f4450cc129d81979cedbf1580e5cc3a0450dad62
[rust-lightning] / lightning / src / util / enforcing_trait_impls.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, HolderCommitmentTransaction, CommitmentTransaction, ChannelTransactionParameters, TrustedCommitmentTransaction, ClosingTransaction};
11 use ln::{chan_utils, msgs, PaymentPreimage};
12 use chain::keysinterface::{Sign, InMemorySigner, BaseSign};
13
14 use prelude::*;
15 use core::cmp;
16 use sync::{Mutex, Arc};
17 #[cfg(test)] use sync::MutexGuard;
18
19 use bitcoin::blockdata::transaction::{Transaction, EcdsaSighashType};
20 use bitcoin::util::sighash;
21
22 use bitcoin::secp256k1;
23 use bitcoin::secp256k1::{SecretKey, PublicKey};
24 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
25 use util::ser::{Writeable, Writer};
26 use io::Error;
27
28 /// Initial value for revoked commitment downward counter
29 pub const INITIAL_REVOKED_COMMITMENT_NUMBER: u64 = 1 << 48;
30
31 /// An implementation of Sign that enforces some policy checks.  The current checks
32 /// are an incomplete set.  They include:
33 ///
34 /// - When signing, the holder transaction has not been revoked
35 /// - When revoking, the holder transaction has not been signed
36 /// - The holder commitment number is monotonic and without gaps
37 /// - The revoked holder commitment number is monotonic and without gaps
38 /// - There is at least one unrevoked holder transaction at all times
39 /// - The counterparty commitment number is monotonic and without gaps
40 /// - The pre-derived keys and pre-built transaction in CommitmentTransaction were correctly built
41 ///
42 /// Eventually we will probably want to expose a variant of this which would essentially
43 /// be what you'd want to run on a hardware wallet.
44 ///
45 /// Note that counterparty signatures on the holder transaction are not checked, but it should
46 /// be in a complete implementation.
47 ///
48 /// Note that before we do so we should ensure its serialization format has backwards- and
49 /// forwards-compatibility prefix/suffixes!
50 #[derive(Clone)]
51 pub struct EnforcingSigner {
52         pub inner: InMemorySigner,
53         /// Channel state used for policy enforcement
54         pub state: Arc<Mutex<EnforcementState>>,
55         pub disable_revocation_policy_check: bool,
56 }
57
58 impl EnforcingSigner {
59         /// Construct an EnforcingSigner
60         pub fn new(inner: InMemorySigner) -> Self {
61                 let state = Arc::new(Mutex::new(EnforcementState::new()));
62                 Self {
63                         inner,
64                         state,
65                         disable_revocation_policy_check: false
66                 }
67         }
68
69         /// Construct an EnforcingSigner with externally managed storage
70         ///
71         /// Since there are multiple copies of this struct for each channel, some coordination is needed
72         /// so that all copies are aware of enforcement state.  A pointer to this state is provided
73         /// here, usually by an implementation of KeysInterface.
74         pub fn new_with_revoked(inner: InMemorySigner, state: Arc<Mutex<EnforcementState>>, disable_revocation_policy_check: bool) -> Self {
75                 Self {
76                         inner,
77                         state,
78                         disable_revocation_policy_check
79                 }
80         }
81
82         pub fn opt_anchors(&self) -> bool { self.inner.opt_anchors() }
83
84         #[cfg(test)]
85         pub fn get_enforcement_state(&self) -> MutexGuard<EnforcementState> {
86                 self.state.lock().unwrap()
87         }
88 }
89
90 impl BaseSign for EnforcingSigner {
91         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
92                 self.inner.get_per_commitment_point(idx, secp_ctx)
93         }
94
95         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
96                 {
97                         let mut state = self.state.lock().unwrap();
98                         assert!(idx == state.last_holder_revoked_commitment || idx == state.last_holder_revoked_commitment - 1, "can only revoke the current or next unrevoked commitment - trying {}, last revoked {}", idx, state.last_holder_revoked_commitment);
99                         assert!(idx > state.last_holder_commitment, "cannot revoke the last holder commitment - attempted to revoke {} last commitment {}", idx, state.last_holder_commitment);
100                         state.last_holder_revoked_commitment = idx;
101                 }
102                 self.inner.release_commitment_secret(idx)
103         }
104
105         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
106                 let mut state = self.state.lock().unwrap();
107                 let idx = holder_tx.commitment_number();
108                 assert!(idx == state.last_holder_commitment || idx == state.last_holder_commitment - 1, "expecting to validate the current or next holder commitment - trying {}, current {}", idx, state.last_holder_commitment);
109                 state.last_holder_commitment = idx;
110                 Ok(())
111         }
112
113         fn pubkeys(&self) -> &ChannelPublicKeys { self.inner.pubkeys() }
114         fn channel_keys_id(&self) -> [u8; 32] { self.inner.channel_keys_id() }
115
116         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
117                 self.verify_counterparty_commitment_tx(commitment_tx, secp_ctx);
118
119                 {
120                         let mut state = self.state.lock().unwrap();
121                         let actual_commitment_number = commitment_tx.commitment_number();
122                         let last_commitment_number = state.last_counterparty_commitment;
123                         // These commitment numbers are backwards counting.  We expect either the same as the previously encountered,
124                         // or the next one.
125                         assert!(last_commitment_number == actual_commitment_number || last_commitment_number - 1 == actual_commitment_number, "{} doesn't come after {}", actual_commitment_number, last_commitment_number);
126                         // Ensure that the counterparty doesn't get more than two broadcastable commitments -
127                         // the last and the one we are trying to sign
128                         assert!(actual_commitment_number >= state.last_counterparty_revoked_commitment - 2, "cannot sign a commitment if second to last wasn't revoked - signing {} revoked {}", actual_commitment_number, state.last_counterparty_revoked_commitment);
129                         state.last_counterparty_commitment = cmp::min(last_commitment_number, actual_commitment_number)
130                 }
131
132                 Ok(self.inner.sign_counterparty_commitment(commitment_tx, preimages, secp_ctx).unwrap())
133         }
134
135         fn validate_counterparty_revocation(&self, idx: u64, _secret: &SecretKey) -> Result<(), ()> {
136                 let mut state = self.state.lock().unwrap();
137                 assert!(idx == state.last_counterparty_revoked_commitment || idx == state.last_counterparty_revoked_commitment - 1, "expecting to validate the current or next counterparty revocation - trying {}, current {}", idx, state.last_counterparty_revoked_commitment);
138                 state.last_counterparty_revoked_commitment = idx;
139                 Ok(())
140         }
141
142         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
143                 let trusted_tx = self.verify_holder_commitment_tx(commitment_tx, secp_ctx);
144                 let commitment_txid = trusted_tx.txid();
145                 let holder_csv = self.inner.counterparty_selected_contest_delay();
146
147                 let state = self.state.lock().unwrap();
148                 let commitment_number = trusted_tx.commitment_number();
149                 if state.last_holder_revoked_commitment - 1 != commitment_number && state.last_holder_revoked_commitment - 2 != commitment_number {
150                         if !self.disable_revocation_policy_check {
151                                 panic!("can only sign the next two unrevoked commitment numbers, revoked={} vs requested={} for {}",
152                                        state.last_holder_revoked_commitment, commitment_number, self.inner.commitment_seed[0])
153                         }
154                 }
155
156                 for (this_htlc, sig) in trusted_tx.htlcs().iter().zip(&commitment_tx.counterparty_htlc_sigs) {
157                         assert!(this_htlc.transaction_output_index.is_some());
158                         let keys = trusted_tx.keys();
159                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, trusted_tx.feerate_per_kw(), holder_csv, &this_htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
160
161                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&this_htlc, self.opt_anchors(), &keys);
162
163                         let sighash_type = if self.opt_anchors() {
164                                 EcdsaSighashType::SinglePlusAnyoneCanPay
165                         } else {
166                                 EcdsaSighashType::All
167                         };
168                         let sighash = hash_to_message!(
169                                 &sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(
170                                         0, &htlc_redeemscript, this_htlc.amount_msat / 1000, sighash_type,
171                                 ).unwrap()[..]
172                         );
173                         secp_ctx.verify_ecdsa(&sighash, sig, &keys.countersignatory_htlc_key).unwrap();
174                 }
175
176                 Ok(self.inner.sign_holder_commitment_and_htlcs(commitment_tx, secp_ctx).unwrap())
177         }
178
179         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
180         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
181                 Ok(self.inner.unsafe_sign_holder_commitment_and_htlcs(commitment_tx, secp_ctx).unwrap())
182         }
183
184         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
185                 Ok(self.inner.sign_justice_revoked_output(justice_tx, input, amount, per_commitment_key, secp_ctx).unwrap())
186         }
187
188         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
189                 Ok(self.inner.sign_justice_revoked_htlc(justice_tx, input, amount, per_commitment_key, htlc, secp_ctx).unwrap())
190         }
191
192         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
193                 Ok(self.inner.sign_counterparty_htlc_transaction(htlc_tx, input, amount, per_commitment_point, htlc, secp_ctx).unwrap())
194         }
195
196         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
197                 closing_tx.verify(self.inner.funding_outpoint().into_bitcoin_outpoint())
198                         .expect("derived different closing transaction");
199                 Ok(self.inner.sign_closing_transaction(closing_tx, secp_ctx).unwrap())
200         }
201
202         fn sign_channel_announcement(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
203         -> Result<(Signature, Signature), ()> {
204                 self.inner.sign_channel_announcement(msg, secp_ctx)
205         }
206
207         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
208                 self.inner.ready_channel(channel_parameters)
209         }
210 }
211
212 impl Sign for EnforcingSigner {}
213
214 impl Writeable for EnforcingSigner {
215         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
216                 // EnforcingSigner has two fields - `inner` ([`InMemorySigner`]) and `state`
217                 // ([`EnforcementState`]). `inner` is serialized here and deserialized by
218                 // [`KeysInterface::read_chan_signer`]. `state` is managed by [`KeysInterface`]
219                 // and will be serialized as needed by the implementation of that trait.
220                 self.inner.write(writer)?;
221                 Ok(())
222         }
223 }
224
225 impl EnforcingSigner {
226         fn verify_counterparty_commitment_tx<'a, T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &'a CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> TrustedCommitmentTransaction<'a> {
227                 commitment_tx.verify(&self.inner.get_channel_parameters().as_counterparty_broadcastable(),
228                                      self.inner.counterparty_pubkeys(), self.inner.pubkeys(), secp_ctx)
229                         .expect("derived different per-tx keys or built transaction")
230         }
231
232         fn verify_holder_commitment_tx<'a, T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &'a CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> TrustedCommitmentTransaction<'a> {
233                 commitment_tx.verify(&self.inner.get_channel_parameters().as_holder_broadcastable(),
234                                      self.inner.pubkeys(), self.inner.counterparty_pubkeys(), secp_ctx)
235                         .expect("derived different per-tx keys or built transaction")
236         }
237 }
238
239 /// The state used by [`EnforcingSigner`] in order to enforce policy checks
240 ///
241 /// This structure is maintained by KeysInterface since we may have multiple copies of
242 /// the signer and they must coordinate their state.
243 #[derive(Clone)]
244 pub struct EnforcementState {
245         /// The last counterparty commitment number we signed, backwards counting
246         pub last_counterparty_commitment: u64,
247         /// The last counterparty commitment they revoked, backwards counting
248         pub last_counterparty_revoked_commitment: u64,
249         /// The last holder commitment number we revoked, backwards counting
250         pub last_holder_revoked_commitment: u64,
251         /// The last validated holder commitment number, backwards counting
252         pub last_holder_commitment: u64,
253 }
254
255 impl EnforcementState {
256         /// Enforcement state for a new channel
257         pub fn new() -> Self {
258                 EnforcementState {
259                         last_counterparty_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
260                         last_counterparty_revoked_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
261                         last_holder_revoked_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
262                         last_holder_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
263                 }
264         }
265 }