Implement struct wrappers for channel key types to avoid confusion.
[rust-lightning] / lightning / src / sign / mod.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Provides keys to LDK and defines some useful objects describing spendable on-chain outputs.
11 //!
12 //! The provided output descriptors follow a custom LDK data format and are currently not fully
13 //! compatible with Bitcoin Core output descriptors.
14
15 use bitcoin::blockdata::locktime::absolute::LockTime;
16 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn};
17 use bitcoin::blockdata::script::{Script, ScriptBuf, Builder};
18 use bitcoin::blockdata::opcodes;
19 use bitcoin::ecdsa::Signature as EcdsaSignature;
20 use bitcoin::network::constants::Network;
21 use bitcoin::psbt::PartiallySignedTransaction;
22 use bitcoin::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
23 use bitcoin::sighash;
24 use bitcoin::sighash::EcdsaSighashType;
25
26 use bitcoin::bech32::u5;
27 use bitcoin::hashes::{Hash, HashEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hash_types::WPubkeyHash;
31
32 use bitcoin::secp256k1::{KeyPair, PublicKey, Scalar, Secp256k1, SecretKey, Signing};
33 use bitcoin::secp256k1::ecdh::SharedSecret;
34 use bitcoin::secp256k1::ecdsa::{RecoverableSignature, Signature};
35 use bitcoin::secp256k1::schnorr;
36 use bitcoin::{secp256k1, Sequence, Witness, Txid};
37
38 use crate::util::transaction_utils;
39 use crate::util::crypto::{hkdf_extract_expand_twice, sign, sign_with_aux_rand};
40 use crate::util::ser::{Writeable, Writer, Readable, ReadableArgs};
41 use crate::chain::transaction::OutPoint;
42 use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
43 use crate::ln::{chan_utils, PaymentPreimage};
44 use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
45 use crate::ln::channel_keys::{DelayedPaymentBasepoint, DelayedPaymentKey, HtlcKey, HtlcBasepoint, RevocationKey, RevocationBasepoint};
46 use crate::ln::msgs::{UnsignedChannelAnnouncement, UnsignedGossipMessage};
47 use crate::ln::script::ShutdownScript;
48 use crate::offers::invoice::UnsignedBolt12Invoice;
49 use crate::offers::invoice_request::UnsignedInvoiceRequest;
50
51 use crate::prelude::*;
52 use core::convert::TryInto;
53 use core::ops::Deref;
54 use core::sync::atomic::{AtomicUsize, Ordering};
55 use crate::io::{self, Error};
56 use crate::ln::features::ChannelTypeFeatures;
57 use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
58 use crate::util::atomic_counter::AtomicCounter;
59 use crate::util::chacha20::ChaCha20;
60 use crate::util::invoice::construct_invoice_preimage;
61
62 pub(crate) mod type_resolver;
63
64 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
65 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
66 ///
67 /// This is not exported to bindings users as we just use `[u8; 32]` directly
68 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
69 pub struct KeyMaterial(pub [u8; 32]);
70
71 /// Information about a spendable output to a P2WSH script.
72 ///
73 /// See [`SpendableOutputDescriptor::DelayedPaymentOutput`] for more details on how to spend this.
74 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
75 pub struct DelayedPaymentOutputDescriptor {
76         /// The outpoint which is spendable.
77         pub outpoint: OutPoint,
78         /// Per commitment point to derive the delayed payment key by key holder.
79         pub per_commitment_point: PublicKey,
80         /// The `nSequence` value which must be set in the spending input to satisfy the `OP_CSV` in
81         /// the witness_script.
82         pub to_self_delay: u16,
83         /// The output which is referenced by the given outpoint.
84         pub output: TxOut,
85         /// The revocation point specific to the commitment transaction which was broadcast. Used to
86         /// derive the witnessScript for this output.
87         pub revocation_pubkey: RevocationKey,
88         /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
89         /// This may be useful in re-deriving keys used in the channel to spend the output.
90         pub channel_keys_id: [u8; 32],
91         /// The value of the channel which this output originated from, possibly indirectly.
92         pub channel_value_satoshis: u64,
93 }
94 impl DelayedPaymentOutputDescriptor {
95         /// The maximum length a well-formed witness spending one of these should have.
96         /// Note: If you have the grind_signatures feature enabled, this will be at least 1 byte
97         /// shorter.
98         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
99         // redeemscript push length.
100         pub const MAX_WITNESS_LENGTH: u64 = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH as u64 + 1;
101 }
102
103 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
104         (0, outpoint, required),
105         (2, per_commitment_point, required),
106         (4, to_self_delay, required),
107         (6, output, required),
108         (8, revocation_pubkey, required),
109         (10, channel_keys_id, required),
110         (12, channel_value_satoshis, required),
111 });
112
113 pub(crate) const P2WPKH_WITNESS_WEIGHT: u64 = 1 /* num stack items */ +
114         1 /* sig length */ +
115         73 /* sig including sighash flag */ +
116         1 /* pubkey length */ +
117         33 /* pubkey */;
118
119 /// Information about a spendable output to our "payment key".
120 ///
121 /// See [`SpendableOutputDescriptor::StaticPaymentOutput`] for more details on how to spend this.
122 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
123 pub struct StaticPaymentOutputDescriptor {
124         /// The outpoint which is spendable.
125         pub outpoint: OutPoint,
126         /// The output which is referenced by the given outpoint.
127         pub output: TxOut,
128         /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
129         /// This may be useful in re-deriving keys used in the channel to spend the output.
130         pub channel_keys_id: [u8; 32],
131         /// The value of the channel which this transactions spends.
132         pub channel_value_satoshis: u64,
133         /// The necessary channel parameters that need to be provided to the re-derived signer through
134         /// [`ChannelSigner::provide_channel_parameters`].
135         ///
136         /// Added as optional, but always `Some` if the descriptor was produced in v0.0.117 or later.
137         pub channel_transaction_parameters: Option<ChannelTransactionParameters>,
138 }
139 impl StaticPaymentOutputDescriptor {
140         /// Returns the `witness_script` of the spendable output.
141         ///
142         /// Note that this will only return `Some` for [`StaticPaymentOutputDescriptor`]s that
143         /// originated from an anchor outputs channel, as they take the form of a P2WSH script.
144         pub fn witness_script(&self) -> Option<ScriptBuf> {
145                 self.channel_transaction_parameters.as_ref()
146                         .and_then(|channel_params|
147                                  if channel_params.channel_type_features.supports_anchors_zero_fee_htlc_tx() {
148                                         let payment_point = channel_params.holder_pubkeys.payment_point;
149                                         Some(chan_utils::get_to_countersignatory_with_anchors_redeemscript(&payment_point))
150                                  } else {
151                                          None
152                                  }
153                         )
154         }
155
156         /// The maximum length a well-formed witness spending one of these should have.
157         /// Note: If you have the grind_signatures feature enabled, this will be at least 1 byte
158         /// shorter.
159         pub fn max_witness_length(&self) -> u64 {
160                 if self.channel_transaction_parameters.as_ref()
161                         .map(|channel_params| channel_params.channel_type_features.supports_anchors_zero_fee_htlc_tx())
162                         .unwrap_or(false)
163                 {
164                         let witness_script_weight = 1 /* pubkey push */ + 33 /* pubkey */ +
165                                 1 /* OP_CHECKSIGVERIFY */ + 1 /* OP_1 */ + 1 /* OP_CHECKSEQUENCEVERIFY */;
166                         1 /* num witness items */ + 1 /* sig push */ + 73 /* sig including sighash flag */ +
167                                 1 /* witness script push */ + witness_script_weight
168                 } else {
169                         P2WPKH_WITNESS_WEIGHT
170                 }
171         }
172 }
173 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
174         (0, outpoint, required),
175         (2, output, required),
176         (4, channel_keys_id, required),
177         (6, channel_value_satoshis, required),
178         (7, channel_transaction_parameters, option),
179 });
180
181 /// Describes the necessary information to spend a spendable output.
182 ///
183 /// When on-chain outputs are created by LDK (which our counterparty is not able to claim at any
184 /// point in the future) a [`SpendableOutputs`] event is generated which you must track and be able
185 /// to spend on-chain. The information needed to do this is provided in this enum, including the
186 /// outpoint describing which `txid` and output `index` is available, the full output which exists
187 /// at that `txid`/`index`, and any keys or other information required to sign.
188 ///
189 /// [`SpendableOutputs`]: crate::events::Event::SpendableOutputs
190 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
191 pub enum SpendableOutputDescriptor {
192         /// An output to a script which was provided via [`SignerProvider`] directly, either from
193         /// [`get_destination_script`] or [`get_shutdown_scriptpubkey`], thus you should already
194         /// know how to spend it. No secret keys are provided as LDK was never given any key.
195         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
196         /// on-chain using the payment preimage or after it has timed out.
197         ///
198         /// [`get_shutdown_scriptpubkey`]: SignerProvider::get_shutdown_scriptpubkey
199         /// [`get_destination_script`]: SignerProvider::get_shutdown_scriptpubkey
200         StaticOutput {
201                 /// The outpoint which is spendable.
202                 outpoint: OutPoint,
203                 /// The output which is referenced by the given outpoint.
204                 output: TxOut,
205         },
206         /// An output to a P2WSH script which can be spent with a single signature after an `OP_CSV`
207         /// delay.
208         ///
209         /// The witness in the spending input should be:
210         /// ```bitcoin
211         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
212         /// ```
213         ///
214         /// Note that the `nSequence` field in the spending input must be set to
215         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] (which means the transaction is not
216         /// broadcastable until at least [`DelayedPaymentOutputDescriptor::to_self_delay`] blocks after
217         /// the outpoint confirms, see [BIP
218         /// 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki)). Also note that LDK
219         /// won't generate a [`SpendableOutputDescriptor`] until the corresponding block height
220         /// is reached.
221         ///
222         /// These are generally the result of a "revocable" output to us, spendable only by us unless
223         /// it is an output from an old state which we broadcast (which should never happen).
224         ///
225         /// To derive the delayed payment key which is used to sign this input, you must pass the
226         /// holder [`InMemorySigner::delayed_payment_base_key`] (i.e., the private key which corresponds to the
227         /// [`ChannelPublicKeys::delayed_payment_basepoint`] in [`ChannelSigner::pubkeys`]) and the provided
228         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to [`chan_utils::derive_private_key`]. The DelayedPaymentKey can be
229         /// generated without the secret key using [`DelayedPaymentKey::from_basepoint`] and only the
230         /// [`ChannelPublicKeys::delayed_payment_basepoint`] which appears in [`ChannelSigner::pubkeys`].
231         ///
232         /// To derive the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] provided here (which is
233         /// used in the witness script generation), you must pass the counterparty
234         /// [`ChannelPublicKeys::revocation_basepoint`] (which appears in the call to
235         /// [`ChannelSigner::provide_channel_parameters`]) and the provided
236         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to
237         /// [`RevocationKey`].
238         ///
239         /// The witness script which is hashed and included in the output `script_pubkey` may be
240         /// regenerated by passing the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] (derived
241         /// as explained above), our delayed payment pubkey (derived as explained above), and the
242         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] contained here to
243         /// [`chan_utils::get_revokeable_redeemscript`].
244         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
245         /// An output spendable exclusively by our payment key (i.e., the private key that corresponds
246         /// to the `payment_point` in [`ChannelSigner::pubkeys`]). The output type depends on the
247         /// channel type negotiated.
248         ///
249         /// On an anchor outputs channel, the witness in the spending input is:
250         /// ```bitcoin
251         /// <BIP 143 signature> <witness script>
252         /// ```
253         ///
254         /// Otherwise, it is:
255         /// ```bitcoin
256         /// <BIP 143 signature> <payment key>
257         /// ```
258         ///
259         /// These are generally the result of our counterparty having broadcast the current state,
260         /// allowing us to claim the non-HTLC-encumbered outputs immediately, or after one confirmation
261         /// in the case of anchor outputs channels.
262         StaticPaymentOutput(StaticPaymentOutputDescriptor),
263 }
264
265 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
266         (0, StaticOutput) => {
267                 (0, outpoint, required),
268                 (2, output, required),
269         },
270 ;
271         (1, DelayedPaymentOutput),
272         (2, StaticPaymentOutput),
273 );
274
275 impl SpendableOutputDescriptor {
276         /// Turns this into a [`bitcoin::psbt::Input`] which can be used to create a
277         /// [`PartiallySignedTransaction`] which spends the given descriptor.
278         ///
279         /// Note that this does not include any signatures, just the information required to
280         /// construct the transaction and sign it.
281         ///
282         /// This is not exported to bindings users as there is no standard serialization for an input.
283         /// See [`Self::create_spendable_outputs_psbt`] instead.
284         pub fn to_psbt_input(&self) -> bitcoin::psbt::Input {
285                 match self {
286                         SpendableOutputDescriptor::StaticOutput { output, .. } => {
287                                 // Is a standard P2WPKH, no need for witness script
288                                 bitcoin::psbt::Input {
289                                         witness_utxo: Some(output.clone()),
290                                         ..Default::default()
291                                 }
292                         },
293                         SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
294                                 // TODO we could add the witness script as well
295                                 bitcoin::psbt::Input {
296                                         witness_utxo: Some(descriptor.output.clone()),
297                                         ..Default::default()
298                                 }
299                         },
300                         SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
301                                 // TODO we could add the witness script as well
302                                 bitcoin::psbt::Input {
303                                         witness_utxo: Some(descriptor.output.clone()),
304                                         ..Default::default()
305                                 }
306                         },
307                 }
308         }
309
310         /// Creates an unsigned [`PartiallySignedTransaction`] which spends the given descriptors to
311         /// the given outputs, plus an output to the given change destination (if sufficient
312         /// change value remains). The PSBT will have a feerate, at least, of the given value.
313         ///
314         /// The `locktime` argument is used to set the transaction's locktime. If `None`, the
315         /// transaction will have a locktime of 0. It it recommended to set this to the current block
316         /// height to avoid fee sniping, unless you have some specific reason to use a different
317         /// locktime.
318         ///
319         /// Returns the PSBT and expected max transaction weight.
320         ///
321         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
322         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
323         /// does not match the one we can spend.
324         ///
325         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
326         pub fn create_spendable_outputs_psbt(descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32, locktime: Option<LockTime>) -> Result<(PartiallySignedTransaction, u64), ()> {
327                 let mut input = Vec::with_capacity(descriptors.len());
328                 let mut input_value = 0;
329                 let mut witness_weight = 0;
330                 let mut output_set = HashSet::with_capacity(descriptors.len());
331                 for outp in descriptors {
332                         match outp {
333                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
334                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
335                                         let sequence =
336                                                 if descriptor.channel_transaction_parameters.as_ref()
337                                                         .map(|channel_params| channel_params.channel_type_features.supports_anchors_zero_fee_htlc_tx())
338                                                         .unwrap_or(false)
339                                                 {
340                                                         Sequence::from_consensus(1)
341                                                 } else {
342                                                         Sequence::ZERO
343                                                 };
344                                         input.push(TxIn {
345                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
346                                                 script_sig: ScriptBuf::new(),
347                                                 sequence,
348                                                 witness: Witness::new(),
349                                         });
350                                         witness_weight += descriptor.max_witness_length();
351                                         #[cfg(feature = "grind_signatures")]
352                                         { witness_weight -= 1; } // Guarantees a low R signature
353                                         input_value += descriptor.output.value;
354                                 },
355                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
356                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
357                                         input.push(TxIn {
358                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
359                                                 script_sig: ScriptBuf::new(),
360                                                 sequence: Sequence(descriptor.to_self_delay as u32),
361                                                 witness: Witness::new(),
362                                         });
363                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
364                                         #[cfg(feature = "grind_signatures")]
365                                         { witness_weight -= 1; } // Guarantees a low R signature
366                                         input_value += descriptor.output.value;
367                                 },
368                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
369                                         if !output_set.insert(*outpoint) { return Err(()); }
370                                         input.push(TxIn {
371                                                 previous_output: outpoint.into_bitcoin_outpoint(),
372                                                 script_sig: ScriptBuf::new(),
373                                                 sequence: Sequence::ZERO,
374                                                 witness: Witness::new(),
375                                         });
376                                         witness_weight += 1 + 73 + 34;
377                                         #[cfg(feature = "grind_signatures")]
378                                         { witness_weight -= 1; } // Guarantees a low R signature
379                                         input_value += output.value;
380                                 }
381                         }
382                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
383                 }
384                 let mut tx = Transaction {
385                         version: 2,
386                         lock_time: locktime.unwrap_or(LockTime::ZERO),
387                         input,
388                         output: outputs,
389                 };
390                 let expected_max_weight =
391                         transaction_utils::maybe_add_change_output(&mut tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
392
393                 let psbt_inputs = descriptors.iter().map(|d| d.to_psbt_input()).collect::<Vec<_>>();
394                 let psbt = PartiallySignedTransaction {
395                         inputs: psbt_inputs,
396                         outputs: vec![Default::default(); tx.output.len()],
397                         unsigned_tx: tx,
398                         xpub: Default::default(),
399                         version: 0,
400                         proprietary: Default::default(),
401                         unknown: Default::default(),
402                 };
403                 Ok((psbt, expected_max_weight))
404         }
405 }
406
407 /// The parameters required to derive a channel signer via [`SignerProvider`].
408 #[derive(Clone, Debug, PartialEq, Eq)]
409 pub struct ChannelDerivationParameters {
410         /// The value in satoshis of the channel we're attempting to spend the anchor output of.
411         pub value_satoshis: u64,
412         /// The unique identifier to re-derive the signer for the associated channel.
413         pub keys_id: [u8; 32],
414         /// The necessary channel parameters that need to be provided to the re-derived signer through
415         /// [`ChannelSigner::provide_channel_parameters`].
416         pub transaction_parameters: ChannelTransactionParameters,
417 }
418
419 impl_writeable_tlv_based!(ChannelDerivationParameters, {
420     (0, value_satoshis, required),
421     (2, keys_id, required),
422     (4, transaction_parameters, required),
423 });
424
425 /// A descriptor used to sign for a commitment transaction's HTLC output.
426 #[derive(Clone, Debug, PartialEq, Eq)]
427 pub struct HTLCDescriptor {
428         /// The parameters required to derive the signer for the HTLC input.
429         pub channel_derivation_parameters: ChannelDerivationParameters,
430         /// The txid of the commitment transaction in which the HTLC output lives.
431         pub commitment_txid: Txid,
432         /// The number of the commitment transaction in which the HTLC output lives.
433         pub per_commitment_number: u64,
434         /// The key tweak corresponding to the number of the commitment transaction in which the HTLC
435         /// output lives. This tweak is applied to all the basepoints for both parties in the channel to
436         /// arrive at unique keys per commitment.
437         ///
438         /// See <https://github.com/lightning/bolts/blob/master/03-transactions.md#keys> for more info.
439         pub per_commitment_point: PublicKey,
440         /// The feerate to use on the HTLC claiming transaction. This is always `0` for HTLCs
441         /// originating from a channel supporting anchor outputs, otherwise it is the channel's
442         /// negotiated feerate at the time the commitment transaction was built.
443         pub feerate_per_kw: u32,
444         /// The details of the HTLC as it appears in the commitment transaction.
445         pub htlc: HTLCOutputInCommitment,
446         /// The preimage, if `Some`, to claim the HTLC output with. If `None`, the timeout path must be
447         /// taken.
448         pub preimage: Option<PaymentPreimage>,
449         /// The counterparty's signature required to spend the HTLC output.
450         pub counterparty_sig: Signature
451 }
452
453 impl_writeable_tlv_based!(HTLCDescriptor, {
454         (0, channel_derivation_parameters, required),
455         (1, feerate_per_kw, (default_value, 0)),
456         (2, commitment_txid, required),
457         (4, per_commitment_number, required),
458         (6, per_commitment_point, required),
459         (8, htlc, required),
460         (10, preimage, option),
461         (12, counterparty_sig, required),
462 });
463
464 impl HTLCDescriptor {
465         /// Returns the outpoint of the HTLC output in the commitment transaction. This is the outpoint
466         /// being spent by the HTLC input in the HTLC transaction.
467         pub fn outpoint(&self) -> bitcoin::OutPoint {
468                 bitcoin::OutPoint {
469                         txid: self.commitment_txid,
470                         vout: self.htlc.transaction_output_index.unwrap(),
471                 }
472         }
473
474         /// Returns the UTXO to be spent by the HTLC input, which can be obtained via
475         /// [`Self::unsigned_tx_input`].
476         pub fn previous_utxo<C: secp256k1::Signing + secp256k1::Verification>(&self, secp: &Secp256k1<C>) -> TxOut {
477                 TxOut {
478                         script_pubkey: self.witness_script(secp).to_v0_p2wsh(),
479                         value: self.htlc.amount_msat / 1000,
480                 }
481         }
482
483         /// Returns the unsigned transaction input spending the HTLC output in the commitment
484         /// transaction.
485         pub fn unsigned_tx_input(&self) -> TxIn {
486                 chan_utils::build_htlc_input(
487                         &self.commitment_txid, &self.htlc, &self.channel_derivation_parameters.transaction_parameters.channel_type_features
488                 )
489         }
490
491         /// Returns the delayed output created as a result of spending the HTLC output in the commitment
492         /// transaction.
493         pub fn tx_output<C: secp256k1::Signing + secp256k1::Verification>(&self, secp: &Secp256k1<C>) -> TxOut {
494                 let channel_params = self.channel_derivation_parameters.transaction_parameters.as_holder_broadcastable();
495                 let broadcaster_keys = channel_params.broadcaster_pubkeys();
496                 let counterparty_keys = channel_params.countersignatory_pubkeys();
497                 let broadcaster_delayed_key = DelayedPaymentKey::from_basepoint(
498                         secp, &broadcaster_keys.delayed_payment_basepoint, &self.per_commitment_point
499                 );
500                 let counterparty_revocation_key = &RevocationKey::from_basepoint(&secp, &counterparty_keys.revocation_basepoint, &self.per_commitment_point);
501                 chan_utils::build_htlc_output(
502                         self.feerate_per_kw, channel_params.contest_delay(), &self.htlc,
503                         channel_params.channel_type_features(), &broadcaster_delayed_key, &counterparty_revocation_key
504                 )
505         }
506
507         /// Returns the witness script of the HTLC output in the commitment transaction.
508         pub fn witness_script<C: secp256k1::Signing + secp256k1::Verification>(&self, secp: &Secp256k1<C>) -> ScriptBuf {
509                 let channel_params = self.channel_derivation_parameters.transaction_parameters.as_holder_broadcastable();
510                 let broadcaster_keys = channel_params.broadcaster_pubkeys();
511                 let counterparty_keys = channel_params.countersignatory_pubkeys();
512                 let broadcaster_htlc_key = HtlcKey::from_basepoint(
513                         secp, &broadcaster_keys.htlc_basepoint, &self.per_commitment_point
514                 );
515                 let counterparty_htlc_key = HtlcKey::from_basepoint(
516                         secp, &counterparty_keys.htlc_basepoint, &self.per_commitment_point,
517                 );
518                 let counterparty_revocation_key = &RevocationKey::from_basepoint(&secp, &counterparty_keys.revocation_basepoint, &self.per_commitment_point);
519                 chan_utils::get_htlc_redeemscript_with_explicit_keys(
520                         &self.htlc, channel_params.channel_type_features(), &broadcaster_htlc_key, &counterparty_htlc_key,
521                         &counterparty_revocation_key,
522                 )
523         }
524
525         /// Returns the fully signed witness required to spend the HTLC output in the commitment
526         /// transaction.
527         pub fn tx_input_witness(&self, signature: &Signature, witness_script: &Script) -> Witness {
528                 chan_utils::build_htlc_input_witness(
529                         signature, &self.counterparty_sig, &self.preimage, witness_script,
530                         &self.channel_derivation_parameters.transaction_parameters.channel_type_features
531                 )
532         }
533
534         /// Derives the channel signer required to sign the HTLC input.
535         pub fn derive_channel_signer<S: WriteableEcdsaChannelSigner, SP: Deref>(&self, signer_provider: &SP) -> S
536         where
537                 SP::Target: SignerProvider<Signer = S>
538         {
539                 let mut signer = signer_provider.derive_channel_signer(
540                         self.channel_derivation_parameters.value_satoshis,
541                         self.channel_derivation_parameters.keys_id,
542                 );
543                 signer.provide_channel_parameters(&self.channel_derivation_parameters.transaction_parameters);
544                 signer
545         }
546 }
547
548 /// A trait to handle Lightning channel key material without concretizing the channel type or
549 /// the signature mechanism.
550 pub trait ChannelSigner {
551         /// Gets the per-commitment point for a specific commitment number
552         ///
553         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
554         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
555
556         /// Gets the commitment secret for a specific commitment number as part of the revocation process
557         ///
558         /// An external signer implementation should error here if the commitment was already signed
559         /// and should refuse to sign it in the future.
560         ///
561         /// May be called more than once for the same index.
562         ///
563         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
564         // TODO: return a Result so we can signal a validation error
565         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
566
567         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
568         ///
569         /// This is required in order for the signer to make sure that releasing a commitment
570         /// secret won't leave us without a broadcastable holder transaction.
571         /// Policy checks should be implemented in this function, including checking the amount
572         /// sent to us and checking the HTLCs.
573         ///
574         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
575         /// A validating signer should ensure that an HTLC output is removed only when the matching
576         /// preimage is provided, or when the value to holder is restored.
577         ///
578         /// Note that all the relevant preimages will be provided, but there may also be additional
579         /// irrelevant or duplicate preimages.
580         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction,
581                 preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
582
583         /// Returns the holder's channel public keys and basepoints.
584         fn pubkeys(&self) -> &ChannelPublicKeys;
585
586         /// Returns an arbitrary identifier describing the set of keys which are provided back to you in
587         /// some [`SpendableOutputDescriptor`] types. This should be sufficient to identify this
588         /// [`EcdsaChannelSigner`] object uniquely and lookup or re-derive its keys.
589         fn channel_keys_id(&self) -> [u8; 32];
590
591         /// Set the counterparty static channel data, including basepoints,
592         /// `counterparty_selected`/`holder_selected_contest_delay` and funding outpoint.
593         ///
594         /// This data is static, and will never change for a channel once set. For a given [`ChannelSigner`]
595         /// instance, LDK will call this method exactly once - either immediately after construction
596         /// (not including if done via [`SignerProvider::read_chan_signer`]) or when the funding
597         /// information has been generated.
598         ///
599         /// channel_parameters.is_populated() MUST be true.
600         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters);
601 }
602
603 /// A trait to sign Lightning channel transactions as described in
604 /// [BOLT 3](https://github.com/lightning/bolts/blob/master/03-transactions.md).
605 ///
606 /// Signing services could be implemented on a hardware wallet and should implement signing
607 /// policies in order to be secure. Please refer to the [VLS Policy
608 /// Controls](https://gitlab.com/lightning-signer/validating-lightning-signer/-/blob/main/docs/policy-controls.md)
609 /// for an example of such policies.
610 pub trait EcdsaChannelSigner: ChannelSigner {
611         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
612         ///
613         /// Note that if signing fails or is rejected, the channel will be force-closed.
614         ///
615         /// Policy checks should be implemented in this function, including checking the amount
616         /// sent to us and checking the HTLCs.
617         ///
618         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
619         /// A validating signer should ensure that an HTLC output is removed only when the matching
620         /// preimage is provided, or when the value to holder is restored.
621         ///
622         /// Note that all the relevant preimages will be provided, but there may also be additional
623         /// irrelevant or duplicate preimages.
624         //
625         // TODO: Document the things someone using this interface should enforce before signing.
626         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction,
627                 preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>
628         ) -> Result<(Signature, Vec<Signature>), ()>;
629         /// Validate the counterparty's revocation.
630         ///
631         /// This is required in order for the signer to make sure that the state has moved
632         /// forward and it is safe to sign the next counterparty commitment.
633         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
634         /// Creates a signature for a holder's commitment transaction.
635         ///
636         /// This will be called
637         /// - with a non-revoked `commitment_tx`.
638         /// - with the latest `commitment_tx` when we initiate a force-close.
639         ///
640         /// This may be called multiple times for the same transaction.
641         ///
642         /// An external signer implementation should check that the commitment has not been revoked.
643         //
644         // TODO: Document the things someone using this interface should enforce before signing.
645         fn sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction,
646                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
647         /// Same as [`sign_holder_commitment`], but exists only for tests to get access to holder
648         /// commitment transactions which will be broadcasted later, after the channel has moved on to a
649         /// newer state. Thus, needs its own method as [`sign_holder_commitment`] may enforce that we
650         /// only ever get called once.
651         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
652         fn unsafe_sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction,
653                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
654         /// Create a signature for the given input in a transaction spending an HTLC transaction output
655         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
656         ///
657         /// A justice transaction may claim multiple outputs at the same time if timelocks are
658         /// similar, but only a signature for the input at index `input` should be signed for here.
659         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
660         /// to an upcoming timelock expiration.
661         ///
662         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
663         ///
664         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
665         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
666         /// not allow the spending of any funds by itself (you need our holder `revocation_secret` to do
667         /// so).
668         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64,
669                 per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>
670         ) -> Result<Signature, ()>;
671         /// Create a signature for the given input in a transaction spending a commitment transaction
672         /// HTLC output when our counterparty broadcasts an old state.
673         ///
674         /// A justice transaction may claim multiple outputs at the same time if timelocks are
675         /// similar, but only a signature for the input at index `input` should be signed for here.
676         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
677         /// to an upcoming timelock expiration.
678         ///
679         /// `amount` is the value of the output spent by this input, committed to in the BIP 143
680         /// signature.
681         ///
682         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
683         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
684         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
685         /// so).
686         ///
687         /// `htlc` holds HTLC elements (hash, timelock), thus changing the format of the witness script
688         /// (which is committed to in the BIP 143 signatures).
689         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64,
690                 per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment,
691                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
692         /// Computes the signature for a commitment transaction's HTLC output used as an input within
693         /// `htlc_tx`, which spends the commitment transaction at index `input`. The signature returned
694         /// must be be computed using [`EcdsaSighashType::All`].
695         ///
696         /// Note that this may be called for HTLCs in the penultimate commitment transaction if a
697         /// [`ChannelMonitor`] [replica](https://github.com/lightningdevkit/rust-lightning/blob/main/GLOSSARY.md#monitor-replicas)
698         /// broadcasts it before receiving the update for the latest commitment transaction.
699         ///
700         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
701         fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize,
702                 htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<secp256k1::All>
703         ) -> Result<Signature, ()>;
704         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
705         /// transaction, either offered or received.
706         ///
707         /// Such a transaction may claim multiples offered outputs at same time if we know the
708         /// preimage for each when we create it, but only the input at index `input` should be
709         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
710         /// needed with regards to an upcoming timelock expiration.
711         ///
712         /// `witness_script` is either an offered or received script as defined in BOLT3 for HTLC
713         /// outputs.
714         ///
715         /// `amount` is value of the output spent by this input, committed to in the BIP 143 signature.
716         ///
717         /// `per_commitment_point` is the dynamic point corresponding to the channel state
718         /// detected onchain. It has been generated by our counterparty and is used to derive
719         /// channel state keys, which are then included in the witness script and committed to in the
720         /// BIP 143 signature.
721         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64,
722                 per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment,
723                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
724         /// Create a signature for a (proposed) closing transaction.
725         ///
726         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
727         /// chosen to forgo their output as dust.
728         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction,
729                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
730         /// Computes the signature for a commitment transaction's anchor output used as an
731         /// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
732         fn sign_holder_anchor_input(
733                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
734         ) -> Result<Signature, ()>;
735         /// Signs a channel announcement message with our funding key proving it comes from one of the
736         /// channel participants.
737         ///
738         /// Channel announcements also require a signature from each node's network key. Our node
739         /// signature is computed through [`NodeSigner::sign_gossip_message`].
740         ///
741         /// Note that if this fails or is rejected, the channel will not be publicly announced and
742         /// our counterparty may (though likely will not) close the channel on us for violating the
743         /// protocol.
744         fn sign_channel_announcement_with_funding_key(
745                 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
746         ) -> Result<Signature, ()>;
747 }
748
749 /// A writeable signer.
750 ///
751 /// There will always be two instances of a signer per channel, one occupied by the
752 /// [`ChannelManager`] and another by the channel's [`ChannelMonitor`].
753 ///
754 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
755 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
756 pub trait WriteableEcdsaChannelSigner: EcdsaChannelSigner + Writeable {}
757
758 /// Specifies the recipient of an invoice.
759 ///
760 /// This indicates to [`NodeSigner::sign_invoice`] what node secret key should be used to sign
761 /// the invoice.
762 pub enum Recipient {
763         /// The invoice should be signed with the local node secret key.
764         Node,
765         /// The invoice should be signed with the phantom node secret key. This secret key must be the
766         /// same for all nodes participating in the [phantom node payment].
767         ///
768         /// [phantom node payment]: PhantomKeysManager
769         PhantomNode,
770 }
771
772 /// A trait that describes a source of entropy.
773 pub trait EntropySource {
774         /// Gets a unique, cryptographically-secure, random 32-byte value. This method must return a
775         /// different value each time it is called.
776         fn get_secure_random_bytes(&self) -> [u8; 32];
777 }
778
779 /// A trait that can handle cryptographic operations at the scope level of a node.
780 pub trait NodeSigner {
781         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
782         ///
783         /// If the implementor of this trait supports [phantom node payments], then every node that is
784         /// intended to be included in the phantom invoice route hints must return the same value from
785         /// this method.
786         // This is because LDK avoids storing inbound payment data by encrypting payment data in the
787         // payment hash and/or payment secret, therefore for a payment to be receivable by multiple
788         // nodes, they must share the key that encrypts this payment data.
789         ///
790         /// This method must return the same value each time it is called.
791         ///
792         /// [phantom node payments]: PhantomKeysManager
793         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
794
795         /// Get node id based on the provided [`Recipient`].
796         ///
797         /// This method must return the same value each time it is called with a given [`Recipient`]
798         /// parameter.
799         ///
800         /// Errors if the [`Recipient`] variant is not supported by the implementation.
801         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()>;
802
803         /// Gets the ECDH shared secret of our node secret and `other_key`, multiplying by `tweak` if
804         /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
805         /// secret, though this is less efficient.
806         ///
807         /// Note that if this fails while attempting to forward an HTLC, LDK will panic. The error
808         /// should be resolved to allow LDK to resume forwarding HTLCs.
809         ///
810         /// Errors if the [`Recipient`] variant is not supported by the implementation.
811         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
812
813         /// Sign an invoice.
814         ///
815         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
816         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
817         /// blindly signing the hash.
818         ///
819         /// The `hrp_bytes` are ASCII bytes, while the `invoice_data` is base32.
820         ///
821         /// The secret key used to sign the invoice is dependent on the [`Recipient`].
822         ///
823         /// Errors if the [`Recipient`] variant is not supported by the implementation.
824         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()>;
825
826         /// Signs the [`TaggedHash`] of a BOLT 12 invoice request.
827         ///
828         /// May be called by a function passed to [`UnsignedInvoiceRequest::sign`] where
829         /// `invoice_request` is the callee.
830         ///
831         /// Implementors may check that the `invoice_request` is expected rather than blindly signing
832         /// the tagged hash. An `Ok` result should sign `invoice_request.tagged_hash().as_digest()` with
833         /// the node's signing key or an ephemeral key to preserve privacy, whichever is associated with
834         /// [`UnsignedInvoiceRequest::payer_id`].
835         ///
836         /// [`TaggedHash`]: crate::offers::merkle::TaggedHash
837         fn sign_bolt12_invoice_request(
838                 &self, invoice_request: &UnsignedInvoiceRequest
839         ) -> Result<schnorr::Signature, ()>;
840
841         /// Signs the [`TaggedHash`] of a BOLT 12 invoice.
842         ///
843         /// May be called by a function passed to [`UnsignedBolt12Invoice::sign`] where `invoice` is the
844         /// callee.
845         ///
846         /// Implementors may check that the `invoice` is expected rather than blindly signing the tagged
847         /// hash. An `Ok` result should sign `invoice.tagged_hash().as_digest()` with the node's signing
848         /// key or an ephemeral key to preserve privacy, whichever is associated with
849         /// [`UnsignedBolt12Invoice::signing_pubkey`].
850         ///
851         /// [`TaggedHash`]: crate::offers::merkle::TaggedHash
852         fn sign_bolt12_invoice(
853                 &self, invoice: &UnsignedBolt12Invoice
854         ) -> Result<schnorr::Signature, ()>;
855
856         /// Sign a gossip message.
857         ///
858         /// Note that if this fails, LDK may panic and the message will not be broadcast to the network
859         /// or a possible channel counterparty. If LDK panics, the error should be resolved to allow the
860         /// message to be broadcast, as otherwise it may prevent one from receiving funds over the
861         /// corresponding channel.
862         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()>;
863 }
864
865 /// A trait that can return signer instances for individual channels.
866 pub trait SignerProvider {
867         /// A type which implements [`WriteableEcdsaChannelSigner`] which will be returned by [`Self::derive_channel_signer`].
868         type Signer : WriteableEcdsaChannelSigner;
869
870         /// Generates a unique `channel_keys_id` that can be used to obtain a [`Self::Signer`] through
871         /// [`SignerProvider::derive_channel_signer`]. The `user_channel_id` is provided to allow
872         /// implementations of [`SignerProvider`] to maintain a mapping between itself and the generated
873         /// `channel_keys_id`.
874         ///
875         /// This method must return a different value each time it is called.
876         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32];
877
878         /// Derives the private key material backing a `Signer`.
879         ///
880         /// To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through
881         /// [`SignerProvider::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be
882         /// re-derived from its `channel_keys_id`, which can be obtained through its trait method
883         /// [`ChannelSigner::channel_keys_id`].
884         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer;
885
886         /// Reads a [`Signer`] for this [`SignerProvider`] from the given input stream.
887         /// This is only called during deserialization of other objects which contain
888         /// [`WriteableEcdsaChannelSigner`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s).
889         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
890         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
891         /// you've read all of the provided bytes to ensure no corruption occurred.
892         ///
893         /// This method is slowly being phased out -- it will only be called when reading objects
894         /// written by LDK versions prior to 0.0.113.
895         ///
896         /// [`Signer`]: Self::Signer
897         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
898         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
899         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
900
901         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
902         ///
903         /// If this function returns an error, this will result in a channel failing to open.
904         ///
905         /// This method should return a different value each time it is called, to avoid linking
906         /// on-chain funds across channels as controlled to the same user.
907         fn get_destination_script(&self) -> Result<ScriptBuf, ()>;
908
909         /// Get a script pubkey which we will send funds to when closing a channel.
910         ///
911         /// If this function returns an error, this will result in a channel failing to open or close.
912         /// In the event of a failure when the counterparty is initiating a close, this can result in a
913         /// channel force close.
914         ///
915         /// This method should return a different value each time it is called, to avoid linking
916         /// on-chain funds across channels as controlled to the same user.
917         fn get_shutdown_scriptpubkey(&self) -> Result<ShutdownScript, ()>;
918 }
919
920 /// A simple implementation of [`WriteableEcdsaChannelSigner`] that just keeps the private keys in memory.
921 ///
922 /// This implementation performs no policy checks and is insufficient by itself as
923 /// a secure external signer.
924 #[derive(Debug)]
925 pub struct InMemorySigner {
926         /// Holder secret key in the 2-of-2 multisig script of a channel. This key also backs the
927         /// holder's anchor output in a commitment transaction, if one is present.
928         pub funding_key: SecretKey,
929         /// Holder secret key for blinded revocation pubkey.
930         pub revocation_base_key: SecretKey,
931         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions.
932         pub payment_key: SecretKey,
933         /// Holder secret key used in an HTLC transaction.
934         pub delayed_payment_base_key: SecretKey,
935         /// Holder HTLC secret key used in commitment transaction HTLC outputs.
936         pub htlc_base_key: SecretKey,
937         /// Commitment seed.
938         pub commitment_seed: [u8; 32],
939         /// Holder public keys and basepoints.
940         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
941         /// Counterparty public keys and counterparty/holder `selected_contest_delay`, populated on channel acceptance.
942         channel_parameters: Option<ChannelTransactionParameters>,
943         /// The total value of this channel.
944         channel_value_satoshis: u64,
945         /// Key derivation parameters.
946         channel_keys_id: [u8; 32],
947         /// Seed from which all randomness produced is derived from.
948         rand_bytes_unique_start: [u8; 32],
949         /// Tracks the number of times we've produced randomness to ensure we don't return the same
950         /// bytes twice.
951         rand_bytes_index: AtomicCounter,
952 }
953
954 impl PartialEq for InMemorySigner {
955         fn eq(&self, other: &Self) -> bool {
956                 self.funding_key == other.funding_key &&
957                         self.revocation_base_key == other.revocation_base_key &&
958                         self.payment_key == other.payment_key &&
959                         self.delayed_payment_base_key == other.delayed_payment_base_key &&
960                         self.htlc_base_key == other.htlc_base_key &&
961                         self.commitment_seed == other.commitment_seed &&
962                         self.holder_channel_pubkeys == other.holder_channel_pubkeys &&
963                         self.channel_parameters == other.channel_parameters &&
964                         self.channel_value_satoshis == other.channel_value_satoshis &&
965                         self.channel_keys_id == other.channel_keys_id
966         }
967 }
968
969 impl Clone for InMemorySigner {
970         fn clone(&self) -> Self {
971                 Self {
972                         funding_key: self.funding_key.clone(),
973                         revocation_base_key: self.revocation_base_key.clone(),
974                         payment_key: self.payment_key.clone(),
975                         delayed_payment_base_key: self.delayed_payment_base_key.clone(),
976                         htlc_base_key: self.htlc_base_key.clone(),
977                         commitment_seed: self.commitment_seed.clone(),
978                         holder_channel_pubkeys: self.holder_channel_pubkeys.clone(),
979                         channel_parameters: self.channel_parameters.clone(),
980                         channel_value_satoshis: self.channel_value_satoshis,
981                         channel_keys_id: self.channel_keys_id,
982                         rand_bytes_unique_start: self.get_secure_random_bytes(),
983                         rand_bytes_index: AtomicCounter::new(),
984                 }
985         }
986 }
987
988 impl InMemorySigner {
989         /// Creates a new [`InMemorySigner`].
990         pub fn new<C: Signing>(
991                 secp_ctx: &Secp256k1<C>,
992                 funding_key: SecretKey,
993                 revocation_base_key: SecretKey,
994                 payment_key: SecretKey,
995                 delayed_payment_base_key: SecretKey,
996                 htlc_base_key: SecretKey,
997                 commitment_seed: [u8; 32],
998                 channel_value_satoshis: u64,
999                 channel_keys_id: [u8; 32],
1000                 rand_bytes_unique_start: [u8; 32],
1001         ) -> InMemorySigner {
1002                 let holder_channel_pubkeys =
1003                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
1004                                 &payment_key, &delayed_payment_base_key,
1005                                 &htlc_base_key);
1006                 InMemorySigner {
1007                         funding_key,
1008                         revocation_base_key,
1009                         payment_key,
1010                         delayed_payment_base_key,
1011                         htlc_base_key,
1012                         commitment_seed,
1013                         channel_value_satoshis,
1014                         holder_channel_pubkeys,
1015                         channel_parameters: None,
1016                         channel_keys_id,
1017                         rand_bytes_unique_start,
1018                         rand_bytes_index: AtomicCounter::new(),
1019                 }
1020         }
1021
1022         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
1023                         funding_key: &SecretKey,
1024                         revocation_base_key: &SecretKey,
1025                         payment_key: &SecretKey,
1026                         delayed_payment_base_key: &SecretKey,
1027                         htlc_base_key: &SecretKey) -> ChannelPublicKeys {
1028                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
1029                 ChannelPublicKeys {
1030                         funding_pubkey: from_secret(&funding_key),
1031                         revocation_basepoint: RevocationBasepoint::from(from_secret(&revocation_base_key)),
1032                         payment_point: from_secret(&payment_key),
1033                         delayed_payment_basepoint: DelayedPaymentBasepoint::from(from_secret(&delayed_payment_base_key)),
1034                         htlc_basepoint: HtlcBasepoint::from(from_secret(&htlc_base_key)),
1035                 }
1036         }
1037
1038         /// Returns the counterparty's pubkeys.
1039         ///
1040         /// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
1041         /// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
1042         pub fn counterparty_pubkeys(&self) -> Option<&ChannelPublicKeys> {
1043                 self.get_channel_parameters()
1044                         .and_then(|params| params.counterparty_parameters.as_ref().map(|params| &params.pubkeys))
1045         }
1046
1047         /// Returns the `contest_delay` value specified by our counterparty and applied on holder-broadcastable
1048         /// transactions, i.e., the amount of time that we have to wait to recover our funds if we
1049         /// broadcast a transaction.
1050         ///
1051         /// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
1052         /// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
1053         pub fn counterparty_selected_contest_delay(&self) -> Option<u16> {
1054                 self.get_channel_parameters()
1055                         .and_then(|params| params.counterparty_parameters.as_ref().map(|params| params.selected_contest_delay))
1056         }
1057
1058         /// Returns the `contest_delay` value specified by us and applied on transactions broadcastable
1059         /// by our counterparty, i.e., the amount of time that they have to wait to recover their funds
1060         /// if they broadcast a transaction.
1061         ///
1062         /// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
1063         /// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
1064         pub fn holder_selected_contest_delay(&self) -> Option<u16> {
1065                 self.get_channel_parameters().map(|params| params.holder_selected_contest_delay)
1066         }
1067
1068         /// Returns whether the holder is the initiator.
1069         ///
1070         /// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
1071         /// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
1072         pub fn is_outbound(&self) -> Option<bool> {
1073                 self.get_channel_parameters().map(|params| params.is_outbound_from_holder)
1074         }
1075
1076         /// Funding outpoint
1077         ///
1078         /// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
1079         /// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
1080         pub fn funding_outpoint(&self) -> Option<&OutPoint> {
1081                 self.get_channel_parameters().map(|params| params.funding_outpoint.as_ref()).flatten()
1082         }
1083
1084         /// Returns a [`ChannelTransactionParameters`] for this channel, to be used when verifying or
1085         /// building transactions.
1086         ///
1087         /// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
1088         /// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
1089         pub fn get_channel_parameters(&self) -> Option<&ChannelTransactionParameters> {
1090                 self.channel_parameters.as_ref()
1091         }
1092
1093         /// Returns the channel type features of the channel parameters. Should be helpful for
1094         /// determining a channel's category, i. e. legacy/anchors/taproot/etc.
1095         ///
1096         /// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
1097         /// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
1098         pub fn channel_type_features(&self) -> Option<&ChannelTypeFeatures> {
1099                 self.get_channel_parameters().map(|params| &params.channel_type_features)
1100         }
1101
1102         /// Sign the single input of `spend_tx` at index `input_idx`, which spends the output described
1103         /// by `descriptor`, returning the witness stack for the input.
1104         ///
1105         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
1106         /// is not spending the outpoint described by [`descriptor.outpoint`],
1107         /// or if an output descriptor `script_pubkey` does not match the one we can spend.
1108         ///
1109         /// [`descriptor.outpoint`]: StaticPaymentOutputDescriptor::outpoint
1110         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Witness, ()> {
1111                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
1112                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
1113                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
1114                 // bindings updates to support SigHashCache objects).
1115                 if spend_tx.input.len() <= input_idx { return Err(()); }
1116                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
1117                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
1118
1119                 let remotepubkey = bitcoin::PublicKey::new(self.pubkeys().payment_point);
1120                 // We cannot always assume that `channel_parameters` is set, so can't just call
1121                 // `self.channel_parameters()` or anything that relies on it
1122                 let supports_anchors_zero_fee_htlc_tx = self.channel_type_features()
1123                         .map(|features| features.supports_anchors_zero_fee_htlc_tx())
1124                         .unwrap_or(false);
1125
1126                 let witness_script = if supports_anchors_zero_fee_htlc_tx {
1127                         chan_utils::get_to_countersignatory_with_anchors_redeemscript(&remotepubkey.inner)
1128                 } else {
1129                         ScriptBuf::new_p2pkh(&remotepubkey.pubkey_hash())
1130                 };
1131                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
1132                 let remotesig = sign_with_aux_rand(secp_ctx, &sighash, &self.payment_key, &self);
1133                 let payment_script = if supports_anchors_zero_fee_htlc_tx {
1134                         witness_script.to_v0_p2wsh()
1135                 } else {
1136                         ScriptBuf::new_v0_p2wpkh(&remotepubkey.wpubkey_hash().unwrap())
1137                 };
1138
1139                 if payment_script != descriptor.output.script_pubkey { return Err(()); }
1140
1141                 let mut witness = Vec::with_capacity(2);
1142                 witness.push(remotesig.serialize_der().to_vec());
1143                 witness[0].push(EcdsaSighashType::All as u8);
1144                 if supports_anchors_zero_fee_htlc_tx {
1145                         witness.push(witness_script.to_bytes());
1146                 } else {
1147                         witness.push(remotepubkey.to_bytes());
1148                 }
1149                 Ok(witness.into())
1150         }
1151
1152         /// Sign the single input of `spend_tx` at index `input_idx` which spends the output
1153         /// described by `descriptor`, returning the witness stack for the input.
1154         ///
1155         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
1156         /// is not spending the outpoint described by [`descriptor.outpoint`], does not have a
1157         /// sequence set to [`descriptor.to_self_delay`], or if an output descriptor
1158         /// `script_pubkey` does not match the one we can spend.
1159         ///
1160         /// [`descriptor.outpoint`]: DelayedPaymentOutputDescriptor::outpoint
1161         /// [`descriptor.to_self_delay`]: DelayedPaymentOutputDescriptor::to_self_delay
1162         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Witness, ()> {
1163                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
1164                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
1165                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
1166                 // bindings updates to support SigHashCache objects).
1167                 if spend_tx.input.len() <= input_idx { return Err(()); }
1168                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
1169                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
1170                 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
1171
1172                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key);
1173                 let delayed_payment_pubkey = DelayedPaymentKey::from_secret_key(&secp_ctx, &delayed_payment_key);
1174                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
1175                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
1176                 let local_delayedsig = EcdsaSignature {
1177                         sig: sign_with_aux_rand(secp_ctx, &sighash, &delayed_payment_key, &self),
1178                         hash_ty: EcdsaSighashType::All,
1179                 };
1180                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
1181
1182                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
1183
1184                 Ok(Witness::from_slice(&[
1185                         &local_delayedsig.serialize()[..],
1186                         &[], // MINIMALIF
1187                         witness_script.as_bytes(),
1188                 ]))
1189         }
1190 }
1191
1192 impl EntropySource for InMemorySigner {
1193         fn get_secure_random_bytes(&self) -> [u8; 32] {
1194                 let index = self.rand_bytes_index.get_increment();
1195                 let mut nonce = [0u8; 16];
1196                 nonce[..8].copy_from_slice(&index.to_be_bytes());
1197                 ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
1198         }
1199 }
1200
1201 impl ChannelSigner for InMemorySigner {
1202         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
1203                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
1204                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
1205         }
1206
1207         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
1208                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
1209         }
1210
1211         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
1212                 Ok(())
1213         }
1214
1215         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
1216
1217         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
1218
1219         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
1220                 assert!(self.channel_parameters.is_none() || self.channel_parameters.as_ref().unwrap() == channel_parameters);
1221                 if self.channel_parameters.is_some() {
1222                         // The channel parameters were already set and they match, return early.
1223                         return;
1224                 }
1225                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
1226                 self.channel_parameters = Some(channel_parameters.clone());
1227         }
1228 }
1229
1230 const MISSING_PARAMS_ERR: &'static str = "ChannelSigner::provide_channel_parameters must be called before signing operations";
1231
1232 impl EcdsaChannelSigner for InMemorySigner {
1233         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
1234                 let trusted_tx = commitment_tx.trust();
1235                 let keys = trusted_tx.keys();
1236
1237                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
1238                 let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
1239                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
1240
1241                 let built_tx = trusted_tx.built_transaction();
1242                 let commitment_sig = built_tx.sign_counterparty_commitment(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
1243                 let commitment_txid = built_tx.txid;
1244
1245                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
1246                 for htlc in commitment_tx.htlcs() {
1247                         let channel_parameters = self.get_channel_parameters().expect(MISSING_PARAMS_ERR);
1248                         let holder_selected_contest_delay =
1249                                 self.holder_selected_contest_delay().expect(MISSING_PARAMS_ERR);
1250                         let chan_type = &channel_parameters.channel_type_features;
1251                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), holder_selected_contest_delay, htlc, chan_type, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
1252                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, chan_type, &keys);
1253                         let htlc_sighashtype = if chan_type.supports_anchors_zero_fee_htlc_tx() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
1254                         let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
1255                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key);
1256                         htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
1257                 }
1258
1259                 Ok((commitment_sig, htlc_sigs))
1260         }
1261
1262         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
1263                 Ok(())
1264         }
1265
1266         fn sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1267                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
1268                 let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
1269                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
1270                 let trusted_tx = commitment_tx.trust();
1271                 Ok(trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx))
1272         }
1273
1274         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
1275         fn unsafe_sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1276                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
1277                 let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
1278                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
1279                 let trusted_tx = commitment_tx.trust();
1280                 Ok(trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx))
1281         }
1282
1283         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1284                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
1285                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
1286                 let revocation_pubkey = RevocationKey::from_basepoint(
1287                         &secp_ctx,  &self.pubkeys().revocation_basepoint, &per_commitment_point,
1288                 );
1289                 let witness_script = {
1290                         let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
1291                         let holder_selected_contest_delay =
1292                                 self.holder_selected_contest_delay().expect(MISSING_PARAMS_ERR);
1293                         let counterparty_delayedpubkey = DelayedPaymentKey::from_basepoint(&secp_ctx, &counterparty_keys.delayed_payment_basepoint, &per_commitment_point);
1294                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, holder_selected_contest_delay, &counterparty_delayedpubkey)
1295                 };
1296                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
1297                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
1298                 return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
1299         }
1300
1301         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1302                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
1303                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
1304                 let revocation_pubkey = RevocationKey::from_basepoint(
1305                         &secp_ctx,  &self.pubkeys().revocation_basepoint, &per_commitment_point,
1306                 );
1307                 let witness_script = {
1308                         let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
1309                         let counterparty_htlcpubkey = HtlcKey::from_basepoint(
1310                                 &secp_ctx, &counterparty_keys.htlc_basepoint, &per_commitment_point,
1311                         );
1312                         let holder_htlcpubkey = HtlcKey::from_basepoint(
1313                                 &secp_ctx, &self.pubkeys().htlc_basepoint, &per_commitment_point,
1314                         );
1315                         let chan_type = self.channel_type_features().expect(MISSING_PARAMS_ERR);
1316                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, chan_type, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
1317                 };
1318                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
1319                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
1320                 return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
1321         }
1322
1323         fn sign_holder_htlc_transaction(
1324                 &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
1325                 secp_ctx: &Secp256k1<secp256k1::All>
1326         ) -> Result<Signature, ()> {
1327                 let witness_script = htlc_descriptor.witness_script(secp_ctx);
1328                 let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
1329                         input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, EcdsaSighashType::All
1330                 ).map_err(|_| ())?;
1331                 let our_htlc_private_key = chan_utils::derive_private_key(
1332                         &secp_ctx, &htlc_descriptor.per_commitment_point, &self.htlc_base_key
1333                 );
1334                 Ok(sign_with_aux_rand(&secp_ctx, &hash_to_message!(sighash.as_byte_array()), &our_htlc_private_key, &self))
1335         }
1336
1337         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1338                 let htlc_key = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
1339                 let revocation_pubkey = RevocationKey::from_basepoint(
1340                         &secp_ctx,  &self.pubkeys().revocation_basepoint, &per_commitment_point,
1341                 );
1342                 let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
1343                 let counterparty_htlcpubkey = HtlcKey::from_basepoint(
1344                         &secp_ctx, &counterparty_keys.htlc_basepoint, &per_commitment_point,
1345                 );
1346                 let htlcpubkey = HtlcKey::from_basepoint(&secp_ctx, &self.pubkeys().htlc_basepoint, &per_commitment_point);
1347                 let chan_type = self.channel_type_features().expect(MISSING_PARAMS_ERR);
1348                 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, chan_type, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey);
1349                 let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
1350                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
1351                 Ok(sign_with_aux_rand(secp_ctx, &sighash, &htlc_key, &self))
1352         }
1353
1354         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1355                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
1356                 let counterparty_funding_key = &self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR).funding_pubkey;
1357                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, counterparty_funding_key);
1358                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
1359         }
1360
1361         fn sign_holder_anchor_input(
1362                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
1363         ) -> Result<Signature, ()> {
1364                 let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
1365                 let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
1366                         input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
1367                 ).unwrap();
1368                 Ok(sign_with_aux_rand(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key, &self))
1369         }
1370
1371         fn sign_channel_announcement_with_funding_key(
1372                 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
1373         ) -> Result<Signature, ()> {
1374                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1375                 Ok(secp_ctx.sign_ecdsa(&msghash, &self.funding_key))
1376         }
1377 }
1378
1379 const SERIALIZATION_VERSION: u8 = 1;
1380
1381 const MIN_SERIALIZATION_VERSION: u8 = 1;
1382
1383 impl WriteableEcdsaChannelSigner for InMemorySigner {}
1384
1385 impl Writeable for InMemorySigner {
1386         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
1387                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1388
1389                 self.funding_key.write(writer)?;
1390                 self.revocation_base_key.write(writer)?;
1391                 self.payment_key.write(writer)?;
1392                 self.delayed_payment_base_key.write(writer)?;
1393                 self.htlc_base_key.write(writer)?;
1394                 self.commitment_seed.write(writer)?;
1395                 self.channel_parameters.write(writer)?;
1396                 self.channel_value_satoshis.write(writer)?;
1397                 self.channel_keys_id.write(writer)?;
1398
1399                 write_tlv_fields!(writer, {});
1400
1401                 Ok(())
1402         }
1403 }
1404
1405 impl<ES: Deref> ReadableArgs<ES> for InMemorySigner where ES::Target: EntropySource {
1406         fn read<R: io::Read>(reader: &mut R, entropy_source: ES) -> Result<Self, DecodeError> {
1407                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1408
1409                 let funding_key = Readable::read(reader)?;
1410                 let revocation_base_key = Readable::read(reader)?;
1411                 let payment_key = Readable::read(reader)?;
1412                 let delayed_payment_base_key = Readable::read(reader)?;
1413                 let htlc_base_key = Readable::read(reader)?;
1414                 let commitment_seed = Readable::read(reader)?;
1415                 let counterparty_channel_data = Readable::read(reader)?;
1416                 let channel_value_satoshis = Readable::read(reader)?;
1417                 let secp_ctx = Secp256k1::signing_only();
1418                 let holder_channel_pubkeys =
1419                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
1420                                  &payment_key, &delayed_payment_base_key, &htlc_base_key);
1421                 let keys_id = Readable::read(reader)?;
1422
1423                 read_tlv_fields!(reader, {});
1424
1425                 Ok(InMemorySigner {
1426                         funding_key,
1427                         revocation_base_key,
1428                         payment_key,
1429                         delayed_payment_base_key,
1430                         htlc_base_key,
1431                         commitment_seed,
1432                         channel_value_satoshis,
1433                         holder_channel_pubkeys,
1434                         channel_parameters: counterparty_channel_data,
1435                         channel_keys_id: keys_id,
1436                         rand_bytes_unique_start: entropy_source.get_secure_random_bytes(),
1437                         rand_bytes_index: AtomicCounter::new(),
1438                 })
1439         }
1440 }
1441
1442 /// Simple implementation of [`EntropySource`], [`NodeSigner`], and [`SignerProvider`] that takes a
1443 /// 32-byte seed for use as a BIP 32 extended key and derives keys from that.
1444 ///
1445 /// Your `node_id` is seed/0'.
1446 /// Unilateral closes may use seed/1'.
1447 /// Cooperative closes may use seed/2'.
1448 /// The two close keys may be needed to claim on-chain funds!
1449 ///
1450 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
1451 /// [`PhantomKeysManager`] must be used instead.
1452 ///
1453 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
1454 /// previously issued invoices and attempts to pay previous invoices will fail.
1455 pub struct KeysManager {
1456         secp_ctx: Secp256k1<secp256k1::All>,
1457         node_secret: SecretKey,
1458         node_id: PublicKey,
1459         inbound_payment_key: KeyMaterial,
1460         destination_script: ScriptBuf,
1461         shutdown_pubkey: PublicKey,
1462         channel_master_key: ExtendedPrivKey,
1463         channel_child_index: AtomicUsize,
1464
1465         rand_bytes_unique_start: [u8; 32],
1466         rand_bytes_index: AtomicCounter,
1467
1468         seed: [u8; 32],
1469         starting_time_secs: u64,
1470         starting_time_nanos: u32,
1471 }
1472
1473 impl KeysManager {
1474         /// Constructs a [`KeysManager`] from a 32-byte seed. If the seed is in some way biased (e.g.,
1475         /// your CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
1476         /// `starting_time` isn't strictly required to actually be a time, but it must absolutely,
1477         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
1478         /// `seed`, `starting_time` must be unique to each run. Thus, the easiest way to achieve this
1479         /// is to simply use the current time (with very high precision).
1480         ///
1481         /// The `seed` MUST be backed up safely prior to use so that the keys can be re-created, however,
1482         /// obviously, `starting_time` should be unique every time you reload the library - it is only
1483         /// used to generate new ephemeral key data (which will be stored by the individual channel if
1484         /// necessary).
1485         ///
1486         /// Note that the seed is required to recover certain on-chain funds independent of
1487         /// [`ChannelMonitor`] data, though a current copy of [`ChannelMonitor`] data is also required
1488         /// for any channel, and some on-chain during-closing funds.
1489         ///
1490         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
1491         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
1492                 let secp_ctx = Secp256k1::new();
1493                 // Note that when we aren't serializing the key, network doesn't matter
1494                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
1495                         Ok(master_key) => {
1496                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
1497                                 let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
1498                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
1499                                         Ok(destination_key) => {
1500                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
1501                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
1502                                                         .push_slice(&wpubkey_hash.to_byte_array())
1503                                                         .into_script()
1504                                         },
1505                                         Err(_) => panic!("Your RNG is busted"),
1506                                 };
1507                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
1508                                         Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
1509                                         Err(_) => panic!("Your RNG is busted"),
1510                                 };
1511                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
1512                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
1513                                 let mut inbound_pmt_key_bytes = [0; 32];
1514                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
1515
1516                                 let mut rand_bytes_engine = Sha256::engine();
1517                                 rand_bytes_engine.input(&starting_time_secs.to_be_bytes());
1518                                 rand_bytes_engine.input(&starting_time_nanos.to_be_bytes());
1519                                 rand_bytes_engine.input(seed);
1520                                 rand_bytes_engine.input(b"LDK PRNG Seed");
1521                                 let rand_bytes_unique_start = Sha256::from_engine(rand_bytes_engine).to_byte_array();
1522
1523                                 let mut res = KeysManager {
1524                                         secp_ctx,
1525                                         node_secret,
1526                                         node_id,
1527                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
1528
1529                                         destination_script,
1530                                         shutdown_pubkey,
1531
1532                                         channel_master_key,
1533                                         channel_child_index: AtomicUsize::new(0),
1534
1535                                         rand_bytes_unique_start,
1536                                         rand_bytes_index: AtomicCounter::new(),
1537
1538                                         seed: *seed,
1539                                         starting_time_secs,
1540                                         starting_time_nanos,
1541                                 };
1542                                 let secp_seed = res.get_secure_random_bytes();
1543                                 res.secp_ctx.seeded_randomize(&secp_seed);
1544                                 res
1545                         },
1546                         Err(_) => panic!("Your rng is busted"),
1547                 }
1548         }
1549
1550         /// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
1551         pub fn get_node_secret_key(&self) -> SecretKey {
1552                 self.node_secret
1553         }
1554
1555         /// Derive an old [`WriteableEcdsaChannelSigner`] containing per-channel secrets based on a key derivation parameters.
1556         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1557                 let chan_id = u64::from_be_bytes(params[0..8].try_into().unwrap());
1558                 let mut unique_start = Sha256::engine();
1559                 unique_start.input(params);
1560                 unique_start.input(&self.seed);
1561
1562                 // We only seriously intend to rely on the channel_master_key for true secure
1563                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
1564                 // starting_time provided in the constructor) to be unique.
1565                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx,
1566                                 ChildNumber::from_hardened_idx((chan_id as u32) % (1 << 31)).expect("key space exhausted")
1567                         ).expect("Your RNG is busted");
1568                 unique_start.input(&child_privkey.private_key[..]);
1569
1570                 let seed = Sha256::from_engine(unique_start).to_byte_array();
1571
1572                 let commitment_seed = {
1573                         let mut sha = Sha256::engine();
1574                         sha.input(&seed);
1575                         sha.input(&b"commitment seed"[..]);
1576                         Sha256::from_engine(sha).to_byte_array()
1577                 };
1578                 macro_rules! key_step {
1579                         ($info: expr, $prev_key: expr) => {{
1580                                 let mut sha = Sha256::engine();
1581                                 sha.input(&seed);
1582                                 sha.input(&$prev_key[..]);
1583                                 sha.input(&$info[..]);
1584                                 SecretKey::from_slice(&Sha256::from_engine(sha).to_byte_array()).expect("SHA-256 is busted")
1585                         }}
1586                 }
1587                 let funding_key = key_step!(b"funding key", commitment_seed);
1588                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
1589                 let payment_key = key_step!(b"payment key", revocation_base_key);
1590                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
1591                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
1592                 let prng_seed = self.get_secure_random_bytes();
1593
1594                 InMemorySigner::new(
1595                         &self.secp_ctx,
1596                         funding_key,
1597                         revocation_base_key,
1598                         payment_key,
1599                         delayed_payment_base_key,
1600                         htlc_base_key,
1601                         commitment_seed,
1602                         channel_value_satoshis,
1603                         params.clone(),
1604                         prng_seed,
1605                 )
1606         }
1607
1608         /// Signs the given [`PartiallySignedTransaction`] which spends the given [`SpendableOutputDescriptor`]s.
1609         /// The resulting inputs will be finalized and the PSBT will be ready for broadcast if there
1610         /// are no other inputs that need signing.
1611         ///
1612         /// Returns `Err(())` if the PSBT is missing a descriptor or if we fail to sign.
1613         ///
1614         /// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
1615         /// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
1616         pub fn sign_spendable_outputs_psbt<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], mut psbt: PartiallySignedTransaction, secp_ctx: &Secp256k1<C>) -> Result<PartiallySignedTransaction, ()> {
1617                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1618                 for outp in descriptors {
1619                         match outp {
1620                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1621                                         let input_idx = psbt.unsigned_tx.input.iter().position(|i| i.previous_output == descriptor.outpoint.into_bitcoin_outpoint()).ok_or(())?;
1622                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1623                                                 let mut signer = self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id);
1624                                                 if let Some(channel_params) = descriptor.channel_transaction_parameters.as_ref() {
1625                                                         signer.provide_channel_parameters(channel_params);
1626                                                 }
1627                                                 keys_cache = Some((signer, descriptor.channel_keys_id));
1628                                         }
1629                                         let witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&psbt.unsigned_tx, input_idx, &descriptor, &secp_ctx)?;
1630                                         psbt.inputs[input_idx].final_script_witness = Some(witness);
1631                                 },
1632                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1633                                         let input_idx = psbt.unsigned_tx.input.iter().position(|i| i.previous_output == descriptor.outpoint.into_bitcoin_outpoint()).ok_or(())?;
1634                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1635                                                 keys_cache = Some((
1636                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1637                                                         descriptor.channel_keys_id));
1638                                         }
1639                                         let witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&psbt.unsigned_tx, input_idx, &descriptor, &secp_ctx)?;
1640                                         psbt.inputs[input_idx].final_script_witness = Some(witness);
1641                                 },
1642                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1643                                         let input_idx = psbt.unsigned_tx.input.iter().position(|i| i.previous_output == outpoint.into_bitcoin_outpoint()).ok_or(())?;
1644                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1645                                                 1
1646                                         } else {
1647                                                 2
1648                                         };
1649                                         let secret = {
1650                                                 // Note that when we aren't serializing the key, network doesn't matter
1651                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1652                                                         Ok(master_key) => {
1653                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1654                                                                         Ok(key) => key,
1655                                                                         Err(_) => panic!("Your RNG is busted"),
1656                                                                 }
1657                                                         }
1658                                                         Err(_) => panic!("Your rng is busted"),
1659                                                 }
1660                                         };
1661                                         let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1662                                         if derivation_idx == 2 {
1663                                                 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1664                                         }
1665                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1666                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1667
1668                                         if payment_script != output.script_pubkey { return Err(()); };
1669
1670                                         let sighash = hash_to_message!(&sighash::SighashCache::new(&psbt.unsigned_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1671                                         let sig = sign_with_aux_rand(secp_ctx, &sighash, &secret.private_key, &self);
1672                                         let mut sig_ser = sig.serialize_der().to_vec();
1673                                         sig_ser.push(EcdsaSighashType::All as u8);
1674                                         let witness = Witness::from_slice(&[&sig_ser, &pubkey.inner.serialize().to_vec()]);
1675                                         psbt.inputs[input_idx].final_script_witness = Some(witness);
1676                                 },
1677                         }
1678                 }
1679
1680                 Ok(psbt)
1681         }
1682
1683         /// Creates a [`Transaction`] which spends the given descriptors to the given outputs, plus an
1684         /// output to the given change destination (if sufficient change value remains). The
1685         /// transaction will have a feerate, at least, of the given value.
1686         ///
1687         /// The `locktime` argument is used to set the transaction's locktime. If `None`, the
1688         /// transaction will have a locktime of 0. It it recommended to set this to the current block
1689         /// height to avoid fee sniping, unless you have some specific reason to use a different
1690         /// locktime.
1691         ///
1692         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1693         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1694         /// does not match the one we can spend.
1695         ///
1696         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1697         ///
1698         /// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
1699         /// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
1700         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32, locktime: Option<LockTime>, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1701                 let (mut psbt, expected_max_weight) = SpendableOutputDescriptor::create_spendable_outputs_psbt(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, locktime)?;
1702                 psbt = self.sign_spendable_outputs_psbt(descriptors, psbt, secp_ctx)?;
1703
1704                 let spend_tx = psbt.extract_tx();
1705
1706                 debug_assert!(expected_max_weight >= spend_tx.weight().to_wu());
1707                 // Note that witnesses with a signature vary somewhat in size, so allow
1708                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1709                 debug_assert!(expected_max_weight <= spend_tx.weight().to_wu() + descriptors.len() as u64 * 3);
1710
1711                 Ok(spend_tx)
1712         }
1713 }
1714
1715 impl EntropySource for KeysManager {
1716         fn get_secure_random_bytes(&self) -> [u8; 32] {
1717                 let index = self.rand_bytes_index.get_increment();
1718                 let mut nonce = [0u8; 16];
1719                 nonce[..8].copy_from_slice(&index.to_be_bytes());
1720                 ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
1721         }
1722 }
1723
1724 impl NodeSigner for KeysManager {
1725         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1726                 match recipient {
1727                         Recipient::Node => Ok(self.node_id.clone()),
1728                         Recipient::PhantomNode => Err(())
1729                 }
1730         }
1731
1732         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1733                 let mut node_secret = match recipient {
1734                         Recipient::Node => Ok(self.node_secret.clone()),
1735                         Recipient::PhantomNode => Err(())
1736                 }?;
1737                 if let Some(tweak) = tweak {
1738                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1739                 }
1740                 Ok(SharedSecret::new(other_key, &node_secret))
1741         }
1742
1743         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1744                 self.inbound_payment_key.clone()
1745         }
1746
1747         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1748                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1749                 let secret = match recipient {
1750                         Recipient::Node => Ok(&self.node_secret),
1751                         Recipient::PhantomNode => Err(())
1752                 }?;
1753                 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage).to_byte_array()), secret))
1754         }
1755
1756         fn sign_bolt12_invoice_request(
1757                 &self, invoice_request: &UnsignedInvoiceRequest
1758         ) -> Result<schnorr::Signature, ()> {
1759                 let message = invoice_request.tagged_hash().as_digest();
1760                 let keys = KeyPair::from_secret_key(&self.secp_ctx, &self.node_secret);
1761                 let aux_rand = self.get_secure_random_bytes();
1762                 Ok(self.secp_ctx.sign_schnorr_with_aux_rand(message, &keys, &aux_rand))
1763         }
1764
1765         fn sign_bolt12_invoice(
1766                 &self, invoice: &UnsignedBolt12Invoice
1767         ) -> Result<schnorr::Signature, ()> {
1768                 let message = invoice.tagged_hash().as_digest();
1769                 let keys = KeyPair::from_secret_key(&self.secp_ctx, &self.node_secret);
1770                 let aux_rand = self.get_secure_random_bytes();
1771                 Ok(self.secp_ctx.sign_schnorr_with_aux_rand(message, &keys, &aux_rand))
1772         }
1773
1774         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1775                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1776                 Ok(self.secp_ctx.sign_ecdsa(&msg_hash, &self.node_secret))
1777         }
1778 }
1779
1780 impl SignerProvider for KeysManager {
1781         type Signer = InMemorySigner;
1782
1783         fn generate_channel_keys_id(&self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1784                 let child_idx = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1785                 // `child_idx` is the only thing guaranteed to make each channel unique without a restart
1786                 // (though `user_channel_id` should help, depending on user behavior). If it manages to
1787                 // roll over, we may generate duplicate keys for two different channels, which could result
1788                 // in loss of funds. Because we only support 32-bit+ systems, assert that our `AtomicUsize`
1789                 // doesn't reach `u32::MAX`.
1790                 assert!(child_idx < core::u32::MAX as usize, "2^32 channels opened without restart");
1791                 let mut id = [0; 32];
1792                 id[0..4].copy_from_slice(&(child_idx as u32).to_be_bytes());
1793                 id[4..8].copy_from_slice(&self.starting_time_nanos.to_be_bytes());
1794                 id[8..16].copy_from_slice(&self.starting_time_secs.to_be_bytes());
1795                 id[16..32].copy_from_slice(&user_channel_id.to_be_bytes());
1796                 id
1797         }
1798
1799         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1800                 self.derive_channel_keys(channel_value_satoshis, &channel_keys_id)
1801         }
1802
1803         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1804                 InMemorySigner::read(&mut io::Cursor::new(reader), self)
1805         }
1806
1807         fn get_destination_script(&self) -> Result<ScriptBuf, ()> {
1808                 Ok(self.destination_script.clone())
1809         }
1810
1811         fn get_shutdown_scriptpubkey(&self) -> Result<ShutdownScript, ()> {
1812                 Ok(ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone()))
1813         }
1814 }
1815
1816 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1817 /// payments.
1818 ///
1819 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1820 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1821 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1822 /// itself without ever needing to forward to this fake node.
1823 ///
1824 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1825 /// provide some fault tolerance, because payers will automatically retry paying other provided
1826 /// nodes in the case that one node goes down.
1827 ///
1828 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1829 // In the hypothetical case that we did support MPP phantom payments, there would be no way for
1830 // nodes to know when the full payment has been received (and the preimage can be released) without
1831 // significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1832 // to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1833 // is released too early.
1834 //
1835 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1836 /// invoices and attempts to pay previous invoices will fail.
1837 pub struct PhantomKeysManager {
1838         inner: KeysManager,
1839         inbound_payment_key: KeyMaterial,
1840         phantom_secret: SecretKey,
1841         phantom_node_id: PublicKey,
1842 }
1843
1844 impl EntropySource for PhantomKeysManager {
1845         fn get_secure_random_bytes(&self) -> [u8; 32] {
1846                 self.inner.get_secure_random_bytes()
1847         }
1848 }
1849
1850 impl NodeSigner for PhantomKeysManager {
1851         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1852                 match recipient {
1853                         Recipient::Node => self.inner.get_node_id(Recipient::Node),
1854                         Recipient::PhantomNode => Ok(self.phantom_node_id.clone()),
1855                 }
1856         }
1857
1858         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1859                 let mut node_secret = match recipient {
1860                         Recipient::Node => self.inner.node_secret.clone(),
1861                         Recipient::PhantomNode => self.phantom_secret.clone(),
1862                 };
1863                 if let Some(tweak) = tweak {
1864                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1865                 }
1866                 Ok(SharedSecret::new(other_key, &node_secret))
1867         }
1868
1869         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1870                 self.inbound_payment_key.clone()
1871         }
1872
1873         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1874                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1875                 let secret = match recipient {
1876                         Recipient::Node => &self.inner.node_secret,
1877                         Recipient::PhantomNode => &self.phantom_secret,
1878                 };
1879                 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage).to_byte_array()), secret))
1880         }
1881
1882         fn sign_bolt12_invoice_request(
1883                 &self, invoice_request: &UnsignedInvoiceRequest
1884         ) -> Result<schnorr::Signature, ()> {
1885                 self.inner.sign_bolt12_invoice_request(invoice_request)
1886         }
1887
1888         fn sign_bolt12_invoice(
1889                 &self, invoice: &UnsignedBolt12Invoice
1890         ) -> Result<schnorr::Signature, ()> {
1891                 self.inner.sign_bolt12_invoice(invoice)
1892         }
1893
1894         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1895                 self.inner.sign_gossip_message(msg)
1896         }
1897 }
1898
1899 impl SignerProvider for PhantomKeysManager {
1900         type Signer = InMemorySigner;
1901
1902         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1903                 self.inner.generate_channel_keys_id(inbound, channel_value_satoshis, user_channel_id)
1904         }
1905
1906         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1907                 self.inner.derive_channel_signer(channel_value_satoshis, channel_keys_id)
1908         }
1909
1910         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1911                 self.inner.read_chan_signer(reader)
1912         }
1913
1914         fn get_destination_script(&self) -> Result<ScriptBuf, ()> {
1915                 self.inner.get_destination_script()
1916         }
1917
1918         fn get_shutdown_scriptpubkey(&self) -> Result<ShutdownScript, ()> {
1919                 self.inner.get_shutdown_scriptpubkey()
1920         }
1921 }
1922
1923 impl PhantomKeysManager {
1924         /// Constructs a [`PhantomKeysManager`] given a 32-byte seed and an additional `cross_node_seed`
1925         /// that is shared across all nodes that intend to participate in [phantom node payments]
1926         /// together.
1927         ///
1928         /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1929         /// `starting_time_nanos`.
1930         ///
1931         /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1932         /// same across restarts, or else inbound payments may fail.
1933         ///
1934         /// [phantom node payments]: PhantomKeysManager
1935         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1936                 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1937                 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1938                 let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
1939                 let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
1940                 Self {
1941                         inner,
1942                         inbound_payment_key: KeyMaterial(inbound_key),
1943                         phantom_secret,
1944                         phantom_node_id,
1945                 }
1946         }
1947
1948         /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1949         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32, locktime: Option<LockTime>, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1950                 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, locktime, secp_ctx)
1951         }
1952
1953         /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1954         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1955                 self.inner.derive_channel_keys(channel_value_satoshis, params)
1956         }
1957
1958         /// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
1959         pub fn get_node_secret_key(&self) -> SecretKey {
1960                 self.inner.get_node_secret_key()
1961         }
1962
1963         /// Gets the "node_id" secret key of the phantom node used to sign invoices, decode the
1964         /// last-hop onion data, etc.
1965         pub fn get_phantom_node_secret_key(&self) -> SecretKey {
1966                 self.phantom_secret
1967         }
1968 }
1969
1970 // Ensure that EcdsaChannelSigner can have a vtable
1971 #[test]
1972 pub fn dyn_sign() {
1973         let _signer: Box<dyn EcdsaChannelSigner>;
1974 }
1975
1976 #[cfg(ldk_bench)]
1977 pub mod benches {
1978         use std::sync::{Arc, mpsc};
1979         use std::sync::mpsc::TryRecvError;
1980         use std::thread;
1981         use std::time::Duration;
1982         use bitcoin::blockdata::constants::genesis_block;
1983         use bitcoin::Network;
1984         use crate::sign::{EntropySource, KeysManager};
1985
1986         use criterion::Criterion;
1987
1988         pub fn bench_get_secure_random_bytes(bench: &mut Criterion) {
1989                 let seed = [0u8; 32];
1990                 let now = Duration::from_secs(genesis_block(Network::Testnet).header.time as u64);
1991                 let keys_manager = Arc::new(KeysManager::new(&seed, now.as_secs(), now.subsec_micros()));
1992
1993                 let mut handles = Vec::new();
1994                 let mut stops = Vec::new();
1995                 for _ in 1..5 {
1996                         let keys_manager_clone = Arc::clone(&keys_manager);
1997                         let (stop_sender, stop_receiver) = mpsc::channel();
1998                         let handle = thread::spawn(move || {
1999                                 loop {
2000                                         keys_manager_clone.get_secure_random_bytes();
2001                                         match stop_receiver.try_recv() {
2002                                                 Ok(_) | Err(TryRecvError::Disconnected) => {
2003                                                         println!("Terminating.");
2004                                                         break;
2005                                                 }
2006                                                 Err(TryRecvError::Empty) => {}
2007                                         }
2008                                 }
2009                         });
2010                         handles.push(handle);
2011                         stops.push(stop_sender);
2012                 }
2013
2014                 bench.bench_function("get_secure_random_bytes", |b| b.iter(||
2015                         keys_manager.get_secure_random_bytes()));
2016
2017                 for stop in stops {
2018                         let _ = stop.send(());
2019                 }
2020                 for handle in handles {
2021                         handle.join().unwrap();
2022                 }
2023         }
2024 }