Fix typo
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 //! A socket handling library for those running in Tokio environments who wish to use
2 //! rust-lightning with native TcpStreams.
3 //!
4 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
5 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
6 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
7 //!
8 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
9 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
10 //!
11 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
12 //! their individual docs for more. All three take a
13 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
14 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
15 //! The call site should, thus, look something like this:
16 //! ```
17 //! use tokio::sync::mpsc;
18 //! use tokio::net::TcpStream;
19 //! use bitcoin::secp256k1::key::PublicKey;
20 //! use lightning::util::events::EventsProvider;
21 //! use std::net::SocketAddr;
22 //! use std::sync::Arc;
23 //!
24 //! // Define concrete types for our high-level objects:
25 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
26 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
27 //! type Logger = dyn lightning::util::logger::Logger;
28 //! type ChainWatchInterface = dyn lightning::chain::chaininterface::ChainWatchInterface;
29 //! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<ChainWatchInterface>>;
30 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator, Logger>;
31 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator, ChainWatchInterface, Logger>;
32 //!
33 //! // Connect to node with pubkey their_node_id at addr:
34 //! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
35 //!     let (sender, mut receiver) = mpsc::channel(2);
36 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
37 //!     loop {
38 //!         receiver.recv().await;
39 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
40 //!             // Handle the event!
41 //!         }
42 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
43 //!             // Handle the event!
44 //!         }
45 //!     }
46 //! }
47 //!
48 //! // Begin reading from a newly accepted socket and talk to the peer:
49 //! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
50 //!     let (sender, mut receiver) = mpsc::channel(2);
51 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
52 //!     loop {
53 //!         receiver.recv().await;
54 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
55 //!             // Handle the event!
56 //!         }
57 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
58 //!             // Handle the event!
59 //!         }
60 //!     }
61 //! }
62 //! ```
63
64 use bitcoin::secp256k1::key::PublicKey;
65
66 use tokio::net::TcpStream;
67 use tokio::{io, time};
68 use tokio::sync::mpsc;
69 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
70
71 use lightning::ln::peer_handler;
72 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
73 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
74 use lightning::util::logger::Logger;
75
76 use std::{task, thread};
77 use std::net::SocketAddr;
78 use std::sync::{Arc, Mutex, MutexGuard};
79 use std::sync::atomic::{AtomicU64, Ordering};
80 use std::time::Duration;
81 use std::hash::Hash;
82
83 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
84
85 /// Connection contains all our internal state for a connection - we hold a reference to the
86 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
87 /// read future (which is returned by schedule_read).
88 struct Connection {
89         writer: Option<io::WriteHalf<TcpStream>>,
90         event_notify: mpsc::Sender<()>,
91         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
92         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
93         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
94         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
95         // the schedule_read stack.
96         //
97         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
98         // runtime with functions templated by the Arc<PeerManager> type, calling
99         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
100         // more unsafe voodo than I really feel like writing.
101         write_avail: mpsc::Sender<()>,
102         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
103         // so by setting read_paused. At that point, the read task will stop reading bytes from the
104         // socket. To wake it up (without otherwise changing its state, we can push a value into this
105         // Sender.
106         read_waker: mpsc::Sender<()>,
107         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
108         // are sure we won't call any more read/write PeerManager functions with the same connection.
109         // This is set to true if we're in such a condition (with disconnect checked before with the
110         // top-level mutex held) and false when we can return.
111         block_disconnect_socket: bool,
112         read_paused: bool,
113         rl_requested_disconnect: bool,
114         id: u64,
115 }
116 impl Connection {
117         fn event_trigger(us: &mut MutexGuard<Self>) {
118                 match us.event_notify.try_send(()) {
119                         Ok(_) => {},
120                         Err(mpsc::error::TrySendError::Full(_)) => {
121                                 // Ignore full errors as we just need the user to poll after this point, so if they
122                                 // haven't received the last send yet, it doesn't matter.
123                         },
124                         _ => panic!()
125                 }
126         }
127         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
128                         CMH: ChannelMessageHandler + 'static,
129                         RMH: RoutingMessageHandler + 'static,
130                         L: Logger + 'static + ?Sized {
131                 let peer_manager_ref = peer_manager.clone();
132                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
133                 let mut buf = [0; 8192];
134
135                 let mut our_descriptor = SocketDescriptor::new(us.clone());
136                 // An enum describing why we did/are disconnecting:
137                 enum Disconnect {
138                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
139                         // SocketDescriptor::disconnect_socket.
140                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
141                         // already knows we're disconnected.
142                         CloseConnection,
143                         // The connection was disconnected for some other reason, ie because the socket was
144                         // closed.
145                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
146                         // Rust-Lightning that the socket is gone.
147                         PeerDisconnected
148                 };
149                 let disconnect_type = loop {
150                         macro_rules! shutdown_socket {
151                                 ($err: expr, $need_disconnect: expr) => { {
152                                         println!("Disconnecting peer due to {}!", $err);
153                                         break $need_disconnect;
154                                 } }
155                         }
156
157                         macro_rules! prepare_read_write_call {
158                                 () => { {
159                                         let mut us_lock = us.lock().unwrap();
160                                         if us_lock.rl_requested_disconnect {
161                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
162                                         }
163                                         us_lock.block_disconnect_socket = true;
164                                 } }
165                         }
166
167                         let read_paused = us.lock().unwrap().read_paused;
168                         tokio::select! {
169                                 v = write_avail_receiver.recv() => {
170                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
171                                         prepare_read_write_call!();
172                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
173                                                 shutdown_socket!(e, Disconnect::CloseConnection);
174                                         }
175                                         us.lock().unwrap().block_disconnect_socket = false;
176                                 },
177                                 _ = read_wake_receiver.recv() => {},
178                                 read = reader.read(&mut buf), if !read_paused => match read {
179                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
180                                         Ok(len) => {
181                                                 prepare_read_write_call!();
182                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
183                                                 let mut us_lock = us.lock().unwrap();
184                                                 match read_res {
185                                                         Ok(pause_read) => {
186                                                                 if pause_read {
187                                                                         us_lock.read_paused = true;
188                                                                 }
189                                                                 Self::event_trigger(&mut us_lock);
190                                                         },
191                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
192                                                 }
193                                                 us_lock.block_disconnect_socket = false;
194                                         },
195                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
196                                 },
197                         }
198                 };
199                 let writer_option = us.lock().unwrap().writer.take();
200                 if let Some(mut writer) = writer_option {
201                         // If the socket is already closed, shutdown() will fail, so just ignore it.
202                         let _ = writer.shutdown().await;
203                 }
204                 if let Disconnect::PeerDisconnected = disconnect_type {
205                         peer_manager_ref.socket_disconnected(&our_descriptor);
206                         Self::event_trigger(&mut us.lock().unwrap());
207                 }
208         }
209
210         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
211                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
212                 // PeerManager, we will eventually get notified that there is room in the socket to write
213                 // new bytes, which will generate an event. That event will be popped off the queue before
214                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
215                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
216                 let (write_avail, write_receiver) = mpsc::channel(1);
217                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
218                 // we shove a value into the channel which comes after we've reset the read_paused bool to
219                 // false.
220                 let (read_waker, read_receiver) = mpsc::channel(1);
221                 let (reader, writer) = io::split(stream);
222
223                 (reader, write_receiver, read_receiver,
224                 Arc::new(Mutex::new(Self {
225                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
226                         block_disconnect_socket: false, rl_requested_disconnect: false,
227                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
228                 })))
229         }
230 }
231
232 /// Process incoming messages and feed outgoing messages on the provided socket generated by
233 /// accepting an incoming connection.
234 ///
235 /// The returned future will complete when the peer is disconnected and associated handling
236 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
237 /// not need to poll the provided future in order to make progress.
238 ///
239 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
240 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> where
241                 CMH: ChannelMessageHandler + 'static,
242                 RMH: RoutingMessageHandler + 'static,
243                 L: Logger + 'static + ?Sized {
244         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
245         #[cfg(debug_assertions)]
246         let last_us = Arc::clone(&us);
247
248         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
249                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
250         } else {
251                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
252                 // requirements.
253                 None
254         };
255
256         async move {
257                 if let Some(handle) = handle_opt {
258                         if let Err(e) = handle.await {
259                                 assert!(e.is_cancelled());
260                         } else {
261                                 // This is certainly not guaranteed to always be true - the read loop may exit
262                                 // while there are still pending write wakers that need to be woken up after the
263                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
264                                 // keep too many wakers around, this makes sense. The race should be rare (we do
265                                 // some work after shutdown()) and an error would be a major memory leak.
266                                 #[cfg(debug_assertions)]
267                                 assert!(Arc::try_unwrap(last_us).is_ok());
268                         }
269                 }
270         }
271 }
272
273 /// Process incoming messages and feed outgoing messages on the provided socket generated by
274 /// making an outbound connection which is expected to be accepted by a peer with the given
275 /// public key. The relevant processing is set to run free (via tokio::spawn).
276 ///
277 /// The returned future will complete when the peer is disconnected and associated handling
278 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
279 /// not need to poll the provided future in order to make progress.
280 ///
281 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
282 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> where
283                 CMH: ChannelMessageHandler + 'static,
284                 RMH: RoutingMessageHandler + 'static,
285                 L: Logger + 'static + ?Sized {
286         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
287         #[cfg(debug_assertions)]
288         let last_us = Arc::clone(&us);
289
290         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
291                 Some(tokio::spawn(async move {
292                         // We should essentially always have enough room in a TCP socket buffer to send the
293                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
294                         // fail writes and wake us back up later to write. Thus, we handle a single
295                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
296                         // and use a relatively tight timeout.
297                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
298                                 loop {
299                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
300                                                 v if v == initial_send.len() => break Ok(()),
301                                                 0 => {
302                                                         write_receiver.recv().await;
303                                                         // In theory we could check for if we've been instructed to disconnect
304                                                         // the peer here, but its OK to just skip it - we'll check for it in
305                                                         // schedule_read prior to any relevant calls into RL.
306                                                 },
307                                                 _ => {
308                                                         eprintln!("Failed to write first full message to socket!");
309                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
310                                                         break Err(());
311                                                 }
312                                         }
313                                 }
314                         }).await {
315                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
316                         }
317                 }))
318         } else {
319                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
320                 // requirements.
321                 None
322         };
323
324         async move {
325                 if let Some(handle) = handle_opt {
326                         if let Err(e) = handle.await {
327                                 assert!(e.is_cancelled());
328                         } else {
329                                 // This is certainly not guaranteed to always be true - the read loop may exit
330                                 // while there are still pending write wakers that need to be woken up after the
331                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
332                                 // keep too many wakers around, this makes sense. The race should be rare (we do
333                                 // some work after shutdown()) and an error would be a major memory leak.
334                                 #[cfg(debug_assertions)]
335                                 assert!(Arc::try_unwrap(last_us).is_ok());
336                         }
337                 }
338         }
339 }
340
341 /// Process incoming messages and feed outgoing messages on a new connection made to the given
342 /// socket address which is expected to be accepted by a peer with the given public key (by
343 /// scheduling futures with tokio::spawn).
344 ///
345 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
346 ///
347 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
348 /// connection setup. That future then returns a future which will complete when the peer is
349 /// disconnected and associated handling futures are freed, though, because all processing in said
350 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
351 /// make progress.
352 ///
353 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
354 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
355                 CMH: ChannelMessageHandler + 'static,
356                 RMH: RoutingMessageHandler + 'static,
357                 L: Logger + 'static + ?Sized {
358         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
359                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
360         } else { None }
361 }
362
363 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
364         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
365
366 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
367         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
368 }
369 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
370 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
371 // sending thread may have already gone away due to a socket close, in which case there's nothing
372 // to wake up anyway.
373 fn wake_socket_waker(orig_ptr: *const ()) {
374         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
375         let _ = sender.try_send(());
376         drop_socket_waker(orig_ptr);
377 }
378 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
379         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
380         let mut sender = unsafe { (*sender_ptr).clone() };
381         let _ = sender.try_send(());
382 }
383 fn drop_socket_waker(orig_ptr: *const ()) {
384         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
385         // _orig_box is now dropped
386 }
387 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
388         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
389         let new_ptr = new_box as *const mpsc::Sender<()>;
390         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
391 }
392
393 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
394 /// type in the template of PeerHandler.
395 pub struct SocketDescriptor {
396         conn: Arc<Mutex<Connection>>,
397         id: u64,
398 }
399 impl SocketDescriptor {
400         fn new(conn: Arc<Mutex<Connection>>) -> Self {
401                 let id = conn.lock().unwrap().id;
402                 Self { conn, id }
403         }
404 }
405 impl peer_handler::SocketDescriptor for SocketDescriptor {
406         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
407                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
408                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
409                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
410                 // processing future which will call write_buffer_space_avail and we'll end up back here.
411                 let mut us = self.conn.lock().unwrap();
412                 if us.writer.is_none() {
413                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
414                         return 0;
415                 }
416
417                 if resume_read && us.read_paused {
418                         // The schedule_read future may go to lock up but end up getting woken up by there
419                         // being more room in the write buffer, dropping the other end of this Sender
420                         // before we get here, so we ignore any failures to wake it up.
421                         us.read_paused = false;
422                         let _ = us.read_waker.try_send(());
423                 }
424                 if data.is_empty() { return 0; }
425                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
426                 let mut ctx = task::Context::from_waker(&waker);
427                 let mut written_len = 0;
428                 loop {
429                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
430                                 task::Poll::Ready(Ok(res)) => {
431                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
432                                         // know how to handle it if it does (cause it should be a Poll::Pending
433                                         // instead):
434                                         assert_ne!(res, 0);
435                                         written_len += res;
436                                         if written_len == data.len() { return written_len; }
437                                 },
438                                 task::Poll::Ready(Err(e)) => {
439                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
440                                         // know how to handle it if it does (cause it should be a Poll::Pending
441                                         // instead):
442                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
443                                         // Probably we've already been closed, just return what we have and let the
444                                         // read thread handle closing logic.
445                                         return written_len;
446                                 },
447                                 task::Poll::Pending => {
448                                         // We're queued up for a write event now, but we need to make sure we also
449                                         // pause read given we're now waiting on the remote end to ACK (and in
450                                         // accordance with the send_data() docs).
451                                         us.read_paused = true;
452                                         return written_len;
453                                 },
454                         }
455                 }
456         }
457
458         fn disconnect_socket(&mut self) {
459                 {
460                         let mut us = self.conn.lock().unwrap();
461                         us.rl_requested_disconnect = true;
462                         us.read_paused = true;
463                         // Wake up the sending thread, assuming it is still alive
464                         let _ = us.write_avail.try_send(());
465                         // Happy-path return:
466                         if !us.block_disconnect_socket { return; }
467                 }
468                 while self.conn.lock().unwrap().block_disconnect_socket {
469                         thread::yield_now();
470                 }
471         }
472 }
473 impl Clone for SocketDescriptor {
474         fn clone(&self) -> Self {
475                 Self {
476                         conn: Arc::clone(&self.conn),
477                         id: self.id,
478                 }
479         }
480 }
481 impl Eq for SocketDescriptor {}
482 impl PartialEq for SocketDescriptor {
483         fn eq(&self, o: &Self) -> bool {
484                 self.id == o.id
485         }
486 }
487 impl Hash for SocketDescriptor {
488         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
489                 self.id.hash(state);
490         }
491 }
492
493 #[cfg(test)]
494 mod tests {
495         use lightning::ln::features::*;
496         use lightning::ln::msgs::*;
497         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
498         use lightning::util::events::*;
499         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
500
501         use tokio::sync::mpsc;
502
503         use std::mem;
504         use std::sync::{Arc, Mutex};
505         use std::time::Duration;
506
507         pub struct TestLogger();
508         impl lightning::util::logger::Logger for TestLogger {
509                 fn log(&self, record: &lightning::util::logger::Record) {
510                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
511                 }
512         }
513
514         struct MsgHandler{
515                 expected_pubkey: PublicKey,
516                 pubkey_connected: mpsc::Sender<()>,
517                 pubkey_disconnected: mpsc::Sender<()>,
518                 msg_events: Mutex<Vec<MessageSendEvent>>,
519         }
520         impl RoutingMessageHandler for MsgHandler {
521                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
522                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
523                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
524                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
525                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
526                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
527                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
528         }
529         impl ChannelMessageHandler for MsgHandler {
530                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
531                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
532                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
533                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
534                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
535                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
536                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
537                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
538                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
539                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
540                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
541                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
542                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
543                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
544                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
545                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
546                         if *their_node_id == self.expected_pubkey {
547                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
548                         }
549                 }
550                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
551                         if *their_node_id == self.expected_pubkey {
552                                 self.pubkey_connected.clone().try_send(()).unwrap();
553                         }
554                 }
555                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
556                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
557         }
558         impl MessageSendEventsProvider for MsgHandler {
559                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
560                         let mut ret = Vec::new();
561                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
562                         ret
563                 }
564         }
565
566         async fn do_basic_connection_test() {
567                 let secp_ctx = Secp256k1::new();
568                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
569                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
570                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
571                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
572
573                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
574                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
575                 let a_handler = Arc::new(MsgHandler {
576                         expected_pubkey: b_pub,
577                         pubkey_connected: a_connected_sender,
578                         pubkey_disconnected: a_disconnected_sender,
579                         msg_events: Mutex::new(Vec::new()),
580                 });
581                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
582                         chan_handler: Arc::clone(&a_handler),
583                         route_handler: Arc::clone(&a_handler),
584                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
585
586                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
587                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
588                 let b_handler = Arc::new(MsgHandler {
589                         expected_pubkey: a_pub,
590                         pubkey_connected: b_connected_sender,
591                         pubkey_disconnected: b_disconnected_sender,
592                         msg_events: Mutex::new(Vec::new()),
593                 });
594                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
595                         chan_handler: Arc::clone(&b_handler),
596                         route_handler: Arc::clone(&b_handler),
597                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
598
599                 // We bind on localhost, hoping the environment is properly configured with a local
600                 // address. This may not always be the case in containers and the like, so if this test is
601                 // failing for you check that you have a loopback interface and it is configured with
602                 // 127.0.0.1.
603                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
604                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
605                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
606                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
607                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
608                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
609                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
610
611                 let (sender, _receiver) = mpsc::channel(2);
612                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
613                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
614
615                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
616                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
617
618                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
619                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
620                 });
621                 assert!(a_disconnected.try_recv().is_err());
622                 assert!(b_disconnected.try_recv().is_err());
623
624                 a_manager.process_events();
625                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
626                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
627
628                 fut_a.await;
629                 fut_b.await;
630         }
631
632         #[tokio::test(threaded_scheduler)]
633         async fn basic_threaded_connection_test() {
634                 do_basic_connection_test().await;
635         }
636         #[tokio::test]
637         async fn basic_unthreaded_connection_test() {
638                 do_basic_connection_test().await;
639         }
640 }