1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native [`TcpStream`]s.
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled".
16 //! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference,
17 //! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s
18 //! `SocketDescriptor` implementation.
20 //! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls;
21 //! see their individual docs for details.
23 //! [`PeerManager`]: lightning::ln::peer_handler::PeerManager
25 #![deny(rustdoc::broken_intra_doc_links)]
26 #![deny(rustdoc::private_intra_doc_links)]
28 #![deny(missing_docs)]
29 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
31 use bitcoin::secp256k1::PublicKey;
33 use tokio::net::TcpStream;
35 use tokio::sync::mpsc;
37 use lightning::ln::peer_handler;
38 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
39 use lightning::ln::peer_handler::APeerManager;
40 use lightning::ln::msgs::SocketAddress;
43 use std::task::{self, Poll};
44 use std::future::Future;
45 use std::net::SocketAddr;
46 use std::net::TcpStream as StdTcpStream;
47 use std::sync::{Arc, Mutex};
48 use std::sync::atomic::{AtomicU64, Ordering};
49 use std::time::Duration;
53 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
55 // We only need to select over multiple futures in one place, and taking on the full `tokio/macros`
56 // dependency tree in order to do so (which has broken our MSRV before) is excessive. Instead, we
57 // define a trivial two- and three- select macro with the specific types we need and just use that.
59 pub(crate) enum SelectorOutput {
60 A(Option<()>), B(Option<()>), C(tokio::io::Result<()>),
63 pub(crate) struct TwoSelector<
64 A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
71 A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin
72 > Future for TwoSelector<A, B> {
73 type Output = SelectorOutput;
74 fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
75 match Pin::new(&mut self.a).poll(ctx) {
76 Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
79 match Pin::new(&mut self.b).poll(ctx) {
80 Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
87 pub(crate) struct ThreeSelector<
88 A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<()>> + Unpin
96 A: Future<Output=Option<()>> + Unpin, B: Future<Output=Option<()>> + Unpin, C: Future<Output=tokio::io::Result<()>> + Unpin
97 > Future for ThreeSelector<A, B, C> {
98 type Output = SelectorOutput;
99 fn poll(mut self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<SelectorOutput> {
100 match Pin::new(&mut self.a).poll(ctx) {
101 Poll::Ready(res) => { return Poll::Ready(SelectorOutput::A(res)); },
104 match Pin::new(&mut self.b).poll(ctx) {
105 Poll::Ready(res) => { return Poll::Ready(SelectorOutput::B(res)); },
108 match Pin::new(&mut self.c).poll(ctx) {
109 Poll::Ready(res) => { return Poll::Ready(SelectorOutput::C(res)); },
116 /// Connection contains all our internal state for a connection - we hold a reference to the
117 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
118 /// read future (which is returned by schedule_read).
120 writer: Option<Arc<TcpStream>>,
121 // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
122 // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
123 // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
124 // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
125 // the schedule_read stack.
127 // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
128 // runtime with functions templated by the Arc<PeerManager> type, calling
129 // write_buffer_space_avail directly from tokio's write wake, however doing so would require
130 // more unsafe voodo than I really feel like writing.
131 write_avail: mpsc::Sender<()>,
132 // When we are told by rust-lightning to pause read (because we have writes backing up), we do
133 // so by setting read_paused. At that point, the read task will stop reading bytes from the
134 // socket. To wake it up (without otherwise changing its state, we can push a value into this
136 read_waker: mpsc::Sender<()>,
138 rl_requested_disconnect: bool,
142 async fn poll_event_process<PM: Deref + 'static + Send + Sync>(
144 mut event_receiver: mpsc::Receiver<()>,
145 ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
147 if event_receiver.recv().await.is_none() {
150 peer_manager.as_ref().process_events();
154 async fn schedule_read<PM: Deref + 'static + Send + Sync + Clone>(
156 us: Arc<Mutex<Self>>,
157 reader: Arc<TcpStream>,
158 mut read_wake_receiver: mpsc::Receiver<()>,
159 mut write_avail_receiver: mpsc::Receiver<()>,
160 ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
161 // Create a waker to wake up poll_event_process, above
162 let (event_waker, event_receiver) = mpsc::channel(1);
163 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
165 // 4KiB is nice and big without handling too many messages all at once, giving other peers
166 // a chance to do some work.
167 let mut buf = [0; 4096];
169 let mut our_descriptor = SocketDescriptor::new(us.clone());
170 // An enum describing why we did/are disconnecting:
172 // Rust-Lightning told us to disconnect, either by returning an Err or by calling
173 // SocketDescriptor::disconnect_socket.
174 // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
175 // already knows we're disconnected.
177 // The connection was disconnected for some other reason, ie because the socket was
179 // In this case, we do need to call peer_manager.socket_disconnected() to inform
180 // Rust-Lightning that the socket is gone.
183 let disconnect_type = loop {
185 let us_lock = us.lock().unwrap();
186 if us_lock.rl_requested_disconnect {
187 break Disconnect::CloseConnection;
191 // TODO: Drop the Box'ing of the futures once Rust has pin-on-stack support.
192 let select_result = if read_paused {
194 a: Box::pin(write_avail_receiver.recv()),
195 b: Box::pin(read_wake_receiver.recv()),
199 a: Box::pin(write_avail_receiver.recv()),
200 b: Box::pin(read_wake_receiver.recv()),
201 c: Box::pin(reader.readable()),
204 match select_result {
205 SelectorOutput::A(v) => {
206 assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
207 if peer_manager.as_ref().write_buffer_space_avail(&mut our_descriptor).is_err() {
208 break Disconnect::CloseConnection;
211 SelectorOutput::B(_) => {},
212 SelectorOutput::C(res) => {
213 if res.is_err() { break Disconnect::PeerDisconnected; }
214 match reader.try_read(&mut buf) {
215 Ok(0) => break Disconnect::PeerDisconnected,
217 let read_res = peer_manager.as_ref().read_event(&mut our_descriptor, &buf[0..len]);
218 let mut us_lock = us.lock().unwrap();
222 us_lock.read_paused = true;
225 Err(_) => break Disconnect::CloseConnection,
228 Err(e) if e.kind() == std::io::ErrorKind::WouldBlock => {
229 // readable() is allowed to spuriously wake, so we have to handle
232 Err(_) => break Disconnect::PeerDisconnected,
236 let _ = event_waker.try_send(());
238 // At this point we've processed a message or two, and reset the ping timer for this
239 // peer, at least in the "are we still receiving messages" context, if we don't give up
240 // our timeslice to another task we may just spin on this peer, starving other peers
241 // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
243 let _ = tokio::task::yield_now().await;
245 us.lock().unwrap().writer.take();
246 if let Disconnect::PeerDisconnected = disconnect_type {
247 peer_manager.as_ref().socket_disconnected(&our_descriptor);
248 peer_manager.as_ref().process_events();
252 fn new(stream: StdTcpStream) -> (Arc<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
253 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
254 // PeerManager, we will eventually get notified that there is room in the socket to write
255 // new bytes, which will generate an event. That event will be popped off the queue before
256 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
257 // the write_buffer_space_avail() call, send_data() returns a non-full write.
258 let (write_avail, write_receiver) = mpsc::channel(1);
259 // Similarly here - our only goal is to make sure the reader wakes up at some point after
260 // we shove a value into the channel which comes after we've reset the read_paused bool to
262 let (read_waker, read_receiver) = mpsc::channel(1);
263 stream.set_nonblocking(true).unwrap();
264 let tokio_stream = Arc::new(TcpStream::from_std(stream).unwrap());
266 (Arc::clone(&tokio_stream), write_receiver, read_receiver,
267 Arc::new(Mutex::new(Self {
268 writer: Some(tokio_stream), write_avail, read_waker, read_paused: false,
269 rl_requested_disconnect: false,
270 id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
275 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<SocketAddress> {
276 match stream.peer_addr() {
277 Ok(SocketAddr::V4(sockaddr)) => Some(SocketAddress::TcpIpV4 {
278 addr: sockaddr.ip().octets(),
279 port: sockaddr.port(),
281 Ok(SocketAddr::V6(sockaddr)) => Some(SocketAddress::TcpIpV6 {
282 addr: sockaddr.ip().octets(),
283 port: sockaddr.port(),
289 /// Process incoming messages and feed outgoing messages on the provided socket generated by
290 /// accepting an incoming connection.
292 /// The returned future will complete when the peer is disconnected and associated handling
293 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
294 /// not need to poll the provided future in order to make progress.
295 pub fn setup_inbound<PM: Deref + 'static + Send + Sync + Clone>(
297 stream: StdTcpStream,
298 ) -> impl std::future::Future<Output=()>
299 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
300 let remote_addr = get_addr_from_stream(&stream);
301 let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
303 let last_us = Arc::clone(&us);
305 let handle_opt = if peer_manager.as_ref().new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() {
306 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
308 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
314 if let Some(handle) = handle_opt {
315 if let Err(e) = handle.await {
316 assert!(e.is_cancelled());
318 // This is certainly not guaranteed to always be true - the read loop may exit
319 // while there are still pending write wakers that need to be woken up after the
320 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
321 // keep too many wakers around, this makes sense. The race should be rare (we do
322 // some work after shutdown()) and an error would be a major memory leak.
324 debug_assert!(Arc::try_unwrap(last_us).is_ok());
330 /// Process incoming messages and feed outgoing messages on the provided socket generated by
331 /// making an outbound connection which is expected to be accepted by a peer with the given
332 /// public key. The relevant processing is set to run free (via tokio::spawn).
334 /// The returned future will complete when the peer is disconnected and associated handling
335 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
336 /// not need to poll the provided future in order to make progress.
337 pub fn setup_outbound<PM: Deref + 'static + Send + Sync + Clone>(
339 their_node_id: PublicKey,
340 stream: StdTcpStream,
341 ) -> impl std::future::Future<Output=()>
342 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
343 let remote_addr = get_addr_from_stream(&stream);
344 let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
346 let last_us = Arc::clone(&us);
347 let handle_opt = if let Ok(initial_send) = peer_manager.as_ref().new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
348 Some(tokio::spawn(async move {
349 // We should essentially always have enough room in a TCP socket buffer to send the
350 // initial 10s of bytes. However, tokio running in single-threaded mode will always
351 // fail writes and wake us back up later to write. Thus, we handle a single
352 // std::task::Poll::Pending but still expect to write the full set of bytes at once
353 // and use a relatively tight timeout.
354 if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
356 match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
357 v if v == initial_send.len() => break Ok(()),
359 write_receiver.recv().await;
360 // In theory we could check for if we've been instructed to disconnect
361 // the peer here, but its OK to just skip it - we'll check for it in
362 // schedule_read prior to any relevant calls into RL.
365 eprintln!("Failed to write first full message to socket!");
366 peer_manager.as_ref().socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
372 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
376 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
382 if let Some(handle) = handle_opt {
383 if let Err(e) = handle.await {
384 assert!(e.is_cancelled());
386 // This is certainly not guaranteed to always be true - the read loop may exit
387 // while there are still pending write wakers that need to be woken up after the
388 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
389 // keep too many wakers around, this makes sense. The race should be rare (we do
390 // some work after shutdown()) and an error would be a major memory leak.
392 debug_assert!(Arc::try_unwrap(last_us).is_ok());
398 /// Process incoming messages and feed outgoing messages on a new connection made to the given
399 /// socket address which is expected to be accepted by a peer with the given public key (by
400 /// scheduling futures with tokio::spawn).
402 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
404 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
405 /// connection setup. That future then returns a future which will complete when the peer is
406 /// disconnected and associated handling futures are freed, though, because all processing in said
407 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
409 pub async fn connect_outbound<PM: Deref + 'static + Send + Sync + Clone>(
411 their_node_id: PublicKey,
413 ) -> Option<impl std::future::Future<Output=()>>
414 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
415 if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
416 Some(setup_outbound(peer_manager, their_node_id, stream))
420 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
421 task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
423 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
424 let new_waker = unsafe { Arc::from_raw(orig_ptr as *const mpsc::Sender<()>) };
425 let res = write_avail_to_waker(&new_waker);
426 // Don't decrement the refcount when dropping new_waker by turning it back `into_raw`.
427 let _ = Arc::into_raw(new_waker);
430 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
431 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
432 // sending thread may have already gone away due to a socket close, in which case there's nothing
433 // to wake up anyway.
434 fn wake_socket_waker(orig_ptr: *const ()) {
435 let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
436 let _ = sender.try_send(());
437 drop_socket_waker(orig_ptr);
439 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
440 let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
441 let sender = unsafe { &*sender_ptr };
442 let _ = sender.try_send(());
444 fn drop_socket_waker(orig_ptr: *const ()) {
445 let _orig_arc = unsafe { Arc::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
446 // _orig_arc is now dropped
448 fn write_avail_to_waker(sender: &Arc<mpsc::Sender<()>>) -> task::RawWaker {
449 let new_ptr = Arc::into_raw(Arc::clone(&sender));
450 task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
453 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
454 /// type in the template of PeerHandler.
455 pub struct SocketDescriptor {
456 conn: Arc<Mutex<Connection>>,
457 // We store a copy of the mpsc::Sender to wake the read task in an Arc here. While we can
458 // simply clone the sender and store a copy in each waker, that would require allocating for
459 // each waker. Instead, we can simply `Arc::clone`, creating a new reference and store the
460 // pointer in the waker.
461 write_avail_sender: Arc<mpsc::Sender<()>>,
464 impl SocketDescriptor {
465 fn new(conn: Arc<Mutex<Connection>>) -> Self {
466 let (id, write_avail_sender) = {
467 let us = conn.lock().unwrap();
468 (us.id, Arc::new(us.write_avail.clone()))
470 Self { conn, id, write_avail_sender }
473 impl peer_handler::SocketDescriptor for SocketDescriptor {
474 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
475 // To send data, we take a lock on our Connection to access the TcpStream, writing to it if
476 // there's room in the kernel buffer, or otherwise create a new Waker with a
477 // SocketDescriptor in it which can wake up the write_avail Sender, waking up the
478 // processing future which will call write_buffer_space_avail and we'll end up back here.
479 let mut us = self.conn.lock().unwrap();
480 if us.writer.is_none() {
481 // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
485 if resume_read && us.read_paused {
486 // The schedule_read future may go to lock up but end up getting woken up by there
487 // being more room in the write buffer, dropping the other end of this Sender
488 // before we get here, so we ignore any failures to wake it up.
489 us.read_paused = false;
490 let _ = us.read_waker.try_send(());
492 if data.is_empty() { return 0; }
493 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&self.write_avail_sender)) };
494 let mut ctx = task::Context::from_waker(&waker);
495 let mut written_len = 0;
497 match us.writer.as_ref().unwrap().poll_write_ready(&mut ctx) {
498 task::Poll::Ready(Ok(())) => {
499 match us.writer.as_ref().unwrap().try_write(&data[written_len..]) {
501 debug_assert_ne!(res, 0);
503 if written_len == data.len() { return written_len; }
505 Err(_) => return written_len,
508 task::Poll::Ready(Err(_)) => return written_len,
509 task::Poll::Pending => {
510 // We're queued up for a write event now, but we need to make sure we also
511 // pause read given we're now waiting on the remote end to ACK (and in
512 // accordance with the send_data() docs).
513 us.read_paused = true;
514 // Further, to avoid any current pending read causing a `read_event` call, wake
515 // up the read_waker and restart its loop.
516 let _ = us.read_waker.try_send(());
523 fn disconnect_socket(&mut self) {
524 let mut us = self.conn.lock().unwrap();
525 us.rl_requested_disconnect = true;
526 // Wake up the sending thread, assuming it is still alive
527 let _ = us.write_avail.try_send(());
530 impl Clone for SocketDescriptor {
531 fn clone(&self) -> Self {
533 conn: Arc::clone(&self.conn),
535 write_avail_sender: Arc::clone(&self.write_avail_sender),
539 impl Eq for SocketDescriptor {}
540 impl PartialEq for SocketDescriptor {
541 fn eq(&self, o: &Self) -> bool {
545 impl Hash for SocketDescriptor {
546 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
553 use lightning::ln::features::*;
554 use lightning::ln::msgs::*;
555 use lightning::ln::peer_handler::{MessageHandler, PeerManager};
556 use lightning::ln::features::NodeFeatures;
557 use lightning::routing::gossip::NodeId;
558 use lightning::events::*;
559 use lightning::util::test_utils::TestNodeSigner;
560 use bitcoin::Network;
561 use bitcoin::blockdata::constants::ChainHash;
562 use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
564 use tokio::sync::mpsc;
567 use std::sync::atomic::{AtomicBool, Ordering};
568 use std::sync::{Arc, Mutex};
569 use std::time::Duration;
571 pub struct TestLogger();
572 impl lightning::util::logger::Logger for TestLogger {
573 fn log(&self, record: lightning::util::logger::Record) {
574 println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
579 expected_pubkey: PublicKey,
580 pubkey_connected: mpsc::Sender<()>,
581 pubkey_disconnected: mpsc::Sender<()>,
582 disconnected_flag: AtomicBool,
583 msg_events: Mutex<Vec<MessageSendEvent>>,
585 impl RoutingMessageHandler for MsgHandler {
586 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
587 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
588 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
589 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
590 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
591 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
592 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
593 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
594 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
595 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
596 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
597 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
598 fn processing_queue_high(&self) -> bool { false }
600 impl ChannelMessageHandler for MsgHandler {
601 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
602 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
603 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
604 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
605 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
606 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
607 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
608 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
609 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
610 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
611 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
612 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
613 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
614 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
615 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
616 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
617 fn handle_open_channel_v2(&self, _their_node_id: &PublicKey, _msg: &OpenChannelV2) {}
618 fn handle_accept_channel_v2(&self, _their_node_id: &PublicKey, _msg: &AcceptChannelV2) {}
619 fn handle_stfu(&self, _their_node_id: &PublicKey, _msg: &Stfu) {}
620 fn handle_splice(&self, _their_node_id: &PublicKey, _msg: &Splice) {}
621 fn handle_splice_ack(&self, _their_node_id: &PublicKey, _msg: &SpliceAck) {}
622 fn handle_splice_locked(&self, _their_node_id: &PublicKey, _msg: &SpliceLocked) {}
623 fn handle_tx_add_input(&self, _their_node_id: &PublicKey, _msg: &TxAddInput) {}
624 fn handle_tx_add_output(&self, _their_node_id: &PublicKey, _msg: &TxAddOutput) {}
625 fn handle_tx_remove_input(&self, _their_node_id: &PublicKey, _msg: &TxRemoveInput) {}
626 fn handle_tx_remove_output(&self, _their_node_id: &PublicKey, _msg: &TxRemoveOutput) {}
627 fn handle_tx_complete(&self, _their_node_id: &PublicKey, _msg: &TxComplete) {}
628 fn handle_tx_signatures(&self, _their_node_id: &PublicKey, _msg: &TxSignatures) {}
629 fn handle_tx_init_rbf(&self, _their_node_id: &PublicKey, _msg: &TxInitRbf) {}
630 fn handle_tx_ack_rbf(&self, _their_node_id: &PublicKey, _msg: &TxAckRbf) {}
631 fn handle_tx_abort(&self, _their_node_id: &PublicKey, _msg: &TxAbort) {}
632 fn peer_disconnected(&self, their_node_id: &PublicKey) {
633 if *their_node_id == self.expected_pubkey {
634 self.disconnected_flag.store(true, Ordering::SeqCst);
635 self.pubkey_disconnected.clone().try_send(()).unwrap();
638 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
639 if *their_node_id == self.expected_pubkey {
640 self.pubkey_connected.clone().try_send(()).unwrap();
644 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
645 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
646 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
647 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
648 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
649 Some(vec![ChainHash::using_genesis_block(Network::Testnet)])
652 impl MessageSendEventsProvider for MsgHandler {
653 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
654 let mut ret = Vec::new();
655 mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
660 fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
661 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
662 (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
663 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
664 (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
665 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
666 (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
667 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
668 (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
669 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
670 (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
671 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
672 (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
673 } else { panic!("Failed to bind to v4 localhost on common ports"); }
676 async fn do_basic_connection_test() {
677 let secp_ctx = Secp256k1::new();
678 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
679 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
680 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
681 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
683 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
684 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
685 let a_handler = Arc::new(MsgHandler {
686 expected_pubkey: b_pub,
687 pubkey_connected: a_connected_sender,
688 pubkey_disconnected: a_disconnected_sender,
689 disconnected_flag: AtomicBool::new(false),
690 msg_events: Mutex::new(Vec::new()),
692 let a_manager = Arc::new(PeerManager::new(MessageHandler {
693 chan_handler: Arc::clone(&a_handler),
694 route_handler: Arc::clone(&a_handler),
695 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
696 custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
697 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
699 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
700 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
701 let b_handler = Arc::new(MsgHandler {
702 expected_pubkey: a_pub,
703 pubkey_connected: b_connected_sender,
704 pubkey_disconnected: b_disconnected_sender,
705 disconnected_flag: AtomicBool::new(false),
706 msg_events: Mutex::new(Vec::new()),
708 let b_manager = Arc::new(PeerManager::new(MessageHandler {
709 chan_handler: Arc::clone(&b_handler),
710 route_handler: Arc::clone(&b_handler),
711 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
712 custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
713 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(b_key))));
715 // We bind on localhost, hoping the environment is properly configured with a local
716 // address. This may not always be the case in containers and the like, so if this test is
717 // failing for you check that you have a loopback interface and it is configured with
719 let (conn_a, conn_b) = make_tcp_connection();
721 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
722 let fut_b = super::setup_inbound(b_manager, conn_b);
724 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
725 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
727 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
728 node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
730 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
731 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
733 a_manager.process_events();
734 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
735 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
736 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
737 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
743 #[tokio::test(flavor = "multi_thread")]
744 async fn basic_threaded_connection_test() {
745 do_basic_connection_test().await;
749 async fn basic_unthreaded_connection_test() {
750 do_basic_connection_test().await;
753 async fn race_disconnect_accept() {
754 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
755 // This attempts to find other similar races by opening connections and shutting them down
756 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
757 let secp_ctx = Secp256k1::new();
758 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
759 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
760 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
762 let a_manager = Arc::new(PeerManager::new(MessageHandler {
763 chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
764 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
765 route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
766 custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
767 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
769 // Make two connections, one for an inbound and one for an outbound connection
771 let (conn_a, _) = make_tcp_connection();
775 let (_, conn_b) = make_tcp_connection();
779 // Call connection setup inside new tokio tasks.
780 let manager_reference = Arc::clone(&a_manager);
781 tokio::spawn(async move {
782 super::setup_inbound(manager_reference, conn_a).await
784 tokio::spawn(async move {
785 super::setup_outbound(a_manager, b_pub, conn_b).await
789 #[tokio::test(flavor = "multi_thread")]
790 async fn threaded_race_disconnect_accept() {
791 race_disconnect_accept().await;
795 async fn unthreaded_race_disconnect_accept() {
796 race_disconnect_accept().await;