1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Utilities for creating and parsing short channel ids.
12 /// Maximum block height that can be used in a `short_channel_id`. This
13 /// value is based on the 3-bytes available for block height.
14 pub const MAX_SCID_BLOCK: u64 = 0x00ffffff;
16 /// Maximum transaction index that can be used in a `short_channel_id`.
17 /// This value is based on the 3-bytes available for tx index.
18 pub const MAX_SCID_TX_INDEX: u64 = 0x00ffffff;
20 /// Maximum vout index that can be used in a `short_channel_id`. This
21 /// value is based on the 2-bytes available for the vout index.
22 pub const MAX_SCID_VOUT_INDEX: u64 = 0xffff;
24 /// A `short_channel_id` construction error
25 #[derive(Debug, PartialEq, Eq)]
26 pub enum ShortChannelIdError {
27 /// Block height too high
31 /// Vout index too high
35 /// Extracts the block height (most significant 3-bytes) from the `short_channel_id`
36 pub fn block_from_scid(short_channel_id: u64) -> u32 {
37 return (short_channel_id >> 40) as u32;
40 /// Extracts the tx index (bytes [2..4]) from the `short_channel_id`
41 pub fn tx_index_from_scid(short_channel_id: u64) -> u32 {
42 return ((short_channel_id >> 16) & MAX_SCID_TX_INDEX) as u32;
45 /// Extracts the vout (bytes [0..2]) from the `short_channel_id`
46 pub fn vout_from_scid(short_channel_id: u64) -> u16 {
47 return ((short_channel_id) & MAX_SCID_VOUT_INDEX) as u16;
50 /// Constructs a `short_channel_id` using the components pieces. Results in an error
51 /// if the block height, tx index, or vout index overflow the maximum sizes.
52 pub fn scid_from_parts(block: u64, tx_index: u64, vout_index: u64) -> Result<u64, ShortChannelIdError> {
53 if block > MAX_SCID_BLOCK {
54 return Err(ShortChannelIdError::BlockOverflow);
57 if tx_index > MAX_SCID_TX_INDEX {
58 return Err(ShortChannelIdError::TxIndexOverflow);
61 if vout_index > MAX_SCID_VOUT_INDEX {
62 return Err(ShortChannelIdError::VoutIndexOverflow);
65 Ok((block << 40) | (tx_index << 16) | vout_index)
68 /// LDK has multiple reasons to generate fake short channel ids:
69 /// 1) outbound SCID aliases we use for private channels
70 /// 2) phantom node payments, to get an scid for the phantom node's phantom channel
71 /// 3) payments intended to be intercepted will route using a fake scid (this is typically used so
72 /// the forwarding node can open a JIT channel to the next hop)
73 pub(crate) mod fake_scid {
74 use bitcoin::blockdata::constants::ChainHash;
75 use bitcoin::network::constants::Network;
76 use crate::sign::EntropySource;
77 use crate::crypto::chacha20::ChaCha20;
78 use crate::util::scid_utils;
79 use crate::prelude::*;
83 const TEST_SEGWIT_ACTIVATION_HEIGHT: u32 = 1;
84 const MAINNET_SEGWIT_ACTIVATION_HEIGHT: u32 = 481_824;
85 const MAX_TX_INDEX: u32 = 2_500;
86 const MAX_NAMESPACES: u8 = 8; // We allocate 3 bits for the namespace identifier.
87 const NAMESPACE_ID_BITMASK: u8 = 0b111;
89 const BLOCKS_PER_MONTH: u32 = 144 /* blocks per day */ * 30 /* days per month */;
90 pub(crate) const MAX_SCID_BLOCKS_FROM_NOW: u32 = BLOCKS_PER_MONTH;
93 /// Fake scids are divided into namespaces, with each namespace having its own identifier between
94 /// [0..7]. This allows us to identify what namespace a fake scid corresponds to upon HTLC
95 /// receipt, and handle the HTLC accordingly. The namespace identifier is encrypted when encoded
96 /// into the fake scid.
97 #[derive(Copy, Clone)]
98 pub(crate) enum Namespace {
99 /// Phantom nodes namespace
101 /// SCID aliases for outbound private channels
103 /// Payment interception namespace
108 /// We generate "realistic-looking" random scids here, meaning the scid's block height is
109 /// between segwit activation and the current best known height, and the tx index and output
110 /// index are also selected from a "reasonable" range. We add this logic because it makes it
111 /// non-obvious at a glance that the scid is fake, e.g. if it appears in invoice route hints.
112 pub(crate) fn get_fake_scid<ES: Deref>(&self, highest_seen_blockheight: u32, chain_hash: &ChainHash, fake_scid_rand_bytes: &[u8; 32], entropy_source: &ES) -> u64
113 where ES::Target: EntropySource,
115 // Ensure we haven't created a namespace that doesn't fit into the 3 bits we've allocated for
117 assert!((*self as u8) < MAX_NAMESPACES);
118 let rand_bytes = entropy_source.get_secure_random_bytes();
120 let segwit_activation_height = segwit_activation_height(chain_hash);
121 let mut blocks_since_segwit_activation = highest_seen_blockheight.saturating_sub(segwit_activation_height);
123 // We want to ensure that this fake channel won't conflict with any transactions we haven't
124 // seen yet, in case `highest_seen_blockheight` is updated before we get full information
125 // about transactions confirmed in the given block.
126 blocks_since_segwit_activation = blocks_since_segwit_activation.saturating_sub(MAX_SCID_BLOCKS_FROM_NOW);
128 let rand_for_height = u32::from_be_bytes(rand_bytes[..4].try_into().unwrap());
129 let fake_scid_height = segwit_activation_height + rand_for_height % (blocks_since_segwit_activation + 1);
131 let rand_for_tx_index = u32::from_be_bytes(rand_bytes[4..8].try_into().unwrap());
132 let fake_scid_tx_index = rand_for_tx_index % MAX_TX_INDEX;
134 // Put the scid in the given namespace.
135 let fake_scid_vout = self.get_encrypted_vout(fake_scid_height, fake_scid_tx_index, fake_scid_rand_bytes);
136 scid_utils::scid_from_parts(fake_scid_height as u64, fake_scid_tx_index as u64, fake_scid_vout as u64).unwrap()
139 /// We want to ensure that a 3rd party can't identify a payment as belong to a given
140 /// `Namespace`. Therefore, we encrypt it using a random bytes provided by `ChannelManager`.
141 fn get_encrypted_vout(&self, block_height: u32, tx_index: u32, fake_scid_rand_bytes: &[u8; 32]) -> u8 {
142 let mut salt = [0 as u8; 8];
143 let block_height_bytes = block_height.to_be_bytes();
144 salt[0..4].copy_from_slice(&block_height_bytes);
145 let tx_index_bytes = tx_index.to_be_bytes();
146 salt[4..8].copy_from_slice(&tx_index_bytes);
148 let mut chacha = ChaCha20::new(fake_scid_rand_bytes, &salt);
149 let mut vout_byte = [*self as u8];
150 chacha.process_in_place(&mut vout_byte);
151 vout_byte[0] & NAMESPACE_ID_BITMASK
155 fn segwit_activation_height(chain_hash: &ChainHash) -> u32 {
156 if *chain_hash == ChainHash::using_genesis_block(Network::Bitcoin) {
157 MAINNET_SEGWIT_ACTIVATION_HEIGHT
159 TEST_SEGWIT_ACTIVATION_HEIGHT
163 /// Returns whether the given fake scid falls into the phantom namespace.
164 pub fn is_valid_phantom(fake_scid_rand_bytes: &[u8; 32], scid: u64, chain_hash: &ChainHash) -> bool {
165 let block_height = scid_utils::block_from_scid(scid);
166 let tx_index = scid_utils::tx_index_from_scid(scid);
167 let namespace = Namespace::Phantom;
168 let valid_vout = namespace.get_encrypted_vout(block_height, tx_index, fake_scid_rand_bytes);
169 block_height >= segwit_activation_height(chain_hash)
170 && valid_vout == scid_utils::vout_from_scid(scid) as u8
173 /// Returns whether the given fake scid falls into the intercept namespace.
174 pub fn is_valid_intercept(fake_scid_rand_bytes: &[u8; 32], scid: u64, chain_hash: &ChainHash) -> bool {
175 let block_height = scid_utils::block_from_scid(scid);
176 let tx_index = scid_utils::tx_index_from_scid(scid);
177 let namespace = Namespace::Intercept;
178 let valid_vout = namespace.get_encrypted_vout(block_height, tx_index, fake_scid_rand_bytes);
179 block_height >= segwit_activation_height(chain_hash)
180 && valid_vout == scid_utils::vout_from_scid(scid) as u8
185 use bitcoin::blockdata::constants::ChainHash;
186 use bitcoin::network::constants::Network;
187 use crate::util::scid_utils::fake_scid::{is_valid_intercept, is_valid_phantom, MAINNET_SEGWIT_ACTIVATION_HEIGHT, MAX_TX_INDEX, MAX_NAMESPACES, Namespace, NAMESPACE_ID_BITMASK, segwit_activation_height, TEST_SEGWIT_ACTIVATION_HEIGHT};
188 use crate::util::scid_utils;
189 use crate::util::test_utils;
190 use crate::sync::Arc;
193 fn namespace_identifier_is_within_range() {
194 let phantom_namespace = Namespace::Phantom;
195 assert!((phantom_namespace as u8) < MAX_NAMESPACES);
196 assert!((phantom_namespace as u8) <= NAMESPACE_ID_BITMASK);
198 let intercept_namespace = Namespace::Intercept;
199 assert!((intercept_namespace as u8) < MAX_NAMESPACES);
200 assert!((intercept_namespace as u8) <= NAMESPACE_ID_BITMASK);
204 fn test_segwit_activation_height() {
205 let mainnet_genesis = ChainHash::using_genesis_block(Network::Bitcoin);
206 assert_eq!(segwit_activation_height(&mainnet_genesis), MAINNET_SEGWIT_ACTIVATION_HEIGHT);
208 let testnet_genesis = ChainHash::using_genesis_block(Network::Testnet);
209 assert_eq!(segwit_activation_height(&testnet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
211 let signet_genesis = ChainHash::using_genesis_block(Network::Signet);
212 assert_eq!(segwit_activation_height(&signet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
214 let regtest_genesis = ChainHash::using_genesis_block(Network::Regtest);
215 assert_eq!(segwit_activation_height(®test_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
219 fn test_is_valid_phantom() {
220 let namespace = Namespace::Phantom;
221 let fake_scid_rand_bytes = [0; 32];
222 let testnet_genesis = ChainHash::using_genesis_block(Network::Testnet);
223 let valid_encrypted_vout = namespace.get_encrypted_vout(0, 0, &fake_scid_rand_bytes);
224 let valid_fake_scid = scid_utils::scid_from_parts(1, 0, valid_encrypted_vout as u64).unwrap();
225 assert!(is_valid_phantom(&fake_scid_rand_bytes, valid_fake_scid, &testnet_genesis));
226 let invalid_fake_scid = scid_utils::scid_from_parts(1, 0, 12).unwrap();
227 assert!(!is_valid_phantom(&fake_scid_rand_bytes, invalid_fake_scid, &testnet_genesis));
231 fn test_is_valid_intercept() {
232 let namespace = Namespace::Intercept;
233 let fake_scid_rand_bytes = [0; 32];
234 let testnet_genesis = ChainHash::using_genesis_block(Network::Testnet);
235 let valid_encrypted_vout = namespace.get_encrypted_vout(0, 0, &fake_scid_rand_bytes);
236 let valid_fake_scid = scid_utils::scid_from_parts(1, 0, valid_encrypted_vout as u64).unwrap();
237 assert!(is_valid_intercept(&fake_scid_rand_bytes, valid_fake_scid, &testnet_genesis));
238 let invalid_fake_scid = scid_utils::scid_from_parts(1, 0, 12).unwrap();
239 assert!(!is_valid_intercept(&fake_scid_rand_bytes, invalid_fake_scid, &testnet_genesis));
243 fn test_get_fake_scid() {
244 let mainnet_genesis = ChainHash::using_genesis_block(Network::Bitcoin);
246 let fake_scid_rand_bytes = [1; 32];
247 let keys_manager = Arc::new(test_utils::TestKeysInterface::new(&seed, Network::Testnet));
248 let namespace = Namespace::Phantom;
249 let fake_scid = namespace.get_fake_scid(500_000, &mainnet_genesis, &fake_scid_rand_bytes, &keys_manager);
251 let fake_height = scid_utils::block_from_scid(fake_scid);
252 assert!(fake_height >= MAINNET_SEGWIT_ACTIVATION_HEIGHT);
253 assert!(fake_height <= 500_000);
255 let fake_tx_index = scid_utils::tx_index_from_scid(fake_scid);
256 assert!(fake_tx_index <= MAX_TX_INDEX);
258 let fake_vout = scid_utils::vout_from_scid(fake_scid);
259 assert!(fake_vout < MAX_NAMESPACES as u16);
269 fn test_block_from_scid() {
270 assert_eq!(block_from_scid(0x000000_000000_0000), 0);
271 assert_eq!(block_from_scid(0x000001_000000_0000), 1);
272 assert_eq!(block_from_scid(0x000001_ffffff_ffff), 1);
273 assert_eq!(block_from_scid(0x800000_ffffff_ffff), 0x800000);
274 assert_eq!(block_from_scid(0xffffff_ffffff_ffff), 0xffffff);
278 fn test_tx_index_from_scid() {
279 assert_eq!(tx_index_from_scid(0x000000_000000_0000), 0);
280 assert_eq!(tx_index_from_scid(0x000000_000001_0000), 1);
281 assert_eq!(tx_index_from_scid(0xffffff_000001_ffff), 1);
282 assert_eq!(tx_index_from_scid(0xffffff_800000_ffff), 0x800000);
283 assert_eq!(tx_index_from_scid(0xffffff_ffffff_ffff), 0xffffff);
287 fn test_vout_from_scid() {
288 assert_eq!(vout_from_scid(0x000000_000000_0000), 0);
289 assert_eq!(vout_from_scid(0x000000_000000_0001), 1);
290 assert_eq!(vout_from_scid(0xffffff_ffffff_0001), 1);
291 assert_eq!(vout_from_scid(0xffffff_ffffff_8000), 0x8000);
292 assert_eq!(vout_from_scid(0xffffff_ffffff_ffff), 0xffff);
296 fn test_scid_from_parts() {
297 assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x0000).unwrap(), 0x000000_000000_0000);
298 assert_eq!(scid_from_parts(0x00000001, 0x00000002, 0x0003).unwrap(), 0x000001_000002_0003);
299 assert_eq!(scid_from_parts(0x00111111, 0x00222222, 0x3333).unwrap(), 0x111111_222222_3333);
300 assert_eq!(scid_from_parts(0x00ffffff, 0x00ffffff, 0xffff).unwrap(), 0xffffff_ffffff_ffff);
301 assert_eq!(scid_from_parts(0x01ffffff, 0x00000000, 0x0000).err().unwrap(), ShortChannelIdError::BlockOverflow);
302 assert_eq!(scid_from_parts(0x00000000, 0x01ffffff, 0x0000).err().unwrap(), ShortChannelIdError::TxIndexOverflow);
303 assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x010000).err().unwrap(), ShortChannelIdError::VoutIndexOverflow);