Tidy up bitcoin::secp256k1 imports
[rust-lightning] / lightning / src / sign / mod.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Provides keys to LDK and defines some useful objects describing spendable on-chain outputs.
11 //!
12 //! The provided output descriptors follow a custom LDK data format and are currently not fully
13 //! compatible with Bitcoin Core output descriptors.
14
15 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
16 use bitcoin::blockdata::script::{Script, Builder};
17 use bitcoin::blockdata::opcodes;
18 use bitcoin::network::constants::Network;
19 use bitcoin::psbt::PartiallySignedTransaction;
20 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
21 use bitcoin::util::sighash;
22
23 use bitcoin::bech32::u5;
24 use bitcoin::hashes::{Hash, HashEngine};
25 use bitcoin::hashes::sha256::Hash as Sha256;
26 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
27 use bitcoin::hash_types::WPubkeyHash;
28
29 use bitcoin::secp256k1::{PublicKey, Scalar, Secp256k1, SecretKey, Signing};
30 use bitcoin::secp256k1::ecdh::SharedSecret;
31 use bitcoin::secp256k1::ecdsa::{RecoverableSignature, Signature};
32 use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
33
34 use crate::util::transaction_utils;
35 use crate::util::crypto::{hkdf_extract_expand_twice, sign, sign_with_aux_rand};
36 use crate::util::ser::{Writeable, Writer, Readable, ReadableArgs};
37 use crate::chain::transaction::OutPoint;
38 use crate::events::bump_transaction::HTLCDescriptor;
39 use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
40 use crate::ln::{chan_utils, PaymentPreimage};
41 use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
42 use crate::ln::msgs::{UnsignedChannelAnnouncement, UnsignedGossipMessage};
43 use crate::ln::script::ShutdownScript;
44
45 use crate::prelude::*;
46 use core::convert::TryInto;
47 use core::ops::Deref;
48 use core::sync::atomic::{AtomicUsize, Ordering};
49 use crate::io::{self, Error};
50 use crate::ln::features::ChannelTypeFeatures;
51 use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
52 use crate::util::atomic_counter::AtomicCounter;
53 use crate::util::chacha20::ChaCha20;
54 use crate::util::invoice::construct_invoice_preimage;
55
56 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
57 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
58 ///
59 /// This is not exported to bindings users as we just use `[u8; 32]` directly
60 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
61 pub struct KeyMaterial(pub [u8; 32]);
62
63 /// Information about a spendable output to a P2WSH script.
64 ///
65 /// See [`SpendableOutputDescriptor::DelayedPaymentOutput`] for more details on how to spend this.
66 #[derive(Clone, Debug, PartialEq, Eq)]
67 pub struct DelayedPaymentOutputDescriptor {
68         /// The outpoint which is spendable.
69         pub outpoint: OutPoint,
70         /// Per commitment point to derive the delayed payment key by key holder.
71         pub per_commitment_point: PublicKey,
72         /// The `nSequence` value which must be set in the spending input to satisfy the `OP_CSV` in
73         /// the witness_script.
74         pub to_self_delay: u16,
75         /// The output which is referenced by the given outpoint.
76         pub output: TxOut,
77         /// The revocation point specific to the commitment transaction which was broadcast. Used to
78         /// derive the witnessScript for this output.
79         pub revocation_pubkey: PublicKey,
80         /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
81         /// This may be useful in re-deriving keys used in the channel to spend the output.
82         pub channel_keys_id: [u8; 32],
83         /// The value of the channel which this output originated from, possibly indirectly.
84         pub channel_value_satoshis: u64,
85 }
86 impl DelayedPaymentOutputDescriptor {
87         /// The maximum length a well-formed witness spending one of these should have.
88         /// Note: If you have the grind_signatures feature enabled, this will be at least 1 byte
89         /// shorter.
90         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
91         // redeemscript push length.
92         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
93 }
94
95 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
96         (0, outpoint, required),
97         (2, per_commitment_point, required),
98         (4, to_self_delay, required),
99         (6, output, required),
100         (8, revocation_pubkey, required),
101         (10, channel_keys_id, required),
102         (12, channel_value_satoshis, required),
103 });
104
105 /// Information about a spendable output to our "payment key".
106 ///
107 /// See [`SpendableOutputDescriptor::StaticPaymentOutput`] for more details on how to spend this.
108 #[derive(Clone, Debug, PartialEq, Eq)]
109 pub struct StaticPaymentOutputDescriptor {
110         /// The outpoint which is spendable.
111         pub outpoint: OutPoint,
112         /// The output which is referenced by the given outpoint.
113         pub output: TxOut,
114         /// Arbitrary identification information returned by a call to [`ChannelSigner::channel_keys_id`].
115         /// This may be useful in re-deriving keys used in the channel to spend the output.
116         pub channel_keys_id: [u8; 32],
117         /// The value of the channel which this transactions spends.
118         pub channel_value_satoshis: u64,
119 }
120 impl StaticPaymentOutputDescriptor {
121         /// The maximum length a well-formed witness spending one of these should have.
122         /// Note: If you have the grind_signatures feature enabled, this will be at least 1 byte
123         /// shorter.
124         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
125         // redeemscript push length.
126         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
127 }
128 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
129         (0, outpoint, required),
130         (2, output, required),
131         (4, channel_keys_id, required),
132         (6, channel_value_satoshis, required),
133 });
134
135 /// Describes the necessary information to spend a spendable output.
136 ///
137 /// When on-chain outputs are created by LDK (which our counterparty is not able to claim at any
138 /// point in the future) a [`SpendableOutputs`] event is generated which you must track and be able
139 /// to spend on-chain. The information needed to do this is provided in this enum, including the
140 /// outpoint describing which `txid` and output `index` is available, the full output which exists
141 /// at that `txid`/`index`, and any keys or other information required to sign.
142 ///
143 /// [`SpendableOutputs`]: crate::events::Event::SpendableOutputs
144 #[derive(Clone, Debug, PartialEq, Eq)]
145 pub enum SpendableOutputDescriptor {
146         /// An output to a script which was provided via [`SignerProvider`] directly, either from
147         /// [`get_destination_script`] or [`get_shutdown_scriptpubkey`], thus you should already
148         /// know how to spend it. No secret keys are provided as LDK was never given any key.
149         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
150         /// on-chain using the payment preimage or after it has timed out.
151         ///
152         /// [`get_shutdown_scriptpubkey`]: SignerProvider::get_shutdown_scriptpubkey
153         /// [`get_destination_script`]: SignerProvider::get_shutdown_scriptpubkey
154         StaticOutput {
155                 /// The outpoint which is spendable.
156                 outpoint: OutPoint,
157                 /// The output which is referenced by the given outpoint.
158                 output: TxOut,
159         },
160         /// An output to a P2WSH script which can be spent with a single signature after an `OP_CSV`
161         /// delay.
162         ///
163         /// The witness in the spending input should be:
164         /// ```bitcoin
165         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
166         /// ```
167         ///
168         /// Note that the `nSequence` field in the spending input must be set to
169         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] (which means the transaction is not
170         /// broadcastable until at least [`DelayedPaymentOutputDescriptor::to_self_delay`] blocks after
171         /// the outpoint confirms, see [BIP
172         /// 68](https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki)). Also note that LDK
173         /// won't generate a [`SpendableOutputDescriptor`] until the corresponding block height
174         /// is reached.
175         ///
176         /// These are generally the result of a "revocable" output to us, spendable only by us unless
177         /// it is an output from an old state which we broadcast (which should never happen).
178         ///
179         /// To derive the delayed payment key which is used to sign this input, you must pass the
180         /// holder [`InMemorySigner::delayed_payment_base_key`] (i.e., the private key which corresponds to the
181         /// [`ChannelPublicKeys::delayed_payment_basepoint`] in [`ChannelSigner::pubkeys`]) and the provided
182         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to [`chan_utils::derive_private_key`]. The public key can be
183         /// generated without the secret key using [`chan_utils::derive_public_key`] and only the
184         /// [`ChannelPublicKeys::delayed_payment_basepoint`] which appears in [`ChannelSigner::pubkeys`].
185         ///
186         /// To derive the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] provided here (which is
187         /// used in the witness script generation), you must pass the counterparty
188         /// [`ChannelPublicKeys::revocation_basepoint`] (which appears in the call to
189         /// [`ChannelSigner::provide_channel_parameters`]) and the provided
190         /// [`DelayedPaymentOutputDescriptor::per_commitment_point`] to
191         /// [`chan_utils::derive_public_revocation_key`].
192         ///
193         /// The witness script which is hashed and included in the output `script_pubkey` may be
194         /// regenerated by passing the [`DelayedPaymentOutputDescriptor::revocation_pubkey`] (derived
195         /// as explained above), our delayed payment pubkey (derived as explained above), and the
196         /// [`DelayedPaymentOutputDescriptor::to_self_delay`] contained here to
197         /// [`chan_utils::get_revokeable_redeemscript`].
198         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
199         /// An output to a P2WPKH, spendable exclusively by our payment key (i.e., the private key
200         /// which corresponds to the `payment_point` in [`ChannelSigner::pubkeys`]). The witness
201         /// in the spending input is, thus, simply:
202         /// ```bitcoin
203         /// <BIP 143 signature> <payment key>
204         /// ```
205         ///
206         /// These are generally the result of our counterparty having broadcast the current state,
207         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
208         StaticPaymentOutput(StaticPaymentOutputDescriptor),
209 }
210
211 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
212         (0, StaticOutput) => {
213                 (0, outpoint, required),
214                 (2, output, required),
215         },
216 ;
217         (1, DelayedPaymentOutput),
218         (2, StaticPaymentOutput),
219 );
220
221 impl SpendableOutputDescriptor {
222         /// Turns this into a [`bitcoin::psbt::Input`] which can be used to create a
223         /// [`PartiallySignedTransaction`] which spends the given descriptor.
224         ///
225         /// Note that this does not include any signatures, just the information required to
226         /// construct the transaction and sign it.
227         pub fn to_psbt_input(&self) -> bitcoin::psbt::Input {
228                 match self {
229                         SpendableOutputDescriptor::StaticOutput { output, .. } => {
230                                 // Is a standard P2WPKH, no need for witness script
231                                 bitcoin::psbt::Input {
232                                         witness_utxo: Some(output.clone()),
233                                         ..Default::default()
234                                 }
235                         },
236                         SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
237                                 // TODO we could add the witness script as well
238                                 bitcoin::psbt::Input {
239                                         witness_utxo: Some(descriptor.output.clone()),
240                                         ..Default::default()
241                                 }
242                         },
243                         SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
244                                 // TODO we could add the witness script as well
245                                 bitcoin::psbt::Input {
246                                         witness_utxo: Some(descriptor.output.clone()),
247                                         ..Default::default()
248                                 }
249                         },
250                 }
251         }
252
253         /// Creates an unsigned [`PartiallySignedTransaction`] which spends the given descriptors to
254         /// the given outputs, plus an output to the given change destination (if sufficient
255         /// change value remains). The PSBT will have a feerate, at least, of the given value.
256         ///
257         /// The `locktime` argument is used to set the transaction's locktime. If `None`, the
258         /// transaction will have a locktime of 0. It it recommended to set this to the current block
259         /// height to avoid fee sniping, unless you have some specific reason to use a different
260         /// locktime.
261         ///
262         /// Returns the PSBT and expected max transaction weight.
263         ///
264         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
265         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
266         /// does not match the one we can spend.
267         ///
268         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
269         pub fn create_spendable_outputs_psbt(descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, locktime: Option<PackedLockTime>) -> Result<(PartiallySignedTransaction, usize), ()> {
270                 let mut input = Vec::with_capacity(descriptors.len());
271                 let mut input_value = 0;
272                 let mut witness_weight = 0;
273                 let mut output_set = HashSet::with_capacity(descriptors.len());
274                 for outp in descriptors {
275                         match outp {
276                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
277                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
278                                         input.push(TxIn {
279                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
280                                                 script_sig: Script::new(),
281                                                 sequence: Sequence::ZERO,
282                                                 witness: Witness::new(),
283                                         });
284                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
285                                         #[cfg(feature = "grind_signatures")]
286                                         { witness_weight -= 1; } // Guarantees a low R signature
287                                         input_value += descriptor.output.value;
288                                 },
289                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
290                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
291                                         input.push(TxIn {
292                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
293                                                 script_sig: Script::new(),
294                                                 sequence: Sequence(descriptor.to_self_delay as u32),
295                                                 witness: Witness::new(),
296                                         });
297                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
298                                         #[cfg(feature = "grind_signatures")]
299                                         { witness_weight -= 1; } // Guarantees a low R signature
300                                         input_value += descriptor.output.value;
301                                 },
302                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
303                                         if !output_set.insert(*outpoint) { return Err(()); }
304                                         input.push(TxIn {
305                                                 previous_output: outpoint.into_bitcoin_outpoint(),
306                                                 script_sig: Script::new(),
307                                                 sequence: Sequence::ZERO,
308                                                 witness: Witness::new(),
309                                         });
310                                         witness_weight += 1 + 73 + 34;
311                                         #[cfg(feature = "grind_signatures")]
312                                         { witness_weight -= 1; } // Guarantees a low R signature
313                                         input_value += output.value;
314                                 }
315                         }
316                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
317                 }
318                 let mut tx = Transaction {
319                         version: 2,
320                         lock_time: locktime.unwrap_or(PackedLockTime::ZERO),
321                         input,
322                         output: outputs,
323                 };
324                 let expected_max_weight =
325                         transaction_utils::maybe_add_change_output(&mut tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
326
327                 let psbt_inputs = descriptors.iter().map(|d| d.to_psbt_input()).collect::<Vec<_>>();
328                 let psbt = PartiallySignedTransaction {
329                         inputs: psbt_inputs,
330                         outputs: vec![Default::default(); tx.output.len()],
331                         unsigned_tx: tx,
332                         xpub: Default::default(),
333                         version: 0,
334                         proprietary: Default::default(),
335                         unknown: Default::default(),
336                 };
337                 Ok((psbt, expected_max_weight))
338         }
339 }
340
341 /// A trait to handle Lightning channel key material without concretizing the channel type or
342 /// the signature mechanism.
343 pub trait ChannelSigner {
344         /// Gets the per-commitment point for a specific commitment number
345         ///
346         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
347         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
348
349         /// Gets the commitment secret for a specific commitment number as part of the revocation process
350         ///
351         /// An external signer implementation should error here if the commitment was already signed
352         /// and should refuse to sign it in the future.
353         ///
354         /// May be called more than once for the same index.
355         ///
356         /// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
357         // TODO: return a Result so we can signal a validation error
358         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
359
360         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
361         ///
362         /// This is required in order for the signer to make sure that releasing a commitment
363         /// secret won't leave us without a broadcastable holder transaction.
364         /// Policy checks should be implemented in this function, including checking the amount
365         /// sent to us and checking the HTLCs.
366         ///
367         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
368         /// A validating signer should ensure that an HTLC output is removed only when the matching
369         /// preimage is provided, or when the value to holder is restored.
370         ///
371         /// Note that all the relevant preimages will be provided, but there may also be additional
372         /// irrelevant or duplicate preimages.
373         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction,
374                 preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
375
376         /// Returns the holder's channel public keys and basepoints.
377         fn pubkeys(&self) -> &ChannelPublicKeys;
378
379         /// Returns an arbitrary identifier describing the set of keys which are provided back to you in
380         /// some [`SpendableOutputDescriptor`] types. This should be sufficient to identify this
381         /// [`EcdsaChannelSigner`] object uniquely and lookup or re-derive its keys.
382         fn channel_keys_id(&self) -> [u8; 32];
383
384         /// Set the counterparty static channel data, including basepoints,
385         /// `counterparty_selected`/`holder_selected_contest_delay` and funding outpoint.
386         ///
387         /// This data is static, and will never change for a channel once set. For a given [`ChannelSigner`]
388         /// instance, LDK will call this method exactly once - either immediately after construction
389         /// (not including if done via [`SignerProvider::read_chan_signer`]) or when the funding
390         /// information has been generated.
391         ///
392         /// channel_parameters.is_populated() MUST be true.
393         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters);
394 }
395
396 /// A trait to sign Lightning channel transactions as described in
397 /// [BOLT 3](https://github.com/lightning/bolts/blob/master/03-transactions.md).
398 ///
399 /// Signing services could be implemented on a hardware wallet and should implement signing
400 /// policies in order to be secure. Please refer to the [VLS Policy
401 /// Controls](https://gitlab.com/lightning-signer/validating-lightning-signer/-/blob/main/docs/policy-controls.md)
402 /// for an example of such policies.
403 pub trait EcdsaChannelSigner: ChannelSigner {
404         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
405         ///
406         /// Note that if signing fails or is rejected, the channel will be force-closed.
407         ///
408         /// Policy checks should be implemented in this function, including checking the amount
409         /// sent to us and checking the HTLCs.
410         ///
411         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
412         /// A validating signer should ensure that an HTLC output is removed only when the matching
413         /// preimage is provided, or when the value to holder is restored.
414         ///
415         /// Note that all the relevant preimages will be provided, but there may also be additional
416         /// irrelevant or duplicate preimages.
417         //
418         // TODO: Document the things someone using this interface should enforce before signing.
419         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction,
420                 preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>
421         ) -> Result<(Signature, Vec<Signature>), ()>;
422         /// Validate the counterparty's revocation.
423         ///
424         /// This is required in order for the signer to make sure that the state has moved
425         /// forward and it is safe to sign the next counterparty commitment.
426         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
427         /// Creates a signature for a holder's commitment transaction and its claiming HTLC transactions.
428         ///
429         /// This will be called
430         /// - with a non-revoked `commitment_tx`.
431         /// - with the latest `commitment_tx` when we initiate a force-close.
432         /// - with the previous `commitment_tx`, just to get claiming HTLC
433         ///   signatures, if we are reacting to a [`ChannelMonitor`]
434         ///   [replica](https://github.com/lightningdevkit/rust-lightning/blob/main/GLOSSARY.md#monitor-replicas)
435         ///   that decided to broadcast before it had been updated to the latest `commitment_tx`.
436         ///
437         /// This may be called multiple times for the same transaction.
438         ///
439         /// An external signer implementation should check that the commitment has not been revoked.
440         ///
441         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
442         // TODO: Document the things someone using this interface should enforce before signing.
443         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
444                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
445         /// Same as [`sign_holder_commitment_and_htlcs`], but exists only for tests to get access to
446         /// holder commitment transactions which will be broadcasted later, after the channel has moved
447         /// on to a newer state. Thus, needs its own method as [`sign_holder_commitment_and_htlcs`] may
448         /// enforce that we only ever get called once.
449         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
450         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction,
451                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
452         /// Create a signature for the given input in a transaction spending an HTLC transaction output
453         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
454         ///
455         /// A justice transaction may claim multiple outputs at the same time if timelocks are
456         /// similar, but only a signature for the input at index `input` should be signed for here.
457         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
458         /// to an upcoming timelock expiration.
459         ///
460         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
461         ///
462         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
463         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
464         /// not allow the spending of any funds by itself (you need our holder `revocation_secret` to do
465         /// so).
466         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64,
467                 per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>
468         ) -> Result<Signature, ()>;
469         /// Create a signature for the given input in a transaction spending a commitment transaction
470         /// HTLC output when our counterparty broadcasts an old state.
471         ///
472         /// A justice transaction may claim multiple outputs at the same time if timelocks are
473         /// similar, but only a signature for the input at index `input` should be signed for here.
474         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
475         /// to an upcoming timelock expiration.
476         ///
477         /// `amount` is the value of the output spent by this input, committed to in the BIP 143
478         /// signature.
479         ///
480         /// `per_commitment_key` is revocation secret which was provided by our counterparty when they
481         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
482         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
483         /// so).
484         ///
485         /// `htlc` holds HTLC elements (hash, timelock), thus changing the format of the witness script
486         /// (which is committed to in the BIP 143 signatures).
487         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64,
488                 per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment,
489                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
490         /// Computes the signature for a commitment transaction's HTLC output used as an input within
491         /// `htlc_tx`, which spends the commitment transaction at index `input`. The signature returned
492         /// must be be computed using [`EcdsaSighashType::All`]. Note that this should only be used to
493         /// sign HTLC transactions from channels supporting anchor outputs after all additional
494         /// inputs/outputs have been added to the transaction.
495         ///
496         /// [`EcdsaSighashType::All`]: bitcoin::blockdata::transaction::EcdsaSighashType::All
497         fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize,
498                 htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<secp256k1::All>
499         ) -> Result<Signature, ()>;
500         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
501         /// transaction, either offered or received.
502         ///
503         /// Such a transaction may claim multiples offered outputs at same time if we know the
504         /// preimage for each when we create it, but only the input at index `input` should be
505         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
506         /// needed with regards to an upcoming timelock expiration.
507         ///
508         /// `witness_script` is either an offered or received script as defined in BOLT3 for HTLC
509         /// outputs.
510         ///
511         /// `amount` is value of the output spent by this input, committed to in the BIP 143 signature.
512         ///
513         /// `per_commitment_point` is the dynamic point corresponding to the channel state
514         /// detected onchain. It has been generated by our counterparty and is used to derive
515         /// channel state keys, which are then included in the witness script and committed to in the
516         /// BIP 143 signature.
517         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64,
518                 per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment,
519                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
520         /// Create a signature for a (proposed) closing transaction.
521         ///
522         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
523         /// chosen to forgo their output as dust.
524         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction,
525                 secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
526         /// Computes the signature for a commitment transaction's anchor output used as an
527         /// input within `anchor_tx`, which spends the commitment transaction, at index `input`.
528         fn sign_holder_anchor_input(
529                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
530         ) -> Result<Signature, ()>;
531         /// Signs a channel announcement message with our funding key proving it comes from one of the
532         /// channel participants.
533         ///
534         /// Channel announcements also require a signature from each node's network key. Our node
535         /// signature is computed through [`NodeSigner::sign_gossip_message`].
536         ///
537         /// Note that if this fails or is rejected, the channel will not be publicly announced and
538         /// our counterparty may (though likely will not) close the channel on us for violating the
539         /// protocol.
540         fn sign_channel_announcement_with_funding_key(
541                 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
542         ) -> Result<Signature, ()>;
543 }
544
545 /// A writeable signer.
546 ///
547 /// There will always be two instances of a signer per channel, one occupied by the
548 /// [`ChannelManager`] and another by the channel's [`ChannelMonitor`].
549 ///
550 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
551 /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
552 pub trait WriteableEcdsaChannelSigner: EcdsaChannelSigner + Writeable {}
553
554 /// Specifies the recipient of an invoice.
555 ///
556 /// This indicates to [`NodeSigner::sign_invoice`] what node secret key should be used to sign
557 /// the invoice.
558 pub enum Recipient {
559         /// The invoice should be signed with the local node secret key.
560         Node,
561         /// The invoice should be signed with the phantom node secret key. This secret key must be the
562         /// same for all nodes participating in the [phantom node payment].
563         ///
564         /// [phantom node payment]: PhantomKeysManager
565         PhantomNode,
566 }
567
568 /// A trait that describes a source of entropy.
569 pub trait EntropySource {
570         /// Gets a unique, cryptographically-secure, random 32-byte value. This method must return a
571         /// different value each time it is called.
572         fn get_secure_random_bytes(&self) -> [u8; 32];
573 }
574
575 /// A trait that can handle cryptographic operations at the scope level of a node.
576 pub trait NodeSigner {
577         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
578         ///
579         /// If the implementor of this trait supports [phantom node payments], then every node that is
580         /// intended to be included in the phantom invoice route hints must return the same value from
581         /// this method.
582         // This is because LDK avoids storing inbound payment data by encrypting payment data in the
583         // payment hash and/or payment secret, therefore for a payment to be receivable by multiple
584         // nodes, they must share the key that encrypts this payment data.
585         ///
586         /// This method must return the same value each time it is called.
587         ///
588         /// [phantom node payments]: PhantomKeysManager
589         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
590
591         /// Get node id based on the provided [`Recipient`].
592         ///
593         /// This method must return the same value each time it is called with a given [`Recipient`]
594         /// parameter.
595         ///
596         /// Errors if the [`Recipient`] variant is not supported by the implementation.
597         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()>;
598
599         /// Gets the ECDH shared secret of our node secret and `other_key`, multiplying by `tweak` if
600         /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
601         /// secret, though this is less efficient.
602         ///
603         /// Note that if this fails while attempting to forward an HTLC, LDK will panic. The error
604         /// should be resolved to allow LDK to resume forwarding HTLCs.
605         ///
606         /// Errors if the [`Recipient`] variant is not supported by the implementation.
607         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
608
609         /// Sign an invoice.
610         ///
611         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
612         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
613         /// blindly signing the hash.
614         ///
615         /// The `hrp_bytes` are ASCII bytes, while the `invoice_data` is base32.
616         ///
617         /// The secret key used to sign the invoice is dependent on the [`Recipient`].
618         ///
619         /// Errors if the [`Recipient`] variant is not supported by the implementation.
620         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()>;
621
622         /// Sign a gossip message.
623         ///
624         /// Note that if this fails, LDK may panic and the message will not be broadcast to the network
625         /// or a possible channel counterparty. If LDK panics, the error should be resolved to allow the
626         /// message to be broadcast, as otherwise it may prevent one from receiving funds over the
627         /// corresponding channel.
628         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()>;
629 }
630
631 /// A trait that can return signer instances for individual channels.
632 pub trait SignerProvider {
633         /// A type which implements [`WriteableEcdsaChannelSigner`] which will be returned by [`Self::derive_channel_signer`].
634         type Signer : WriteableEcdsaChannelSigner;
635
636         /// Generates a unique `channel_keys_id` that can be used to obtain a [`Self::Signer`] through
637         /// [`SignerProvider::derive_channel_signer`]. The `user_channel_id` is provided to allow
638         /// implementations of [`SignerProvider`] to maintain a mapping between itself and the generated
639         /// `channel_keys_id`.
640         ///
641         /// This method must return a different value each time it is called.
642         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32];
643
644         /// Derives the private key material backing a `Signer`.
645         ///
646         /// To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through
647         /// [`SignerProvider::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be
648         /// re-derived from its `channel_keys_id`, which can be obtained through its trait method
649         /// [`ChannelSigner::channel_keys_id`].
650         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer;
651
652         /// Reads a [`Signer`] for this [`SignerProvider`] from the given input stream.
653         /// This is only called during deserialization of other objects which contain
654         /// [`WriteableEcdsaChannelSigner`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s).
655         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
656         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
657         /// you've read all of the provided bytes to ensure no corruption occurred.
658         ///
659         /// This method is slowly being phased out -- it will only be called when reading objects
660         /// written by LDK versions prior to 0.0.113.
661         ///
662         /// [`Signer`]: Self::Signer
663         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
664         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
665         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
666
667         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
668         ///
669         /// If this function returns an error, this will result in a channel failing to open.
670         ///
671         /// This method should return a different value each time it is called, to avoid linking
672         /// on-chain funds across channels as controlled to the same user.
673         fn get_destination_script(&self) -> Result<Script, ()>;
674
675         /// Get a script pubkey which we will send funds to when closing a channel.
676         ///
677         /// If this function returns an error, this will result in a channel failing to open or close.
678         /// In the event of a failure when the counterparty is initiating a close, this can result in a
679         /// channel force close.
680         ///
681         /// This method should return a different value each time it is called, to avoid linking
682         /// on-chain funds across channels as controlled to the same user.
683         fn get_shutdown_scriptpubkey(&self) -> Result<ShutdownScript, ()>;
684 }
685
686 /// A simple implementation of [`WriteableEcdsaChannelSigner`] that just keeps the private keys in memory.
687 ///
688 /// This implementation performs no policy checks and is insufficient by itself as
689 /// a secure external signer.
690 #[derive(Debug)]
691 pub struct InMemorySigner {
692         /// Holder secret key in the 2-of-2 multisig script of a channel. This key also backs the
693         /// holder's anchor output in a commitment transaction, if one is present.
694         pub funding_key: SecretKey,
695         /// Holder secret key for blinded revocation pubkey.
696         pub revocation_base_key: SecretKey,
697         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions.
698         pub payment_key: SecretKey,
699         /// Holder secret key used in an HTLC transaction.
700         pub delayed_payment_base_key: SecretKey,
701         /// Holder HTLC secret key used in commitment transaction HTLC outputs.
702         pub htlc_base_key: SecretKey,
703         /// Commitment seed.
704         pub commitment_seed: [u8; 32],
705         /// Holder public keys and basepoints.
706         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
707         /// Counterparty public keys and counterparty/holder `selected_contest_delay`, populated on channel acceptance.
708         channel_parameters: Option<ChannelTransactionParameters>,
709         /// The total value of this channel.
710         channel_value_satoshis: u64,
711         /// Key derivation parameters.
712         channel_keys_id: [u8; 32],
713         /// Seed from which all randomness produced is derived from.
714         rand_bytes_unique_start: [u8; 32],
715         /// Tracks the number of times we've produced randomness to ensure we don't return the same
716         /// bytes twice.
717         rand_bytes_index: AtomicCounter,
718 }
719
720 impl PartialEq for InMemorySigner {
721         fn eq(&self, other: &Self) -> bool {
722                 self.funding_key == other.funding_key &&
723                         self.revocation_base_key == other.revocation_base_key &&
724                         self.payment_key == other.payment_key &&
725                         self.delayed_payment_base_key == other.delayed_payment_base_key &&
726                         self.htlc_base_key == other.htlc_base_key &&
727                         self.commitment_seed == other.commitment_seed &&
728                         self.holder_channel_pubkeys == other.holder_channel_pubkeys &&
729                         self.channel_parameters == other.channel_parameters &&
730                         self.channel_value_satoshis == other.channel_value_satoshis &&
731                         self.channel_keys_id == other.channel_keys_id
732         }
733 }
734
735 impl Clone for InMemorySigner {
736         fn clone(&self) -> Self {
737                 Self {
738                         funding_key: self.funding_key.clone(),
739                         revocation_base_key: self.revocation_base_key.clone(),
740                         payment_key: self.payment_key.clone(),
741                         delayed_payment_base_key: self.delayed_payment_base_key.clone(),
742                         htlc_base_key: self.htlc_base_key.clone(),
743                         commitment_seed: self.commitment_seed.clone(),
744                         holder_channel_pubkeys: self.holder_channel_pubkeys.clone(),
745                         channel_parameters: self.channel_parameters.clone(),
746                         channel_value_satoshis: self.channel_value_satoshis,
747                         channel_keys_id: self.channel_keys_id,
748                         rand_bytes_unique_start: self.get_secure_random_bytes(),
749                         rand_bytes_index: AtomicCounter::new(),
750                 }
751         }
752 }
753
754 impl InMemorySigner {
755         /// Creates a new [`InMemorySigner`].
756         pub fn new<C: Signing>(
757                 secp_ctx: &Secp256k1<C>,
758                 funding_key: SecretKey,
759                 revocation_base_key: SecretKey,
760                 payment_key: SecretKey,
761                 delayed_payment_base_key: SecretKey,
762                 htlc_base_key: SecretKey,
763                 commitment_seed: [u8; 32],
764                 channel_value_satoshis: u64,
765                 channel_keys_id: [u8; 32],
766                 rand_bytes_unique_start: [u8; 32],
767         ) -> InMemorySigner {
768                 let holder_channel_pubkeys =
769                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
770                                 &payment_key, &delayed_payment_base_key,
771                                 &htlc_base_key);
772                 InMemorySigner {
773                         funding_key,
774                         revocation_base_key,
775                         payment_key,
776                         delayed_payment_base_key,
777                         htlc_base_key,
778                         commitment_seed,
779                         channel_value_satoshis,
780                         holder_channel_pubkeys,
781                         channel_parameters: None,
782                         channel_keys_id,
783                         rand_bytes_unique_start,
784                         rand_bytes_index: AtomicCounter::new(),
785                 }
786         }
787
788         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
789                         funding_key: &SecretKey,
790                         revocation_base_key: &SecretKey,
791                         payment_key: &SecretKey,
792                         delayed_payment_base_key: &SecretKey,
793                         htlc_base_key: &SecretKey) -> ChannelPublicKeys {
794                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
795                 ChannelPublicKeys {
796                         funding_pubkey: from_secret(&funding_key),
797                         revocation_basepoint: from_secret(&revocation_base_key),
798                         payment_point: from_secret(&payment_key),
799                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
800                         htlc_basepoint: from_secret(&htlc_base_key),
801                 }
802         }
803
804         /// Returns the counterparty's pubkeys.
805         ///
806         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
807         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
808         /// Returns the `contest_delay` value specified by our counterparty and applied on holder-broadcastable
809         /// transactions, i.e., the amount of time that we have to wait to recover our funds if we
810         /// broadcast a transaction.
811         ///
812         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
813         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
814         /// Returns the `contest_delay` value specified by us and applied on transactions broadcastable
815         /// by our counterparty, i.e., the amount of time that they have to wait to recover their funds
816         /// if they broadcast a transaction.
817         ///
818         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
819         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
820         /// Returns whether the holder is the initiator.
821         ///
822         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
823         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
824         /// Funding outpoint
825         ///
826         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
827         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
828         /// Returns a [`ChannelTransactionParameters`] for this channel, to be used when verifying or
829         /// building transactions.
830         ///
831         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
832         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
833                 self.channel_parameters.as_ref().unwrap()
834         }
835         /// Returns the channel type features of the channel parameters. Should be helpful for
836         /// determining a channel's category, i. e. legacy/anchors/taproot/etc.
837         ///
838         /// Will panic if [`ChannelSigner::provide_channel_parameters`] has not been called before.
839         pub fn channel_type_features(&self) -> &ChannelTypeFeatures {
840                 &self.get_channel_parameters().channel_type_features
841         }
842         /// Sign the single input of `spend_tx` at index `input_idx`, which spends the output described
843         /// by `descriptor`, returning the witness stack for the input.
844         ///
845         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
846         /// is not spending the outpoint described by [`descriptor.outpoint`],
847         /// or if an output descriptor `script_pubkey` does not match the one we can spend.
848         ///
849         /// [`descriptor.outpoint`]: StaticPaymentOutputDescriptor::outpoint
850         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
851                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
852                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
853                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
854                 // bindings updates to support SigHashCache objects).
855                 if spend_tx.input.len() <= input_idx { return Err(()); }
856                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
857                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
858
859                 let remotepubkey = self.pubkeys().payment_point;
860                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
861                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
862                 let remotesig = sign_with_aux_rand(secp_ctx, &sighash, &self.payment_key, &self);
863                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
864
865                 if payment_script != descriptor.output.script_pubkey { return Err(()); }
866
867                 let mut witness = Vec::with_capacity(2);
868                 witness.push(remotesig.serialize_der().to_vec());
869                 witness[0].push(EcdsaSighashType::All as u8);
870                 witness.push(remotepubkey.serialize().to_vec());
871                 Ok(witness)
872         }
873
874         /// Sign the single input of `spend_tx` at index `input_idx` which spends the output
875         /// described by `descriptor`, returning the witness stack for the input.
876         ///
877         /// Returns an error if the input at `input_idx` does not exist, has a non-empty `script_sig`,
878         /// is not spending the outpoint described by [`descriptor.outpoint`], does not have a
879         /// sequence set to [`descriptor.to_self_delay`], or if an output descriptor
880         /// `script_pubkey` does not match the one we can spend.
881         ///
882         /// [`descriptor.outpoint`]: DelayedPaymentOutputDescriptor::outpoint
883         /// [`descriptor.to_self_delay`]: DelayedPaymentOutputDescriptor::to_self_delay
884         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
885                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
886                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
887                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
888                 // bindings updates to support SigHashCache objects).
889                 if spend_tx.input.len() <= input_idx { return Err(()); }
890                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
891                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
892                 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
893
894                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key);
895                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
896                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
897                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
898                 let local_delayedsig = sign_with_aux_rand(secp_ctx, &sighash, &delayed_payment_key, &self);
899                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
900
901                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
902
903                 let mut witness = Vec::with_capacity(3);
904                 witness.push(local_delayedsig.serialize_der().to_vec());
905                 witness[0].push(EcdsaSighashType::All as u8);
906                 witness.push(vec!()); //MINIMALIF
907                 witness.push(witness_script.clone().into_bytes());
908                 Ok(witness)
909         }
910 }
911
912 impl EntropySource for InMemorySigner {
913         fn get_secure_random_bytes(&self) -> [u8; 32] {
914                 let index = self.rand_bytes_index.get_increment();
915                 let mut nonce = [0u8; 16];
916                 nonce[..8].copy_from_slice(&index.to_be_bytes());
917                 ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
918         }
919 }
920
921 impl ChannelSigner for InMemorySigner {
922         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
923                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
924                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
925         }
926
927         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
928                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
929         }
930
931         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
932                 Ok(())
933         }
934
935         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
936
937         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
938
939         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
940                 assert!(self.channel_parameters.is_none() || self.channel_parameters.as_ref().unwrap() == channel_parameters);
941                 if self.channel_parameters.is_some() {
942                         // The channel parameters were already set and they match, return early.
943                         return;
944                 }
945                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
946                 self.channel_parameters = Some(channel_parameters.clone());
947         }
948 }
949
950 impl EcdsaChannelSigner for InMemorySigner {
951         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
952                 let trusted_tx = commitment_tx.trust();
953                 let keys = trusted_tx.keys();
954
955                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
956                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
957
958                 let built_tx = trusted_tx.built_transaction();
959                 let commitment_sig = built_tx.sign_counterparty_commitment(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
960                 let commitment_txid = built_tx.txid;
961
962                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
963                 for htlc in commitment_tx.htlcs() {
964                         let channel_parameters = self.get_channel_parameters();
965                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &channel_parameters.channel_type_features, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
966                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.channel_type_features(), &keys);
967                         let htlc_sighashtype = if self.channel_type_features().supports_anchors_zero_fee_htlc_tx() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
968                         let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
969                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key);
970                         htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
971                 }
972
973                 Ok((commitment_sig, htlc_sigs))
974         }
975
976         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
977                 Ok(())
978         }
979
980         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
981                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
982                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
983                 let trusted_tx = commitment_tx.trust();
984                 let sig = trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx);
985                 let channel_parameters = self.get_channel_parameters();
986                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), &self, secp_ctx)?;
987                 Ok((sig, htlc_sigs))
988         }
989
990         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
991         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
992                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
993                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
994                 let trusted_tx = commitment_tx.trust();
995                 let sig = trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx);
996                 let channel_parameters = self.get_channel_parameters();
997                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), &self, secp_ctx)?;
998                 Ok((sig, htlc_sigs))
999         }
1000
1001         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1002                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
1003                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
1004                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
1005                 let witness_script = {
1006                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint);
1007                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
1008                 };
1009                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
1010                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
1011                 return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
1012         }
1013
1014         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1015                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
1016                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
1017                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
1018                 let witness_script = {
1019                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
1020                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
1021                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.channel_type_features(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
1022                 };
1023                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
1024                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
1025                 return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
1026         }
1027
1028         fn sign_holder_htlc_transaction(
1029                 &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
1030                 secp_ctx: &Secp256k1<secp256k1::All>
1031         ) -> Result<Signature, ()> {
1032                 let witness_script = htlc_descriptor.witness_script(secp_ctx);
1033                 let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
1034                         input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, EcdsaSighashType::All
1035                 ).map_err(|_| ())?;
1036                 let our_htlc_private_key = chan_utils::derive_private_key(
1037                         &secp_ctx, &htlc_descriptor.per_commitment_point, &self.htlc_base_key
1038                 );
1039                 Ok(sign_with_aux_rand(&secp_ctx, &hash_to_message!(sighash), &our_htlc_private_key, &self))
1040         }
1041
1042         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1043                 let htlc_key = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
1044                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint);
1045                 let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint);
1046                 let htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint);
1047                 let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.channel_type_features(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey);
1048                 let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
1049                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
1050                 Ok(sign_with_aux_rand(secp_ctx, &sighash, &htlc_key, &self))
1051         }
1052
1053         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
1054                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
1055                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
1056                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
1057         }
1058
1059         fn sign_holder_anchor_input(
1060                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
1061         ) -> Result<Signature, ()> {
1062                 let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
1063                 let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
1064                         input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
1065                 ).unwrap();
1066                 Ok(sign_with_aux_rand(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key, &self))
1067         }
1068
1069         fn sign_channel_announcement_with_funding_key(
1070                 &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
1071         ) -> Result<Signature, ()> {
1072                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1073                 Ok(secp_ctx.sign_ecdsa(&msghash, &self.funding_key))
1074         }
1075 }
1076
1077 const SERIALIZATION_VERSION: u8 = 1;
1078
1079 const MIN_SERIALIZATION_VERSION: u8 = 1;
1080
1081 impl WriteableEcdsaChannelSigner for InMemorySigner {}
1082
1083 impl Writeable for InMemorySigner {
1084         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
1085                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1086
1087                 self.funding_key.write(writer)?;
1088                 self.revocation_base_key.write(writer)?;
1089                 self.payment_key.write(writer)?;
1090                 self.delayed_payment_base_key.write(writer)?;
1091                 self.htlc_base_key.write(writer)?;
1092                 self.commitment_seed.write(writer)?;
1093                 self.channel_parameters.write(writer)?;
1094                 self.channel_value_satoshis.write(writer)?;
1095                 self.channel_keys_id.write(writer)?;
1096
1097                 write_tlv_fields!(writer, {});
1098
1099                 Ok(())
1100         }
1101 }
1102
1103 impl<ES: Deref> ReadableArgs<ES> for InMemorySigner where ES::Target: EntropySource {
1104         fn read<R: io::Read>(reader: &mut R, entropy_source: ES) -> Result<Self, DecodeError> {
1105                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1106
1107                 let funding_key = Readable::read(reader)?;
1108                 let revocation_base_key = Readable::read(reader)?;
1109                 let payment_key = Readable::read(reader)?;
1110                 let delayed_payment_base_key = Readable::read(reader)?;
1111                 let htlc_base_key = Readable::read(reader)?;
1112                 let commitment_seed = Readable::read(reader)?;
1113                 let counterparty_channel_data = Readable::read(reader)?;
1114                 let channel_value_satoshis = Readable::read(reader)?;
1115                 let secp_ctx = Secp256k1::signing_only();
1116                 let holder_channel_pubkeys =
1117                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
1118                                  &payment_key, &delayed_payment_base_key, &htlc_base_key);
1119                 let keys_id = Readable::read(reader)?;
1120
1121                 read_tlv_fields!(reader, {});
1122
1123                 Ok(InMemorySigner {
1124                         funding_key,
1125                         revocation_base_key,
1126                         payment_key,
1127                         delayed_payment_base_key,
1128                         htlc_base_key,
1129                         commitment_seed,
1130                         channel_value_satoshis,
1131                         holder_channel_pubkeys,
1132                         channel_parameters: counterparty_channel_data,
1133                         channel_keys_id: keys_id,
1134                         rand_bytes_unique_start: entropy_source.get_secure_random_bytes(),
1135                         rand_bytes_index: AtomicCounter::new(),
1136                 })
1137         }
1138 }
1139
1140 /// Simple implementation of [`EntropySource`], [`NodeSigner`], and [`SignerProvider`] that takes a
1141 /// 32-byte seed for use as a BIP 32 extended key and derives keys from that.
1142 ///
1143 /// Your `node_id` is seed/0'.
1144 /// Unilateral closes may use seed/1'.
1145 /// Cooperative closes may use seed/2'.
1146 /// The two close keys may be needed to claim on-chain funds!
1147 ///
1148 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
1149 /// [`PhantomKeysManager`] must be used instead.
1150 ///
1151 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
1152 /// previously issued invoices and attempts to pay previous invoices will fail.
1153 pub struct KeysManager {
1154         secp_ctx: Secp256k1<secp256k1::All>,
1155         node_secret: SecretKey,
1156         node_id: PublicKey,
1157         inbound_payment_key: KeyMaterial,
1158         destination_script: Script,
1159         shutdown_pubkey: PublicKey,
1160         channel_master_key: ExtendedPrivKey,
1161         channel_child_index: AtomicUsize,
1162
1163         rand_bytes_unique_start: [u8; 32],
1164         rand_bytes_index: AtomicCounter,
1165
1166         seed: [u8; 32],
1167         starting_time_secs: u64,
1168         starting_time_nanos: u32,
1169 }
1170
1171 impl KeysManager {
1172         /// Constructs a [`KeysManager`] from a 32-byte seed. If the seed is in some way biased (e.g.,
1173         /// your CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
1174         /// `starting_time` isn't strictly required to actually be a time, but it must absolutely,
1175         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
1176         /// `seed`, `starting_time` must be unique to each run. Thus, the easiest way to achieve this
1177         /// is to simply use the current time (with very high precision).
1178         ///
1179         /// The `seed` MUST be backed up safely prior to use so that the keys can be re-created, however,
1180         /// obviously, `starting_time` should be unique every time you reload the library - it is only
1181         /// used to generate new ephemeral key data (which will be stored by the individual channel if
1182         /// necessary).
1183         ///
1184         /// Note that the seed is required to recover certain on-chain funds independent of
1185         /// [`ChannelMonitor`] data, though a current copy of [`ChannelMonitor`] data is also required
1186         /// for any channel, and some on-chain during-closing funds.
1187         ///
1188         /// [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor
1189         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
1190                 let secp_ctx = Secp256k1::new();
1191                 // Note that when we aren't serializing the key, network doesn't matter
1192                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
1193                         Ok(master_key) => {
1194                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
1195                                 let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
1196                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
1197                                         Ok(destination_key) => {
1198                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
1199                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
1200                                                         .push_slice(&wpubkey_hash.into_inner())
1201                                                         .into_script()
1202                                         },
1203                                         Err(_) => panic!("Your RNG is busted"),
1204                                 };
1205                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
1206                                         Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
1207                                         Err(_) => panic!("Your RNG is busted"),
1208                                 };
1209                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
1210                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
1211                                 let mut inbound_pmt_key_bytes = [0; 32];
1212                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
1213
1214                                 let mut rand_bytes_engine = Sha256::engine();
1215                                 rand_bytes_engine.input(&starting_time_secs.to_be_bytes());
1216                                 rand_bytes_engine.input(&starting_time_nanos.to_be_bytes());
1217                                 rand_bytes_engine.input(seed);
1218                                 rand_bytes_engine.input(b"LDK PRNG Seed");
1219                                 let rand_bytes_unique_start = Sha256::from_engine(rand_bytes_engine).into_inner();
1220
1221                                 let mut res = KeysManager {
1222                                         secp_ctx,
1223                                         node_secret,
1224                                         node_id,
1225                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
1226
1227                                         destination_script,
1228                                         shutdown_pubkey,
1229
1230                                         channel_master_key,
1231                                         channel_child_index: AtomicUsize::new(0),
1232
1233                                         rand_bytes_unique_start,
1234                                         rand_bytes_index: AtomicCounter::new(),
1235
1236                                         seed: *seed,
1237                                         starting_time_secs,
1238                                         starting_time_nanos,
1239                                 };
1240                                 let secp_seed = res.get_secure_random_bytes();
1241                                 res.secp_ctx.seeded_randomize(&secp_seed);
1242                                 res
1243                         },
1244                         Err(_) => panic!("Your rng is busted"),
1245                 }
1246         }
1247
1248         /// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
1249         pub fn get_node_secret_key(&self) -> SecretKey {
1250                 self.node_secret
1251         }
1252
1253         /// Derive an old [`WriteableEcdsaChannelSigner`] containing per-channel secrets based on a key derivation parameters.
1254         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1255                 let chan_id = u64::from_be_bytes(params[0..8].try_into().unwrap());
1256                 let mut unique_start = Sha256::engine();
1257                 unique_start.input(params);
1258                 unique_start.input(&self.seed);
1259
1260                 // We only seriously intend to rely on the channel_master_key for true secure
1261                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
1262                 // starting_time provided in the constructor) to be unique.
1263                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx,
1264                                 ChildNumber::from_hardened_idx((chan_id as u32) % (1 << 31)).expect("key space exhausted")
1265                         ).expect("Your RNG is busted");
1266                 unique_start.input(&child_privkey.private_key[..]);
1267
1268                 let seed = Sha256::from_engine(unique_start).into_inner();
1269
1270                 let commitment_seed = {
1271                         let mut sha = Sha256::engine();
1272                         sha.input(&seed);
1273                         sha.input(&b"commitment seed"[..]);
1274                         Sha256::from_engine(sha).into_inner()
1275                 };
1276                 macro_rules! key_step {
1277                         ($info: expr, $prev_key: expr) => {{
1278                                 let mut sha = Sha256::engine();
1279                                 sha.input(&seed);
1280                                 sha.input(&$prev_key[..]);
1281                                 sha.input(&$info[..]);
1282                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
1283                         }}
1284                 }
1285                 let funding_key = key_step!(b"funding key", commitment_seed);
1286                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
1287                 let payment_key = key_step!(b"payment key", revocation_base_key);
1288                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
1289                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
1290                 let prng_seed = self.get_secure_random_bytes();
1291
1292                 InMemorySigner::new(
1293                         &self.secp_ctx,
1294                         funding_key,
1295                         revocation_base_key,
1296                         payment_key,
1297                         delayed_payment_base_key,
1298                         htlc_base_key,
1299                         commitment_seed,
1300                         channel_value_satoshis,
1301                         params.clone(),
1302                         prng_seed,
1303                 )
1304         }
1305
1306         /// Signs the given [`PartiallySignedTransaction`] which spends the given [`SpendableOutputDescriptor`]s.
1307         /// The resulting inputs will be finalized and the PSBT will be ready for broadcast if there
1308         /// are no other inputs that need signing.
1309         ///
1310         /// Returns `Err(())` if the PSBT is missing a descriptor or if we fail to sign.
1311         ///
1312         /// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
1313         /// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
1314         pub fn sign_spendable_outputs_psbt<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], mut psbt: PartiallySignedTransaction, secp_ctx: &Secp256k1<C>) -> Result<PartiallySignedTransaction, ()> {
1315                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1316                 for outp in descriptors {
1317                         match outp {
1318                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1319                                         let input_idx = psbt.unsigned_tx.input.iter().position(|i| i.previous_output == descriptor.outpoint.into_bitcoin_outpoint()).ok_or(())?;
1320                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1321                                                 keys_cache = Some((
1322                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1323                                                         descriptor.channel_keys_id));
1324                                         }
1325                                         let witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&psbt.unsigned_tx, input_idx, &descriptor, &secp_ctx)?);
1326                                         psbt.inputs[input_idx].final_script_witness = Some(witness);
1327                                 },
1328                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1329                                         let input_idx = psbt.unsigned_tx.input.iter().position(|i| i.previous_output == descriptor.outpoint.into_bitcoin_outpoint()).ok_or(())?;
1330                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1331                                                 keys_cache = Some((
1332                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1333                                                         descriptor.channel_keys_id));
1334                                         }
1335                                         let witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&psbt.unsigned_tx, input_idx, &descriptor, &secp_ctx)?);
1336                                         psbt.inputs[input_idx].final_script_witness = Some(witness);
1337                                 },
1338                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1339                                         let input_idx = psbt.unsigned_tx.input.iter().position(|i| i.previous_output == outpoint.into_bitcoin_outpoint()).ok_or(())?;
1340                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1341                                                 1
1342                                         } else {
1343                                                 2
1344                                         };
1345                                         let secret = {
1346                                                 // Note that when we aren't serializing the key, network doesn't matter
1347                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1348                                                         Ok(master_key) => {
1349                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1350                                                                         Ok(key) => key,
1351                                                                         Err(_) => panic!("Your RNG is busted"),
1352                                                                 }
1353                                                         }
1354                                                         Err(_) => panic!("Your rng is busted"),
1355                                                 }
1356                                         };
1357                                         let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1358                                         if derivation_idx == 2 {
1359                                                 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1360                                         }
1361                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1362                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1363
1364                                         if payment_script != output.script_pubkey { return Err(()); };
1365
1366                                         let sighash = hash_to_message!(&sighash::SighashCache::new(&psbt.unsigned_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1367                                         let sig = sign_with_aux_rand(secp_ctx, &sighash, &secret.private_key, &self);
1368                                         let mut sig_ser = sig.serialize_der().to_vec();
1369                                         sig_ser.push(EcdsaSighashType::All as u8);
1370                                         let witness = Witness::from_vec(vec![sig_ser, pubkey.inner.serialize().to_vec()]);
1371                                         psbt.inputs[input_idx].final_script_witness = Some(witness);
1372                                 },
1373                         }
1374                 }
1375
1376                 Ok(psbt)
1377         }
1378
1379         /// Creates a [`Transaction`] which spends the given descriptors to the given outputs, plus an
1380         /// output to the given change destination (if sufficient change value remains). The
1381         /// transaction will have a feerate, at least, of the given value.
1382         ///
1383         /// The `locktime` argument is used to set the transaction's locktime. If `None`, the
1384         /// transaction will have a locktime of 0. It it recommended to set this to the current block
1385         /// height to avoid fee sniping, unless you have some specific reason to use a different
1386         /// locktime.
1387         ///
1388         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1389         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1390         /// does not match the one we can spend.
1391         ///
1392         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1393         ///
1394         /// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
1395         /// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
1396         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, locktime: Option<PackedLockTime>, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1397                 let (mut psbt, expected_max_weight) = SpendableOutputDescriptor::create_spendable_outputs_psbt(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, locktime)?;
1398                 psbt = self.sign_spendable_outputs_psbt(descriptors, psbt, secp_ctx)?;
1399
1400                 let spend_tx = psbt.extract_tx();
1401
1402                 debug_assert!(expected_max_weight >= spend_tx.weight());
1403                 // Note that witnesses with a signature vary somewhat in size, so allow
1404                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1405                 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1406
1407                 Ok(spend_tx)
1408         }
1409 }
1410
1411 impl EntropySource for KeysManager {
1412         fn get_secure_random_bytes(&self) -> [u8; 32] {
1413                 let index = self.rand_bytes_index.get_increment();
1414                 let mut nonce = [0u8; 16];
1415                 nonce[..8].copy_from_slice(&index.to_be_bytes());
1416                 ChaCha20::get_single_block(&self.rand_bytes_unique_start, &nonce)
1417         }
1418 }
1419
1420 impl NodeSigner for KeysManager {
1421         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1422                 match recipient {
1423                         Recipient::Node => Ok(self.node_id.clone()),
1424                         Recipient::PhantomNode => Err(())
1425                 }
1426         }
1427
1428         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1429                 let mut node_secret = match recipient {
1430                         Recipient::Node => Ok(self.node_secret.clone()),
1431                         Recipient::PhantomNode => Err(())
1432                 }?;
1433                 if let Some(tweak) = tweak {
1434                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1435                 }
1436                 Ok(SharedSecret::new(other_key, &node_secret))
1437         }
1438
1439         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1440                 self.inbound_payment_key.clone()
1441         }
1442
1443         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1444                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1445                 let secret = match recipient {
1446                         Recipient::Node => Ok(&self.node_secret),
1447                         Recipient::PhantomNode => Err(())
1448                 }?;
1449                 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
1450         }
1451
1452         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1453                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1454                 Ok(self.secp_ctx.sign_ecdsa(&msg_hash, &self.node_secret))
1455         }
1456 }
1457
1458 impl SignerProvider for KeysManager {
1459         type Signer = InMemorySigner;
1460
1461         fn generate_channel_keys_id(&self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1462                 let child_idx = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1463                 // `child_idx` is the only thing guaranteed to make each channel unique without a restart
1464                 // (though `user_channel_id` should help, depending on user behavior). If it manages to
1465                 // roll over, we may generate duplicate keys for two different channels, which could result
1466                 // in loss of funds. Because we only support 32-bit+ systems, assert that our `AtomicUsize`
1467                 // doesn't reach `u32::MAX`.
1468                 assert!(child_idx < core::u32::MAX as usize, "2^32 channels opened without restart");
1469                 let mut id = [0; 32];
1470                 id[0..4].copy_from_slice(&(child_idx as u32).to_be_bytes());
1471                 id[4..8].copy_from_slice(&self.starting_time_nanos.to_be_bytes());
1472                 id[8..16].copy_from_slice(&self.starting_time_secs.to_be_bytes());
1473                 id[16..32].copy_from_slice(&user_channel_id.to_be_bytes());
1474                 id
1475         }
1476
1477         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1478                 self.derive_channel_keys(channel_value_satoshis, &channel_keys_id)
1479         }
1480
1481         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1482                 InMemorySigner::read(&mut io::Cursor::new(reader), self)
1483         }
1484
1485         fn get_destination_script(&self) -> Result<Script, ()> {
1486                 Ok(self.destination_script.clone())
1487         }
1488
1489         fn get_shutdown_scriptpubkey(&self) -> Result<ShutdownScript, ()> {
1490                 Ok(ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone()))
1491         }
1492 }
1493
1494 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1495 /// payments.
1496 ///
1497 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1498 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1499 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1500 /// itself without ever needing to forward to this fake node.
1501 ///
1502 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1503 /// provide some fault tolerance, because payers will automatically retry paying other provided
1504 /// nodes in the case that one node goes down.
1505 ///
1506 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1507 // In the hypothetical case that we did support MPP phantom payments, there would be no way for
1508 // nodes to know when the full payment has been received (and the preimage can be released) without
1509 // significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1510 // to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1511 // is released too early.
1512 //
1513 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1514 /// invoices and attempts to pay previous invoices will fail.
1515 pub struct PhantomKeysManager {
1516         inner: KeysManager,
1517         inbound_payment_key: KeyMaterial,
1518         phantom_secret: SecretKey,
1519         phantom_node_id: PublicKey,
1520 }
1521
1522 impl EntropySource for PhantomKeysManager {
1523         fn get_secure_random_bytes(&self) -> [u8; 32] {
1524                 self.inner.get_secure_random_bytes()
1525         }
1526 }
1527
1528 impl NodeSigner for PhantomKeysManager {
1529         fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
1530                 match recipient {
1531                         Recipient::Node => self.inner.get_node_id(Recipient::Node),
1532                         Recipient::PhantomNode => Ok(self.phantom_node_id.clone()),
1533                 }
1534         }
1535
1536         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
1537                 let mut node_secret = match recipient {
1538                         Recipient::Node => self.inner.node_secret.clone(),
1539                         Recipient::PhantomNode => self.phantom_secret.clone(),
1540                 };
1541                 if let Some(tweak) = tweak {
1542                         node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
1543                 }
1544                 Ok(SharedSecret::new(other_key, &node_secret))
1545         }
1546
1547         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1548                 self.inbound_payment_key.clone()
1549         }
1550
1551         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1552                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1553                 let secret = match recipient {
1554                         Recipient::Node => &self.inner.node_secret,
1555                         Recipient::PhantomNode => &self.phantom_secret,
1556                 };
1557                 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), secret))
1558         }
1559
1560         fn sign_gossip_message(&self, msg: UnsignedGossipMessage) -> Result<Signature, ()> {
1561                 self.inner.sign_gossip_message(msg)
1562         }
1563 }
1564
1565 impl SignerProvider for PhantomKeysManager {
1566         type Signer = InMemorySigner;
1567
1568         fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
1569                 self.inner.generate_channel_keys_id(inbound, channel_value_satoshis, user_channel_id)
1570         }
1571
1572         fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::Signer {
1573                 self.inner.derive_channel_signer(channel_value_satoshis, channel_keys_id)
1574         }
1575
1576         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1577                 self.inner.read_chan_signer(reader)
1578         }
1579
1580         fn get_destination_script(&self) -> Result<Script, ()> {
1581                 self.inner.get_destination_script()
1582         }
1583
1584         fn get_shutdown_scriptpubkey(&self) -> Result<ShutdownScript, ()> {
1585                 self.inner.get_shutdown_scriptpubkey()
1586         }
1587 }
1588
1589 impl PhantomKeysManager {
1590         /// Constructs a [`PhantomKeysManager`] given a 32-byte seed and an additional `cross_node_seed`
1591         /// that is shared across all nodes that intend to participate in [phantom node payments]
1592         /// together.
1593         ///
1594         /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1595         /// `starting_time_nanos`.
1596         ///
1597         /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1598         /// same across restarts, or else inbound payments may fail.
1599         ///
1600         /// [phantom node payments]: PhantomKeysManager
1601         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1602                 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1603                 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1604                 let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
1605                 let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
1606                 Self {
1607                         inner,
1608                         inbound_payment_key: KeyMaterial(inbound_key),
1609                         phantom_secret,
1610                         phantom_node_id,
1611                 }
1612         }
1613
1614         /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1615         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, locktime: Option<PackedLockTime>, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1616                 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, locktime, secp_ctx)
1617         }
1618
1619         /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1620         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1621                 self.inner.derive_channel_keys(channel_value_satoshis, params)
1622         }
1623
1624         /// Gets the "node_id" secret key used to sign gossip announcements, decode onion data, etc.
1625         pub fn get_node_secret_key(&self) -> SecretKey {
1626                 self.inner.get_node_secret_key()
1627         }
1628
1629         /// Gets the "node_id" secret key of the phantom node used to sign invoices, decode the
1630         /// last-hop onion data, etc.
1631         pub fn get_phantom_node_secret_key(&self) -> SecretKey {
1632                 self.phantom_secret
1633         }
1634 }
1635
1636 // Ensure that EcdsaChannelSigner can have a vtable
1637 #[test]
1638 pub fn dyn_sign() {
1639         let _signer: Box<dyn EcdsaChannelSigner>;
1640 }
1641
1642 #[cfg(ldk_bench)]
1643 pub mod benches {
1644         use std::sync::{Arc, mpsc};
1645         use std::sync::mpsc::TryRecvError;
1646         use std::thread;
1647         use std::time::Duration;
1648         use bitcoin::blockdata::constants::genesis_block;
1649         use bitcoin::Network;
1650         use crate::sign::{EntropySource, KeysManager};
1651
1652         use criterion::Criterion;
1653
1654         pub fn bench_get_secure_random_bytes(bench: &mut Criterion) {
1655                 let seed = [0u8; 32];
1656                 let now = Duration::from_secs(genesis_block(Network::Testnet).header.time as u64);
1657                 let keys_manager = Arc::new(KeysManager::new(&seed, now.as_secs(), now.subsec_micros()));
1658
1659                 let mut handles = Vec::new();
1660                 let mut stops = Vec::new();
1661                 for _ in 1..5 {
1662                         let keys_manager_clone = Arc::clone(&keys_manager);
1663                         let (stop_sender, stop_receiver) = mpsc::channel();
1664                         let handle = thread::spawn(move || {
1665                                 loop {
1666                                         keys_manager_clone.get_secure_random_bytes();
1667                                         match stop_receiver.try_recv() {
1668                                                 Ok(_) | Err(TryRecvError::Disconnected) => {
1669                                                         println!("Terminating.");
1670                                                         break;
1671                                                 }
1672                                                 Err(TryRecvError::Empty) => {}
1673                                         }
1674                                 }
1675                         });
1676                         handles.push(handle);
1677                         stops.push(stop_sender);
1678                 }
1679
1680                 bench.bench_function("get_secure_random_bytes", |b| b.iter(||
1681                         keys_manager.get_secure_random_bytes()));
1682
1683                 for stop in stops {
1684                         let _ = stop.send(());
1685                 }
1686                 for handle in handles {
1687                         handle.join().unwrap();
1688                 }
1689         }
1690 }