1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Utilities which allow users to block on some future notification from LDK. These are
11 //! specifically used by [`ChannelManager`] to allow waiting until the [`ChannelManager`] needs to
14 //! [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
18 use crate::sync::{Condvar, Mutex};
20 use crate::prelude::*;
22 #[cfg(any(test, feature = "std"))]
23 use std::time::{Duration, Instant};
25 use core::future::Future as StdFuture;
26 use core::task::{Context, Poll};
30 /// Used to signal to one of many waiters that the condition they're waiting on has happened.
31 pub(crate) struct Notifier {
32 notify_pending: Mutex<(bool, Option<Arc<Mutex<FutureState>>>)>,
37 pub(crate) fn new() -> Self {
39 notify_pending: Mutex::new((false, None)),
40 condvar: Condvar::new(),
44 pub(crate) fn wait(&self) {
46 let mut guard = self.notify_pending.lock().unwrap();
51 guard = self.condvar.wait(guard).unwrap();
60 #[cfg(any(test, feature = "std"))]
61 pub(crate) fn wait_timeout(&self, max_wait: Duration) -> bool {
62 let current_time = Instant::now();
64 let mut guard = self.notify_pending.lock().unwrap();
69 guard = self.condvar.wait_timeout(guard, max_wait).unwrap().0;
70 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
71 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
72 // time. Note that this logic can be highly simplified through the use of
73 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
75 let elapsed = current_time.elapsed();
77 if result || elapsed >= max_wait {
81 match max_wait.checked_sub(elapsed) {
82 None => return result,
88 /// Wake waiters, tracking that wake needs to occur even if there are currently no waiters.
89 pub(crate) fn notify(&self) {
90 let mut lock = self.notify_pending.lock().unwrap();
92 if let Some(future_state) = lock.1.take() {
93 future_state.lock().unwrap().complete();
96 self.condvar.notify_all();
99 /// Gets a [`Future`] that will get woken up with any waiters
100 pub(crate) fn get_future(&self) -> Future {
101 let mut lock = self.notify_pending.lock().unwrap();
104 state: Arc::new(Mutex::new(FutureState {
105 callbacks: Vec::new(),
109 } else if let Some(existing_state) = &lock.1 {
110 Future { state: Arc::clone(&existing_state) }
112 let state = Arc::new(Mutex::new(FutureState {
113 callbacks: Vec::new(),
116 lock.1 = Some(Arc::clone(&state));
121 #[cfg(any(test, feature = "_test_utils"))]
122 pub fn notify_pending(&self) -> bool {
123 self.notify_pending.lock().unwrap().0
127 /// A callback which is called when a [`Future`] completes.
129 /// Note that this MUST NOT call back into LDK directly, it must instead schedule actions to be
130 /// taken later. Rust users should use the [`std::future::Future`] implementation for [`Future`]
133 /// Note that the [`std::future::Future`] implementation may only work for runtimes which schedule
134 /// futures when they receive a wake, rather than immediately executing them.
135 pub trait FutureCallback : Send {
136 /// The method which is called.
140 impl<F: Fn() + Send> FutureCallback for F {
141 fn call(&self) { (self)(); }
144 pub(crate) struct FutureState {
145 callbacks: Vec<Box<dyn FutureCallback>>,
150 fn complete(&mut self) {
151 for callback in self.callbacks.drain(..) {
154 self.complete = true;
158 /// A simple future which can complete once, and calls some callback(s) when it does so.
160 state: Arc<Mutex<FutureState>>,
164 /// Registers a callback to be called upon completion of this future. If the future has already
165 /// completed, the callback will be called immediately.
167 /// (C-not exported) use the bindings-only `register_callback_fn` instead
168 pub fn register_callback(&self, callback: Box<dyn FutureCallback>) {
169 let mut state = self.state.lock().unwrap();
174 state.callbacks.push(callback);
178 // C bindings don't (currently) know how to map `Box<dyn Trait>`, and while it could add the
179 // following wrapper, doing it in the bindings is currently much more work than simply doing it
181 /// Registers a callback to be called upon completion of this future. If the future has already
182 /// completed, the callback will be called immediately.
184 pub fn register_callback_fn<F: 'static + FutureCallback>(&self, callback: F) {
185 self.register_callback(Box::new(callback));
190 use core::task::Waker;
191 pub struct StdWaker(pub Waker);
192 impl super::FutureCallback for StdWaker {
193 fn call(&self) { self.0.wake_by_ref() }
197 /// (C-not exported) as Rust Futures aren't usable in language bindings.
198 impl<'a> StdFuture for Future {
201 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
202 let mut state = self.state.lock().unwrap();
206 let waker = cx.waker().clone();
207 state.callbacks.push(Box::new(std_future::StdWaker(waker)));
216 use core::sync::atomic::{AtomicBool, Ordering};
217 use core::future::Future as FutureTrait;
218 use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
221 fn notifier_pre_notified_future() {
222 // Previously, if we generated a future after a `Notifier` had been notified, the future
223 // would never complete. This tests this behavior, ensuring the future instead completes
225 let notifier = Notifier::new();
228 let callback = Arc::new(AtomicBool::new(false));
229 let callback_ref = Arc::clone(&callback);
230 notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
231 assert!(callback.load(Ordering::SeqCst));
234 #[cfg(feature = "std")]
236 fn test_wait_timeout() {
237 use crate::sync::Arc;
240 let persistence_notifier = Arc::new(Notifier::new());
241 let thread_notifier = Arc::clone(&persistence_notifier);
243 let exit_thread = Arc::new(AtomicBool::new(false));
244 let exit_thread_clone = exit_thread.clone();
245 thread::spawn(move || {
247 let mut lock = thread_notifier.notify_pending.lock().unwrap();
249 thread_notifier.condvar.notify_all();
251 if exit_thread_clone.load(Ordering::SeqCst) {
257 // Check that we can block indefinitely until updates are available.
258 let _ = persistence_notifier.wait();
260 // Check that the Notifier will return after the given duration if updates are
263 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
268 exit_thread.store(true, Ordering::SeqCst);
270 // Check that the Notifier will return after the given duration even if no updates
273 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
280 fn test_future_callbacks() {
281 let future = Future {
282 state: Arc::new(Mutex::new(FutureState {
283 callbacks: Vec::new(),
287 let callback = Arc::new(AtomicBool::new(false));
288 let callback_ref = Arc::clone(&callback);
289 future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
291 assert!(!callback.load(Ordering::SeqCst));
292 future.state.lock().unwrap().complete();
293 assert!(callback.load(Ordering::SeqCst));
294 future.state.lock().unwrap().complete();
298 fn test_pre_completed_future_callbacks() {
299 let future = Future {
300 state: Arc::new(Mutex::new(FutureState {
301 callbacks: Vec::new(),
305 future.state.lock().unwrap().complete();
307 let callback = Arc::new(AtomicBool::new(false));
308 let callback_ref = Arc::clone(&callback);
309 future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
311 assert!(callback.load(Ordering::SeqCst));
312 assert!(future.state.lock().unwrap().callbacks.is_empty());
315 // Rather annoyingly, there's no safe way in Rust std to construct a Waker despite it being
316 // totally possible to construct from a trait implementation (though somewhat less effecient
317 // compared to a raw VTable). Instead, we have to write out a lot of boilerplate to build a
318 // waker, which we do here with a trivial Arc<AtomicBool> data element to track woke-ness.
319 const WAKER_V_TABLE: RawWakerVTable = RawWakerVTable::new(waker_clone, wake, wake_by_ref, drop);
320 unsafe fn wake_by_ref(ptr: *const ()) { let p = ptr as *const Arc<AtomicBool>; assert!(!(*p).fetch_or(true, Ordering::SeqCst)); }
321 unsafe fn drop(ptr: *const ()) { let p = ptr as *mut Arc<AtomicBool>; let _freed = Box::from_raw(p); }
322 unsafe fn wake(ptr: *const ()) { wake_by_ref(ptr); drop(ptr); }
323 unsafe fn waker_clone(ptr: *const ()) -> RawWaker {
324 let p = ptr as *const Arc<AtomicBool>;
325 RawWaker::new(Box::into_raw(Box::new(Arc::clone(&*p))) as *const (), &WAKER_V_TABLE)
328 fn create_waker() -> (Arc<AtomicBool>, Waker) {
329 let a = Arc::new(AtomicBool::new(false));
330 let waker = unsafe { Waker::from_raw(waker_clone((&a as *const Arc<AtomicBool>) as *const ())) };
336 let mut future = Future {
337 state: Arc::new(Mutex::new(FutureState {
338 callbacks: Vec::new(),
342 let mut second_future = Future { state: Arc::clone(&future.state) };
344 let (woken, waker) = create_waker();
345 assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
346 assert!(!woken.load(Ordering::SeqCst));
348 let (second_woken, second_waker) = create_waker();
349 assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Pending);
350 assert!(!second_woken.load(Ordering::SeqCst));
352 future.state.lock().unwrap().complete();
353 assert!(woken.load(Ordering::SeqCst));
354 assert!(second_woken.load(Ordering::SeqCst));
355 assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
356 assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Ready(()));