1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native [`TcpStream`]s.
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! [`TcpStream`] and a reference to a [`PeerManager`] and the rest is handled".
16 //! The [`PeerManager`], due to the fire-and-forget nature of this logic, must be a reference,
17 //! (e.g. an [`Arc`]) and must use the [`SocketDescriptor`] provided here as the [`PeerManager`]'s
18 //! `SocketDescriptor` implementation.
20 //! Three methods are exposed to register a new connection for handling in [`tokio::spawn`] calls;
21 //! see their individual docs for details.
23 //! [`PeerManager`]: lightning::ln::peer_handler::PeerManager
25 // Prefix these with `rustdoc::` when we update our MSRV to be >= 1.52 to remove warnings.
26 #![deny(broken_intra_doc_links)]
27 #![deny(private_intra_doc_links)]
29 #![deny(missing_docs)]
30 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
32 use bitcoin::secp256k1::PublicKey;
34 use tokio::net::TcpStream;
35 use tokio::{io, time};
36 use tokio::sync::mpsc;
37 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
39 use lightning::chain::keysinterface::NodeSigner;
40 use lightning::ln::peer_handler;
41 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
42 use lightning::ln::peer_handler::CustomMessageHandler;
43 use lightning::ln::msgs::{ChannelMessageHandler, NetAddress, OnionMessageHandler, RoutingMessageHandler};
44 use lightning::util::logger::Logger;
48 use std::net::SocketAddr;
49 use std::net::TcpStream as StdTcpStream;
50 use std::sync::{Arc, Mutex};
51 use std::sync::atomic::{AtomicU64, Ordering};
52 use std::time::Duration;
55 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
57 /// Connection contains all our internal state for a connection - we hold a reference to the
58 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
59 /// read future (which is returned by schedule_read).
61 writer: Option<io::WriteHalf<TcpStream>>,
62 // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
63 // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
64 // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
65 // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
66 // the schedule_read stack.
68 // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
69 // runtime with functions templated by the Arc<PeerManager> type, calling
70 // write_buffer_space_avail directly from tokio's write wake, however doing so would require
71 // more unsafe voodo than I really feel like writing.
72 write_avail: mpsc::Sender<()>,
73 // When we are told by rust-lightning to pause read (because we have writes backing up), we do
74 // so by setting read_paused. At that point, the read task will stop reading bytes from the
75 // socket. To wake it up (without otherwise changing its state, we can push a value into this
77 read_waker: mpsc::Sender<()>,
79 rl_requested_disconnect: bool,
83 async fn poll_event_process<PM, CMH, RMH, OMH, L, UMH, NS>(
85 mut event_receiver: mpsc::Receiver<()>,
87 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync,
88 CMH: Deref + 'static + Send + Sync,
89 RMH: Deref + 'static + Send + Sync,
90 OMH: Deref + 'static + Send + Sync,
91 L: Deref + 'static + Send + Sync,
92 UMH: Deref + 'static + Send + Sync,
93 NS: Deref + 'static + Send + Sync,
94 CMH::Target: ChannelMessageHandler + Send + Sync,
95 RMH::Target: RoutingMessageHandler + Send + Sync,
96 OMH::Target: OnionMessageHandler + Send + Sync,
97 L::Target: Logger + Send + Sync,
98 UMH::Target: CustomMessageHandler + Send + Sync,
99 NS::Target: NodeSigner + Send + Sync,
102 if event_receiver.recv().await.is_none() {
105 peer_manager.process_events();
109 async fn schedule_read<PM, CMH, RMH, OMH, L, UMH, NS>(
111 us: Arc<Mutex<Self>>,
112 mut reader: io::ReadHalf<TcpStream>,
113 mut read_wake_receiver: mpsc::Receiver<()>,
114 mut write_avail_receiver: mpsc::Receiver<()>,
116 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
117 CMH: Deref + 'static + Send + Sync,
118 RMH: Deref + 'static + Send + Sync,
119 OMH: Deref + 'static + Send + Sync,
120 L: Deref + 'static + Send + Sync,
121 UMH: Deref + 'static + Send + Sync,
122 NS: Deref + 'static + Send + Sync,
123 CMH::Target: ChannelMessageHandler + 'static + Send + Sync,
124 RMH::Target: RoutingMessageHandler + 'static + Send + Sync,
125 OMH::Target: OnionMessageHandler + 'static + Send + Sync,
126 L::Target: Logger + 'static + Send + Sync,
127 UMH::Target: CustomMessageHandler + 'static + Send + Sync,
128 NS::Target: NodeSigner + 'static + Send + Sync,
130 // Create a waker to wake up poll_event_process, above
131 let (event_waker, event_receiver) = mpsc::channel(1);
132 tokio::spawn(Self::poll_event_process(peer_manager.clone(), event_receiver));
134 // 4KiB is nice and big without handling too many messages all at once, giving other peers
135 // a chance to do some work.
136 let mut buf = [0; 4096];
138 let mut our_descriptor = SocketDescriptor::new(us.clone());
139 // An enum describing why we did/are disconnecting:
141 // Rust-Lightning told us to disconnect, either by returning an Err or by calling
142 // SocketDescriptor::disconnect_socket.
143 // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
144 // already knows we're disconnected.
146 // The connection was disconnected for some other reason, ie because the socket was
148 // In this case, we do need to call peer_manager.socket_disconnected() to inform
149 // Rust-Lightning that the socket is gone.
152 let disconnect_type = loop {
154 let us_lock = us.lock().unwrap();
155 if us_lock.rl_requested_disconnect {
156 break Disconnect::CloseConnection;
161 v = write_avail_receiver.recv() => {
162 assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
163 if peer_manager.write_buffer_space_avail(&mut our_descriptor).is_err() {
164 break Disconnect::CloseConnection;
167 _ = read_wake_receiver.recv() => {},
168 read = reader.read(&mut buf), if !read_paused => match read {
169 Ok(0) => break Disconnect::PeerDisconnected,
171 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
172 let mut us_lock = us.lock().unwrap();
176 us_lock.read_paused = true;
179 Err(_) => break Disconnect::CloseConnection,
182 Err(_) => break Disconnect::PeerDisconnected,
185 let _ = event_waker.try_send(());
187 // At this point we've processed a message or two, and reset the ping timer for this
188 // peer, at least in the "are we still receiving messages" context, if we don't give up
189 // our timeslice to another task we may just spin on this peer, starving other peers
190 // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
192 let _ = tokio::task::yield_now().await;
194 let writer_option = us.lock().unwrap().writer.take();
195 if let Some(mut writer) = writer_option {
196 // If the socket is already closed, shutdown() will fail, so just ignore it.
197 let _ = writer.shutdown().await;
199 if let Disconnect::PeerDisconnected = disconnect_type {
200 peer_manager.socket_disconnected(&our_descriptor);
201 peer_manager.process_events();
205 fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
206 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
207 // PeerManager, we will eventually get notified that there is room in the socket to write
208 // new bytes, which will generate an event. That event will be popped off the queue before
209 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
210 // the write_buffer_space_avail() call, send_data() returns a non-full write.
211 let (write_avail, write_receiver) = mpsc::channel(1);
212 // Similarly here - our only goal is to make sure the reader wakes up at some point after
213 // we shove a value into the channel which comes after we've reset the read_paused bool to
215 let (read_waker, read_receiver) = mpsc::channel(1);
216 stream.set_nonblocking(true).unwrap();
217 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
219 (reader, write_receiver, read_receiver,
220 Arc::new(Mutex::new(Self {
221 writer: Some(writer), write_avail, read_waker, read_paused: false,
222 rl_requested_disconnect: false,
223 id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
228 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
229 match stream.peer_addr() {
230 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
231 addr: sockaddr.ip().octets(),
232 port: sockaddr.port(),
234 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
235 addr: sockaddr.ip().octets(),
236 port: sockaddr.port(),
242 /// Process incoming messages and feed outgoing messages on the provided socket generated by
243 /// accepting an incoming connection.
245 /// The returned future will complete when the peer is disconnected and associated handling
246 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
247 /// not need to poll the provided future in order to make progress.
248 pub fn setup_inbound<PM, CMH, RMH, OMH, L, UMH, NS>(
250 stream: StdTcpStream,
251 ) -> impl std::future::Future<Output=()> where
252 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
253 CMH: Deref + 'static + Send + Sync,
254 RMH: Deref + 'static + Send + Sync,
255 OMH: Deref + 'static + Send + Sync,
256 L: Deref + 'static + Send + Sync,
257 UMH: Deref + 'static + Send + Sync,
258 NS: Deref + 'static + Send + Sync,
259 CMH::Target: ChannelMessageHandler + Send + Sync,
260 RMH::Target: RoutingMessageHandler + Send + Sync,
261 OMH::Target: OnionMessageHandler + Send + Sync,
262 L::Target: Logger + Send + Sync,
263 UMH::Target: CustomMessageHandler + Send + Sync,
264 NS::Target: NodeSigner + Send + Sync,
266 let remote_addr = get_addr_from_stream(&stream);
267 let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
269 let last_us = Arc::clone(&us);
271 let handle_opt = if peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr).is_ok() {
272 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
274 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
280 if let Some(handle) = handle_opt {
281 if let Err(e) = handle.await {
282 assert!(e.is_cancelled());
284 // This is certainly not guaranteed to always be true - the read loop may exit
285 // while there are still pending write wakers that need to be woken up after the
286 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
287 // keep too many wakers around, this makes sense. The race should be rare (we do
288 // some work after shutdown()) and an error would be a major memory leak.
290 debug_assert!(Arc::try_unwrap(last_us).is_ok());
296 /// Process incoming messages and feed outgoing messages on the provided socket generated by
297 /// making an outbound connection which is expected to be accepted by a peer with the given
298 /// public key. The relevant processing is set to run free (via tokio::spawn).
300 /// The returned future will complete when the peer is disconnected and associated handling
301 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
302 /// not need to poll the provided future in order to make progress.
303 pub fn setup_outbound<PM, CMH, RMH, OMH, L, UMH, NS>(
305 their_node_id: PublicKey,
306 stream: StdTcpStream,
307 ) -> impl std::future::Future<Output=()> where
308 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
309 CMH: Deref + 'static + Send + Sync,
310 RMH: Deref + 'static + Send + Sync,
311 OMH: Deref + 'static + Send + Sync,
312 L: Deref + 'static + Send + Sync,
313 UMH: Deref + 'static + Send + Sync,
314 NS: Deref + 'static + Send + Sync,
315 CMH::Target: ChannelMessageHandler + Send + Sync,
316 RMH::Target: RoutingMessageHandler + Send + Sync,
317 OMH::Target: OnionMessageHandler + Send + Sync,
318 L::Target: Logger + Send + Sync,
319 UMH::Target: CustomMessageHandler + Send + Sync,
320 NS::Target: NodeSigner + Send + Sync,
322 let remote_addr = get_addr_from_stream(&stream);
323 let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
325 let last_us = Arc::clone(&us);
326 let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
327 Some(tokio::spawn(async move {
328 // We should essentially always have enough room in a TCP socket buffer to send the
329 // initial 10s of bytes. However, tokio running in single-threaded mode will always
330 // fail writes and wake us back up later to write. Thus, we handle a single
331 // std::task::Poll::Pending but still expect to write the full set of bytes at once
332 // and use a relatively tight timeout.
333 if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
335 match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
336 v if v == initial_send.len() => break Ok(()),
338 write_receiver.recv().await;
339 // In theory we could check for if we've been instructed to disconnect
340 // the peer here, but its OK to just skip it - we'll check for it in
341 // schedule_read prior to any relevant calls into RL.
344 eprintln!("Failed to write first full message to socket!");
345 peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
351 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
355 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
361 if let Some(handle) = handle_opt {
362 if let Err(e) = handle.await {
363 assert!(e.is_cancelled());
365 // This is certainly not guaranteed to always be true - the read loop may exit
366 // while there are still pending write wakers that need to be woken up after the
367 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
368 // keep too many wakers around, this makes sense. The race should be rare (we do
369 // some work after shutdown()) and an error would be a major memory leak.
371 debug_assert!(Arc::try_unwrap(last_us).is_ok());
377 /// Process incoming messages and feed outgoing messages on a new connection made to the given
378 /// socket address which is expected to be accepted by a peer with the given public key (by
379 /// scheduling futures with tokio::spawn).
381 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
383 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
384 /// connection setup. That future then returns a future which will complete when the peer is
385 /// disconnected and associated handling futures are freed, though, because all processing in said
386 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
388 pub async fn connect_outbound<PM, CMH, RMH, OMH, L, UMH, NS>(
390 their_node_id: PublicKey,
392 ) -> Option<impl std::future::Future<Output=()>> where
393 PM: Deref<Target = peer_handler::PeerManager<SocketDescriptor, CMH, RMH, OMH, L, UMH, NS>> + 'static + Send + Sync + Clone,
394 CMH: Deref + 'static + Send + Sync,
395 RMH: Deref + 'static + Send + Sync,
396 OMH: Deref + 'static + Send + Sync,
397 L: Deref + 'static + Send + Sync,
398 UMH: Deref + 'static + Send + Sync,
399 NS: Deref + 'static + Send + Sync,
400 CMH::Target: ChannelMessageHandler + Send + Sync,
401 RMH::Target: RoutingMessageHandler + Send + Sync,
402 OMH::Target: OnionMessageHandler + Send + Sync,
403 L::Target: Logger + Send + Sync,
404 UMH::Target: CustomMessageHandler + Send + Sync,
405 NS::Target: NodeSigner + Send + Sync,
407 if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
408 Some(setup_outbound(peer_manager, their_node_id, stream))
412 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
413 task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
415 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
416 write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
418 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
419 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
420 // sending thread may have already gone away due to a socket close, in which case there's nothing
421 // to wake up anyway.
422 fn wake_socket_waker(orig_ptr: *const ()) {
423 let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
424 let _ = sender.try_send(());
425 drop_socket_waker(orig_ptr);
427 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
428 let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
429 let sender = unsafe { (*sender_ptr).clone() };
430 let _ = sender.try_send(());
432 fn drop_socket_waker(orig_ptr: *const ()) {
433 let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
434 // _orig_box is now dropped
436 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
437 let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
438 let new_ptr = new_box as *const mpsc::Sender<()>;
439 task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
442 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
443 /// type in the template of PeerHandler.
444 pub struct SocketDescriptor {
445 conn: Arc<Mutex<Connection>>,
448 impl SocketDescriptor {
449 fn new(conn: Arc<Mutex<Connection>>) -> Self {
450 let id = conn.lock().unwrap().id;
454 impl peer_handler::SocketDescriptor for SocketDescriptor {
455 fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
456 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
457 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
458 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
459 // processing future which will call write_buffer_space_avail and we'll end up back here.
460 let mut us = self.conn.lock().unwrap();
461 if us.writer.is_none() {
462 // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
466 if resume_read && us.read_paused {
467 // The schedule_read future may go to lock up but end up getting woken up by there
468 // being more room in the write buffer, dropping the other end of this Sender
469 // before we get here, so we ignore any failures to wake it up.
470 us.read_paused = false;
471 let _ = us.read_waker.try_send(());
473 if data.is_empty() { return 0; }
474 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
475 let mut ctx = task::Context::from_waker(&waker);
476 let mut written_len = 0;
478 match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
479 task::Poll::Ready(Ok(res)) => {
480 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
481 // know how to handle it if it does (cause it should be a Poll::Pending
485 if written_len == data.len() { return written_len; }
487 task::Poll::Ready(Err(e)) => {
488 // The tokio docs *seem* to indicate this can't happen, and I certainly don't
489 // know how to handle it if it does (cause it should be a Poll::Pending
491 assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
492 // Probably we've already been closed, just return what we have and let the
493 // read thread handle closing logic.
496 task::Poll::Pending => {
497 // We're queued up for a write event now, but we need to make sure we also
498 // pause read given we're now waiting on the remote end to ACK (and in
499 // accordance with the send_data() docs).
500 us.read_paused = true;
501 // Further, to avoid any current pending read causing a `read_event` call, wake
502 // up the read_waker and restart its loop.
503 let _ = us.read_waker.try_send(());
510 fn disconnect_socket(&mut self) {
511 let mut us = self.conn.lock().unwrap();
512 us.rl_requested_disconnect = true;
513 // Wake up the sending thread, assuming it is still alive
514 let _ = us.write_avail.try_send(());
517 impl Clone for SocketDescriptor {
518 fn clone(&self) -> Self {
520 conn: Arc::clone(&self.conn),
525 impl Eq for SocketDescriptor {}
526 impl PartialEq for SocketDescriptor {
527 fn eq(&self, o: &Self) -> bool {
531 impl Hash for SocketDescriptor {
532 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
539 use lightning::ln::features::*;
540 use lightning::ln::msgs::*;
541 use lightning::ln::peer_handler::{MessageHandler, PeerManager};
542 use lightning::ln::features::NodeFeatures;
543 use lightning::routing::gossip::NodeId;
544 use lightning::events::*;
545 use lightning::util::test_utils::TestNodeSigner;
546 use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
548 use tokio::sync::mpsc;
551 use std::sync::atomic::{AtomicBool, Ordering};
552 use std::sync::{Arc, Mutex};
553 use std::time::Duration;
555 pub struct TestLogger();
556 impl lightning::util::logger::Logger for TestLogger {
557 fn log(&self, record: &lightning::util::logger::Record) {
558 println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
563 expected_pubkey: PublicKey,
564 pubkey_connected: mpsc::Sender<()>,
565 pubkey_disconnected: mpsc::Sender<()>,
566 disconnected_flag: AtomicBool,
567 msg_events: Mutex<Vec<MessageSendEvent>>,
569 impl RoutingMessageHandler for MsgHandler {
570 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
571 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
572 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
573 fn get_next_channel_announcement(&self, _starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { None }
574 fn get_next_node_announcement(&self, _starting_point: Option<&NodeId>) -> Option<NodeAnnouncement> { None }
575 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> { Ok(()) }
576 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
577 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
578 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
579 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
580 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
581 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
582 fn processing_queue_high(&self) -> bool { false }
584 impl ChannelMessageHandler for MsgHandler {
585 fn handle_open_channel(&self, _their_node_id: &PublicKey, _msg: &OpenChannel) {}
586 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _msg: &AcceptChannel) {}
587 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
588 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
589 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
590 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
591 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
592 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
593 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
594 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
595 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
596 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
597 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
598 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
599 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
600 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
601 fn peer_disconnected(&self, their_node_id: &PublicKey) {
602 if *their_node_id == self.expected_pubkey {
603 self.disconnected_flag.store(true, Ordering::SeqCst);
604 self.pubkey_disconnected.clone().try_send(()).unwrap();
607 fn peer_connected(&self, their_node_id: &PublicKey, _init_msg: &Init, _inbound: bool) -> Result<(), ()> {
608 if *their_node_id == self.expected_pubkey {
609 self.pubkey_connected.clone().try_send(()).unwrap();
613 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
614 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
615 fn provided_node_features(&self) -> NodeFeatures { NodeFeatures::empty() }
616 fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures { InitFeatures::empty() }
618 impl MessageSendEventsProvider for MsgHandler {
619 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
620 let mut ret = Vec::new();
621 mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
626 fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
627 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
628 (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
629 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
630 (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
631 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
632 (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
633 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
634 (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
635 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
636 (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
637 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
638 (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
639 } else { panic!("Failed to bind to v4 localhost on common ports"); }
642 async fn do_basic_connection_test() {
643 let secp_ctx = Secp256k1::new();
644 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
645 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
646 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
647 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
649 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
650 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
651 let a_handler = Arc::new(MsgHandler {
652 expected_pubkey: b_pub,
653 pubkey_connected: a_connected_sender,
654 pubkey_disconnected: a_disconnected_sender,
655 disconnected_flag: AtomicBool::new(false),
656 msg_events: Mutex::new(Vec::new()),
658 let a_manager = Arc::new(PeerManager::new(MessageHandler {
659 chan_handler: Arc::clone(&a_handler),
660 route_handler: Arc::clone(&a_handler),
661 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
662 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(a_key))));
664 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
665 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
666 let b_handler = Arc::new(MsgHandler {
667 expected_pubkey: a_pub,
668 pubkey_connected: b_connected_sender,
669 pubkey_disconnected: b_disconnected_sender,
670 disconnected_flag: AtomicBool::new(false),
671 msg_events: Mutex::new(Vec::new()),
673 let b_manager = Arc::new(PeerManager::new(MessageHandler {
674 chan_handler: Arc::clone(&b_handler),
675 route_handler: Arc::clone(&b_handler),
676 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
677 }, 0, &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(b_key))));
679 // We bind on localhost, hoping the environment is properly configured with a local
680 // address. This may not always be the case in containers and the like, so if this test is
681 // failing for you check that you have a loopback interface and it is configured with
683 let (conn_a, conn_b) = make_tcp_connection();
685 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
686 let fut_b = super::setup_inbound(b_manager, conn_b);
688 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
689 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
691 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
692 node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
694 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
695 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
697 a_manager.process_events();
698 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
699 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
700 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
701 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
707 #[tokio::test(flavor = "multi_thread")]
708 async fn basic_threaded_connection_test() {
709 do_basic_connection_test().await;
713 async fn basic_unthreaded_connection_test() {
714 do_basic_connection_test().await;
717 async fn race_disconnect_accept() {
718 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
719 // This attempts to find other similar races by opening connections and shutting them down
720 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
721 let secp_ctx = Secp256k1::new();
722 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
723 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
724 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
726 let a_manager = Arc::new(PeerManager::new(MessageHandler {
727 chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
728 onion_message_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
729 route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
730 }, 0, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}), Arc::new(TestNodeSigner::new(a_key))));
732 // Make two connections, one for an inbound and one for an outbound connection
734 let (conn_a, _) = make_tcp_connection();
738 let (_, conn_b) = make_tcp_connection();
742 // Call connection setup inside new tokio tasks.
743 let manager_reference = Arc::clone(&a_manager);
744 tokio::spawn(async move {
745 super::setup_inbound(manager_reference, conn_a).await
747 tokio::spawn(async move {
748 super::setup_outbound(a_manager, b_pub, conn_b).await
752 #[tokio::test(flavor = "multi_thread")]
753 async fn threaded_race_disconnect_accept() {
754 race_disconnect_accept().await;
758 async fn unthreaded_race_disconnect_accept() {
759 race_disconnect_accept().await;