1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native [`TcpStream`]s.
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled".
16 //! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference,
17 //! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s
18 //! `SocketDescriptor` implementation.
20 //! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls;
21 //! see their individual docs for details.
23 //! [`PeerManager`]: lightning::ln::peer_handler::PeerManager
25 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
26 #![deny(broken_intra_doc_links)]
27 #![deny(private_intra_doc_links)]
29 #![deny(missing_docs)]
30 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
32 use bitcoin::secp256k1::PublicKey;
34 use tokio::net::TcpStream;
35 use tokio::{io, time};
36 use tokio::sync::mpsc;
37 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
39 use lightning::ln::peer_handler;
40 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
41 use lightning::ln::peer_handler::APeerManager;
42 use lightning::ln::msgs::NetAddress;
46 use std::net::SocketAddr;
47 use std::net::TcpStream as StdTcpStream;
48 use std::sync::{Arc, Mutex};
49 use std::sync::atomic::{AtomicU64, Ordering};
50 use std::time::Duration;
53 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
55 /// Connection contains all our internal state for a connection - we hold a reference to the
56 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
57 /// read future (which is returned by schedule_read).
59 writer: Option<io::WriteHalf<TcpStream>>,
60 // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
61 // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
62 // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
63 // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
64 // the schedule_read stack.
66 // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
67 // runtime with functions templated by the Arc<PeerManager> type, calling
68 // write_buffer_space_avail directly from tokio's write wake, however doing so would require
69 // more unsafe voodo than I really feel like writing.
70 write_avail: mpsc::Sender<()>,
71 // When we are told by rust-lightning to pause read (because we have writes backing up), we do
72 // so by setting read_paused. At that point, the read task will stop reading bytes from the
73 // socket. To wake it up (without otherwise changing its state, we can push a value into this
75 read_waker: mpsc::Sender<()>,
77 rl_requested_disconnect: bool,
81 async fn poll_event_process<PM: Deref + 'static + Send + Sync>(
83 mut event_receiver: mpsc::Receiver<()>,
84 ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
86 if event_receiver.recv().await.is_none() {
89 peer_manager.as_ref().process_events();
93 async fn schedule_read<PM: Deref + 'static + Send + Sync + Clone>(
96 mut reader: io::ReadHalf<TcpStream>,
97 mut read_wake_receiver: mpsc::Receiver<()>,
98 mut write_avail_receiver: mpsc::Receiver<()>,
99 ) where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
100 // Create a waker to wake up poll_event_process, above
101 let (event_waker, event_receiver) = mpsc::channel(1);
102 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
104 // 4KiB is nice and big without handling too many messages all at once, giving other peers
105 // a chance to do some work.
106 let mut buf = [0; 4096];
108 let mut our_descriptor = SocketDescriptor::new(us.clone());
109 // An enum describing why we did/are disconnecting:
111 // Rust-Lightning told us to disconnect, either by returning an Err or by calling
112 // SocketDescriptor::disconnect_socket.
113 // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
114 // already knows we're disconnected.
116 // The connection was disconnected for some other reason, ie because the socket was
118 // In this case, we do need to call peer_manager.socket_disconnected() to inform
119 // Rust-Lightning that the socket is gone.
122 let disconnect_type = loop {
124 let us_lock = us.lock().unwrap();
125 if us_lock.rl_requested_disconnect {
126 break Disconnect::CloseConnection;
131 v = write_avail_receiver.recv() => {
132 assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
133 if peer_manager.as_ref().write_buffer_space_avail(&mut our_descriptor).is_err() {
134 break Disconnect::CloseConnection;
137 _ = read_wake_receiver.recv() => {},
138 read = reader.read(&mut buf), if !read_paused => match read {
139 Ok(0) => break Disconnect::PeerDisconnected,
141 let read_res = peer_manager.as_ref().read_event(&mut our_descriptor, &buf[0..len]);
142 let mut us_lock = us.lock().unwrap();
146 us_lock.read_paused = true;
149 Err(_) => break Disconnect::CloseConnection,
152 Err(_) => break Disconnect::PeerDisconnected,
155 let _ = event_waker.try_send(());
157 // At this point we've processed a message or two, and reset the ping timer for this
158 // peer, at least in the "are we still receiving messages" context, if we don't give up
159 // our timeslice to another task we may just spin on this peer, starving other peers
160 // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
162 let _ = tokio::task::yield_now().await;
164 let writer_option = us.lock().unwrap().writer.take();
165 if let Some(mut writer) = writer_option {
166 // If the socket is already closed, shutdown() will fail, so just ignore it.
167 let _ = writer.shutdown().await;
169 if let Disconnect::PeerDisconnected = disconnect_type {
170 peer_manager.as_ref().socket_disconnected(&our_descriptor);
171 peer_manager.as_ref().process_events();
175 fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
176 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
177 // PeerManager, we will eventually get notified that there is room in the socket to write
178 // new bytes, which will generate an event. That event will be popped off the queue before
179 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
180 // the write_buffer_space_avail() call, send_data() returns a non-full write.
181 let (write_avail, write_receiver) = mpsc::channel(1);
182 // Similarly here - our only goal is to make sure the reader wakes up at some point after
183 // we shove a value into the channel which comes after we've reset the read_paused bool to
185 let (read_waker, read_receiver) = mpsc::channel(1);
186 stream.set_nonblocking(true).unwrap();
187 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
189 (reader, write_receiver, read_receiver,
190 Arc::new(Mutex::new(Self {
191 writer: Some(writer), write_avail, read_waker, read_paused: false,
192 rl_requested_disconnect: false,
193 id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
198 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
199 match stream.peer_addr() {
200 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
201 addr: sockaddr.ip().octets(),
202 port: sockaddr.port(),
204 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
205 addr: sockaddr.ip().octets(),
206 port: sockaddr.port(),
212 /// Process incoming messages and feed outgoing messages on the provided socket generated by
213 /// accepting an incoming connection.
215 /// The returned future will complete when the peer is disconnected and associated handling
216 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
217 /// not need to poll the provided future in order to make progress.
218 pub fn setup_inbound<PM: Deref + 'static + Send + Sync + Clone>(
220 stream: StdTcpStream,
221 ) -> impl std::future::Future<Output=()>
222 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
223 let remote_addr = get_addr_from_stream(&stream);
224 let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
226 let last_us = Arc::clone(&us);
228 let handle_opt = if peer_manager.as_ref().new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() {
229 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
231 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
237 if let Some(handle) = handle_opt {
238 if let Err(e) = handle.await {
239 assert!(e.is_cancelled());
241 // This is certainly not guaranteed to always be true - the read loop may exit
242 // while there are still pending write wakers that need to be woken up after the
243 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
244 // keep too many wakers around, this makes sense. The race should be rare (we do
245 // some work after shutdown()) and an error would be a major memory leak.
247 debug_assert!(Arc::try_unwrap(last_us).is_ok());
253 /// Process incoming messages and feed outgoing messages on the provided socket generated by
254 /// making an outbound connection which is expected to be accepted by a peer with the given
255 /// public key. The relevant processing is set to run free (via tokio::spawn).
257 /// The returned future will complete when the peer is disconnected and associated handling
258 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
259 /// not need to poll the provided future in order to make progress.
260 pub fn setup_outbound<PM: Deref + 'static + Send + Sync + Clone>(
262 their_node_id: PublicKey,
263 stream: StdTcpStream,
264 ) -> impl std::future::Future<Output=()>
265 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
266 let remote_addr = get_addr_from_stream(&stream);
267 let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
269 let last_us = Arc::clone(&us);
270 let handle_opt = if let Ok(initial_send) = peer_manager.as_ref().new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
271 Some(tokio::spawn(async move {
272 // We should essentially always have enough room in a TCP socket buffer to send the
273 // initial 10s of bytes. However, tokio running in single-threaded mode will always
274 // fail writes and wake us back up later to write. Thus, we handle a single
275 // std::task::Poll::Pending but still expect to write the full set of bytes at once
276 // and use a relatively tight timeout.
277 if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
279 match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
280 v if v == initial_send.len() => break Ok(()),
282 write_receiver.recv().await;
283 // In theory we could check for if we've been instructed to disconnect
284 // the peer here, but its OK to just skip it - we'll check for it in
285 // schedule_read prior to any relevant calls into RL.
288 eprintln!("Failed to write first full message to socket!");
289 peer_manager.as_ref().socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
295 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
299 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
305 if let Some(handle) = handle_opt {
306 if let Err(e) = handle.await {
307 assert!(e.is_cancelled());
309 // This is certainly not guaranteed to always be true - the read loop may exit
310 // while there are still pending write wakers that need to be woken up after the
311 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
312 // keep too many wakers around, this makes sense. The race should be rare (we do
313 // some work after shutdown()) and an error would be a major memory leak.
315 debug_assert!(Arc::try_unwrap(last_us).is_ok());
321 /// Process incoming messages and feed outgoing messages on a new connection made to the given
322 /// socket address which is expected to be accepted by a peer with the given public key (by
323 /// scheduling futures with tokio::spawn).
325 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
327 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
328 /// connection setup. That future then returns a future which will complete when the peer is
329 /// disconnected and associated handling futures are freed, though, because all processing in said
330 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
332 pub async fn connect_outbound<PM: Deref + 'static + Send + Sync + Clone>(
334 their_node_id: PublicKey,
336 ) -> Option<impl std::future::Future<Output=()>>
337 where PM::Target: APeerManager<Descriptor = SocketDescriptor> {
338 if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
339 Some(setup_outbound(peer_manager, their_node_id, stream))
343 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
344 task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
346 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
347 write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
349 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
350 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
351 // sending thread may have already gone away due to a socket close, in which case there's nothing
352 // to wake up anyway.
353 fn wake_socket_waker(orig_ptr: *const ()) {
354 let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
355 let _ = sender.try_send(());
356 drop_socket_waker(orig_ptr);
358 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
359 let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
360 let sender = unsafe { (*sender_ptr).clone() };
361 let _ = sender.try_send(());
363 fn drop_socket_waker(orig_ptr: *const ()) {
364 let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
365 // _orig_box is now dropped
367 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
368 let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
369 let new_ptr = new_box as *const mpsc::Sender<()>;
370 task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
373 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
374 /// type in the template of PeerHandler.
375 pub struct SocketDescriptor {
376 conn: Arc<Mutex<Connection>>,
379 impl SocketDescriptor {
380 fn new(conn: Arc<Mutex<Connection>>) -> Self {
381 let id = conn.lock().unwrap().id;
385 impl peer_handler::SocketDescriptor for SocketDescriptor {
386 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
387 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
388 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
389 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
390 // processing future which will call write_buffer_space_avail and we'll end up back here.
391 let mut us = self.conn.lock().unwrap();
392 if us.writer.is_none() {
393 // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
397 if resume_read && us.read_paused {
398 // The schedule_read future may go to lock up but end up getting woken up by there
399 // being more room in the write buffer, dropping the other end of this Sender
400 // before we get here, so we ignore any failures to wake it up.
401 us.read_paused = false;
402 let _ = us.read_waker.try_send(());
404 if data.is_empty() { return 0; }
405 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
406 let mut ctx = task::Context::from_waker(&waker);
407 let mut written_len = 0;
409 match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
410 task::Poll::Ready(Ok(res)) => {
411 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
412 // know how to handle it if it does (cause it should be a Poll::Pending
416 if written_len == data.len() { return written_len; }
418 task::Poll::Ready(Err(e)) => {
419 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
420 // know how to handle it if it does (cause it should be a Poll::Pending
422 assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
423 // Probably we've already been closed, just return what we have and let the
424 // read thread handle closing logic.
427 task::Poll::Pending => {
428 // We're queued up for a write event now, but we need to make sure we also
429 // pause read given we're now waiting on the remote end to ACK (and in
430 // accordance with the send_data() docs).
431 us.read_paused = true;
432 // Further, to avoid any current pending read causing a `read_event` call, wake
433 // up the read_waker and restart its loop.
434 let _ = us.read_waker.try_send(());
441 fn disconnect_socket(&mut self) {
442 let mut us = self.conn.lock().unwrap();
443 us.rl_requested_disconnect = true;
444 // Wake up the sending thread, assuming it is still alive
445 let _ = us.write_avail.try_send(());
448 impl Clone for SocketDescriptor {
449 fn clone(&self) -> Self {
451 conn: Arc::clone(&self.conn),
456 impl Eq for SocketDescriptor {}
457 impl PartialEq for SocketDescriptor {
458 fn eq(&self, o: &Self) -> bool {
462 impl Hash for SocketDescriptor {
463 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
470 use lightning::ln::features::*;
471 use lightning::ln::msgs::*;
472 use lightning::ln::peer_handler::{MessageHandler, PeerManager};
473 use lightning::ln::features::NodeFeatures;
474 use lightning::routing::gossip::NodeId;
475 use lightning::events::*;
476 use lightning::util::test_utils::TestNodeSigner;
477 use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
479 use tokio::sync::mpsc;
482 use std::sync::atomic::{AtomicBool, Ordering};
483 use std::sync::{Arc, Mutex};
484 use std::time::Duration;
486 pub struct TestLogger();
487 impl lightning::util::logger::Logger for TestLogger {
488 fn log(&self, record: &lightning::util::logger::Record) {
489 println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
494 expected_pubkey: PublicKey,
495 pubkey_connected: mpsc::Sender<()>,
496 pubkey_disconnected: mpsc::Sender<()>,
497 disconnected_flag: AtomicBool,
498 msg_events: Mutex<Vec<MessageSendEvent>>,
500 impl RoutingMessageHandler for MsgHandler {
501 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
502 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
503 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
504 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
505 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
506 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
507 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
508 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
509 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
510 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
511 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
512 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
513 fn processing_queue_high(&self) -> bool { false }
515 impl ChannelMessageHandler for MsgHandler {
516 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
517 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
518 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
519 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
520 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
521 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
522 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
523 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
524 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
525 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
526 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
527 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
528 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
529 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
530 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
531 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
532 fn handle_open_channel_v2(&self, _their_node_id: &PublicKey, _msg: &OpenChannelV2) {}
533 fn handle_accept_channel_v2(&self, _their_node_id: &PublicKey, _msg: &AcceptChannelV2) {}
534 fn handle_tx_add_input(&self, _their_node_id: &PublicKey, _msg: &TxAddInput) {}
535 fn handle_tx_add_output(&self, _their_node_id: &PublicKey, _msg: &TxAddOutput) {}
536 fn handle_tx_remove_input(&self, _their_node_id: &PublicKey, _msg: &TxRemoveInput) {}
537 fn handle_tx_remove_output(&self, _their_node_id: &PublicKey, _msg: &TxRemoveOutput) {}
538 fn handle_tx_complete(&self, _their_node_id: &PublicKey, _msg: &TxComplete) {}
539 fn handle_tx_signatures(&self, _their_node_id: &PublicKey, _msg: &TxSignatures) {}
540 fn handle_tx_init_rbf(&self, _their_node_id: &PublicKey, _msg: &TxInitRbf) {}
541 fn handle_tx_ack_rbf(&self, _their_node_id: &PublicKey, _msg: &TxAckRbf) {}
542 fn handle_tx_abort(&self, _their_node_id: &PublicKey, _msg: &TxAbort) {}
543 fn peer_disconnected(&self, their_node_id: &PublicKey) {
544 if *their_node_id == self.expected_pubkey {
545 self.disconnected_flag.store(true, Ordering::SeqCst);
546 self.pubkey_disconnected.clone().try_send(()).unwrap();
549 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
550 if *their_node_id == self.expected_pubkey {
551 self.pubkey_connected.clone().try_send(()).unwrap();
555 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
556 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
557 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
558 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
560 impl MessageSendEventsProvider for MsgHandler {
561 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
562 let mut ret = Vec::new();
563 mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
568 fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
569 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
570 (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
571 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
572 (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
573 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
574 (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
575 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
576 (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
577 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
578 (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
579 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
580 (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
581 } else { panic!("Failed to bind to v4 localhost on common ports"); }
584 async fn do_basic_connection_test() {
585 let secp_ctx = Secp256k1::new();
586 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
587 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
588 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
589 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
591 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
592 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
593 let a_handler = Arc::new(MsgHandler {
594 expected_pubkey: b_pub,
595 pubkey_connected: a_connected_sender,
596 pubkey_disconnected: a_disconnected_sender,
597 disconnected_flag: AtomicBool::new(false),
598 msg_events: Mutex::new(Vec::new()),
600 let a_manager = Arc::new(PeerManager::new(MessageHandler {
601 chan_handler: Arc::clone(&a_handler),
602 route_handler: Arc::clone(&a_handler),
603 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
604 custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
605 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
607 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
608 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
609 let b_handler = Arc::new(MsgHandler {
610 expected_pubkey: a_pub,
611 pubkey_connected: b_connected_sender,
612 pubkey_disconnected: b_disconnected_sender,
613 disconnected_flag: AtomicBool::new(false),
614 msg_events: Mutex::new(Vec::new()),
616 let b_manager = Arc::new(PeerManager::new(MessageHandler {
617 chan_handler: Arc::clone(&b_handler),
618 route_handler: Arc::clone(&b_handler),
619 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
620 custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
621 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(b_key))));
623 // We bind on localhost, hoping the environment is properly configured with a local
624 // address. This may not always be the case in containers and the like, so if this test is
625 // failing for you check that you have a loopback interface and it is configured with
627 let (conn_a, conn_b) = make_tcp_connection();
629 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
630 let fut_b = super::setup_inbound(b_manager, conn_b);
632 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
633 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
635 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
636 node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
638 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
639 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
641 a_manager.process_events();
642 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
643 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
644 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
645 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
651 #[tokio::test(flavor = "multi_thread")]
652 async fn basic_threaded_connection_test() {
653 do_basic_connection_test().await;
657 async fn basic_unthreaded_connection_test() {
658 do_basic_connection_test().await;
661 async fn race_disconnect_accept() {
662 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
663 // This attempts to find other similar races by opening connections and shutting them down
664 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
665 let secp_ctx = Secp256k1::new();
666 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
667 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
668 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
670 let a_manager = Arc::new(PeerManager::new(MessageHandler {
671 chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
672 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
673 route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
674 custom_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
675 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(TestNodeSigner::new(a_key))));
677 // Make two connections, one for an inbound and one for an outbound connection
679 let (conn_a, _) = make_tcp_connection();
683 let (_, conn_b) = make_tcp_connection();
687 // Call connection setup inside new tokio tasks.
688 let manager_reference = Arc::clone(&a_manager);
689 tokio::spawn(async move {
690 super::setup_inbound(manager_reference, conn_a).await
692 tokio::spawn(async move {
693 super::setup_outbound(a_manager, b_pub, conn_b).await
697 #[tokio::test(flavor = "multi_thread")]
698 async fn threaded_race_disconnect_accept() {
699 race_disconnect_accept().await;
703 async fn unthreaded_race_disconnect_accept() {
704 race_disconnect_accept().await;