36384380fb14a458b31e132446ae374ffaf0b51d
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
21 //! their individual docs for more. All three take a
22 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
23 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
24 //! The call site should, thus, look something like this:
25 //! ```
26 //! use tokio::sync::mpsc;
27 //! use tokio::net::TcpStream;
28 //! use bitcoin::secp256k1::key::PublicKey;
29 //! use lightning::util::events::EventsProvider;
30 //! use std::net::SocketAddr;
31 //! use std::sync::Arc;
32 //!
33 //! // Define concrete types for our high-level objects:
34 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
35 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
36 //! type Logger = dyn lightning::util::logger::Logger;
37 //! type ChainAccess = dyn lightning::chain::Access;
38 //! type ChainFilter = dyn lightning::chain::Filter;
39 //! type DataPersister = dyn lightning::chain::channelmonitor::Persist<lightning::chain::keysinterface::InMemoryChannelKeys>;
40 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemoryChannelKeys, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
41 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>;
42 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>;
43 //!
44 //! // Connect to node with pubkey their_node_id at addr:
45 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
46 //!     let (sender, mut receiver) = mpsc::channel(2);
47 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
48 //!     loop {
49 //!         receiver.recv().await;
50 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
51 //!             // Handle the event!
52 //!         }
53 //!         for _event in chain_monitor.get_and_clear_pending_events().drain(..) {
54 //!             // Handle the event!
55 //!         }
56 //!     }
57 //! }
58 //!
59 //! // Begin reading from a newly accepted socket and talk to the peer:
60 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
61 //!     let (sender, mut receiver) = mpsc::channel(2);
62 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
63 //!     loop {
64 //!         receiver.recv().await;
65 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
66 //!             // Handle the event!
67 //!         }
68 //!         for _event in chain_monitor.get_and_clear_pending_events().drain(..) {
69 //!             // Handle the event!
70 //!         }
71 //!     }
72 //! }
73 //! ```
74
75 use bitcoin::secp256k1::key::PublicKey;
76
77 use tokio::net::TcpStream;
78 use tokio::{io, time};
79 use tokio::sync::mpsc;
80 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
81
82 use lightning::ln::peer_handler;
83 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
84 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
85 use lightning::util::logger::Logger;
86
87 use std::{task, thread};
88 use std::net::SocketAddr;
89 use std::sync::{Arc, Mutex, MutexGuard};
90 use std::sync::atomic::{AtomicU64, Ordering};
91 use std::time::Duration;
92 use std::hash::Hash;
93
94 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
95
96 /// Connection contains all our internal state for a connection - we hold a reference to the
97 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
98 /// read future (which is returned by schedule_read).
99 struct Connection {
100         writer: Option<io::WriteHalf<TcpStream>>,
101         event_notify: mpsc::Sender<()>,
102         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
103         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
104         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
105         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
106         // the schedule_read stack.
107         //
108         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
109         // runtime with functions templated by the Arc<PeerManager> type, calling
110         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
111         // more unsafe voodo than I really feel like writing.
112         write_avail: mpsc::Sender<()>,
113         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
114         // so by setting read_paused. At that point, the read task will stop reading bytes from the
115         // socket. To wake it up (without otherwise changing its state, we can push a value into this
116         // Sender.
117         read_waker: mpsc::Sender<()>,
118         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
119         // are sure we won't call any more read/write PeerManager functions with the same connection.
120         // This is set to true if we're in such a condition (with disconnect checked before with the
121         // top-level mutex held) and false when we can return.
122         block_disconnect_socket: bool,
123         read_paused: bool,
124         rl_requested_disconnect: bool,
125         id: u64,
126 }
127 impl Connection {
128         fn event_trigger(us: &mut MutexGuard<Self>) {
129                 match us.event_notify.try_send(()) {
130                         Ok(_) => {},
131                         Err(mpsc::error::TrySendError::Full(_)) => {
132                                 // Ignore full errors as we just need the user to poll after this point, so if they
133                                 // haven't received the last send yet, it doesn't matter.
134                         },
135                         _ => panic!()
136                 }
137         }
138         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
139                         CMH: ChannelMessageHandler + 'static,
140                         RMH: RoutingMessageHandler + 'static,
141                         L: Logger + 'static + ?Sized {
142                 let peer_manager_ref = peer_manager.clone();
143                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
144                 let mut buf = [0; 8192];
145
146                 let mut our_descriptor = SocketDescriptor::new(us.clone());
147                 // An enum describing why we did/are disconnecting:
148                 enum Disconnect {
149                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
150                         // SocketDescriptor::disconnect_socket.
151                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
152                         // already knows we're disconnected.
153                         CloseConnection,
154                         // The connection was disconnected for some other reason, ie because the socket was
155                         // closed.
156                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
157                         // Rust-Lightning that the socket is gone.
158                         PeerDisconnected
159                 };
160                 let disconnect_type = loop {
161                         macro_rules! shutdown_socket {
162                                 ($err: expr, $need_disconnect: expr) => { {
163                                         println!("Disconnecting peer due to {}!", $err);
164                                         break $need_disconnect;
165                                 } }
166                         }
167
168                         macro_rules! prepare_read_write_call {
169                                 () => { {
170                                         let mut us_lock = us.lock().unwrap();
171                                         if us_lock.rl_requested_disconnect {
172                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
173                                         }
174                                         us_lock.block_disconnect_socket = true;
175                                 } }
176                         }
177
178                         let read_paused = us.lock().unwrap().read_paused;
179                         tokio::select! {
180                                 v = write_avail_receiver.recv() => {
181                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
182                                         prepare_read_write_call!();
183                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
184                                                 shutdown_socket!(e, Disconnect::CloseConnection);
185                                         }
186                                         us.lock().unwrap().block_disconnect_socket = false;
187                                 },
188                                 _ = read_wake_receiver.recv() => {},
189                                 read = reader.read(&mut buf), if !read_paused => match read {
190                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
191                                         Ok(len) => {
192                                                 prepare_read_write_call!();
193                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
194                                                 let mut us_lock = us.lock().unwrap();
195                                                 match read_res {
196                                                         Ok(pause_read) => {
197                                                                 if pause_read {
198                                                                         us_lock.read_paused = true;
199                                                                 }
200                                                                 Self::event_trigger(&mut us_lock);
201                                                         },
202                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
203                                                 }
204                                                 us_lock.block_disconnect_socket = false;
205                                         },
206                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
207                                 },
208                         }
209                 };
210                 let writer_option = us.lock().unwrap().writer.take();
211                 if let Some(mut writer) = writer_option {
212                         // If the socket is already closed, shutdown() will fail, so just ignore it.
213                         let _ = writer.shutdown().await;
214                 }
215                 if let Disconnect::PeerDisconnected = disconnect_type {
216                         peer_manager_ref.socket_disconnected(&our_descriptor);
217                         Self::event_trigger(&mut us.lock().unwrap());
218                 }
219         }
220
221         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
222                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
223                 // PeerManager, we will eventually get notified that there is room in the socket to write
224                 // new bytes, which will generate an event. That event will be popped off the queue before
225                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
226                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
227                 let (write_avail, write_receiver) = mpsc::channel(1);
228                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
229                 // we shove a value into the channel which comes after we've reset the read_paused bool to
230                 // false.
231                 let (read_waker, read_receiver) = mpsc::channel(1);
232                 let (reader, writer) = io::split(stream);
233
234                 (reader, write_receiver, read_receiver,
235                 Arc::new(Mutex::new(Self {
236                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
237                         block_disconnect_socket: false, rl_requested_disconnect: false,
238                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
239                 })))
240         }
241 }
242
243 /// Process incoming messages and feed outgoing messages on the provided socket generated by
244 /// accepting an incoming connection.
245 ///
246 /// The returned future will complete when the peer is disconnected and associated handling
247 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
248 /// not need to poll the provided future in order to make progress.
249 ///
250 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
251 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> where
252                 CMH: ChannelMessageHandler + 'static,
253                 RMH: RoutingMessageHandler + 'static,
254                 L: Logger + 'static + ?Sized {
255         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
256         #[cfg(debug_assertions)]
257         let last_us = Arc::clone(&us);
258
259         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
260                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
261         } else {
262                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
263                 // requirements.
264                 None
265         };
266
267         async move {
268                 if let Some(handle) = handle_opt {
269                         if let Err(e) = handle.await {
270                                 assert!(e.is_cancelled());
271                         } else {
272                                 // This is certainly not guaranteed to always be true - the read loop may exit
273                                 // while there are still pending write wakers that need to be woken up after the
274                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
275                                 // keep too many wakers around, this makes sense. The race should be rare (we do
276                                 // some work after shutdown()) and an error would be a major memory leak.
277                                 #[cfg(debug_assertions)]
278                                 assert!(Arc::try_unwrap(last_us).is_ok());
279                         }
280                 }
281         }
282 }
283
284 /// Process incoming messages and feed outgoing messages on the provided socket generated by
285 /// making an outbound connection which is expected to be accepted by a peer with the given
286 /// public key. The relevant processing is set to run free (via tokio::spawn).
287 ///
288 /// The returned future will complete when the peer is disconnected and associated handling
289 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
290 /// not need to poll the provided future in order to make progress.
291 ///
292 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
293 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> where
294                 CMH: ChannelMessageHandler + 'static,
295                 RMH: RoutingMessageHandler + 'static,
296                 L: Logger + 'static + ?Sized {
297         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
298         #[cfg(debug_assertions)]
299         let last_us = Arc::clone(&us);
300
301         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
302                 Some(tokio::spawn(async move {
303                         // We should essentially always have enough room in a TCP socket buffer to send the
304                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
305                         // fail writes and wake us back up later to write. Thus, we handle a single
306                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
307                         // and use a relatively tight timeout.
308                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
309                                 loop {
310                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
311                                                 v if v == initial_send.len() => break Ok(()),
312                                                 0 => {
313                                                         write_receiver.recv().await;
314                                                         // In theory we could check for if we've been instructed to disconnect
315                                                         // the peer here, but its OK to just skip it - we'll check for it in
316                                                         // schedule_read prior to any relevant calls into RL.
317                                                 },
318                                                 _ => {
319                                                         eprintln!("Failed to write first full message to socket!");
320                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
321                                                         break Err(());
322                                                 }
323                                         }
324                                 }
325                         }).await {
326                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
327                         }
328                 }))
329         } else {
330                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
331                 // requirements.
332                 None
333         };
334
335         async move {
336                 if let Some(handle) = handle_opt {
337                         if let Err(e) = handle.await {
338                                 assert!(e.is_cancelled());
339                         } else {
340                                 // This is certainly not guaranteed to always be true - the read loop may exit
341                                 // while there are still pending write wakers that need to be woken up after the
342                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
343                                 // keep too many wakers around, this makes sense. The race should be rare (we do
344                                 // some work after shutdown()) and an error would be a major memory leak.
345                                 #[cfg(debug_assertions)]
346                                 assert!(Arc::try_unwrap(last_us).is_ok());
347                         }
348                 }
349         }
350 }
351
352 /// Process incoming messages and feed outgoing messages on a new connection made to the given
353 /// socket address which is expected to be accepted by a peer with the given public key (by
354 /// scheduling futures with tokio::spawn).
355 ///
356 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
357 ///
358 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
359 /// connection setup. That future then returns a future which will complete when the peer is
360 /// disconnected and associated handling futures are freed, though, because all processing in said
361 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
362 /// make progress.
363 ///
364 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
365 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
366                 CMH: ChannelMessageHandler + 'static,
367                 RMH: RoutingMessageHandler + 'static,
368                 L: Logger + 'static + ?Sized {
369         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
370                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
371         } else { None }
372 }
373
374 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
375         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
376
377 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
378         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
379 }
380 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
381 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
382 // sending thread may have already gone away due to a socket close, in which case there's nothing
383 // to wake up anyway.
384 fn wake_socket_waker(orig_ptr: *const ()) {
385         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
386         let _ = sender.try_send(());
387         drop_socket_waker(orig_ptr);
388 }
389 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
390         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
391         let mut sender = unsafe { (*sender_ptr).clone() };
392         let _ = sender.try_send(());
393 }
394 fn drop_socket_waker(orig_ptr: *const ()) {
395         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
396         // _orig_box is now dropped
397 }
398 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
399         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
400         let new_ptr = new_box as *const mpsc::Sender<()>;
401         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
402 }
403
404 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
405 /// type in the template of PeerHandler.
406 pub struct SocketDescriptor {
407         conn: Arc<Mutex<Connection>>,
408         id: u64,
409 }
410 impl SocketDescriptor {
411         fn new(conn: Arc<Mutex<Connection>>) -> Self {
412                 let id = conn.lock().unwrap().id;
413                 Self { conn, id }
414         }
415 }
416 impl peer_handler::SocketDescriptor for SocketDescriptor {
417         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
418                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
419                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
420                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
421                 // processing future which will call write_buffer_space_avail and we'll end up back here.
422                 let mut us = self.conn.lock().unwrap();
423                 if us.writer.is_none() {
424                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
425                         return 0;
426                 }
427
428                 if resume_read && us.read_paused {
429                         // The schedule_read future may go to lock up but end up getting woken up by there
430                         // being more room in the write buffer, dropping the other end of this Sender
431                         // before we get here, so we ignore any failures to wake it up.
432                         us.read_paused = false;
433                         let _ = us.read_waker.try_send(());
434                 }
435                 if data.is_empty() { return 0; }
436                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
437                 let mut ctx = task::Context::from_waker(&waker);
438                 let mut written_len = 0;
439                 loop {
440                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
441                                 task::Poll::Ready(Ok(res)) => {
442                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
443                                         // know how to handle it if it does (cause it should be a Poll::Pending
444                                         // instead):
445                                         assert_ne!(res, 0);
446                                         written_len += res;
447                                         if written_len == data.len() { return written_len; }
448                                 },
449                                 task::Poll::Ready(Err(e)) => {
450                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
451                                         // know how to handle it if it does (cause it should be a Poll::Pending
452                                         // instead):
453                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
454                                         // Probably we've already been closed, just return what we have and let the
455                                         // read thread handle closing logic.
456                                         return written_len;
457                                 },
458                                 task::Poll::Pending => {
459                                         // We're queued up for a write event now, but we need to make sure we also
460                                         // pause read given we're now waiting on the remote end to ACK (and in
461                                         // accordance with the send_data() docs).
462                                         us.read_paused = true;
463                                         return written_len;
464                                 },
465                         }
466                 }
467         }
468
469         fn disconnect_socket(&mut self) {
470                 {
471                         let mut us = self.conn.lock().unwrap();
472                         us.rl_requested_disconnect = true;
473                         us.read_paused = true;
474                         // Wake up the sending thread, assuming it is still alive
475                         let _ = us.write_avail.try_send(());
476                         // Happy-path return:
477                         if !us.block_disconnect_socket { return; }
478                 }
479                 while self.conn.lock().unwrap().block_disconnect_socket {
480                         thread::yield_now();
481                 }
482         }
483 }
484 impl Clone for SocketDescriptor {
485         fn clone(&self) -> Self {
486                 Self {
487                         conn: Arc::clone(&self.conn),
488                         id: self.id,
489                 }
490         }
491 }
492 impl Eq for SocketDescriptor {}
493 impl PartialEq for SocketDescriptor {
494         fn eq(&self, o: &Self) -> bool {
495                 self.id == o.id
496         }
497 }
498 impl Hash for SocketDescriptor {
499         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
500                 self.id.hash(state);
501         }
502 }
503
504 #[cfg(test)]
505 mod tests {
506         use lightning::ln::features::*;
507         use lightning::ln::msgs::*;
508         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
509         use lightning::util::events::*;
510         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
511
512         use tokio::sync::mpsc;
513
514         use std::mem;
515         use std::sync::{Arc, Mutex};
516         use std::time::Duration;
517
518         pub struct TestLogger();
519         impl lightning::util::logger::Logger for TestLogger {
520                 fn log(&self, record: &lightning::util::logger::Record) {
521                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
522                 }
523         }
524
525         struct MsgHandler{
526                 expected_pubkey: PublicKey,
527                 pubkey_connected: mpsc::Sender<()>,
528                 pubkey_disconnected: mpsc::Sender<()>,
529                 msg_events: Mutex<Vec<MessageSendEvent>>,
530         }
531         impl RoutingMessageHandler for MsgHandler {
532                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
533                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
534                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
535                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
536                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
537                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
538                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
539         }
540         impl ChannelMessageHandler for MsgHandler {
541                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
542                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
543                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
544                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
545                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
546                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
547                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
548                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
549                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
550                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
551                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
552                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
553                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
554                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
555                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
556                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
557                         if *their_node_id == self.expected_pubkey {
558                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
559                         }
560                 }
561                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
562                         if *their_node_id == self.expected_pubkey {
563                                 self.pubkey_connected.clone().try_send(()).unwrap();
564                         }
565                 }
566                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
567                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
568         }
569         impl MessageSendEventsProvider for MsgHandler {
570                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
571                         let mut ret = Vec::new();
572                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
573                         ret
574                 }
575         }
576
577         async fn do_basic_connection_test() {
578                 let secp_ctx = Secp256k1::new();
579                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
580                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
581                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
582                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
583
584                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
585                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
586                 let a_handler = Arc::new(MsgHandler {
587                         expected_pubkey: b_pub,
588                         pubkey_connected: a_connected_sender,
589                         pubkey_disconnected: a_disconnected_sender,
590                         msg_events: Mutex::new(Vec::new()),
591                 });
592                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
593                         chan_handler: Arc::clone(&a_handler),
594                         route_handler: Arc::clone(&a_handler),
595                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
596
597                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
598                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
599                 let b_handler = Arc::new(MsgHandler {
600                         expected_pubkey: a_pub,
601                         pubkey_connected: b_connected_sender,
602                         pubkey_disconnected: b_disconnected_sender,
603                         msg_events: Mutex::new(Vec::new()),
604                 });
605                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
606                         chan_handler: Arc::clone(&b_handler),
607                         route_handler: Arc::clone(&b_handler),
608                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
609
610                 // We bind on localhost, hoping the environment is properly configured with a local
611                 // address. This may not always be the case in containers and the like, so if this test is
612                 // failing for you check that you have a loopback interface and it is configured with
613                 // 127.0.0.1.
614                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
615                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
616                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
617                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
618                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
619                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
620                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
621
622                 let (sender, _receiver) = mpsc::channel(2);
623                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
624                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
625
626                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
627                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
628
629                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
630                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
631                 });
632                 assert!(a_disconnected.try_recv().is_err());
633                 assert!(b_disconnected.try_recv().is_err());
634
635                 a_manager.process_events();
636                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
637                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
638
639                 fut_a.await;
640                 fut_b.await;
641         }
642
643         #[tokio::test(threaded_scheduler)]
644         async fn basic_threaded_connection_test() {
645                 do_basic_connection_test().await;
646         }
647         #[tokio::test]
648         async fn basic_unthreaded_connection_test() {
649                 do_basic_connection_test().await;
650         }
651 }