiplier_msat: 0,
709                         manual_node_penalties: HashMap::new(),
710                         anti_probing_penalty_msat: 0,
711                         considered_impossible_penalty_msat: 0,
712                         linear_success_probability: true,
713                 }
714         }
715 }
716
717 /// Parameters for configuring [`ProbabilisticScorer`].
718 ///
719 /// Used to configure decay parameters that are static throughout the lifetime of the scorer.
720 /// these decay parameters affect the score of the channel penalty and are not changed on a
721 /// per-route penalty cost call.
722 #[derive(Copy, Clone)]
723 pub struct ProbabilisticScoringDecayParameters {
724         /// If we aren't learning any new datapoints for a channel, the historical liquidity bounds
725         /// tracking can simply live on with increasingly stale data. Instead, when a channel has not
726         /// seen a liquidity estimate update for this amount of time, the historical datapoints are
727         /// decayed by half.
728         /// For an example of historical_no_updates_half_life being used see [`historical_estimated_channel_liquidity_probabilities`]
729         ///
730         /// Note that after 16 or more half lives all historical data will be completely gone.
731         ///
732         /// Default value: 14 days
733         ///
734         /// [`historical_estimated_channel_liquidity_probabilities`]: ProbabilisticScorer::historical_estimated_channel_liquidity_probabilities
735         pub historical_no_updates_half_life: Duration,
736
737         /// Whenever this amount of time elapses since the last update to a channel's liquidity bounds,
738         /// the distance from the bounds to "zero" is cut in half. In other words, the lower-bound on
739         /// the available liquidity is halved and the upper-bound moves half-way to the channel's total
740         /// capacity.
741         ///
742         /// Because halving the liquidity bounds grows the uncertainty on the channel's liquidity,
743         /// the penalty for an amount within the new bounds may change. See the [`ProbabilisticScorer`]
744         /// struct documentation for more info on the way the liquidity bounds are used.
745         ///
746         /// For example, if the channel's capacity is 1 million sats, and the current upper and lower
747         /// liquidity bounds are 200,000 sats and 600,000 sats, after this amount of time the upper
748         /// and lower liquidity bounds will be decayed to 100,000 and 800,000 sats.
749         ///
750         /// Default value: 6 hours
751         ///
752         /// # Note
753         ///
754         /// When built with the `no-std` feature, time will never elapse. Therefore, the channel
755         /// liquidity knowledge will never decay except when the bounds cross.
756         pub liquidity_offset_half_life: Duration,
757 }
758
759 impl Default for ProbabilisticScoringDecayParameters {
760         fn default() -> Self {
761                 Self {
762                         liquidity_offset_half_life: Duration::from_secs(6 * 60 * 60),
763                         historical_no_updates_half_life: Duration::from_secs(60 * 60 * 24 * 14),
764                 }
765         }
766 }
767
768 #[cfg(test)]
769 impl ProbabilisticScoringDecayParameters {
770         fn zero_penalty() -> Self {
771                 Self {
772                         liquidity_offset_half_life: Duration::from_secs(6 * 60 * 60),
773                         historical_no_updates_half_life: Duration::from_secs(60 * 60 * 24 * 14),
774                 }
775         }
776 }
777
778 /// Accounting for channel liquidity balance uncertainty.
779 ///
780 /// Direction is defined in terms of [`NodeId`] partial ordering, where the source node is the
781 /// first node in the ordering of the channel's counterparties. Thus, swapping the two liquidity
782 /// offset fields gives the opposite direction.
783 struct ChannelLiquidity {
784         /// Lower channel liquidity bound in terms of an offset from zero.
785         min_liquidity_offset_msat: u64,
786
787         /// Upper channel liquidity bound in terms of an offset from the effective capacity.
788         max_liquidity_offset_msat: u64,
789
790         liquidity_history: HistoricalLiquidityTracker,
791
792         /// Time when the liquidity bounds were last modified as an offset since the unix epoch.
793         last_updated: Duration,
794
795         /// Time when the historical liquidity bounds were last modified as an offset against the unix
796         /// epoch.
797         offset_history_last_updated: Duration,
798 }
799
800 /// A snapshot of [`ChannelLiquidity`] in one direction assuming a certain channel capacity and
801 /// decayed with a given half life.
802 struct DirectedChannelLiquidity<L: Deref<Target = u64>, BRT: Deref<Target = HistoricalBucketRangeTracker>, T: Deref<Target = Duration>> {
803         min_liquidity_offset_msat: L,
804         max_liquidity_offset_msat: L,
805         liquidity_history: HistoricalMinMaxBuckets<BRT>,
806         capacity_msat: u64,
807         last_updated: T,
808         offset_history_last_updated: T,
809 }
810
811 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ProbabilisticScorer<G, L> where L::Target: Logger {
812         /// Creates a new scorer using the given scoring parameters for sending payments from a node
813         /// through a network graph.
814         pub fn new(decay_params: ProbabilisticScoringDecayParameters, network_graph: G, logger: L) -> Self {
815                 Self {
816                         decay_params,
817                         network_graph,
818                         logger,
819                         channel_liquidities: HashMap::new(),
820                 }
821         }
822
823         #[cfg(test)]
824         fn with_channel(mut self, short_channel_id: u64, liquidity: ChannelLiquidity) -> Self {
825                 assert!(self.channel_liquidities.insert(short_channel_id, liquidity).is_none());
826                 self
827         }
828
829         /// Dump the contents of this scorer into the configured logger.
830         ///
831         /// Note that this writes roughly one line per channel for which we have a liquidity estimate,
832         /// which may be a substantial amount of log output.
833         pub fn debug_log_liquidity_stats(&self) {
834                 let graph = self.network_graph.read_only();
835                 for (scid, liq) in self.channel_liquidities.iter() {
836                         if let Some(chan_debug) = graph.channels().get(scid) {
837                                 let log_direction = |source, target| {
838                                         if let Some((directed_info, _)) = chan_debug.as_directed_to(target) {
839                                                 let amt = directed_info.effective_capacity().as_msat();
840                                                 let dir_liq = liq.as_directed(source, target, amt);
841
842                                                 let min_buckets = &dir_liq.liquidity_history.min_liquidity_offset_history.buckets;
843                                                 let max_buckets = &dir_liq.liquidity_history.max_liquidity_offset_history.buckets;
844
845                                                 log_debug!(self.logger, core::concat!(
846                                                         "Liquidity from {} to {} via {} is in the range ({}, {}).\n",
847                                                         "\tHistorical min liquidity bucket relative probabilities:\n",
848                                                         "\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\n",
849                                                         "\tHistorical max liquidity bucket relative probabilities:\n",
850                                                         "\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}"),
851                                                         source, target, scid, dir_liq.min_liquidity_msat(), dir_liq.max_liquidity_msat(),
852                                                         min_buckets[ 0], min_buckets[ 1], min_buckets[ 2], min_buckets[ 3],
853                                                         min_buckets[ 4], min_buckets[ 5], min_buckets[ 6], min_buckets[ 7],
854                                                         min_buckets[ 8], min_buckets[ 9], min_buckets[10], min_buckets[11],
855                                                         min_buckets[12], min_buckets[13], min_buckets[14], min_buckets[15],
856                                                         min_buckets[16], min_buckets[17], min_buckets[18], min_buckets[19],
857                                                         min_buckets[20], min_buckets[21], min_buckets[22], min_buckets[23],
858                                                         min_buckets[24], min_buckets[25], min_buckets[26], min_buckets[27],
859                                                         min_buckets[28], min_buckets[29], min_buckets[30], min_buckets[31],
860                                                         // Note that the liquidity buckets are an offset from the edge, so we
861                                                         // inverse the max order to get the probabilities from zero.
862                                                         max_buckets[31], max_buckets[30], max_buckets[29], max_buckets[28],
863                                                         max_buckets[27], max_buckets[26], max_buckets[25], max_buckets[24],
864                                                         max_buckets[23], max_buckets[22], max_buckets[21], max_buckets[20],
865                                                         max_buckets[19], max_buckets[18], max_buckets[17], max_buckets[16],
866                                                         max_buckets[15], max_buckets[14], max_buckets[13], max_buckets[12],
867                                                         max_buckets[11], max_buckets[10], max_buckets[ 9], max_buckets[ 8],
868                                                         max_buckets[ 7], max_buckets[ 6], max_buckets[ 5], max_buckets[ 4],
869                                                         max_buckets[ 3], max_buckets[ 2], max_buckets[ 1], max_buckets[ 0]);
870                                         } else {
871                                                 log_debug!(self.logger, "No amount known for SCID {} from {:?} to {:?}", scid, source, target);
872                                         }
873                                 };
874
875                                 log_direction(&chan_debug.node_one, &chan_debug.node_two);
876                                 log_direction(&chan_debug.node_two, &chan_debug.node_one);
877                         } else {
878                                 log_debug!(self.logger, "No network graph entry for SCID {}", scid);
879                         }
880                 }
881         }
882
883         /// Query the estimated minimum and maximum liquidity available for sending a payment over the
884         /// channel with `scid` towards the given `target` node.
885         pub fn estimated_channel_liquidity_range(&self, scid: u64, target: &NodeId) -> Option<(u64, u64)> {
886                 let graph = self.network_graph.read_only();
887
888                 if let Some(chan) = graph.channels().get(&scid) {
889                         if let Some(liq) = self.channel_liquidities.get(&scid) {
890                                 if let Some((directed_info, source)) = chan.as_directed_to(target) {
891                                         let amt = directed_info.effective_capacity().as_msat();
892                                         let dir_liq = liq.as_directed(source, target, amt);
893                                         return Some((dir_liq.min_liquidity_msat(), dir_liq.max_liquidity_msat()));
894                                 }
895                         }
896                 }
897                 None
898         }
899
900         /// Query the historical estimated minimum and maximum liquidity available for sending a
901         /// payment over the channel with `scid` towards the given `target` node.
902         ///
903         /// Returns two sets of 32 buckets. The first set describes the lower-bound liquidity history,
904         /// the second set describes the upper-bound liquidity history. Each bucket describes the
905         /// relative frequency at which we've seen a liquidity bound in the bucket's range relative to
906         /// the channel's total capacity, on an arbitrary scale. Because the values are slowly decayed,
907         /// more recent data points are weighted more heavily than older datapoints.
908         ///
909         /// Note that the range of each bucket varies by its location to provide more granular results
910         /// at the edges of a channel's capacity, where it is more likely to sit.
911         ///
912         /// When scoring, the estimated probability that an upper-/lower-bound lies in a given bucket
913         /// is calculated by dividing that bucket's value with the total value of all buckets.
914         ///
915         /// For example, using a lower bucket count for illustrative purposes, a value of
916         /// `[0, 0, 0, ..., 0, 32]` indicates that we believe the probability of a bound being very
917         /// close to the channel's capacity to be 100%, and have never (recently) seen it in any other
918         /// bucket. A value of `[31, 0, 0, ..., 0, 0, 32]` indicates we've seen the bound being both
919         /// in the top and bottom bucket, and roughly with similar (recent) frequency.
920         ///
921         /// Because the datapoints are decayed slowly over time, values will eventually return to
922         /// `Some(([0; 32], [0; 32]))` or `None` if no data remains for a channel.
923         ///
924         /// In order to fetch a single success probability from the buckets provided here, as used in
925         /// the scoring model, see [`Self::historical_estimated_payment_success_probability`].
926         pub fn historical_estimated_channel_liquidity_probabilities(&self, scid: u64, target: &NodeId)
927         -> Option<([u16; 32], [u16; 32])> {
928                 let graph = self.network_graph.read_only();
929
930                 if let Some(chan) = graph.channels().get(&scid) {
931                         if let Some(liq) = self.channel_liquidities.get(&scid) {
932                                 if let Some((directed_info, source)) = chan.as_directed_to(target) {
933                                         let amt = directed_info.effective_capacity().as_msat();
934                                         let dir_liq = liq.as_directed(source, target, amt);
935
936                                         let min_buckets = dir_liq.liquidity_history.min_liquidity_offset_history.buckets;
937                                         let mut max_buckets = dir_liq.liquidity_history.max_liquidity_offset_history.buckets;
938
939                                         // Note that the liquidity buckets are an offset from the edge, so we inverse
940                                         // the max order to get the probabilities from zero.
941                                         max_buckets.reverse();
942                                         return Some((min_buckets, max_buckets));
943                                 }
944                         }
945                 }
946                 None
947         }
948
949         /// Query the probability of payment success sending the given `amount_msat` over the channel
950         /// with `scid` towards the given `target` node, based on the historical estimated liquidity
951         /// bounds.
952         ///
953         /// These are the same bounds as returned by
954         /// [`Self::historical_estimated_channel_liquidity_probabilities`] (but not those returned by
955         /// [`Self::estimated_channel_liquidity_range`]).
956         pub fn historical_estimated_payment_success_probability(
957                 &self, scid: u64, target: &NodeId, amount_msat: u64, params: &ProbabilisticScoringFeeParameters)
958         -> Option<f64> {
959                 let graph = self.network_graph.read_only();
960
961                 if let Some(chan) = graph.channels().get(&scid) {
962                         if let Some(liq) = self.channel_liquidities.get(&scid) {
963                                 if let Some((directed_info, source)) = chan.as_directed_to(target) {
964                                         let capacity_msat = directed_info.effective_capacity().as_msat();
965                                         let dir_liq = liq.as_directed(source, target, capacity_msat);
966
967                                         return dir_liq.liquidity_history.calculate_success_probability_times_billion(
968                                                 &params, amount_msat, capacity_msat
969                                         ).map(|p| p as f64 / (1024 * 1024 * 1024) as f64);
970                                 }
971                         }
972                 }
973                 None
974         }
975 }
976
977 impl ChannelLiquidity {
978         fn new(last_updated: Duration) -> Self {
979                 Self {
980                         min_liquidity_offset_msat: 0,
981                         max_liquidity_offset_msat: 0,
982                         liquidity_history: HistoricalLiquidityTracker::new(),
983                         last_updated,
984                         offset_history_last_updated: last_updated,
985                 }
986         }
987
988         /// Returns a view of the channel liquidity directed from `source` to `target` assuming
989         /// `capacity_msat`.
990         fn as_directed(
991                 &self, source: &NodeId, target: &NodeId, capacity_msat: u64,
992         ) -> DirectedChannelLiquidity<&u64, &HistoricalBucketRangeTracker, &Duration> {
993                 let source_less_than_target = source < target;
994                 let (min_liquidity_offset_msat, max_liquidity_offset_msat) =
995                         if source_less_than_target {
996                                 (&self.min_liquidity_offset_msat, &self.max_liquidity_offset_msat)
997                         } else {
998                                 (&self.max_liquidity_offset_msat, &self.min_liquidity_offset_msat)
999                         };
1000
1001                 DirectedChannelLiquidity {
1002                         min_liquidity_offset_msat,
1003                         max_liquidity_offset_msat,
1004                         liquidity_history: self.liquidity_history.as_directed(source_less_than_target),
1005                         capacity_msat,
1006                         last_updated: &self.last_updated,
1007                         offset_history_last_updated: &self.offset_history_last_updated,
1008                 }
1009         }
1010
1011         /// Returns a mutable view of the channel liquidity directed from `source` to `target` assuming
1012         /// `capacity_msat`.
1013         fn as_directed_mut(
1014                 &mut self, source: &NodeId, target: &NodeId, capacity_msat: u64,
1015         ) -> DirectedChannelLiquidity<&mut u64, &mut HistoricalBucketRangeTracker, &mut Duration> {
1016                 let source_less_than_target = source < target;
1017                 let (min_liquidity_offset_msat, max_liquidity_offset_msat) =
1018                         if source_less_than_target {
1019                                 (&mut self.min_liquidity_offset_msat, &mut self.max_liquidity_offset_msat)
1020                         } else {
1021                                 (&mut self.max_liquidity_offset_msat, &mut self.min_liquidity_offset_msat)
1022                         };
1023
1024                 DirectedChannelLiquidity {
1025                         min_liquidity_offset_msat,
1026                         max_liquidity_offset_msat,
1027                         liquidity_history: self.liquidity_history.as_directed_mut(source_less_than_target),
1028                         capacity_msat,
1029                         last_updated: &mut self.last_updated,
1030                         offset_history_last_updated: &mut self.offset_history_last_updated,
1031                 }
1032         }
1033
1034         fn decayed_offset(&self, offset: u64, duration_since_epoch: Duration,
1035                 decay_params: ProbabilisticScoringDecayParameters
1036         ) -> u64 {
1037                 let half_life = decay_params.liquidity_offset_half_life.as_secs_f64();
1038                 if half_life != 0.0 {
1039                         let elapsed_time = duration_since_epoch.saturating_sub(self.last_updated).as_secs_f64();
1040                         ((offset as f64) * powf64(0.5, elapsed_time / half_life)) as u64
1041                 } else {
1042                         0
1043                 }
1044         }
1045 }
1046
1047 /// Bounds `-log10` to avoid excessive liquidity penalties for payments with low success
1048 /// probabilities.
1049 const NEGATIVE_LOG10_UPPER_BOUND: u64 = 2;
1050
1051 /// The rough cutoff at which our precision falls off and we should stop bothering to try to log a
1052 /// ratio, as X in 1/X.
1053 const PRECISION_LOWER_BOUND_DENOMINATOR: u64 = log_approx::LOWER_BITS_BOUND;
1054
1055 /// The divisor used when computing the amount penalty.
1056 const AMOUNT_PENALTY_DIVISOR: u64 = 1 << 20;
1057 const BASE_AMOUNT_PENALTY_DIVISOR: u64 = 1 << 30;
1058
1059 /// Raises three `f64`s to the 3rd power, without `powi` because it requires `std` (dunno why).
1060 #[inline(always)]
1061 fn three_f64_pow_3(a: f64, b: f64, c: f64) -> (f64, f64, f64) {
1062         (a * a * a, b * b * b, c * c * c)
1063 }
1064
1065 /// Given liquidity bounds, calculates the success probability (in the form of a numerator and
1066 /// denominator) of an HTLC. This is a key assumption in our scoring models.
1067 ///
1068 /// Must not return a numerator or denominator greater than 2^31 for arguments less than 2^31.
1069 ///
1070 /// min_zero_implies_no_successes signals that a `min_liquidity_msat` of 0 means we've not
1071 /// (recently) seen an HTLC successfully complete over this channel.
1072 #[inline(always)]
1073 fn success_probability(
1074         amount_msat: u64, min_liquidity_msat: u64, max_liquidity_msat: u64, capacity_msat: u64,
1075         params: &ProbabilisticScoringFeeParameters, min_zero_implies_no_successes: bool,
1076 ) -> (u64, u64) {
1077         debug_assert!(min_liquidity_msat <= amount_msat);
1078         debug_assert!(amount_msat < max_liquidity_msat);
1079         debug_assert!(max_liquidity_msat <= capacity_msat);
1080
1081         let (numerator, mut denominator) =
1082                 if params.linear_success_probability {
1083                         (max_liquidity_msat - amount_msat,
1084                                 (max_liquidity_msat - min_liquidity_msat).saturating_add(1))
1085                 } else {
1086                         let capacity = capacity_msat as f64;
1087                         let min = (min_liquidity_msat as f64) / capacity;
1088                         let max = (max_liquidity_msat as f64) / capacity;
1089                         let amount = (amount_msat as f64) / capacity;
1090
1091                         // Assume the channel has a probability density function of (x - 0.5)^2 for values from
1092                         // 0 to 1 (where 1 is the channel's full capacity). The success probability given some
1093                         // liquidity bounds is thus the integral under the curve from the amount to maximum
1094                         // estimated liquidity, divided by the same integral from the minimum to the maximum
1095                         // estimated liquidity bounds.
1096                         //
1097                         // Because the integral from x to y is simply (y - 0.5)^3 - (x - 0.5)^3, we can
1098                         // calculate the cumulative density function between the min/max bounds trivially. Note
1099                         // that we don't bother to normalize the CDF to total to 1, as it will come out in the
1100                         // division of num / den.
1101                         let (max_pow, amt_pow, min_pow) = three_f64_pow_3(max - 0.5, amount - 0.5, min - 0.5);
1102                         let num = max_pow - amt_pow;
1103                         let den = max_pow - min_pow;
1104
1105                         // Because our numerator and denominator max out at 0.5^3 we need to multiply them by
1106                         // quite a large factor to get something useful (ideally in the 2^30 range).
1107                         const BILLIONISH: f64 = 1024.0 * 1024.0 * 1024.0;
1108                         let numerator = (num * BILLIONISH) as u64 + 1;
1109                         let denominator = (den * BILLIONISH) as u64 + 1;
1110                         debug_assert!(numerator <= 1 << 30, "Got large numerator ({}) from float {}.", numerator, num);
1111                         debug_assert!(denominator <= 1 << 30, "Got large denominator ({}) from float {}.", denominator, den);
1112                         (numerator, denominator)
1113                 };
1114
1115         if min_zero_implies_no_successes && min_liquidity_msat == 0 &&
1116                 denominator < u64::max_value() / 21
1117         {
1118                 // If we have no knowledge of the channel, scale probability down by ~75%
1119                 // Note that we prefer to increase the denominator rather than decrease the numerator as
1120                 // the denominator is more likely to be larger and thus provide greater precision. This is
1121                 // mostly an overoptimization but makes a large difference in tests.
1122                 denominator = denominator * 21 / 16
1123         }
1124
1125         (numerator, denominator)
1126 }
1127
1128 impl<L: Deref<Target = u64>, BRT: Deref<Target = HistoricalBucketRangeTracker>, T: Deref<Target = Duration>>
1129 DirectedChannelLiquidity< L, BRT, T> {
1130         /// Returns a liquidity penalty for routing the given HTLC `amount_msat` through the channel in
1131         /// this direction.
1132         fn penalty_msat(&self, amount_msat: u64, score_params: &ProbabilisticScoringFeeParameters) -> u64 {
1133                 let available_capacity = self.capacity_msat;
1134                 let max_liquidity_msat = self.max_liquidity_msat();
1135                 let min_liquidity_msat = core::cmp::min(self.min_liquidity_msat(), max_liquidity_msat);
1136
1137                 let mut res = if amount_msat <= min_liquidity_msat {
1138                         0
1139                 } else if amount_msat >= max_liquidity_msat {
1140                         // Equivalent to hitting the else clause below with the amount equal to the effective
1141                         // capacity and without any certainty on the liquidity upper bound, plus the
1142                         // impossibility penalty.
1143                         let negative_log10_times_2048 = NEGATIVE_LOG10_UPPER_BOUND * 2048;
1144                         Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
1145                                         score_params.liquidity_penalty_multiplier_msat,
1146                                         score_params.liquidity_penalty_amount_multiplier_msat)
1147                                 .saturating_add(score_params.considered_impossible_penalty_msat)
1148                 } else {
1149                         let (numerator, denominator) = success_probability(amount_msat,
1150                                 min_liquidity_msat, max_liquidity_msat, available_capacity, score_params, false);
1151                         if denominator - numerator < denominator / PRECISION_LOWER_BOUND_DENOMINATOR {
1152                                 // If the failure probability is < 1.5625% (as 1 - numerator/denominator < 1/64),
1153                                 // don't bother trying to use the log approximation as it gets too noisy to be
1154                                 // particularly helpful, instead just round down to 0.
1155                                 0
1156                         } else {
1157                                 let negative_log10_times_2048 =
1158                                         log_approx::negative_log10_times_2048(numerator, denominator);
1159                                 Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
1160                                         score_params.liquidity_penalty_multiplier_msat,
1161                                         score_params.liquidity_penalty_amount_multiplier_msat)
1162                         }
1163                 };
1164
1165                 if amount_msat >= available_capacity {
1166                         // We're trying to send more than the capacity, use a max penalty.
1167                         res = res.saturating_add(Self::combined_penalty_msat(amount_msat,
1168                                 NEGATIVE_LOG10_UPPER_BOUND * 2048,
1169                                 score_params.historical_liquidity_penalty_multiplier_msat,
1170                                 score_params.historical_liquidity_penalty_amount_multiplier_msat));
1171                         return res;
1172                 }
1173
1174                 if score_params.historical_liquidity_penalty_multiplier_msat != 0 ||
1175                    score_params.historical_liquidity_penalty_amount_multiplier_msat != 0 {
1176                         if let Some(cumulative_success_prob_times_billion) = self.liquidity_history
1177                                 .calculate_success_probability_times_billion(
1178                                         score_params, amount_msat, self.capacity_msat)
1179                         {
1180                                 let historical_negative_log10_times_2048 =
1181                                         log_approx::negative_log10_times_2048(cumulative_success_prob_times_billion + 1, 1024 * 1024 * 1024);
1182                                 res = res.saturating_add(Self::combined_penalty_msat(amount_msat,
1183                                         historical_negative_log10_times_2048, score_params.historical_liquidity_penalty_multiplier_msat,
1184                                         score_params.historical_liquidity_penalty_amount_multiplier_msat));
1185                         } else {
1186                                 // If we don't have any valid points (or, once decayed, we have less than a full
1187                                 // point), redo the non-historical calculation with no liquidity bounds tracked and
1188                                 // the historical penalty multipliers.
1189                                 let (numerator, denominator) = success_probability(amount_msat, 0,
1190                                         available_capacity, available_capacity, score_params, true);
1191                                 let negative_log10_times_2048 =
1192                                         log_approx::negative_log10_times_2048(numerator, denominator);
1193                                 res = res.saturating_add(Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
1194                                         score_params.historical_liquidity_penalty_multiplier_msat,
1195                                         score_params.historical_liquidity_penalty_amount_multiplier_msat));
1196                         }
1197                 }
1198
1199                 res
1200         }
1201
1202         /// Computes the liquidity penalty from the penalty multipliers.
1203         #[inline(always)]
1204         fn combined_penalty_msat(amount_msat: u64, mut negative_log10_times_2048: u64,
1205                 liquidity_penalty_multiplier_msat: u64, liquidity_penalty_amount_multiplier_msat: u64,
1206         ) -> u64 {
1207                 negative_log10_times_2048 =
1208                         negative_log10_times_2048.min(NEGATIVE_LOG10_UPPER_BOUND * 2048);
1209
1210                 // Upper bound the liquidity penalty to ensure some channel is selected.
1211                 let liquidity_penalty_msat = negative_log10_times_2048
1212                         .saturating_mul(liquidity_penalty_multiplier_msat) / 2048;
1213                 let amount_penalty_msat = negative_log10_times_2048
1214                         .saturating_mul(liquidity_penalty_amount_multiplier_msat)
1215                         .saturating_mul(amount_msat) / 2048 / AMOUNT_PENALTY_DIVISOR;
1216
1217                 liquidity_penalty_msat.saturating_add(amount_penalty_msat)
1218         }
1219
1220         /// Returns the lower bound of the channel liquidity balance in this direction.
1221         #[inline(always)]
1222         fn min_liquidity_msat(&self) -> u64 {
1223                 *self.min_liquidity_offset_msat
1224         }
1225
1226         /// Returns the upper bound of the channel liquidity balance in this direction.
1227         #[inline(always)]
1228         fn max_liquidity_msat(&self) -> u64 {
1229                 self.capacity_msat
1230                         .saturating_sub(*self.max_liquidity_offset_msat)
1231         }
1232 }
1233
1234 impl<L: DerefMut<Target = u64>, BRT: DerefMut<Target = HistoricalBucketRangeTracker>, T: DerefMut<Target = Duration>>
1235 DirectedChannelLiquidity<L, BRT, T> {
1236         /// Adjusts the channel liquidity balance bounds when failing to route `amount_msat`.
1237         fn failed_at_channel<Log: Deref>(
1238                 &mut self, amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
1239         ) where Log::Target: Logger {
1240                 let existing_max_msat = self.max_liquidity_msat();
1241                 if amount_msat < existing_max_msat {
1242                         log_debug!(logger, "Setting max liquidity of {} from {} to {}", chan_descr, existing_max_msat, amount_msat);
1243                         self.set_max_liquidity_msat(amount_msat, duration_since_epoch);
1244                 } else {
1245                         log_trace!(logger, "Max liquidity of {} is {} (already less than or equal to {})",
1246                                 chan_descr, existing_max_msat, amount_msat);
1247                 }
1248                 self.update_history_buckets(0, duration_since_epoch);
1249         }
1250
1251         /// Adjusts the channel liquidity balance bounds when failing to route `amount_msat` downstream.
1252         fn failed_downstream<Log: Deref>(
1253                 &mut self, amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
1254         ) where Log::Target: Logger {
1255                 let existing_min_msat = self.min_liquidity_msat();
1256                 if amount_msat > existing_min_msat {
1257                         log_debug!(logger, "Setting min liquidity of {} from {} to {}", existing_min_msat, chan_descr, amount_msat);
1258                         self.set_min_liquidity_msat(amount_msat, duration_since_epoch);
1259                 } else {
1260                         log_trace!(logger, "Min liquidity of {} is {} (already greater than or equal to {})",
1261                                 chan_descr, existing_min_msat, amount_msat);
1262                 }
1263                 self.update_history_buckets(0, duration_since_epoch);
1264         }
1265
1266         /// Adjusts the channel liquidity balance bounds when successfully routing `amount_msat`.
1267         fn successful<Log: Deref>(&mut self,
1268                 amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
1269         ) where Log::Target: Logger {
1270                 let max_liquidity_msat = self.max_liquidity_msat().checked_sub(amount_msat).unwrap_or(0);
1271                 log_debug!(logger, "Subtracting {} from max liquidity of {} (setting it to {})", amount_msat, chan_descr, max_liquidity_msat);
1272                 self.set_max_liquidity_msat(max_liquidity_msat, duration_since_epoch);
1273                 self.update_history_buckets(amount_msat, duration_since_epoch);
1274         }
1275
1276         /// Updates the history buckets for this channel. Because the history buckets track what we now
1277         /// know about the channel's state *prior to our payment* (i.e. what we assume is "steady
1278         /// state"), we allow the caller to set an offset applied to our liquidity bounds which
1279         /// represents the amount of the successful payment we just made.
1280         fn update_history_buckets(&mut self, bucket_offset_msat: u64, duration_since_epoch: Duration) {
1281                 self.liquidity_history.min_liquidity_offset_history.track_datapoint(
1282                         *self.min_liquidity_offset_msat + bucket_offset_msat, self.capacity_msat
1283                 );
1284                 self.liquidity_history.max_liquidity_offset_history.track_datapoint(
1285                         self.max_liquidity_offset_msat.saturating_sub(bucket_offset_msat), self.capacity_msat
1286                 );
1287                 *self.offset_history_last_updated = duration_since_epoch;
1288         }
1289
1290         /// Adjusts the lower bound of the channel liquidity balance in this direction.
1291         fn set_min_liquidity_msat(&mut self, amount_msat: u64, duration_since_epoch: Duration) {
1292                 *self.min_liquidity_offset_msat = amount_msat;
1293                 if amount_msat > self.max_liquidity_msat() {
1294                         *self.max_liquidity_offset_msat = 0;
1295                 }
1296                 *self.last_updated = duration_since_epoch;
1297         }
1298
1299         /// Adjusts the upper bound of the channel liquidity balance in this direction.
1300         fn set_max_liquidity_msat(&mut self, amount_msat: u64, duration_since_epoch: Duration) {
1301                 *self.max_liquidity_offset_msat = self.capacity_msat.checked_sub(amount_msat).unwrap_or(0);
1302                 if amount_msat < *self.min_liquidity_offset_msat {
1303                         *self.min_liquidity_offset_msat = 0;
1304                 }
1305                 *self.last_updated = duration_since_epoch;
1306         }
1307 }
1308
1309 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ScoreLookUp for ProbabilisticScorer<G, L> where L::Target: Logger {
1310         type ScoreParams = ProbabilisticScoringFeeParameters;
1311         fn channel_penalty_msat(
1312                 &self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &ProbabilisticScoringFeeParameters
1313         ) -> u64 {
1314                 let (scid, target) = match candidate {
1315                         CandidateRouteHop::PublicHop { info, short_channel_id } => {
1316                                 (short_channel_id, info.target())
1317                         },
1318                         _ => return 0,
1319                 };
1320                 let source = candidate.source();
1321                 if let Some(penalty) = score_params.manual_node_penalties.get(&target) {
1322                         return *penalty;
1323                 }
1324
1325                 let base_penalty_msat = score_params.base_penalty_msat.saturating_add(
1326                         score_params.base_penalty_amount_multiplier_msat
1327                                 .saturating_mul(usage.amount_msat) / BASE_AMOUNT_PENALTY_DIVISOR);
1328
1329                 let mut anti_probing_penalty_msat = 0;
1330                 match usage.effective_capacity {
1331                         EffectiveCapacity::ExactLiquidity { liquidity_msat: amount_msat } |
1332                                 EffectiveCapacity::HintMaxHTLC { amount_msat } =>
1333                         {
1334                                 if usage.amount_msat > amount_msat {
1335                                         return u64::max_value();
1336                                 } else {
1337                                         return base_penalty_msat;
1338                                 }
1339                         },
1340                         EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat } => {
1341                                 if htlc_maximum_msat >= capacity_msat/2 {
1342                                         anti_probing_penalty_msat = score_params.anti_probing_penalty_msat;
1343                                 }
1344                         },
1345                         _ => {},
1346                 }
1347
1348                 let amount_msat = usage.amount_msat.saturating_add(usage.inflight_htlc_msat);
1349                 let capacity_msat = usage.effective_capacity.as_msat();
1350                 self.channel_liquidities
1351                         .get(&scid)
1352                         .unwrap_or(&ChannelLiquidity::new(Duration::ZERO))
1353                         .as_directed(&source, &target, capacity_msat)
1354                         .penalty_msat(amount_msat, score_params)
1355                         .saturating_add(anti_probing_penalty_msat)
1356                         .saturating_add(base_penalty_msat)
1357         }
1358 }
1359
1360 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ScoreUpdate for ProbabilisticScorer<G, L> where L::Target: Logger {
1361         fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
1362                 let amount_msat = path.final_value_msat();
1363                 log_trace!(self.logger, "Scoring path through to SCID {} as having failed at {} msat", short_channel_id, amount_msat);
1364                 let network_graph = self.network_graph.read_only();
1365                 for (hop_idx, hop) in path.hops.iter().enumerate() {
1366                         let target = NodeId::from_pubkey(&hop.pubkey);
1367                         let channel_directed_from_source = network_graph.channels()
1368                                 .get(&hop.short_channel_id)
1369                                 .and_then(|channel| channel.as_directed_to(&target));
1370
1371                         let at_failed_channel = hop.short_channel_id == short_channel_id;
1372                         if at_failed_channel && hop_idx == 0 {
1373                                 log_warn!(self.logger, "Payment failed at the first hop - we do not attempt to learn channel info in such cases as we can directly observe local state.\n\tBecause we know the local state, we should generally not see failures here - this may be an indication that your channel peer on channel {} is broken and you may wish to close the channel.", hop.short_channel_id);
1374                         }
1375
1376                         // Only score announced channels.
1377                         if let Some((channel, source)) = channel_directed_from_source {
1378                                 let capacity_msat = channel.effective_capacity().as_msat();
1379                                 if at_failed_channel {
1380                                         self.channel_liquidities
1381                                                 .entry(hop.short_channel_id)
1382                                                 .or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
1383                                                 .as_directed_mut(source, &target, capacity_msat)
1384                                                 .failed_at_channel(amount_msat, duration_since_epoch,
1385                                                         format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
1386                                 } else {
1387                                         self.channel_liquidities
1388                                                 .entry(hop.short_channel_id)
1389                                                 .or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
1390                                                 .as_directed_mut(source, &target, capacity_msat)
1391                                                 .failed_downstream(amount_msat, duration_since_epoch,
1392                                                         format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
1393                                 }
1394                         } else {
1395                                 log_debug!(self.logger, "Not able to penalize channel with SCID {} as we do not have graph info for it (likely a route-hint last-hop).",
1396                                         hop.short_channel_id);
1397                         }
1398                         if at_failed_channel { break; }
1399                 }
1400         }
1401
1402         fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
1403                 let amount_msat = path.final_value_msat();
1404                 log_trace!(self.logger, "Scoring path through SCID {} as having succeeded at {} msat.",
1405                         path.hops.split_last().map(|(hop, _)| hop.short_channel_id).unwrap_or(0), amount_msat);
1406                 let network_graph = self.network_graph.read_only();
1407                 for hop in &path.hops {
1408                         let target = NodeId::from_pubkey(&hop.pubkey);
1409                         let channel_directed_from_source = network_graph.channels()
1410                                 .get(&hop.short_channel_id)
1411                                 .and_then(|channel| channel.as_directed_to(&target));
1412
1413                         // Only score announced channels.
1414                         if let Some((channel, source)) = channel_directed_from_source {
1415                                 let capacity_msat = channel.effective_capacity().as_msat();
1416                                 self.channel_liquidities
1417                                         .entry(hop.short_channel_id)
1418                                         .or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
1419                                         .as_directed_mut(source, &target, capacity_msat)
1420                                         .successful(amount_msat, duration_since_epoch,
1421                                                 format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
1422                         } else {
1423                                 log_debug!(self.logger, "Not able to learn for channel with SCID {} as we do not have graph info for it (likely a route-hint last-hop).",
1424                                         hop.short_channel_id);
1425                         }
1426                 }
1427         }
1428
1429         fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
1430                 self.payment_path_failed(path, short_channel_id, duration_since_epoch)
1431         }
1432
1433         fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
1434                 self.payment_path_failed(path, u64::max_value(), duration_since_epoch)
1435         }
1436
1437         fn decay_liquidity_certainty(&mut self, duration_since_epoch: Duration) {
1438                 let decay_params = self.decay_params;
1439                 self.channel_liquidities.retain(|_scid, liquidity| {
1440                         liquidity.min_liquidity_offset_msat =
1441                                 liquidity.decayed_offset(liquidity.min_liquidity_offset_msat, duration_since_epoch, decay_params);
1442                         liquidity.max_liquidity_offset_msat =
1443                                 liquidity.decayed_offset(liquidity.max_liquidity_offset_msat, duration_since_epoch, decay_params);
1444                         liquidity.last_updated = duration_since_epoch;
1445
1446                         let elapsed_time =
1447                                 duration_since_epoch.saturating_sub(liquidity.offset_history_last_updated);
1448                         if elapsed_time > decay_params.historical_no_updates_half_life {
1449                                 let half_life = decay_params.historical_no_updates_half_life.as_secs_f64();
1450                                 if half_life != 0.0 {
1451                                         let divisor = powf64(2048.0, elapsed_time.as_secs_f64() / half_life) as u64;
1452                                         for bucket in liquidity.liquidity_history.min_liquidity_offset_history.buckets.iter_mut() {
1453                                                 *bucket = ((*bucket as u64) * 1024 / divisor) as u16;
1454                                         }
1455                                         for bucket in liquidity.liquidity_history.max_liquidity_offset_history.buckets.iter_mut() {
1456                                                 *bucket = ((*bucket as u64) * 1024 / divisor) as u16;
1457                                         }
1458                                         liquidity.offset_history_last_updated = duration_since_epoch;
1459                                 }
1460                         }
1461                         liquidity.min_liquidity_offset_msat != 0 || liquidity.max_liquidity_offset_msat != 0 ||
1462                                 liquidity.liquidity_history.min_liquidity_offset_history.buckets != [0; 32] ||
1463                                 liquidity.liquidity_history.max_liquidity_offset_history.buckets != [0; 32]
1464                 });
1465         }
1466 }
1467
1468 #[cfg(c_bindings)]
1469 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> Score for ProbabilisticScorer<G, L>
1470 where L::Target: Logger {}
1471
1472 #[cfg(feature = "std")]
1473 #[inline]
1474 fn powf64(n: f64, exp: f64) -> f64 {
1475         n.powf(exp)
1476 }
1477 #[cfg(not(feature = "std"))]
1478 fn powf64(n: f64, exp: f64) -> f64 {
1479         libm::powf(n as f32, exp as f32) as f64
1480 }
1481
1482 mod bucketed_history {
1483         use super::*;
1484
1485         // Because liquidity is often skewed heavily in one direction, we store historical state
1486         // distribution in buckets of different size. For backwards compatibility, buckets of size 1/8th
1487         // must fit evenly into the buckets here.
1488         //
1489         // The smallest bucket is 2^-14th of the channel, for each of our 32 buckets here we define the
1490         // width of the bucket in 2^14'ths of the channel. This increases exponentially until we reach
1491         // a full 16th of the channel's capacity, which is reapeated a few times for backwards
1492         // compatibility. The four middle buckets represent full octiles of the channel's capacity.
1493         //
1494         // For a 1 BTC channel, this let's us differentiate between failures in the bottom 6k sats, or
1495         // between the 12,000th sat and 24,000th sat, while only needing to store and operate on 32
1496         // buckets in total.
1497
1498         const BUCKET_START_POS: [u16; 33] = [
1499                 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096, 6144, 8192, 10240, 12288,
1500                 13312, 14336, 15360, 15872, 16128, 16256, 16320, 16352, 16368, 16376, 16380, 16382, 16383, 16384,
1501         ];
1502
1503         const LEGACY_TO_BUCKET_RANGE: [(u8, u8); 8] = [
1504                 (0, 12), (12, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 20), (20, 32)
1505         ];
1506
1507         const POSITION_TICKS: u16 = 1 << 14;
1508
1509         fn pos_to_bucket(pos: u16) -> usize {
1510                 for bucket in 0..32 {
1511                         if pos < BUCKET_START_POS[bucket + 1] {
1512                                 return bucket;
1513                         }
1514                 }
1515                 debug_assert!(false);
1516                 return 32;
1517         }
1518
1519         #[cfg(test)]
1520         #[test]
1521         fn check_bucket_maps() {
1522                 const BUCKET_WIDTH_IN_16384S: [u16; 32] = [
1523                         1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1024, 1024, 2048, 2048,
1524                         2048, 2048, 1024, 1024, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1];
1525
1526                 let mut min_size_iter = 0;
1527                 let mut legacy_bucket_iter = 0;
1528                 for (bucket, width) in BUCKET_WIDTH_IN_16384S.iter().enumerate() {
1529                         assert_eq!(BUCKET_START_POS[bucket], min_size_iter);
1530                         for i in 0..*width {
1531                                 assert_eq!(pos_to_bucket(min_size_iter + i) as usize, bucket);
1532                         }
1533                         min_size_iter += *width;
1534                         if min_size_iter % (POSITION_TICKS / 8) == 0 {
1535                                 assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter].1 as usize, bucket + 1);
1536                                 if legacy_bucket_iter + 1 < 8 {
1537                                         assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter + 1].0 as usize, bucket + 1);
1538                                 }
1539                                 legacy_bucket_iter += 1;
1540                         }
1541                 }
1542                 assert_eq!(BUCKET_START_POS[32], POSITION_TICKS);
1543                 assert_eq!(min_size_iter, POSITION_TICKS);
1544         }
1545
1546         #[inline]
1547         fn amount_to_pos(amount_msat: u64, capacity_msat: u64) -> u16 {
1548                 let pos = if amount_msat < u64::max_value() / (POSITION_TICKS as u64) {
1549                         (amount_msat * (POSITION_TICKS as u64) / capacity_msat.saturating_add(1))
1550                                 .try_into().unwrap_or(POSITION_TICKS)
1551                 } else {
1552                         // Only use 128-bit arithmetic when multiplication will overflow to avoid 128-bit
1553                         // division. This branch should only be hit in fuzz testing since the amount would
1554                         // need to be over 2.88 million BTC in practice.
1555                         ((amount_msat as u128) * (POSITION_TICKS as u128)
1556                                         / (capacity_msat as u128).saturating_add(1))
1557                                 .try_into().unwrap_or(POSITION_TICKS)
1558                 };
1559                 // If we are running in a client that doesn't validate gossip, its possible for a channel's
1560                 // capacity to change due to a `channel_update` message which, if received while a payment
1561                 // is in-flight, could cause this to fail. Thus, we only assert in test.
1562                 #[cfg(test)]
1563                 debug_assert!(pos < POSITION_TICKS);
1564                 pos
1565         }
1566
1567         /// Prior to LDK 0.0.117 we used eight buckets which were split evenly across the either
1568         /// octiles. This was changed to use 32 buckets for accuracy reasons in 0.0.117, however we
1569         /// support reading the legacy values here for backwards compatibility.
1570         pub(super) struct LegacyHistoricalBucketRangeTracker {
1571                 buckets: [u16; 8],
1572         }
1573
1574         impl LegacyHistoricalBucketRangeTracker {
1575                 pub(crate) fn into_current(&self) -> HistoricalBucketRangeTracker {
1576                         let mut buckets = [0; 32];
1577                         for (idx, legacy_bucket) in self.buckets.iter().enumerate() {
1578                                 let mut new_val = *legacy_bucket;
1579                                 let (start, end) = LEGACY_TO_BUCKET_RANGE[idx];
1580                                 new_val /= (end - start) as u16;
1581                                 for i in start..end {
1582                                         buckets[i as usize] = new_val;
1583                                 }
1584                         }
1585                         HistoricalBucketRangeTracker { buckets }
1586                 }
1587         }
1588
1589         /// Tracks the historical state of a distribution as a weighted average of how much time was spent
1590         /// in each of 32 buckets.
1591         #[derive(Clone, Copy)]
1592         pub(super) struct HistoricalBucketRangeTracker {
1593                 pub(super) buckets: [u16; 32],
1594         }
1595
1596         /// Buckets are stored in fixed point numbers with a 5 bit fractional part. Thus, the value
1597         /// "one" is 32, or this constant.
1598         pub const BUCKET_FIXED_POINT_ONE: u16 = 32;
1599
1600         impl HistoricalBucketRangeTracker {
1601                 pub(super) fn new() -> Self { Self { buckets: [0; 32] } }
1602                 pub(super) fn track_datapoint(&mut self, liquidity_offset_msat: u64, capacity_msat: u64) {
1603                         // We have 32 leaky buckets for min and max liquidity. Each bucket tracks the amount of time
1604                         // we spend in each bucket as a 16-bit fixed-point number with a 5 bit fractional part.
1605                         //
1606                         // Each time we update our liquidity estimate, we add 32 (1.0 in our fixed-point system) to
1607                         // the buckets for the current min and max liquidity offset positions.
1608                         //
1609                         // We then decay each bucket by multiplying by 2047/2048 (avoiding dividing by a
1610                         // non-power-of-two). This ensures we can't actually overflow the u16 - when we get to
1611                         // 63,457 adding 32 and decaying by 2047/2048 leaves us back at 63,457.
1612                         //
1613                         // In total, this allows us to track data for the last 8,000 or so payments across a given
1614                         // channel.
1615                         //
1616                         // These constants are a balance - we try to fit in 2 bytes per bucket to reduce overhead,
1617                         // and need to balance having more bits in the decimal part (to ensure decay isn't too
1618                         // non-linear) with having too few bits in the mantissa, causing us to not store very many
1619                         // datapoints.
1620                         //
1621                         // The constants were picked experimentally, selecting a decay amount that restricts us
1622                         // from overflowing buckets without having to cap them manually.
1623
1624                         let pos: u16 = amount_to_pos(liquidity_offset_msat, capacity_msat);
1625                         if pos < POSITION_TICKS {
1626                                 for e in self.buckets.iter_mut() {
1627                                         *e = ((*e as u32) * 2047 / 2048) as u16;
1628                                 }
1629                                 let bucket = pos_to_bucket(pos);
1630                                 self.buckets[bucket] = self.buckets[bucket].saturating_add(BUCKET_FIXED_POINT_ONE);
1631                         }
1632                 }
1633         }
1634
1635         impl_writeable_tlv_based!(HistoricalBucketRangeTracker, { (0, buckets, required) });
1636         impl_writeable_tlv_based!(LegacyHistoricalBucketRangeTracker, { (0, buckets, required) });
1637
1638
1639         #[derive(Clone, Copy)]
1640         pub(super) struct HistoricalLiquidityTracker {
1641                 pub(super) min_liquidity_offset_history: HistoricalBucketRangeTracker,
1642                 pub(super) max_liquidity_offset_history: HistoricalBucketRangeTracker,
1643         }
1644
1645         impl HistoricalLiquidityTracker {
1646                 pub(super) fn new() -> HistoricalLiquidityTracker {
1647                         HistoricalLiquidityTracker {
1648                                 min_liquidity_offset_history: HistoricalBucketRangeTracker::new(),
1649                                 max_liquidity_offset_history: HistoricalBucketRangeTracker::new(),
1650                         }
1651                 }
1652
1653                 pub(super) fn from_min_max(
1654                         min_liquidity_offset_history: HistoricalBucketRangeTracker,
1655                         max_liquidity_offset_history: HistoricalBucketRangeTracker,
1656                 ) -> HistoricalLiquidityTracker {
1657                         HistoricalLiquidityTracker {
1658                                 min_liquidity_offset_history,
1659                                 max_liquidity_offset_history,
1660                         }
1661                 }
1662
1663                 pub(super) fn as_directed<'a>(&'a self, source_less_than_target: bool)
1664                 -> HistoricalMinMaxBuckets<&'a HistoricalBucketRangeTracker> {
1665                         let (min_liquidity_offset_history, max_liquidity_offset_history) =
1666                                 if source_less_than_target {
1667                                         (&self.min_liquidity_offset_history, &self.max_liquidity_offset_history)
1668                                 } else {
1669                                         (&self.max_liquidity_offset_history, &self.min_liquidity_offset_history)
1670                                 };
1671                         HistoricalMinMaxBuckets { min_liquidity_offset_history, max_liquidity_offset_history }
1672                 }
1673
1674                 pub(super) fn as_directed_mut<'a>(&'a mut self, source_less_than_target: bool)
1675                 -> HistoricalMinMaxBuckets<&'a mut HistoricalBucketRangeTracker> {
1676                         let (min_liquidity_offset_history, max_liquidity_offset_history) =
1677                                 if source_less_than_target {
1678                                         (&mut self.min_liquidity_offset_history, &mut self.max_liquidity_offset_history)
1679                                 } else {
1680                                         (&mut self.max_liquidity_offset_history, &mut self.min_liquidity_offset_history)
1681                                 };
1682                         HistoricalMinMaxBuckets { min_liquidity_offset_history, max_liquidity_offset_history }
1683                 }
1684         }
1685
1686         /// A set of buckets representing the history of where we've seen the minimum- and maximum-
1687         /// liquidity bounds for a given channel.
1688         pub(super) struct HistoricalMinMaxBuckets<D: Deref<Target = HistoricalBucketRangeTracker>> {
1689                 /// Buckets tracking where and how often we've seen the minimum liquidity bound for a
1690                 /// channel.
1691                 pub(super) min_liquidity_offset_history: D,
1692                 /// Buckets tracking where and how often we've seen the maximum liquidity bound for a
1693                 /// channel.
1694                 pub(super) max_liquidity_offset_history: D,
1695         }
1696
1697         impl<D: Deref<Target = HistoricalBucketRangeTracker>> HistoricalMinMaxBuckets<D> {
1698                 #[inline]
1699                 pub(super) fn calculate_success_probability_times_billion(
1700                         &self, params: &ProbabilisticScoringFeeParameters, amount_msat: u64,
1701                         capacity_msat: u64
1702                 ) -> Option<u64> {
1703                         // If historical penalties are enabled, we try to calculate a probability of success
1704                         // given our historical distribution of min- and max-liquidity bounds in a channel.
1705                         // To do so, we walk the set of historical liquidity bucket (min, max) combinations
1706                         // (where min_idx < max_idx, as having a minimum above our maximum is an invalid
1707                         // state). For each pair, we calculate the probability as if the bucket's corresponding
1708                         // min- and max- liquidity bounds were our current liquidity bounds and then multiply
1709                         // that probability by the weight of the selected buckets.
1710                         let payment_pos = amount_to_pos(amount_msat, capacity_msat);
1711                         if payment_pos >= POSITION_TICKS { return None; }
1712
1713                         let mut total_valid_points_tracked = 0;
1714                         for (min_idx, min_bucket) in self.min_liquidity_offset_history.buckets.iter().enumerate() {
1715                                 for max_bucket in self.max_liquidity_offset_history.buckets.iter().take(32 - min_idx) {
1716                                         total_valid_points_tracked += (*min_bucket as u64) * (*max_bucket as u64);
1717                                 }
1718                         }
1719
1720                         // If the total valid points is smaller than 1.0 (i.e. 32 in our fixed-point scheme),
1721                         // treat it as if we were fully decayed.
1722                         const FULLY_DECAYED: u16 = BUCKET_FIXED_POINT_ONE * BUCKET_FIXED_POINT_ONE;
1723                         if total_valid_points_tracked < FULLY_DECAYED.into() {
1724                                 return None;
1725                         }
1726
1727                         let mut cumulative_success_prob_times_billion = 0;
1728                         // Special-case the 0th min bucket - it generally means we failed a payment, so only
1729                         // consider the highest (i.e. largest-offset-from-max-capacity) max bucket for all
1730                         // points against the 0th min bucket. This avoids the case where we fail to route
1731                         // increasingly lower values over a channel, but treat each failure as a separate
1732                         // datapoint, many of which may have relatively high maximum-available-liquidity
1733                         // values, which will result in us thinking we have some nontrivial probability of
1734                         // routing up to that amount.
1735                         if self.min_liquidity_offset_history.buckets[0] != 0 {
1736                                 let mut highest_max_bucket_with_points = 0; // The highest max-bucket with any data
1737                                 let mut total_max_points = 0; // Total points in max-buckets to consider
1738                                 for (max_idx, max_bucket) in self.max_liquidity_offset_history.buckets.iter().enumerate() {
1739                                         if *max_bucket >= BUCKET_FIXED_POINT_ONE {
1740                                                 highest_max_bucket_with_points = cmp::max(highest_max_bucket_with_points, max_idx);
1741                                         }
1742                                         total_max_points += *max_bucket as u64;
1743                                 }
1744                                 let max_bucket_end_pos = BUCKET_START_POS[32 - highest_max_bucket_with_points] - 1;
1745                                 if payment_pos < max_bucket_end_pos {
1746                                         let (numerator, denominator) = success_probability(payment_pos as u64, 0,
1747                                                 max_bucket_end_pos as u64, POSITION_TICKS as u64 - 1, params, true);
1748                                         let bucket_prob_times_billion =
1749                                                 (self.min_liquidity_offset_history.buckets[0] as u64) * total_max_points
1750                                                         * 1024 * 1024 * 1024 / total_valid_points_tracked;
1751                                         cumulative_success_prob_times_billion += bucket_prob_times_billion *
1752                                                 numerator / denominator;
1753                                 }
1754                         }
1755
1756                         for (min_idx, min_bucket) in self.min_liquidity_offset_history.buckets.iter().enumerate().skip(1) {
1757                                 let min_bucket_start_pos = BUCKET_START_POS[min_idx];
1758                                 for (max_idx, max_bucket) in self.max_liquidity_offset_history.buckets.iter().enumerate().take(32 - min_idx) {
1759                                         let max_bucket_end_pos = BUCKET_START_POS[32 - max_idx] - 1;
1760                                         // Note that this multiply can only barely not overflow - two 16 bit ints plus
1761                                         // 30 bits is 62 bits.
1762                                         let bucket_prob_times_billion = (*min_bucket as u64) * (*max_bucket as u64)
1763                                                 * 1024 * 1024 * 1024 / total_valid_points_tracked;
1764                                         if payment_pos >= max_bucket_end_pos {
1765                                                 // Success probability 0, the payment amount may be above the max liquidity
1766                                                 break;
1767                                         } else if payment_pos < min_bucket_start_pos {
1768                                                 cumulative_success_prob_times_billion += bucket_prob_times_billion;
1769                                         } else {
1770                                                 let (numerator, denominator) = success_probability(payment_pos as u64,
1771                                                         min_bucket_start_pos as u64, max_bucket_end_pos as u64,
1772                                                         POSITION_TICKS as u64 - 1, params, true);
1773                                                 cumulative_success_prob_times_billion += bucket_prob_times_billion *
1774                                                         numerator / denominator;
1775                                         }
1776                                 }
1777                         }
1778
1779                         Some(cumulative_success_prob_times_billion)
1780                 }
1781         }
1782 }
1783 use bucketed_history::{LegacyHistoricalBucketRangeTracker, HistoricalBucketRangeTracker, HistoricalMinMaxBuckets, HistoricalLiquidityTracker};
1784
1785 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> Writeable for ProbabilisticScorer<G, L> where L::Target: Logger {
1786         #[inline]
1787         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1788                 write_tlv_fields!(w, {
1789                         (0, self.channel_liquidities, required),
1790                 });
1791                 Ok(())
1792         }
1793 }
1794
1795 impl<G: Deref<Target = NetworkGraph<L>>, L: Deref>
1796 ReadableArgs<(ProbabilisticScoringDecayParameters, G, L)> for ProbabilisticScorer<G, L> where L::Target: Logger {
1797         #[inline]
1798         fn read<R: Read>(
1799                 r: &mut R, args: (ProbabilisticScoringDecayParameters, G, L)
1800         ) -> Result<Self, DecodeError> {
1801                 let (decay_params, network_graph, logger) = args;
1802                 let mut channel_liquidities = HashMap::new();
1803                 read_tlv_fields!(r, {
1804                         (0, channel_liquidities, required),
1805                 });
1806                 Ok(Self {
1807                         decay_params,
1808                         network_graph,
1809                         logger,
1810                         channel_liquidities,
1811                 })
1812         }
1813 }
1814
1815 impl Writeable for ChannelLiquidity {
1816         #[inline]
1817         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1818                 write_tlv_fields!(w, {
1819                         (0, self.min_liquidity_offset_msat, required),
1820                         // 1 was the min_liquidity_offset_history in octile form
1821                         (2, self.max_liquidity_offset_msat, required),
1822                         // 3 was the max_liquidity_offset_history in octile form
1823                         (4, self.last_updated, required),
1824                         (5, self.liquidity_history.min_liquidity_offset_history, required),
1825                         (7, self.liquidity_history.max_liquidity_offset_history, required),
1826                         (9, self.offset_history_last_updated, required),
1827                 });
1828                 Ok(())
1829         }
1830 }
1831
1832 impl Readable for ChannelLiquidity {
1833         #[inline]
1834         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1835                 let mut min_liquidity_offset_msat = 0;
1836                 let mut max_liquidity_offset_msat = 0;
1837                 let mut legacy_min_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
1838                 let mut legacy_max_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
1839                 let mut min_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
1840                 let mut max_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
1841                 let mut last_updated = Duration::from_secs(0);
1842                 let mut offset_history_last_updated = None;
1843                 read_tlv_fields!(r, {
1844                         (0, min_liquidity_offset_msat, required),
1845                         (1, legacy_min_liq_offset_history, option),
1846                         (2, max_liquidity_offset_msat, required),
1847                         (3, legacy_max_liq_offset_history, option),
1848                         (4, last_updated, required),
1849                         (5, min_liquidity_offset_history, option),
1850                         (7, max_liquidity_offset_history, option),
1851                         (9, offset_history_last_updated, option),
1852                 });
1853
1854                 if min_liquidity_offset_history.is_none() {
1855                         if let Some(legacy_buckets) = legacy_min_liq_offset_history {
1856                                 min_liquidity_offset_history = Some(legacy_buckets.into_current());
1857                         } else {
1858                                 min_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
1859                         }
1860                 }
1861                 if max_liquidity_offset_history.is_none() {
1862                         if let Some(legacy_buckets) = legacy_max_liq_offset_history {
1863                                 max_liquidity_offset_history = Some(legacy_buckets.into_current());
1864                         } else {
1865                                 max_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
1866                         }
1867                 }
1868                 Ok(Self {
1869                         min_liquidity_offset_msat,
1870                         max_liquidity_offset_msat,
1871                         liquidity_history: HistoricalLiquidityTracker::from_min_max(
1872                                 min_liquidity_offset_history.unwrap(), max_liquidity_offset_history.unwrap()
1873                         ),
1874                         last_updated,
1875                         offset_history_last_updated: offset_history_last_updated.unwrap_or(last_updated),
1876                 })
1877         }
1878 }
1879
1880 #[cfg(test)]
1881 mod tests {
1882         use super::{ChannelLiquidity, HistoricalLiquidityTracker, ProbabilisticScoringFeeParameters, ProbabilisticScoringDecayParameters, ProbabilisticScorer};
1883         use crate::blinded_path::{BlindedHop, BlindedPath};
1884         use crate::util::config::UserConfig;
1885
1886         use crate::ln::channelmanager;
1887         use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, UnsignedChannelAnnouncement, UnsignedChannelUpdate};
1888         use crate::routing::gossip::{EffectiveCapacity, NetworkGraph, NodeId};
1889         use crate::routing::router::{BlindedTail, Path, RouteHop, CandidateRouteHop};
1890         use crate::routing::scoring::{ChannelUsage, ScoreLookUp, ScoreUpdate};
1891         use crate::util::ser::{ReadableArgs, Writeable};
1892         use crate::util::test_utils::{self, TestLogger};
1893
1894         use bitcoin::blockdata::constants::ChainHash;
1895         use bitcoin::hashes::Hash;
1896         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1897         use bitcoin::network::constants::Network;
1898         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
1899         use core::time::Duration;
1900         use crate::io;
1901
1902         fn source_privkey() -> SecretKey {
1903                 SecretKey::from_slice(&[42; 32]).unwrap()
1904         }
1905
1906         fn target_privkey() -> SecretKey {
1907                 SecretKey::from_slice(&[43; 32]).unwrap()
1908         }
1909
1910         fn source_pubkey() -> PublicKey {
1911                 let secp_ctx = Secp256k1::new();
1912                 PublicKey::from_secret_key(&secp_ctx, &source_privkey())
1913         }
1914
1915         fn target_pubkey() -> PublicKey {
1916                 let secp_ctx = Secp256k1::new();
1917                 PublicKey::from_secret_key(&secp_ctx, &target_privkey())
1918         }
1919
1920         fn source_node_id() -> NodeId {
1921                 NodeId::from_pubkey(&source_pubkey())
1922         }
1923
1924         fn target_node_id() -> NodeId {
1925                 NodeId::from_pubkey(&target_pubkey())
1926         }
1927
1928         // `ProbabilisticScorer` tests
1929
1930         fn sender_privkey() -> SecretKey {
1931                 SecretKey::from_slice(&[41; 32]).unwrap()
1932         }
1933
1934         fn recipient_privkey() -> SecretKey {
1935                 SecretKey::from_slice(&[45; 32]).unwrap()
1936         }
1937
1938         fn sender_pubkey() -> PublicKey {
1939                 let secp_ctx = Secp256k1::new();
1940                 PublicKey::from_secret_key(&secp_ctx, &sender_privkey())
1941         }
1942
1943         fn recipient_pubkey() -> PublicKey {
1944                 let secp_ctx = Secp256k1::new();
1945                 PublicKey::from_secret_key(&secp_ctx, &recipient_privkey())
1946         }
1947
1948         fn recipient_node_id() -> NodeId {
1949                 NodeId::from_pubkey(&recipient_pubkey())
1950         }
1951
1952         fn network_graph(logger: &TestLogger) -> NetworkGraph<&TestLogger> {
1953                 let mut network_graph = NetworkGraph::new(Network::Testnet, logger);
1954                 add_channel(&mut network_graph, 42, source_privkey(), target_privkey());
1955                 add_channel(&mut network_graph, 43, target_privkey(), recipient_privkey());
1956
1957                 network_graph
1958         }
1959
1960         fn add_channel(
1961                 network_graph: &mut NetworkGraph<&TestLogger>, short_channel_id: u64, node_1_key: SecretKey,
1962                 node_2_key: SecretKey
1963         ) {
1964                 let genesis_hash = ChainHash::using_genesis_block(Network::Testnet);
1965                 let node_1_secret = &SecretKey::from_slice(&[39; 32]).unwrap();
1966                 let node_2_secret = &SecretKey::from_slice(&[40; 32]).unwrap();
1967                 let secp_ctx = Secp256k1::new();
1968                 let unsigned_announcement = UnsignedChannelAnnouncement {
1969                         features: channelmanager::provided_channel_features(&UserConfig::default()),
1970                         chain_hash: genesis_hash,
1971                         short_channel_id,
1972                         node_id_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_1_key)),
1973                         node_id_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_2_key)),
1974                         bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_1_secret)),
1975                         bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_2_secret)),
1976                         excess_data: Vec::new(),
1977                 };
1978                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1979                 let signed_announcement = ChannelAnnouncement {
1980                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, &node_1_key),
1981                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, &node_2_key),
1982                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, &node_1_secret),
1983                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, &node_2_secret),
1984                         contents: unsigned_announcement,
1985                 };
1986                 let chain_source: Option<&crate::util::test_utils::TestChainSource> = None;
1987                 network_graph.update_channel_from_announcement(
1988                         &signed_announcement, &chain_source).unwrap();
1989                 update_channel(network_graph, short_channel_id, node_1_key, 0, 1_000, 100);
1990                 update_channel(network_graph, short_channel_id, node_2_key, 1, 0, 100);
1991         }
1992
1993         fn update_channel(
1994                 network_graph: &mut NetworkGraph<&TestLogger>, short_channel_id: u64, node_key: SecretKey,
1995                 flags: u8, htlc_maximum_msat: u64, timestamp: u32,
1996         ) {
1997                 let genesis_hash = ChainHash::using_genesis_block(Network::Testnet);
1998                 let secp_ctx = Secp256k1::new();
1999                 let unsigned_update = UnsignedChannelUpdate {
2000                         chain_hash: genesis_hash,
2001                         short_channel_id,
2002                         timestamp,
2003                         flags,
2004                         cltv_expiry_delta: 18,
2005                         htlc_minimum_msat: 0,
2006                         htlc_maximum_msat,
2007                         fee_base_msat: 1,
2008                         fee_proportional_millionths: 0,
2009                         excess_data: Vec::new(),
2010                 };
2011                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_update.encode()[..])[..]);
2012                 let signed_update = ChannelUpdate {
2013                         signature: secp_ctx.sign_ecdsa(&msghash, &node_key),
2014                         contents: unsigned_update,
2015                 };
2016                 network_graph.update_channel(&signed_update).unwrap();
2017         }
2018
2019         fn path_hop(pubkey: PublicKey, short_channel_id: u64, fee_msat: u64) -> RouteHop {
2020                 let config = UserConfig::default();
2021                 RouteHop {
2022                         pubkey,
2023                         node_features: channelmanager::provided_node_features(&config),
2024                         short_channel_id,
2025                         channel_features: channelmanager::provided_channel_features(&config),
2026                         fee_msat,
2027                         cltv_expiry_delta: 18,
2028                         maybe_announced_channel: true,
2029                 }
2030         }
2031
2032         fn payment_path_for_amount(amount_msat: u64) -> Path {
2033                 Path {
2034                         hops: vec![
2035                                 path_hop(source_pubkey(), 41, 1),
2036                                 path_hop(target_pubkey(), 42, 2),
2037                                 path_hop(recipient_pubkey(), 43, amount_msat),
2038                         ], blinded_tail: None,
2039                 }
2040         }
2041
2042         #[test]
2043         fn liquidity_bounds_directed_from_lowest_node_id() {
2044                 let logger = TestLogger::new();
2045                 let last_updated = Duration::ZERO;
2046                 let offset_history_last_updated = Duration::ZERO;
2047                 let network_graph = network_graph(&logger);
2048                 let decay_params = ProbabilisticScoringDecayParameters::default();
2049                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2050                         .with_channel(42,
2051                                 ChannelLiquidity {
2052                                         min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100,
2053                                         last_updated, offset_history_last_updated,
2054                                         liquidity_history: HistoricalLiquidityTracker::new(),
2055                                 })
2056                         .with_channel(43,
2057                                 ChannelLiquidity {
2058                                         min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100,
2059                                         last_updated, offset_history_last_updated,
2060                                         liquidity_history: HistoricalLiquidityTracker::new(),
2061                                 });
2062                 let source = source_node_id();
2063                 let target = target_node_id();
2064                 let recipient = recipient_node_id();
2065                 assert!(source > target);
2066                 assert!(target < recipient);
2067
2068                 // Update minimum liquidity.
2069
2070                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2071                         .as_directed(&source, &target, 1_000);
2072                 assert_eq!(liquidity.min_liquidity_msat(), 100);
2073                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2074
2075                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2076                         .as_directed(&target, &source, 1_000);
2077                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2078                 assert_eq!(liquidity.max_liquidity_msat(), 900);
2079
2080                 scorer.channel_liquidities.get_mut(&42).unwrap()
2081                         .as_directed_mut(&source, &target, 1_000)
2082                         .set_min_liquidity_msat(200, Duration::ZERO);
2083
2084                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2085                         .as_directed(&source, &target, 1_000);
2086                 assert_eq!(liquidity.min_liquidity_msat(), 200);
2087                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2088
2089                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2090                         .as_directed(&target, &source, 1_000);
2091                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2092                 assert_eq!(liquidity.max_liquidity_msat(), 800);
2093
2094                 // Update maximum liquidity.
2095
2096                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2097                         .as_directed(&target, &recipient, 1_000);
2098                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2099                 assert_eq!(liquidity.max_liquidity_msat(), 900);
2100
2101                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2102                         .as_directed(&recipient, &target, 1_000);
2103                 assert_eq!(liquidity.min_liquidity_msat(), 100);
2104                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2105
2106                 scorer.channel_liquidities.get_mut(&43).unwrap()
2107                         .as_directed_mut(&target, &recipient, 1_000)
2108                         .set_max_liquidity_msat(200, Duration::ZERO);
2109
2110                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2111                         .as_directed(&target, &recipient, 1_000);
2112                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2113                 assert_eq!(liquidity.max_liquidity_msat(), 200);
2114
2115                 let liquidity = scorer.channel_liquidities.get(&43).unwrap()
2116                         .as_directed(&recipient, &target, 1_000);
2117                 assert_eq!(liquidity.min_liquidity_msat(), 800);
2118                 assert_eq!(liquidity.max_liquidity_msat(), 1000);
2119         }
2120
2121         #[test]
2122         fn resets_liquidity_upper_bound_when_crossed_by_lower_bound() {
2123                 let logger = TestLogger::new();
2124                 let last_updated = Duration::ZERO;
2125                 let offset_history_last_updated = Duration::ZERO;
2126                 let network_graph = network_graph(&logger);
2127                 let decay_params = ProbabilisticScoringDecayParameters::default();
2128                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2129                         .with_channel(42,
2130                                 ChannelLiquidity {
2131                                         min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400,
2132                                         last_updated, offset_history_last_updated,
2133                                         liquidity_history: HistoricalLiquidityTracker::new(),
2134                                 });
2135                 let source = source_node_id();
2136                 let target = target_node_id();
2137                 assert!(source > target);
2138
2139                 // Check initial bounds.
2140                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2141                         .as_directed(&source, &target, 1_000);
2142                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2143                 assert_eq!(liquidity.max_liquidity_msat(), 800);
2144
2145                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2146                         .as_directed(&target, &source, 1_000);
2147                 assert_eq!(liquidity.min_liquidity_msat(), 200);
2148                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2149
2150                 // Reset from source to target.
2151                 scorer.channel_liquidities.get_mut(&42).unwrap()
2152                         .as_directed_mut(&source, &target, 1_000)
2153                         .set_min_liquidity_msat(900, Duration::ZERO);
2154
2155                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2156                         .as_directed(&source, &target, 1_000);
2157                 assert_eq!(liquidity.min_liquidity_msat(), 900);
2158                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2159
2160                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2161                         .as_directed(&target, &source, 1_000);
2162                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2163                 assert_eq!(liquidity.max_liquidity_msat(), 100);
2164
2165                 // Reset from target to source.
2166                 scorer.channel_liquidities.get_mut(&42).unwrap()
2167                         .as_directed_mut(&target, &source, 1_000)
2168                         .set_min_liquidity_msat(400, Duration::ZERO);
2169
2170                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2171                         .as_directed(&source, &target, 1_000);
2172                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2173                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2174
2175                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2176                         .as_directed(&target, &source, 1_000);
2177                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2178                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2179         }
2180
2181         #[test]
2182         fn resets_liquidity_lower_bound_when_crossed_by_upper_bound() {
2183                 let logger = TestLogger::new();
2184                 let last_updated = Duration::ZERO;
2185                 let offset_history_last_updated = Duration::ZERO;
2186                 let network_graph = network_graph(&logger);
2187                 let decay_params = ProbabilisticScoringDecayParameters::default();
2188                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2189                         .with_channel(42,
2190                                 ChannelLiquidity {
2191                                         min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400,
2192                                         last_updated, offset_history_last_updated,
2193                                         liquidity_history: HistoricalLiquidityTracker::new(),
2194                                 });
2195                 let source = source_node_id();
2196                 let target = target_node_id();
2197                 assert!(source > target);
2198
2199                 // Check initial bounds.
2200                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2201                         .as_directed(&source, &target, 1_000);
2202                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2203                 assert_eq!(liquidity.max_liquidity_msat(), 800);
2204
2205                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2206                         .as_directed(&target, &source, 1_000);
2207                 assert_eq!(liquidity.min_liquidity_msat(), 200);
2208                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2209
2210                 // Reset from source to target.
2211                 scorer.channel_liquidities.get_mut(&42).unwrap()
2212                         .as_directed_mut(&source, &target, 1_000)
2213                         .set_max_liquidity_msat(300, Duration::ZERO);
2214
2215                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2216                         .as_directed(&source, &target, 1_000);
2217                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2218                 assert_eq!(liquidity.max_liquidity_msat(), 300);
2219
2220                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2221                         .as_directed(&target, &source, 1_000);
2222                 assert_eq!(liquidity.min_liquidity_msat(), 700);
2223                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2224
2225                 // Reset from target to source.
2226                 scorer.channel_liquidities.get_mut(&42).unwrap()
2227                         .as_directed_mut(&target, &source, 1_000)
2228                         .set_max_liquidity_msat(600, Duration::ZERO);
2229
2230                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2231                         .as_directed(&source, &target, 1_000);
2232                 assert_eq!(liquidity.min_liquidity_msat(), 400);
2233                 assert_eq!(liquidity.max_liquidity_msat(), 1_000);
2234
2235                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
2236                         .as_directed(&target, &source, 1_000);
2237                 assert_eq!(liquidity.min_liquidity_msat(), 0);
2238                 assert_eq!(liquidity.max_liquidity_msat(), 600);
2239         }
2240
2241         #[test]
2242         fn increased_penalty_nearing_liquidity_upper_bound() {
2243                 let logger = TestLogger::new();
2244                 let network_graph = network_graph(&logger);
2245                 let params = ProbabilisticScoringFeeParameters {
2246                         liquidity_penalty_multiplier_msat: 1_000,
2247                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2248                 };
2249                 let decay_params = ProbabilisticScoringDecayParameters::default();
2250                 let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2251                 let source = source_node_id();
2252
2253                 let usage = ChannelUsage {
2254                         amount_msat: 1_024,
2255                         inflight_htlc_msat: 0,
2256                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
2257                 };
2258                 let network_graph = network_graph.read_only();
2259                 let channel = network_graph.channel(42).unwrap();
2260                 let (info, _) = channel.as_directed_from(&source).unwrap();
2261                 let candidate = CandidateRouteHop::PublicHop {
2262                         info,
2263                         short_channel_id: 42,
2264                 };
2265                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2266                 let usage = ChannelUsage { amount_msat: 10_240, ..usage };
2267                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2268                 let usage = ChannelUsage { amount_msat: 102_400, ..usage };
2269                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 47);
2270                 let usage = ChannelUsage { amount_msat: 1_023_999, ..usage };
2271                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);
2272
2273                 let usage = ChannelUsage {
2274                         amount_msat: 128,
2275                         inflight_htlc_msat: 0,
2276                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
2277                 };
2278                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 58);
2279                 let usage = ChannelUsage { amount_msat: 256, ..usage };
2280                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 125);
2281                 let usage = ChannelUsage { amount_msat: 374, ..usage };
2282                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 198);
2283                 let usage = ChannelUsage { amount_msat: 512, ..usage };
2284                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2285                 let usage = ChannelUsage { amount_msat: 640, ..usage };
2286                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 425);
2287                 let usage = ChannelUsage { amount_msat: 768, ..usage };
2288                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);
2289                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2290                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 902);
2291         }
2292
2293         #[test]
2294         fn constant_penalty_outside_liquidity_bounds() {
2295                 let logger = TestLogger::new();
2296                 let last_updated = Duration::ZERO;
2297                 let offset_history_last_updated = Duration::ZERO;
2298                 let network_graph = network_graph(&logger);
2299                 let params = ProbabilisticScoringFeeParameters {
2300                         liquidity_penalty_multiplier_msat: 1_000,
2301                         considered_impossible_penalty_msat: u64::max_value(),
2302                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2303                 };
2304                 let decay_params = ProbabilisticScoringDecayParameters {
2305                         ..ProbabilisticScoringDecayParameters::zero_penalty()
2306                 };
2307                 let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
2308                         .with_channel(42,
2309                                 ChannelLiquidity {
2310                                         min_liquidity_offset_msat: 40, max_liquidity_offset_msat: 40,
2311                                         last_updated, offset_history_last_updated,
2312                                         liquidity_history: HistoricalLiquidityTracker::new(),
2313                                 });
2314                 let source = source_node_id();
2315
2316                 let usage = ChannelUsage {
2317                         amount_msat: 39,
2318                         inflight_htlc_msat: 0,
2319                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 100, htlc_maximum_msat: 1_000 },
2320                 };
2321                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2322                 let (info, _) = channel.as_directed_from(&source).unwrap();
2323                 let candidate = CandidateRouteHop::PublicHop {
2324                         info,
2325                         short_channel_id: 42,
2326                 };
2327                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2328                 let usage = ChannelUsage { amount_msat: 50, ..usage };
2329                 assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2330                 assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2331                 let usage = ChannelUsage { amount_msat: 61, ..usage };
2332                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2333         }
2334
2335         #[test]
2336         fn does_not_further_penalize_own_channel() {
2337                 let logger = TestLogger::new();
2338                 let network_graph = network_graph(&logger);
2339                 let params = ProbabilisticScoringFeeParameters {
2340                         liquidity_penalty_multiplier_msat: 1_000,
2341                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2342                 };
2343                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2344                 let source = source_node_id();
2345                 let usage = ChannelUsage {
2346                         amount_msat: 500,
2347                         inflight_htlc_msat: 0,
2348                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2349                 };
2350                 let failed_path = payment_path_for_amount(500);
2351                 let successful_path = payment_path_for_amount(200);
2352                 let channel = &network_graph.read_only().channel(42).unwrap().to_owned();
2353                 let (info, _) = channel.as_directed_from(&source).unwrap();
2354                 let candidate = CandidateRouteHop::PublicHop {
2355                         info,
2356                         short_channel_id: 41,
2357                 };
2358
2359                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2360
2361                 scorer.payment_path_failed(&failed_path, 41, Duration::ZERO);
2362                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2363
2364                 scorer.payment_path_successful(&successful_path, Duration::ZERO);
2365                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2366         }
2367
2368         #[test]
2369         fn sets_liquidity_lower_bound_on_downstream_failure() {
2370                 let logger = TestLogger::new();
2371                 let network_graph = network_graph(&logger);
2372                 let params = ProbabilisticScoringFeeParameters {
2373                         liquidity_penalty_multiplier_msat: 1_000,
2374                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2375                 };
2376                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2377                 let source = source_node_id();
2378                 let path = payment_path_for_amount(500);
2379
2380                 let usage = ChannelUsage {
2381                         amount_msat: 250,
2382                         inflight_htlc_msat: 0,
2383                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2384                 };
2385                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2386                 let (info, _) = channel.as_directed_from(&source).unwrap();
2387                 let candidate = CandidateRouteHop::PublicHop {
2388                         info,
2389                         short_channel_id: 42,
2390                 };
2391                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2392                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2393                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2394                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2395                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);
2396
2397                 scorer.payment_path_failed(&path, 43, Duration::ZERO);
2398
2399                 let usage = ChannelUsage { amount_msat: 250, ..usage };
2400                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2401                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2402                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2403                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2404                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2405         }
2406
2407         #[test]
2408         fn sets_liquidity_upper_bound_on_failure() {
2409                 let logger = TestLogger::new();
2410                 let network_graph = network_graph(&logger);
2411                 let params = ProbabilisticScoringFeeParameters {
2412                         liquidity_penalty_multiplier_msat: 1_000,
2413                         considered_impossible_penalty_msat: u64::max_value(),
2414                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2415                 };
2416                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2417                 let source = source_node_id();
2418                 let path = payment_path_for_amount(500);
2419
2420                 let usage = ChannelUsage {
2421                         amount_msat: 250,
2422                         inflight_htlc_msat: 0,
2423                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2424                 };
2425                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2426                 let (info, _) = channel.as_directed_from(&source).unwrap();
2427                 let candidate = CandidateRouteHop::PublicHop {
2428                         info,
2429                         short_channel_id: 42,
2430                 };
2431                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2432                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2433                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
2434                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2435                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);
2436
2437                 scorer.payment_path_failed(&path, 42, Duration::ZERO);
2438
2439                 let usage = ChannelUsage { amount_msat: 250, ..usage };
2440                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2441                 let usage = ChannelUsage { amount_msat: 500, ..usage };
2442                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2443                 let usage = ChannelUsage { amount_msat: 750, ..usage };
2444                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2445         }
2446
2447         #[test]
2448         fn ignores_channels_after_removed_failed_channel() {
2449                 // Previously, if we'd tried to send over a channel which was removed from the network
2450                 // graph before we call `payment_path_failed` (which is the default if the we get a "no
2451                 // such channel" error in the `InvoicePayer`), we would call `failed_downstream` on all
2452                 // channels in the route, even ones which they payment never reached. This tests to ensure
2453                 // we do not score such channels.
2454                 let secp_ctx = Secp256k1::new();
2455                 let logger = TestLogger::new();
2456                 let mut network_graph = NetworkGraph::new(Network::Testnet, &logger);
2457                 let secret_a = SecretKey::from_slice(&[42; 32]).unwrap();
2458                 let secret_b = SecretKey::from_slice(&[43; 32]).unwrap();
2459                 let secret_c = SecretKey::from_slice(&[44; 32]).unwrap();
2460                 let secret_d = SecretKey::from_slice(&[45; 32]).unwrap();
2461                 add_channel(&mut network_graph, 42, secret_a, secret_b);
2462                 // Don't add the channel from B -> C.
2463                 add_channel(&mut network_graph, 44, secret_c, secret_d);
2464
2465                 let pub_a = PublicKey::from_secret_key(&secp_ctx, &secret_a);
2466                 let pub_b = PublicKey::from_secret_key(&secp_ctx, &secret_b);
2467                 let pub_c = PublicKey::from_secret_key(&secp_ctx, &secret_c);
2468                 let pub_d = PublicKey::from_secret_key(&secp_ctx, &secret_d);
2469
2470                 let path = vec![
2471                         path_hop(pub_b, 42, 1),
2472                         path_hop(pub_c, 43, 2),
2473                         path_hop(pub_d, 44, 100),
2474                 ];
2475
2476                 let node_a = NodeId::from_pubkey(&pub_a);
2477                 let node_b = NodeId::from_pubkey(&pub_b);
2478                 let node_c = NodeId::from_pubkey(&pub_c);
2479
2480                 let params = ProbabilisticScoringFeeParameters {
2481                         liquidity_penalty_multiplier_msat: 1_000,
2482                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2483                 };
2484                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2485
2486                 let usage = ChannelUsage {
2487                         amount_msat: 250,
2488                         inflight_htlc_msat: 0,
2489                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2490                 };
2491                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2492                 let (info, _) = channel.as_directed_from(&node_a).unwrap();
2493                 let candidate = CandidateRouteHop::PublicHop {
2494                         info,
2495                         short_channel_id: 42,
2496                 };
2497                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2498                 // Note that a default liquidity bound is used for B -> C as no channel exists
2499                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2500                 let (info, _) = channel.as_directed_from(&node_b).unwrap();
2501                 let candidate = CandidateRouteHop::PublicHop {
2502                         info,
2503                         short_channel_id: 43,
2504                 };
2505                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2506                 let channel = network_graph.read_only().channel(44).unwrap().to_owned();
2507                 let (info, _) = channel.as_directed_from(&node_c).unwrap();
2508                 let candidate = CandidateRouteHop::PublicHop {
2509                         info,
2510                         short_channel_id: 44,
2511                 };
2512                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2513
2514                 scorer.payment_path_failed(&Path { hops: path, blinded_tail: None }, 43, Duration::ZERO);
2515
2516                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2517                 let (info, _) = channel.as_directed_from(&node_a).unwrap();
2518                 let candidate = CandidateRouteHop::PublicHop {
2519                         info,
2520                         short_channel_id: 42,
2521                 };
2522                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 80);
2523                 // Note that a default liquidity bound is used for B -> C as no channel exists
2524                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2525                 let (info, _) = channel.as_directed_from(&node_b).unwrap();
2526                 let candidate = CandidateRouteHop::PublicHop {
2527                         info,
2528                         short_channel_id: 43,
2529                 };
2530                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2531                 let channel = network_graph.read_only().channel(44).unwrap().to_owned();
2532                 let (info, _) = channel.as_directed_from(&node_c).unwrap();
2533                 let candidate = CandidateRouteHop::PublicHop {
2534                         info,
2535                         short_channel_id: 44,
2536                 };
2537                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
2538         }
2539
2540         #[test]
2541         fn reduces_liquidity_upper_bound_along_path_on_success() {
2542                 let logger = TestLogger::new();
2543                 let network_graph = network_graph(&logger);
2544                 let params = ProbabilisticScoringFeeParameters {
2545                         liquidity_penalty_multiplier_msat: 1_000,
2546                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2547                 };
2548                 let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2549                 let source = source_node_id();
2550                 let usage = ChannelUsage {
2551                         amount_msat: 250,
2552                         inflight_htlc_msat: 0,
2553                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2554                 };
2555                 let network_graph = network_graph.read_only().channels().clone();
2556                 let channel_42 = network_graph.get(&42).unwrap();
2557                 let channel_43 = network_graph.get(&43).unwrap();
2558                 let (info, _) = channel_42.as_directed_from(&source).unwrap();
2559                 let candidate_41 = CandidateRouteHop::PublicHop {
2560                         info,
2561                         short_channel_id: 41,
2562                 };
2563                 let (info, target) = channel_42.as_directed_from(&source).unwrap();
2564                 let candidate_42 = CandidateRouteHop::PublicHop {
2565                         info,
2566                         short_channel_id: 42,
2567                 };
2568                 let (info, _) = channel_43.as_directed_from(&target).unwrap();
2569                 let candidate_43 = CandidateRouteHop::PublicHop {
2570                         info,
2571                         short_channel_id: 43,
2572                 };
2573                 assert_eq!(scorer.channel_penalty_msat(&candidate_41, usage, &params), 128);
2574                 assert_eq!(scorer.channel_penalty_msat(&candidate_42, usage, &params), 128);
2575                 assert_eq!(scorer.channel_penalty_msat(&candidate_43, usage, &params), 128);
2576
2577                 scorer.payment_path_successful(&payment_path_for_amount(500), Duration::ZERO);
2578
2579                 assert_eq!(scorer.channel_penalty_msat(&candidate_41, usage, &params), 128);
2580                 assert_eq!(scorer.channel_penalty_msat(&candidate_42, usage, &params), 300);
2581                 assert_eq!(scorer.channel_penalty_msat(&candidate_43, usage, &params), 300);
2582         }
2583
2584         #[test]
2585         fn decays_liquidity_bounds_over_time() {
2586                 let logger = TestLogger::new();
2587                 let network_graph = network_graph(&logger);
2588                 let params = ProbabilisticScoringFeeParameters {
2589                         liquidity_penalty_multiplier_msat: 1_000,
2590                         considered_impossible_penalty_msat: u64::max_value(),
2591                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2592                 };
2593                 let decay_params = ProbabilisticScoringDecayParameters {
2594                         liquidity_offset_half_life: Duration::from_secs(10),
2595                         ..ProbabilisticScoringDecayParameters::zero_penalty()
2596                 };
2597                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2598                 let source = source_node_id();
2599
2600                 let usage = ChannelUsage {
2601                         amount_msat: 0,
2602                         inflight_htlc_msat: 0,
2603                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
2604                 };
2605                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2606                 let (info, _) = channel.as_directed_from(&source).unwrap();
2607                 let candidate = CandidateRouteHop::PublicHop {
2608                         info,
2609                         short_channel_id: 42,
2610                 };
2611                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2612                 let usage = ChannelUsage { amount_msat: 1_023, ..usage };
2613                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);
2614
2615                 scorer.payment_path_failed(&payment_path_for_amount(768), 42, Duration::ZERO);
2616                 scorer.payment_path_failed(&payment_path_for_amount(128), 43, Duration::ZERO);
2617
2618                 // Initial penalties
2619                 let usage = ChannelUsage { amount_msat: 128, ..usage };
2620                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2621                 let usage = ChannelUsage { amount_msat: 256, ..usage };
2622                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 93);
2623                 let usage = ChannelUsage { amount_msat: 768, ..usage };
2624                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1_479);
2625                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2626                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2627
2628                 // Half decay (i.e., three-quarter life)
2629                 scorer.decay_liquidity_certainty(Duration::from_secs(5));
2630                 let usage = ChannelUsage { amount_msat: 128, ..usage };
2631                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 22);
2632                 let usage = ChannelUsage { amount_msat: 256, ..usage };
2633                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 106);
2634                 let usage = ChannelUsage { amount_msat: 768, ..usage };
2635                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 921);
2636                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2637                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2638
2639                 // One decay (i.e., half life)
2640                 scorer.decay_liquidity_certainty(Duration::from_secs(10));
2641                 let usage = ChannelUsage { amount_msat: 64, ..usage };
2642                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2643                 let usage = ChannelUsage { amount_msat: 128, ..usage };
2644                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 34);
2645                 let usage = ChannelUsage { amount_msat: 896, ..usage };
2646                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1_970);
2647                 let usage = ChannelUsage { amount_msat: 960, ..usage };
2648                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2649
2650                 // Fully decay liquidity lower bound.
2651                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 8));
2652                 let usage = ChannelUsage { amount_msat: 0, ..usage };
2653                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2654                 let usage = ChannelUsage { amount_msat: 1, ..usage };
2655                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2656                 let usage = ChannelUsage { amount_msat: 1_023, ..usage };
2657                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);
2658                 let usage = ChannelUsage { amount_msat: 1_024, ..usage };
2659                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2660
2661                 // Fully decay liquidity upper bound.
2662                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 9));
2663                 let usage = ChannelUsage { amount_msat: 0, ..usage };
2664                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2665                 let usage = ChannelUsage { amount_msat: 1_024, ..usage };
2666                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2667
2668                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 10));
2669                 let usage = ChannelUsage { amount_msat: 0, ..usage };
2670                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
2671                 let usage = ChannelUsage { amount_msat: 1_024, ..usage };
2672                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2673         }
2674
2675         #[test]
2676         fn restricts_liquidity_bounds_after_decay() {
2677                 let logger = TestLogger::new();
2678                 let network_graph = network_graph(&logger);
2679                 let params = ProbabilisticScoringFeeParameters {
2680                         liquidity_penalty_multiplier_msat: 1_000,
2681                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2682                 };
2683                 let decay_params = ProbabilisticScoringDecayParameters {
2684                         liquidity_offset_half_life: Duration::from_secs(10),
2685                         ..ProbabilisticScoringDecayParameters::default()
2686                 };
2687                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2688                 let source = source_node_id();
2689                 let usage = ChannelUsage {
2690                         amount_msat: 512,
2691                         inflight_htlc_msat: 0,
2692                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
2693                 };
2694                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2695                 let (info, _) = channel.as_directed_from(&source).unwrap();
2696                 let candidate = CandidateRouteHop::PublicHop {
2697                         info,
2698                         short_channel_id: 42,
2699                 };
2700
2701                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2702
2703                 // More knowledge gives higher confidence (256, 768), meaning a lower penalty.
2704                 scorer.payment_path_failed(&payment_path_for_amount(768), 42, Duration::ZERO);
2705                 scorer.payment_path_failed(&payment_path_for_amount(256), 43, Duration::ZERO);
2706                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 281);
2707
2708                 // Decaying knowledge gives less confidence (128, 896), meaning a higher penalty.
2709                 scorer.decay_liquidity_certainty(Duration::from_secs(10));
2710                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 291);
2711
2712                 // Reducing the upper bound gives more confidence (128, 832) that the payment amount (512)
2713                 // is closer to the upper bound, meaning a higher penalty.
2714                 scorer.payment_path_successful(&payment_path_for_amount(64), Duration::from_secs(10));
2715                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 331);
2716
2717                 // Increasing the lower bound gives more confidence (256, 832) that the payment amount (512)
2718                 // is closer to the lower bound, meaning a lower penalty.
2719                 scorer.payment_path_failed(&payment_path_for_amount(256), 43, Duration::from_secs(10));
2720                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 245);
2721
2722                 // Further decaying affects the lower bound more than the upper bound (128, 928).
2723                 scorer.decay_liquidity_certainty(Duration::from_secs(20));
2724                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 280);
2725         }
2726
2727         #[test]
2728         fn restores_persisted_liquidity_bounds() {
2729                 let logger = TestLogger::new();
2730                 let network_graph = network_graph(&logger);
2731                 let params = ProbabilisticScoringFeeParameters {
2732                         liquidity_penalty_multiplier_msat: 1_000,
2733                         considered_impossible_penalty_msat: u64::max_value(),
2734                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2735                 };
2736                 let decay_params = ProbabilisticScoringDecayParameters {
2737                         liquidity_offset_half_life: Duration::from_secs(10),
2738                         ..ProbabilisticScoringDecayParameters::default()
2739                 };
2740                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2741                 let source = source_node_id();
2742                 let usage = ChannelUsage {
2743                         amount_msat: 500,
2744                         inflight_htlc_msat: 0,
2745                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2746                 };
2747
2748                 scorer.payment_path_failed(&payment_path_for_amount(500), 42, Duration::ZERO);
2749                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2750                 let (info, _) = channel.as_directed_from(&source).unwrap();
2751                 let candidate = CandidateRouteHop::PublicHop {
2752                         info,
2753                         short_channel_id: 42,
2754                 };
2755                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2756
2757                 scorer.decay_liquidity_certainty(Duration::from_secs(10));
2758                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 473);
2759
2760                 scorer.payment_path_failed(&payment_path_for_amount(250), 43, Duration::from_secs(10));
2761                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2762
2763                 let mut serialized_scorer = Vec::new();
2764                 scorer.write(&mut serialized_scorer).unwrap();
2765
2766                 let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
2767                 let deserialized_scorer =
2768                         <ProbabilisticScorer<_, _>>::read(&mut serialized_scorer, (decay_params, &network_graph, &logger)).unwrap();
2769                 assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2770         }
2771
2772         fn do_decays_persisted_liquidity_bounds(decay_before_reload: bool) {
2773                 let logger = TestLogger::new();
2774                 let network_graph = network_graph(&logger);
2775                 let params = ProbabilisticScoringFeeParameters {
2776                         liquidity_penalty_multiplier_msat: 1_000,
2777                         considered_impossible_penalty_msat: u64::max_value(),
2778                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2779                 };
2780                 let decay_params = ProbabilisticScoringDecayParameters {
2781                         liquidity_offset_half_life: Duration::from_secs(10),
2782                         ..ProbabilisticScoringDecayParameters::zero_penalty()
2783                 };
2784                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2785                 let source = source_node_id();
2786                 let usage = ChannelUsage {
2787                         amount_msat: 500,
2788                         inflight_htlc_msat: 0,
2789                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
2790                 };
2791
2792                 scorer.payment_path_failed(&payment_path_for_amount(500), 42, Duration::ZERO);
2793                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2794                 let (info, _) = channel.as_directed_from(&source).unwrap();
2795                 let candidate = CandidateRouteHop::PublicHop {
2796                         info,
2797                         short_channel_id: 42,
2798                 };
2799                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
2800
2801                 if decay_before_reload {
2802                         scorer.decay_liquidity_certainty(Duration::from_secs(10));
2803                 }
2804
2805                 let mut serialized_scorer = Vec::new();
2806                 scorer.write(&mut serialized_scorer).unwrap();
2807
2808                 let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
2809                 let mut deserialized_scorer =
2810                         <ProbabilisticScorer<_, _>>::read(&mut serialized_scorer, (decay_params, &network_graph, &logger)).unwrap();
2811                 if !decay_before_reload {
2812                         scorer.decay_liquidity_certainty(Duration::from_secs(10));
2813                         deserialized_scorer.decay_liquidity_certainty(Duration::from_secs(10));
2814                 }
2815                 assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 473);
2816
2817                 scorer.payment_path_failed(&payment_path_for_amount(250), 43, Duration::from_secs(10));
2818                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2819
2820                 deserialized_scorer.decay_liquidity_certainty(Duration::from_secs(20));
2821                 assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 370);
2822         }
2823
2824         #[test]
2825         fn decays_persisted_liquidity_bounds() {
2826                 do_decays_persisted_liquidity_bounds(false);
2827                 do_decays_persisted_liquidity_bounds(true);
2828         }
2829
2830         #[test]
2831         fn scores_realistic_payments() {
2832                 // Shows the scores of "realistic" sends of 100k sats over channels of 1-10m sats (with a
2833                 // 50k sat reserve).
2834                 let logger = TestLogger::new();
2835                 let network_graph = network_graph(&logger);
2836                 let params = ProbabilisticScoringFeeParameters::default();
2837                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2838                 let source = source_node_id();
2839
2840                 let usage = ChannelUsage {
2841                         amount_msat: 100_000_000,
2842                         inflight_htlc_msat: 0,
2843                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 950_000_000, htlc_maximum_msat: 1_000 },
2844                 };
2845                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2846                 let (info, _) = channel.as_directed_from(&source).unwrap();
2847                 let candidate = CandidateRouteHop::PublicHop {
2848                         info,
2849                         short_channel_id: 42,
2850                 };
2851                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 11497);
2852                 let usage = ChannelUsage {
2853                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2854                 };
2855                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 7408);
2856                 let usage = ChannelUsage {
2857                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 2_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2858                 };
2859                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 6151);
2860                 let usage = ChannelUsage {
2861                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 3_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2862                 };
2863                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 5427);
2864                 let usage = ChannelUsage {
2865                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 4_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2866                 };
2867                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4955);
2868                 let usage = ChannelUsage {
2869                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 5_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2870                 };
2871                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4736);
2872                 let usage = ChannelUsage {
2873                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 6_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2874                 };
2875                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4484);
2876                 let usage = ChannelUsage {
2877                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 7_450_000_000, htlc_maximum_msat: 1_000 }, ..usage
2878                 };
2879                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4484);
2880                 let usage = ChannelUsage {
2881                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 7_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2882                 };
2883                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4263);
2884                 let usage = ChannelUsage {
2885                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 8_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2886                 };
2887                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4263);
2888                 let usage = ChannelUsage {
2889                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 9_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
2890                 };
2891                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 4044);
2892         }
2893
2894         #[test]
2895         fn adds_base_penalty_to_liquidity_penalty() {
2896                 let logger = TestLogger::new();
2897                 let network_graph = network_graph(&logger);
2898                 let source = source_node_id();
2899                 let usage = ChannelUsage {
2900                         amount_msat: 128,
2901                         inflight_htlc_msat: 0,
2902                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
2903                 };
2904
2905                 let params = ProbabilisticScoringFeeParameters {
2906                         liquidity_penalty_multiplier_msat: 1_000,
2907                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2908                 };
2909                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2910                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2911                 let (info, _) = channel.as_directed_from(&source).unwrap();
2912                 let candidate = CandidateRouteHop::PublicHop {
2913                         info,
2914                         short_channel_id: 42,
2915                 };
2916                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 58);
2917
2918                 let params = ProbabilisticScoringFeeParameters {
2919                         base_penalty_msat: 500, liquidity_penalty_multiplier_msat: 1_000,
2920                         anti_probing_penalty_msat: 0, ..ProbabilisticScoringFeeParameters::zero_penalty()
2921                 };
2922                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2923                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 558);
2924
2925                 let params = ProbabilisticScoringFeeParameters {
2926                         base_penalty_msat: 500, liquidity_penalty_multiplier_msat: 1_000,
2927                         base_penalty_amount_multiplier_msat: (1 << 30),
2928                         anti_probing_penalty_msat: 0, ..ProbabilisticScoringFeeParameters::zero_penalty()
2929                 };
2930
2931                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2932                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 558 + 128);
2933         }
2934
2935         #[test]
2936         fn adds_amount_penalty_to_liquidity_penalty() {
2937                 let logger = TestLogger::new();
2938                 let network_graph = network_graph(&logger);
2939                 let source = source_node_id();
2940                 let usage = ChannelUsage {
2941                         amount_msat: 512_000,
2942                         inflight_htlc_msat: 0,
2943                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
2944                 };
2945
2946                 let params = ProbabilisticScoringFeeParameters {
2947                         liquidity_penalty_multiplier_msat: 1_000,
2948                         liquidity_penalty_amount_multiplier_msat: 0,
2949                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2950                 };
2951                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2952                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2953                 let (info, _) = channel.as_directed_from(&source).unwrap();
2954                 let candidate = CandidateRouteHop::PublicHop {
2955                         info,
2956                         short_channel_id: 42,
2957                 };
2958                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
2959
2960                 let params = ProbabilisticScoringFeeParameters {
2961                         liquidity_penalty_multiplier_msat: 1_000,
2962                         liquidity_penalty_amount_multiplier_msat: 256,
2963                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2964                 };
2965                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
2966                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 337);
2967         }
2968
2969         #[test]
2970         fn calculates_log10_without_overflowing_u64_max_value() {
2971                 let logger = TestLogger::new();
2972                 let network_graph = network_graph(&logger);
2973                 let source = source_node_id();
2974                 let usage = ChannelUsage {
2975                         amount_msat: u64::max_value(),
2976                         inflight_htlc_msat: 0,
2977                         effective_capacity: EffectiveCapacity::Infinite,
2978                 };
2979                 let params = ProbabilisticScoringFeeParameters {
2980                         liquidity_penalty_multiplier_msat: 40_000,
2981                         ..ProbabilisticScoringFeeParameters::zero_penalty()
2982                 };
2983                 let decay_params = ProbabilisticScoringDecayParameters::zero_penalty();
2984                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
2985                 let (info, _) = channel.as_directed_from(&source).unwrap();
2986                 let candidate = CandidateRouteHop::PublicHop {
2987                         info,
2988                         short_channel_id: 42,
2989                 };
2990                 let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
2991                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 80_000);
2992         }
2993
2994         #[test]
2995         fn accounts_for_inflight_htlc_usage() {
2996                 let logger = TestLogger::new();
2997                 let network_graph = network_graph(&logger);
2998                 let params = ProbabilisticScoringFeeParameters {
2999                         considered_impossible_penalty_msat: u64::max_value(),
3000                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3001                 };
3002                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
3003                 let source = source_node_id();
3004
3005                 let usage = ChannelUsage {
3006                         amount_msat: 750,
3007                         inflight_htlc_msat: 0,
3008                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
3009                 };
3010                 let network_graph = network_graph.read_only();
3011                 let channel = network_graph.channel(42).unwrap();
3012                 let (info, _) = channel.as_directed_from(&source).unwrap();
3013                 let candidate = CandidateRouteHop::PublicHop {
3014                         info,
3015                         short_channel_id: 42,
3016                 };
3017                 assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
3018
3019                 let usage = ChannelUsage { inflight_htlc_msat: 251, ..usage };
3020                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
3021         }
3022
3023         #[test]
3024         fn removes_uncertainity_when_exact_liquidity_known() {
3025                 let logger = TestLogger::new();
3026                 let network_graph = network_graph(&logger);
3027                 let params = ProbabilisticScoringFeeParameters::default();
3028                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
3029                 let source = source_node_id();
3030
3031                 let base_penalty_msat = params.base_penalty_msat;
3032                 let usage = ChannelUsage {
3033                         amount_msat: 750,
3034                         inflight_htlc_msat: 0,
3035                         effective_capacity: EffectiveCapacity::ExactLiquidity { liquidity_msat: 1_000 },
3036                 };
3037                 let network_graph = network_graph.read_only();
3038                 let channel = network_graph.channel(42).unwrap();
3039                 let (info, _) = channel.as_directed_from(&source).unwrap();
3040                 let candidate = CandidateRouteHop::PublicHop {
3041                         info,
3042                         short_channel_id: 42,
3043                 };
3044                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), base_penalty_msat);
3045
3046                 let usage = ChannelUsage { amount_msat: 1_000, ..usage };
3047                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), base_penalty_msat);
3048
3049                 let usage = ChannelUsage { amount_msat: 1_001, ..usage };
3050                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
3051         }
3052
3053         #[test]
3054         fn remembers_historical_failures() {
3055                 let logger = TestLogger::new();
3056                 let network_graph = network_graph(&logger);
3057                 let params = ProbabilisticScoringFeeParameters {
3058                         historical_liquidity_penalty_multiplier_msat: 1024,
3059                         historical_liquidity_penalty_amount_multiplier_msat: 1024,
3060                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3061                 };
3062                 let decay_params = ProbabilisticScoringDecayParameters {
3063                         liquidity_offset_half_life: Duration::from_secs(60 * 60),
3064                         historical_no_updates_half_life: Duration::from_secs(10),
3065                 };
3066                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
3067                 let source = source_node_id();
3068                 let target = target_node_id();
3069
3070                 let usage = ChannelUsage {
3071                         amount_msat: 100,
3072                         inflight_htlc_msat: 0,
3073                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
3074                 };
3075                 let usage_1 = ChannelUsage {
3076                         amount_msat: 1,
3077                         inflight_htlc_msat: 0,
3078                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
3079                 };
3080
3081                 {
3082                         let network_graph = network_graph.read_only();
3083                         let channel = network_graph.channel(42).unwrap();
3084                         let (info, _) = channel.as_directed_from(&source).unwrap();
3085                         let candidate = CandidateRouteHop::PublicHop {
3086                                 info,
3087                                 short_channel_id: 42,
3088                         };
3089
3090                         // With no historical data the normal liquidity penalty calculation is used.
3091                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 168);
3092                 }
3093                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3094                 None);
3095                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 42, &params),
3096                 None);
3097
3098                 scorer.payment_path_failed(&payment_path_for_amount(1), 42, Duration::ZERO);
3099                 {
3100                         let network_graph = network_graph.read_only();
3101                         let channel = network_graph.channel(42).unwrap();
3102                         let (info, _) = channel.as_directed_from(&source).unwrap();
3103                         let candidate = CandidateRouteHop::PublicHop {
3104                                 info,
3105                                 short_channel_id: 42,
3106                         };
3107
3108                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2048);
3109                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage_1, &params), 249);
3110                 }
3111                 // The "it failed" increment is 32, where the probability should lie several buckets into
3112                 // the first octile.
3113                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3114                         Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
3115                                 [0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
3116                 assert!(scorer.historical_estimated_payment_success_probability(42, &target, 1, &params)
3117                         .unwrap() > 0.35);
3118                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 500, &params),
3119                         Some(0.0));
3120
3121                 // Even after we tell the scorer we definitely have enough available liquidity, it will
3122                 // still remember that there was some failure in the past, and assign a non-0 penalty.
3123                 scorer.payment_path_failed(&payment_path_for_amount(1000), 43, Duration::ZERO);
3124                 {
3125                         let network_graph = network_graph.read_only();
3126                         let channel = network_graph.channel(42).unwrap();
3127                         let (info, _) = channel.as_directed_from(&source).unwrap();
3128                         let candidate = CandidateRouteHop::PublicHop {
3129                                 info,
3130                                 short_channel_id: 42,
3131                         };
3132
3133                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 105);
3134                 }
3135                 // The first points should be decayed just slightly and the last bucket has a new point.
3136                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3137                         Some(([31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0],
3138                                 [0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32])));
3139
3140                 // The exact success probability is a bit complicated and involves integer rounding, so we
3141                 // simply check bounds here.
3142                 let five_hundred_prob =
3143                         scorer.historical_estimated_payment_success_probability(42, &target, 500, &params).unwrap();
3144                 assert!(five_hundred_prob > 0.59);
3145                 assert!(five_hundred_prob < 0.60);
3146                 let one_prob =
3147                         scorer.historical_estimated_payment_success_probability(42, &target, 1, &params).unwrap();
3148                 assert!(one_prob < 0.85);
3149                 assert!(one_prob > 0.84);
3150
3151                 // Advance the time forward 16 half-lives (which the docs claim will ensure all data is
3152                 // gone), and check that we're back to where we started.
3153                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * 16));
3154                 {
3155                         let network_graph = network_graph.read_only();
3156                         let channel = network_graph.channel(42).unwrap();
3157                         let (info, _) = channel.as_directed_from(&source).unwrap();
3158                         let candidate = CandidateRouteHop::PublicHop {
3159                                 info,
3160                                 short_channel_id: 42,
3161                         };
3162
3163                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 168);
3164                 }
3165                 // Once fully decayed we still have data, but its all-0s. In the future we may remove the
3166                 // data entirely instead.
3167                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3168                         Some(([0; 32], [0; 32])));
3169                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 1, &params), None);
3170
3171                 let mut usage = ChannelUsage {
3172                         amount_msat: 100,
3173                         inflight_htlc_msat: 1024,
3174                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
3175                 };
3176                 scorer.payment_path_failed(&payment_path_for_amount(1), 42, Duration::from_secs(10 * 16));
3177                 {
3178                         let network_graph = network_graph.read_only();
3179                         let channel = network_graph.channel(42).unwrap();
3180                         let (info, _) = channel.as_directed_from(&source).unwrap();
3181                         let candidate = CandidateRouteHop::PublicHop {
3182                                 info,
3183                                 short_channel_id: 42,
3184                         };
3185
3186                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2050);
3187
3188                         let usage = ChannelUsage {
3189                                 amount_msat: 1,
3190                                 inflight_htlc_msat: 0,
3191                                 effective_capacity: EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: 0 },
3192                         };
3193                         assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2048);
3194                 }
3195
3196                 // Advance to decay all liquidity offsets to zero.
3197                 scorer.decay_liquidity_certainty(Duration::from_secs(10 * (16 + 60 * 60)));
3198
3199                 // Once even the bounds have decayed information about the channel should be removed
3200                 // entirely.
3201                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3202                         None);
3203
3204                 // Use a path in the opposite direction, which have zero for htlc_maximum_msat. This will
3205                 // ensure that the effective capacity is zero to test division-by-zero edge cases.
3206                 let path = vec![
3207                         path_hop(target_pubkey(), 43, 2),
3208                         path_hop(source_pubkey(), 42, 1),
3209                         path_hop(sender_pubkey(), 41, 0),
3210                 ];
3211                 scorer.payment_path_failed(&Path { hops: path, blinded_tail: None }, 42, Duration::from_secs(10 * (16 + 60 * 60)));
3212         }
3213
3214         #[test]
3215         fn adds_anti_probing_penalty() {
3216                 let logger = TestLogger::new();
3217                 let network_graph = network_graph(&logger);
3218                 let source = source_node_id();
3219                 let params = ProbabilisticScoringFeeParameters {
3220                         anti_probing_penalty_msat: 500,
3221                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3222                 };
3223                 let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
3224
3225                 // Check we receive no penalty for a low htlc_maximum_msat.
3226                 let usage = ChannelUsage {
3227                         amount_msat: 512_000,
3228                         inflight_htlc_msat: 0,
3229                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
3230                 };
3231                 let network_graph = network_graph.read_only();
3232                 let channel = network_graph.channel(42).unwrap();
3233                 let (info, _) = channel.as_directed_from(&source).unwrap();
3234                 let candidate = CandidateRouteHop::PublicHop {
3235                         info,
3236                         short_channel_id: 42,
3237                 };
3238                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
3239
3240                 // Check we receive anti-probing penalty for htlc_maximum_msat == channel_capacity.
3241                 let usage = ChannelUsage {
3242                         amount_msat: 512_000,
3243                         inflight_htlc_msat: 0,
3244                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_024_000 },
3245                 };
3246                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 500);
3247
3248                 // Check we receive anti-probing penalty for htlc_maximum_msat == channel_capacity/2.
3249                 let usage = ChannelUsage {
3250                         amount_msat: 512_000,
3251                         inflight_htlc_msat: 0,
3252                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 512_000 },
3253                 };
3254                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 500);
3255
3256                 // Check we receive no anti-probing penalty for htlc_maximum_msat == channel_capacity/2 - 1.
3257                 let usage = ChannelUsage {
3258                         amount_msat: 512_000,
3259                         inflight_htlc_msat: 0,
3260                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 511_999 },
3261                 };
3262                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
3263         }
3264
3265         #[test]
3266         fn scores_with_blinded_path() {
3267                 // Make sure we'll account for a blinded path's final_value_msat in scoring
3268                 let logger = TestLogger::new();
3269                 let network_graph = network_graph(&logger);
3270                 let params = ProbabilisticScoringFeeParameters {
3271                         liquidity_penalty_multiplier_msat: 1_000,
3272                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3273                 };
3274                 let decay_params = ProbabilisticScoringDecayParameters::default();
3275                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
3276                 let source = source_node_id();
3277                 let usage = ChannelUsage {
3278                         amount_msat: 512,
3279                         inflight_htlc_msat: 0,
3280                         effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
3281                 };
3282                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
3283                 let (info, target) = channel.as_directed_from(&source).unwrap();
3284                 let candidate = CandidateRouteHop::PublicHop {
3285                         info,
3286                         short_channel_id: 42,
3287                 };
3288                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
3289
3290                 let mut path = payment_path_for_amount(768);
3291                 let recipient_hop = path.hops.pop().unwrap();
3292                 let blinded_path = BlindedPath {
3293                         introduction_node_id: path.hops.last().as_ref().unwrap().pubkey,
3294                         blinding_point: test_utils::pubkey(42),
3295                         blinded_hops: vec![
3296                                 BlindedHop { blinded_node_id: test_utils::pubkey(44), encrypted_payload: Vec::new() }
3297                         ],
3298                 };
3299                 path.blinded_tail = Some(BlindedTail {
3300                         hops: blinded_path.blinded_hops,
3301                         blinding_point: blinded_path.blinding_point,
3302                         excess_final_cltv_expiry_delta: recipient_hop.cltv_expiry_delta,
3303                         final_value_msat: recipient_hop.fee_msat,
3304                 });
3305
3306                 // Check the liquidity before and after scoring payment failures to ensure the blinded path's
3307                 // final value is taken into account.
3308                 assert!(scorer.channel_liquidities.get(&42).is_none());
3309
3310                 scorer.payment_path_failed(&path, 42, Duration::ZERO);
3311                 path.blinded_tail.as_mut().unwrap().final_value_msat = 256;
3312                 scorer.payment_path_failed(&path, 43, Duration::ZERO);
3313
3314                 let liquidity = scorer.channel_liquidities.get(&42).unwrap()
3315                         .as_directed(&source, &target, 1_000);
3316                 assert_eq!(liquidity.min_liquidity_msat(), 256);
3317                 assert_eq!(liquidity.max_liquidity_msat(), 768);
3318         }
3319
3320         #[test]
3321         fn realistic_historical_failures() {
3322                 // The motivation for the unequal sized buckets came largely from attempting to pay 10k
3323                 // sats over a one bitcoin channel. This tests that case explicitly, ensuring that we score
3324                 // properly.
3325                 let logger = TestLogger::new();
3326                 let mut network_graph = network_graph(&logger);
3327                 let params = ProbabilisticScoringFeeParameters {
3328                         historical_liquidity_penalty_multiplier_msat: 1024,
3329                         historical_liquidity_penalty_amount_multiplier_msat: 1024,
3330                         ..ProbabilisticScoringFeeParameters::zero_penalty()
3331                 };
3332                 let decay_params = ProbabilisticScoringDecayParameters {
3333                         liquidity_offset_half_life: Duration::from_secs(60 * 60),
3334                         historical_no_updates_half_life: Duration::from_secs(10),
3335                         ..ProbabilisticScoringDecayParameters::default()
3336                 };
3337
3338                 let capacity_msat = 100_000_000_000;
3339                 update_channel(&mut network_graph, 42, source_privkey(), 0, capacity_msat, 200);
3340                 update_channel(&mut network_graph, 42, target_privkey(), 1, capacity_msat, 200);
3341
3342                 let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
3343                 let source = source_node_id();
3344
3345                 let mut amount_msat = 10_000_000;
3346                 let usage = ChannelUsage {
3347                         amount_msat,
3348                         inflight_htlc_msat: 0,
3349                         effective_capacity: EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: capacity_msat },
3350                 };
3351                 let channel = network_graph.read_only().channel(42).unwrap().to_owned();
3352                 let (info, target) = channel.as_directed_from(&source).unwrap();
3353                 let candidate = CandidateRouteHop::PublicHop {
3354                         info,
3355                         short_channel_id: 42,
3356                 };
3357                 // With no historical data the normal liquidity penalty calculation is used, which results
3358                 // in a success probability of ~75%.
3359                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1269);
3360                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3361                         None);
3362                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 42, &params),
3363                         None);
3364
3365                 // Fail to pay once, and then check the buckets and penalty.
3366                 scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42, Duration::ZERO);
3367                 // The penalty should be the maximum penalty, as the payment we're scoring is now in the
3368                 // same bucket which is the only maximum datapoint.
3369                 assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params),
3370                         2048 + 2048 * amount_msat / super::AMOUNT_PENALTY_DIVISOR);
3371                 // The "it failed" increment is 32, which we should apply to the first upper-bound (between
3372                 // 6k sats and 12k sats).
3373                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3374                         Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
3375                                 [0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
3376                 // The success probability estimate itself should be zero.
3377                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params),
3378                         Some(0.0));
3379
3380                 // Now test again with the amount in the bottom bucket.
3381                 amount_msat /= 2;
3382                 // The new amount is entirely within the only minimum bucket with score, so the probability
3383                 // we assign is 1/2.
3384                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params),
3385                         Some(0.5));
3386
3387                 // ...but once we see a failure, we consider the payment to be substantially less likely,
3388                 // even though not a probability of zero as we still look at the second max bucket which
3389                 // now shows 31.
3390                 scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42, Duration::ZERO);
3391                 assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
3392                         Some(([63, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
3393                                 [32, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
3394                 assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params),
3395                         Some(0.0));
3396         }
3397 }
3398
3399 #[cfg(ldk_bench)]
3400 pub mod benches {
3401         use super::*;
3402         use criterion::Criterion;
3403         use crate::routing::router::{bench_utils, RouteHop};
3404         use crate::util::test_utils::TestLogger;
3405         use crate::ln::features::{ChannelFeatures, NodeFeatures};
3406
3407         pub fn decay_100k_channel_bounds(bench: &mut Criterion) {
3408                 let logger = TestLogger::new();
3409                 let (network_graph, mut scorer) = bench_utils::read_graph_scorer(&logger).unwrap();
3410                 let mut cur_time = Duration::ZERO;
3411                         cur_time += Duration::from_millis(1);
3412                         scorer.decay_liquidity_certainty(cur_time);
3413                 bench.bench_function("decay_100k_channel_bounds", |b| b.iter(|| {
3414                         cur_time += Duration::from_millis(1);
3415                         scorer.decay_liquidity_certainty(cur_time);
3416                 }));
3417         }
3418 }