Bump rust-bitcoin to v0.30.2
[rust-lightning] / lightning / src / util / test_channel_signer.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 use crate::ln::channel::{ANCHOR_OUTPUT_VALUE_SATOSHI, MIN_CHAN_DUST_LIMIT_SATOSHIS};
11 use crate::ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, HolderCommitmentTransaction, CommitmentTransaction, ChannelTransactionParameters, TrustedCommitmentTransaction, ClosingTransaction};
12 use crate::ln::{chan_utils, msgs, PaymentPreimage};
13 use crate::sign::{WriteableEcdsaChannelSigner, InMemorySigner, ChannelSigner, EcdsaChannelSigner};
14
15 use crate::prelude::*;
16 use core::cmp;
17 use crate::sync::{Mutex, Arc};
18 #[cfg(test)] use crate::sync::MutexGuard;
19
20 use bitcoin::blockdata::transaction::Transaction;
21 use bitcoin::hashes::Hash;
22 use bitcoin::sighash;
23 use bitcoin::sighash::EcdsaSighashType;
24
25 use bitcoin::secp256k1;
26 use bitcoin::secp256k1::{SecretKey, PublicKey};
27 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
28 use crate::sign::HTLCDescriptor;
29 use crate::util::ser::{Writeable, Writer};
30 use crate::io::Error;
31 use crate::ln::features::ChannelTypeFeatures;
32
33 /// Initial value for revoked commitment downward counter
34 pub const INITIAL_REVOKED_COMMITMENT_NUMBER: u64 = 1 << 48;
35
36 /// An implementation of Sign that enforces some policy checks.  The current checks
37 /// are an incomplete set.  They include:
38 ///
39 /// - When signing, the holder transaction has not been revoked
40 /// - When revoking, the holder transaction has not been signed
41 /// - The holder commitment number is monotonic and without gaps
42 /// - The revoked holder commitment number is monotonic and without gaps
43 /// - There is at least one unrevoked holder transaction at all times
44 /// - The counterparty commitment number is monotonic and without gaps
45 /// - The pre-derived keys and pre-built transaction in CommitmentTransaction were correctly built
46 ///
47 /// Eventually we will probably want to expose a variant of this which would essentially
48 /// be what you'd want to run on a hardware wallet.
49 ///
50 /// Note that counterparty signatures on the holder transaction are not checked, but it should
51 /// be in a complete implementation.
52 ///
53 /// Note that before we do so we should ensure its serialization format has backwards- and
54 /// forwards-compatibility prefix/suffixes!
55 #[derive(Clone)]
56 pub struct TestChannelSigner {
57         pub inner: InMemorySigner,
58         /// Channel state used for policy enforcement
59         pub state: Arc<Mutex<EnforcementState>>,
60         pub disable_revocation_policy_check: bool,
61         /// When `true` (the default), the signer will respond immediately with signatures. When `false`,
62         /// the signer will return an error indicating that it is unavailable.
63         pub available: Arc<Mutex<bool>>,
64 }
65
66 impl PartialEq for TestChannelSigner {
67         fn eq(&self, o: &Self) -> bool {
68                 Arc::ptr_eq(&self.state, &o.state)
69         }
70 }
71
72 impl TestChannelSigner {
73         /// Construct an TestChannelSigner
74         pub fn new(inner: InMemorySigner) -> Self {
75                 let state = Arc::new(Mutex::new(EnforcementState::new()));
76                 Self {
77                         inner,
78                         state,
79                         disable_revocation_policy_check: false,
80                         available: Arc::new(Mutex::new(true)),
81                 }
82         }
83
84         /// Construct an TestChannelSigner with externally managed storage
85         ///
86         /// Since there are multiple copies of this struct for each channel, some coordination is needed
87         /// so that all copies are aware of enforcement state.  A pointer to this state is provided
88         /// here, usually by an implementation of KeysInterface.
89         pub fn new_with_revoked(inner: InMemorySigner, state: Arc<Mutex<EnforcementState>>, disable_revocation_policy_check: bool) -> Self {
90                 Self {
91                         inner,
92                         state,
93                         disable_revocation_policy_check,
94                         available: Arc::new(Mutex::new(true)),
95                 }
96         }
97
98         pub fn channel_type_features(&self) -> &ChannelTypeFeatures { self.inner.channel_type_features().unwrap() }
99
100         #[cfg(test)]
101         pub fn get_enforcement_state(&self) -> MutexGuard<EnforcementState> {
102                 self.state.lock().unwrap()
103         }
104
105         /// Marks the signer's availability.
106         ///
107         /// When `true`, methods are forwarded to the underlying signer as normal. When `false`, some
108         /// methods will return `Err` indicating that the signer is unavailable. Intended to be used for
109         /// testing asynchronous signing.
110         #[cfg(test)]
111         pub fn set_available(&self, available: bool) {
112                 *self.available.lock().unwrap() = available;
113         }
114 }
115
116 impl ChannelSigner for TestChannelSigner {
117         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
118                 self.inner.get_per_commitment_point(idx, secp_ctx)
119         }
120
121         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
122                 {
123                         let mut state = self.state.lock().unwrap();
124                         assert!(idx == state.last_holder_revoked_commitment || idx == state.last_holder_revoked_commitment - 1, "can only revoke the current or next unrevoked commitment - trying {}, last revoked {}", idx, state.last_holder_revoked_commitment);
125                         assert!(idx > state.last_holder_commitment, "cannot revoke the last holder commitment - attempted to revoke {} last commitment {}", idx, state.last_holder_commitment);
126                         state.last_holder_revoked_commitment = idx;
127                 }
128                 self.inner.release_commitment_secret(idx)
129         }
130
131         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
132                 let mut state = self.state.lock().unwrap();
133                 let idx = holder_tx.commitment_number();
134                 assert!(idx == state.last_holder_commitment || idx == state.last_holder_commitment - 1, "expecting to validate the current or next holder commitment - trying {}, current {}", idx, state.last_holder_commitment);
135                 state.last_holder_commitment = idx;
136                 Ok(())
137         }
138
139         fn pubkeys(&self) -> &ChannelPublicKeys { self.inner.pubkeys() }
140
141         fn channel_keys_id(&self) -> [u8; 32] { self.inner.channel_keys_id() }
142
143         fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
144                 self.inner.provide_channel_parameters(channel_parameters)
145         }
146 }
147
148 impl EcdsaChannelSigner for TestChannelSigner {
149         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
150                 self.verify_counterparty_commitment_tx(commitment_tx, secp_ctx);
151
152                 {
153                         if !*self.available.lock().unwrap() {
154                                 return Err(());
155                         }
156                         let mut state = self.state.lock().unwrap();
157                         let actual_commitment_number = commitment_tx.commitment_number();
158                         let last_commitment_number = state.last_counterparty_commitment;
159                         // These commitment numbers are backwards counting.  We expect either the same as the previously encountered,
160                         // or the next one.
161                         assert!(last_commitment_number == actual_commitment_number || last_commitment_number - 1 == actual_commitment_number, "{} doesn't come after {}", actual_commitment_number, last_commitment_number);
162                         // Ensure that the counterparty doesn't get more than two broadcastable commitments -
163                         // the last and the one we are trying to sign
164                         assert!(actual_commitment_number >= state.last_counterparty_revoked_commitment - 2, "cannot sign a commitment if second to last wasn't revoked - signing {} revoked {}", actual_commitment_number, state.last_counterparty_revoked_commitment);
165                         state.last_counterparty_commitment = cmp::min(last_commitment_number, actual_commitment_number)
166                 }
167
168                 Ok(self.inner.sign_counterparty_commitment(commitment_tx, preimages, secp_ctx).unwrap())
169         }
170
171         fn validate_counterparty_revocation(&self, idx: u64, _secret: &SecretKey) -> Result<(), ()> {
172                 if !*self.available.lock().unwrap() {
173                         return Err(());
174                 }
175                 let mut state = self.state.lock().unwrap();
176                 assert!(idx == state.last_counterparty_revoked_commitment || idx == state.last_counterparty_revoked_commitment - 1, "expecting to validate the current or next counterparty revocation - trying {}, current {}", idx, state.last_counterparty_revoked_commitment);
177                 state.last_counterparty_revoked_commitment = idx;
178                 Ok(())
179         }
180
181         fn sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
182                 if !*self.available.lock().unwrap() {
183                         return Err(());
184                 }
185                 let trusted_tx = self.verify_holder_commitment_tx(commitment_tx, secp_ctx);
186                 let state = self.state.lock().unwrap();
187                 let commitment_number = trusted_tx.commitment_number();
188                 if state.last_holder_revoked_commitment - 1 != commitment_number && state.last_holder_revoked_commitment - 2 != commitment_number {
189                         if !self.disable_revocation_policy_check {
190                                 panic!("can only sign the next two unrevoked commitment numbers, revoked={} vs requested={} for {}",
191                                        state.last_holder_revoked_commitment, commitment_number, self.inner.commitment_seed[0])
192                         }
193                 }
194                 Ok(self.inner.sign_holder_commitment(commitment_tx, secp_ctx).unwrap())
195         }
196
197         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
198         fn unsafe_sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
199                 Ok(self.inner.unsafe_sign_holder_commitment(commitment_tx, secp_ctx).unwrap())
200         }
201
202         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
203                 Ok(self.inner.sign_justice_revoked_output(justice_tx, input, amount, per_commitment_key, secp_ctx).unwrap())
204         }
205
206         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
207                 Ok(self.inner.sign_justice_revoked_htlc(justice_tx, input, amount, per_commitment_key, htlc, secp_ctx).unwrap())
208         }
209
210         fn sign_holder_htlc_transaction(
211                 &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
212                 secp_ctx: &Secp256k1<secp256k1::All>
213         ) -> Result<Signature, ()> {
214                 let state = self.state.lock().unwrap();
215                 if state.last_holder_revoked_commitment - 1 != htlc_descriptor.per_commitment_number &&
216                         state.last_holder_revoked_commitment - 2 != htlc_descriptor.per_commitment_number
217                 {
218                         if !self.disable_revocation_policy_check {
219                                 panic!("can only sign the next two unrevoked commitment numbers, revoked={} vs requested={} for {}",
220                                        state.last_holder_revoked_commitment, htlc_descriptor.per_commitment_number, self.inner.commitment_seed[0])
221                         }
222                 }
223                 assert_eq!(htlc_tx.input[input], htlc_descriptor.unsigned_tx_input());
224                 assert_eq!(htlc_tx.output[input], htlc_descriptor.tx_output(secp_ctx));
225                 {
226                         let witness_script = htlc_descriptor.witness_script(secp_ctx);
227                         let sighash_type = if self.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
228                                 EcdsaSighashType::SinglePlusAnyoneCanPay
229                         } else {
230                                 EcdsaSighashType::All
231                         };
232                         let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
233                                 input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, sighash_type
234                         ).unwrap();
235                         let countersignatory_htlc_key = chan_utils::derive_public_key(
236                                 &secp_ctx, &htlc_descriptor.per_commitment_point, &self.inner.counterparty_pubkeys().unwrap().htlc_basepoint
237                         );
238                         secp_ctx.verify_ecdsa(
239                                 &hash_to_message!(sighash.as_byte_array()), &htlc_descriptor.counterparty_sig, &countersignatory_htlc_key
240                         ).unwrap();
241                 }
242                 Ok(self.inner.sign_holder_htlc_transaction(htlc_tx, input, htlc_descriptor, secp_ctx).unwrap())
243         }
244
245         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
246                 Ok(self.inner.sign_counterparty_htlc_transaction(htlc_tx, input, amount, per_commitment_point, htlc, secp_ctx).unwrap())
247         }
248
249         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
250                 closing_tx.verify(self.inner.funding_outpoint().unwrap().into_bitcoin_outpoint())
251                         .expect("derived different closing transaction");
252                 Ok(self.inner.sign_closing_transaction(closing_tx, secp_ctx).unwrap())
253         }
254
255         fn sign_holder_anchor_input(
256                 &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
257         ) -> Result<Signature, ()> {
258                 debug_assert!(MIN_CHAN_DUST_LIMIT_SATOSHIS > ANCHOR_OUTPUT_VALUE_SATOSHI);
259                 // As long as our minimum dust limit is enforced and is greater than our anchor output
260                 // value, an anchor output can only have an index within [0, 1].
261                 assert!(anchor_tx.input[input].previous_output.vout == 0 || anchor_tx.input[input].previous_output.vout == 1);
262                 self.inner.sign_holder_anchor_input(anchor_tx, input, secp_ctx)
263         }
264
265         fn sign_channel_announcement_with_funding_key(
266                 &self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
267         ) -> Result<Signature, ()> {
268                 self.inner.sign_channel_announcement_with_funding_key(msg, secp_ctx)
269         }
270 }
271
272 impl WriteableEcdsaChannelSigner for TestChannelSigner {}
273
274 impl Writeable for TestChannelSigner {
275         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
276                 // TestChannelSigner has two fields - `inner` ([`InMemorySigner`]) and `state`
277                 // ([`EnforcementState`]). `inner` is serialized here and deserialized by
278                 // [`SignerProvider::read_chan_signer`]. `state` is managed by [`SignerProvider`]
279                 // and will be serialized as needed by the implementation of that trait.
280                 self.inner.write(writer)?;
281                 Ok(())
282         }
283 }
284
285 impl TestChannelSigner {
286         fn verify_counterparty_commitment_tx<'a, T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &'a CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> TrustedCommitmentTransaction<'a> {
287                 commitment_tx.verify(
288                         &self.inner.get_channel_parameters().unwrap().as_counterparty_broadcastable(),
289                         self.inner.counterparty_pubkeys().unwrap(), self.inner.pubkeys(), secp_ctx
290                 ).expect("derived different per-tx keys or built transaction")
291         }
292
293         fn verify_holder_commitment_tx<'a, T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &'a CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> TrustedCommitmentTransaction<'a> {
294                 commitment_tx.verify(
295                         &self.inner.get_channel_parameters().unwrap().as_holder_broadcastable(),
296                         self.inner.pubkeys(), self.inner.counterparty_pubkeys().unwrap(), secp_ctx
297                 ).expect("derived different per-tx keys or built transaction")
298         }
299 }
300
301 /// The state used by [`TestChannelSigner`] in order to enforce policy checks
302 ///
303 /// This structure is maintained by KeysInterface since we may have multiple copies of
304 /// the signer and they must coordinate their state.
305 #[derive(Clone)]
306 pub struct EnforcementState {
307         /// The last counterparty commitment number we signed, backwards counting
308         pub last_counterparty_commitment: u64,
309         /// The last counterparty commitment they revoked, backwards counting
310         pub last_counterparty_revoked_commitment: u64,
311         /// The last holder commitment number we revoked, backwards counting
312         pub last_holder_revoked_commitment: u64,
313         /// The last validated holder commitment number, backwards counting
314         pub last_holder_commitment: u64,
315 }
316
317 impl EnforcementState {
318         /// Enforcement state for a new channel
319         pub fn new() -> Self {
320                 EnforcementState {
321                         last_counterparty_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
322                         last_counterparty_revoked_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
323                         last_holder_revoked_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
324                         last_holder_commitment: INITIAL_REVOKED_COMMITMENT_NUMBER,
325                 }
326         }
327 }