1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 /// Maximum block height that can be used in a `short_channel_id`. This
11 /// value is based on the 3-bytes available for block height.
12 pub const MAX_SCID_BLOCK: u64 = 0x00ffffff;
14 /// Maximum transaction index that can be used in a `short_channel_id`.
15 /// This value is based on the 3-bytes available for tx index.
16 pub const MAX_SCID_TX_INDEX: u64 = 0x00ffffff;
18 /// Maximum vout index that can be used in a `short_channel_id`. This
19 /// value is based on the 2-bytes available for the vout index.
20 pub const MAX_SCID_VOUT_INDEX: u64 = 0xffff;
22 /// A `short_channel_id` construction error
23 #[derive(Debug, PartialEq, Eq)]
24 pub enum ShortChannelIdError {
30 /// Extracts the block height (most significant 3-bytes) from the `short_channel_id`
31 pub fn block_from_scid(short_channel_id: &u64) -> u32 {
32 return (short_channel_id >> 40) as u32;
35 /// Extracts the tx index (bytes [2..4]) from the `short_channel_id`
36 pub fn tx_index_from_scid(short_channel_id: &u64) -> u32 {
37 return ((short_channel_id >> 16) & MAX_SCID_TX_INDEX) as u32;
40 /// Extracts the vout (bytes [0..2]) from the `short_channel_id`
41 pub fn vout_from_scid(short_channel_id: &u64) -> u16 {
42 return ((short_channel_id) & MAX_SCID_VOUT_INDEX) as u16;
45 /// Constructs a `short_channel_id` using the components pieces. Results in an error
46 /// if the block height, tx index, or vout index overflow the maximum sizes.
47 pub fn scid_from_parts(block: u64, tx_index: u64, vout_index: u64) -> Result<u64, ShortChannelIdError> {
48 if block > MAX_SCID_BLOCK {
49 return Err(ShortChannelIdError::BlockOverflow);
52 if tx_index > MAX_SCID_TX_INDEX {
53 return Err(ShortChannelIdError::TxIndexOverflow);
56 if vout_index > MAX_SCID_VOUT_INDEX {
57 return Err(ShortChannelIdError::VoutIndexOverflow);
60 Ok((block << 40) | (tx_index << 16) | vout_index)
63 /// LDK has multiple reasons to generate fake short channel ids:
64 /// 1) outbound SCID aliases we use for private channels
65 /// 2) phantom node payments, to get an scid for the phantom node's phantom channel
66 /// 3) payments intended to be intercepted will route using a fake scid (this is typically used so
67 /// the forwarding node can open a JIT channel to the next hop)
68 pub(crate) mod fake_scid {
69 use bitcoin::hash_types::BlockHash;
70 use bitcoin::hashes::hex::FromHex;
71 use crate::chain::keysinterface::EntropySource;
72 use crate::util::chacha20::ChaCha20;
73 use crate::util::scid_utils;
75 use core::convert::TryInto;
78 const TEST_SEGWIT_ACTIVATION_HEIGHT: u32 = 1;
79 const MAINNET_SEGWIT_ACTIVATION_HEIGHT: u32 = 481_824;
80 const MAX_TX_INDEX: u32 = 2_500;
81 const MAX_NAMESPACES: u8 = 8; // We allocate 3 bits for the namespace identifier.
82 const NAMESPACE_ID_BITMASK: u8 = 0b111;
84 const BLOCKS_PER_MONTH: u32 = 144 /* blocks per day */ * 30 /* days per month */;
85 pub(crate) const MAX_SCID_BLOCKS_FROM_NOW: u32 = BLOCKS_PER_MONTH;
88 /// Fake scids are divided into namespaces, with each namespace having its own identifier between
89 /// [0..7]. This allows us to identify what namespace a fake scid corresponds to upon HTLC
90 /// receipt, and handle the HTLC accordingly. The namespace identifier is encrypted when encoded
91 /// into the fake scid.
92 #[derive(Copy, Clone)]
93 pub(crate) enum Namespace {
100 /// We generate "realistic-looking" random scids here, meaning the scid's block height is
101 /// between segwit activation and the current best known height, and the tx index and output
102 /// index are also selected from a "reasonable" range. We add this logic because it makes it
103 /// non-obvious at a glance that the scid is fake, e.g. if it appears in invoice route hints.
104 pub(crate) fn get_fake_scid<K: Deref>(&self, highest_seen_blockheight: u32, genesis_hash: &BlockHash, fake_scid_rand_bytes: &[u8; 32], keys_manager: &K) -> u64
105 where K::Target: EntropySource,
107 // Ensure we haven't created a namespace that doesn't fit into the 3 bits we've allocated for
109 assert!((*self as u8) < MAX_NAMESPACES);
110 let rand_bytes = keys_manager.get_secure_random_bytes();
112 let segwit_activation_height = segwit_activation_height(genesis_hash);
113 let mut blocks_since_segwit_activation = highest_seen_blockheight.saturating_sub(segwit_activation_height);
115 // We want to ensure that this fake channel won't conflict with any transactions we haven't
116 // seen yet, in case `highest_seen_blockheight` is updated before we get full information
117 // about transactions confirmed in the given block.
118 blocks_since_segwit_activation = blocks_since_segwit_activation.saturating_sub(MAX_SCID_BLOCKS_FROM_NOW);
120 let rand_for_height = u32::from_be_bytes(rand_bytes[..4].try_into().unwrap());
121 let fake_scid_height = segwit_activation_height + rand_for_height % (blocks_since_segwit_activation + 1);
123 let rand_for_tx_index = u32::from_be_bytes(rand_bytes[4..8].try_into().unwrap());
124 let fake_scid_tx_index = rand_for_tx_index % MAX_TX_INDEX;
126 // Put the scid in the given namespace.
127 let fake_scid_vout = self.get_encrypted_vout(fake_scid_height, fake_scid_tx_index, fake_scid_rand_bytes);
128 scid_utils::scid_from_parts(fake_scid_height as u64, fake_scid_tx_index as u64, fake_scid_vout as u64).unwrap()
131 /// We want to ensure that a 3rd party can't identify a payment as belong to a given
132 /// `Namespace`. Therefore, we encrypt it using a random bytes provided by `ChannelManager`.
133 fn get_encrypted_vout(&self, block_height: u32, tx_index: u32, fake_scid_rand_bytes: &[u8; 32]) -> u8 {
134 let mut salt = [0 as u8; 8];
135 let block_height_bytes = block_height.to_be_bytes();
136 salt[0..4].copy_from_slice(&block_height_bytes);
137 let tx_index_bytes = tx_index.to_be_bytes();
138 salt[4..8].copy_from_slice(&tx_index_bytes);
140 let mut chacha = ChaCha20::new(fake_scid_rand_bytes, &salt);
141 let mut vout_byte = [*self as u8];
142 chacha.process_in_place(&mut vout_byte);
143 vout_byte[0] & NAMESPACE_ID_BITMASK
147 fn segwit_activation_height(genesis: &BlockHash) -> u32 {
148 const MAINNET_GENESIS_STR: &'static str = "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f";
149 if BlockHash::from_hex(MAINNET_GENESIS_STR).unwrap() == *genesis {
150 MAINNET_SEGWIT_ACTIVATION_HEIGHT
152 TEST_SEGWIT_ACTIVATION_HEIGHT
156 /// Returns whether the given fake scid falls into the phantom namespace.
157 pub fn is_valid_phantom(fake_scid_rand_bytes: &[u8; 32], scid: u64, genesis_hash: &BlockHash) -> bool {
158 let block_height = scid_utils::block_from_scid(&scid);
159 let tx_index = scid_utils::tx_index_from_scid(&scid);
160 let namespace = Namespace::Phantom;
161 let valid_vout = namespace.get_encrypted_vout(block_height, tx_index, fake_scid_rand_bytes);
162 block_height >= segwit_activation_height(genesis_hash)
163 && valid_vout == scid_utils::vout_from_scid(&scid) as u8
166 /// Returns whether the given fake scid falls into the intercept namespace.
167 pub fn is_valid_intercept(fake_scid_rand_bytes: &[u8; 32], scid: u64, genesis_hash: &BlockHash) -> bool {
168 let block_height = scid_utils::block_from_scid(&scid);
169 let tx_index = scid_utils::tx_index_from_scid(&scid);
170 let namespace = Namespace::Intercept;
171 let valid_vout = namespace.get_encrypted_vout(block_height, tx_index, fake_scid_rand_bytes);
172 block_height >= segwit_activation_height(genesis_hash)
173 && valid_vout == scid_utils::vout_from_scid(&scid) as u8
178 use bitcoin::blockdata::constants::genesis_block;
179 use bitcoin::network::constants::Network;
180 use crate::util::scid_utils::fake_scid::{is_valid_intercept, is_valid_phantom, MAINNET_SEGWIT_ACTIVATION_HEIGHT, MAX_TX_INDEX, MAX_NAMESPACES, Namespace, NAMESPACE_ID_BITMASK, segwit_activation_height, TEST_SEGWIT_ACTIVATION_HEIGHT};
181 use crate::util::scid_utils;
182 use crate::util::test_utils;
183 use crate::sync::Arc;
186 fn namespace_identifier_is_within_range() {
187 let phantom_namespace = Namespace::Phantom;
188 assert!((phantom_namespace as u8) < MAX_NAMESPACES);
189 assert!((phantom_namespace as u8) <= NAMESPACE_ID_BITMASK);
191 let intercept_namespace = Namespace::Intercept;
192 assert!((intercept_namespace as u8) < MAX_NAMESPACES);
193 assert!((intercept_namespace as u8) <= NAMESPACE_ID_BITMASK);
197 fn test_segwit_activation_height() {
198 let mainnet_genesis = genesis_block(Network::Bitcoin).header.block_hash();
199 assert_eq!(segwit_activation_height(&mainnet_genesis), MAINNET_SEGWIT_ACTIVATION_HEIGHT);
201 let testnet_genesis = genesis_block(Network::Testnet).header.block_hash();
202 assert_eq!(segwit_activation_height(&testnet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
204 let signet_genesis = genesis_block(Network::Signet).header.block_hash();
205 assert_eq!(segwit_activation_height(&signet_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
207 let regtest_genesis = genesis_block(Network::Regtest).header.block_hash();
208 assert_eq!(segwit_activation_height(®test_genesis), TEST_SEGWIT_ACTIVATION_HEIGHT);
212 fn test_is_valid_phantom() {
213 let namespace = Namespace::Phantom;
214 let fake_scid_rand_bytes = [0; 32];
215 let testnet_genesis = genesis_block(Network::Testnet).header.block_hash();
216 let valid_encrypted_vout = namespace.get_encrypted_vout(0, 0, &fake_scid_rand_bytes);
217 let valid_fake_scid = scid_utils::scid_from_parts(1, 0, valid_encrypted_vout as u64).unwrap();
218 assert!(is_valid_phantom(&fake_scid_rand_bytes, valid_fake_scid, &testnet_genesis));
219 let invalid_fake_scid = scid_utils::scid_from_parts(1, 0, 12).unwrap();
220 assert!(!is_valid_phantom(&fake_scid_rand_bytes, invalid_fake_scid, &testnet_genesis));
224 fn test_is_valid_intercept() {
225 let namespace = Namespace::Intercept;
226 let fake_scid_rand_bytes = [0; 32];
227 let testnet_genesis = genesis_block(Network::Testnet).header.block_hash();
228 let valid_encrypted_vout = namespace.get_encrypted_vout(0, 0, &fake_scid_rand_bytes);
229 let valid_fake_scid = scid_utils::scid_from_parts(1, 0, valid_encrypted_vout as u64).unwrap();
230 assert!(is_valid_intercept(&fake_scid_rand_bytes, valid_fake_scid, &testnet_genesis));
231 let invalid_fake_scid = scid_utils::scid_from_parts(1, 0, 12).unwrap();
232 assert!(!is_valid_intercept(&fake_scid_rand_bytes, invalid_fake_scid, &testnet_genesis));
236 fn test_get_fake_scid() {
237 let mainnet_genesis = genesis_block(Network::Bitcoin).header.block_hash();
239 let fake_scid_rand_bytes = [1; 32];
240 let keys_manager = Arc::new(test_utils::TestKeysInterface::new(&seed, Network::Testnet));
241 let namespace = Namespace::Phantom;
242 let fake_scid = namespace.get_fake_scid(500_000, &mainnet_genesis, &fake_scid_rand_bytes, &keys_manager);
244 let fake_height = scid_utils::block_from_scid(&fake_scid);
245 assert!(fake_height >= MAINNET_SEGWIT_ACTIVATION_HEIGHT);
246 assert!(fake_height <= 500_000);
248 let fake_tx_index = scid_utils::tx_index_from_scid(&fake_scid);
249 assert!(fake_tx_index <= MAX_TX_INDEX);
251 let fake_vout = scid_utils::vout_from_scid(&fake_scid);
252 assert!(fake_vout < MAX_NAMESPACES as u16);
262 fn test_block_from_scid() {
263 assert_eq!(block_from_scid(&0x000000_000000_0000), 0);
264 assert_eq!(block_from_scid(&0x000001_000000_0000), 1);
265 assert_eq!(block_from_scid(&0x000001_ffffff_ffff), 1);
266 assert_eq!(block_from_scid(&0x800000_ffffff_ffff), 0x800000);
267 assert_eq!(block_from_scid(&0xffffff_ffffff_ffff), 0xffffff);
271 fn test_tx_index_from_scid() {
272 assert_eq!(tx_index_from_scid(&0x000000_000000_0000), 0);
273 assert_eq!(tx_index_from_scid(&0x000000_000001_0000), 1);
274 assert_eq!(tx_index_from_scid(&0xffffff_000001_ffff), 1);
275 assert_eq!(tx_index_from_scid(&0xffffff_800000_ffff), 0x800000);
276 assert_eq!(tx_index_from_scid(&0xffffff_ffffff_ffff), 0xffffff);
280 fn test_vout_from_scid() {
281 assert_eq!(vout_from_scid(&0x000000_000000_0000), 0);
282 assert_eq!(vout_from_scid(&0x000000_000000_0001), 1);
283 assert_eq!(vout_from_scid(&0xffffff_ffffff_0001), 1);
284 assert_eq!(vout_from_scid(&0xffffff_ffffff_8000), 0x8000);
285 assert_eq!(vout_from_scid(&0xffffff_ffffff_ffff), 0xffff);
289 fn test_scid_from_parts() {
290 assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x0000).unwrap(), 0x000000_000000_0000);
291 assert_eq!(scid_from_parts(0x00000001, 0x00000002, 0x0003).unwrap(), 0x000001_000002_0003);
292 assert_eq!(scid_from_parts(0x00111111, 0x00222222, 0x3333).unwrap(), 0x111111_222222_3333);
293 assert_eq!(scid_from_parts(0x00ffffff, 0x00ffffff, 0xffff).unwrap(), 0xffffff_ffffff_ffff);
294 assert_eq!(scid_from_parts(0x01ffffff, 0x00000000, 0x0000).err().unwrap(), ShortChannelIdError::BlockOverflow);
295 assert_eq!(scid_from_parts(0x00000000, 0x01ffffff, 0x0000).err().unwrap(), ShortChannelIdError::TxIndexOverflow);
296 assert_eq!(scid_from_parts(0x00000000, 0x00000000, 0x010000).err().unwrap(), ShortChannelIdError::VoutIndexOverflow);