lightning-net-tokio: Allow custom smart pointers
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
21 //! their individual docs for details.
22 //!
23 //! # Example
24 //! ```
25 //! use std::net::TcpStream;
26 //! use bitcoin::secp256k1::PublicKey;
27 //! use lightning::util::events::{Event, EventHandler, EventsProvider};
28 //! use std::net::SocketAddr;
29 //! use std::sync::Arc;
30 //!
31 //! // Define concrete types for our high-level objects:
32 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface + Send + Sync;
33 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator + Send + Sync;
34 //! type Logger = dyn lightning::util::logger::Logger + Send + Sync;
35 //! type ChainAccess = dyn lightning::chain::Access + Send + Sync;
36 //! type ChainFilter = dyn lightning::chain::Filter + Send + Sync;
37 //! type DataPersister = dyn lightning::chain::chainmonitor::Persist<lightning::chain::keysinterface::InMemorySigner> + Send + Sync;
38 //! type ChainMonitor = lightning::chain::chainmonitor::ChainMonitor<lightning::chain::keysinterface::InMemorySigner, Arc<ChainFilter>, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<DataPersister>>;
39 //! type ChannelManager = Arc<lightning::ln::channelmanager::SimpleArcChannelManager<ChainMonitor, TxBroadcaster, FeeEstimator, Logger>>;
40 //! type PeerManager = Arc<lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChainMonitor, TxBroadcaster, FeeEstimator, ChainAccess, Logger>>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
45 //!     loop {
46 //!             let event_handler = |event: &Event| {
47 //!                     // Handle the event!
48 //!             };
49 //!             channel_manager.await_persistable_update();
50 //!             channel_manager.process_pending_events(&event_handler);
51 //!             chain_monitor.process_pending_events(&event_handler);
52 //!     }
53 //! }
54 //!
55 //! // Begin reading from a newly accepted socket and talk to the peer:
56 //! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
57 //!     lightning_net_tokio::setup_inbound(peer_manager, socket);
58 //!     loop {
59 //!             let event_handler = |event: &Event| {
60 //!                     // Handle the event!
61 //!             };
62 //!             channel_manager.await_persistable_update();
63 //!             channel_manager.process_pending_events(&event_handler);
64 //!             chain_monitor.process_pending_events(&event_handler);
65 //!     }
66 //! }
67 //! ```
68
69 #![deny(broken_intra_doc_links)]
70 #![deny(missing_docs)]
71
72 #![cfg_attr(docsrs, feature(doc_auto_cfg))]
73
74 use bitcoin::secp256k1::PublicKey;
75
76 use tokio::net::TcpStream;
77 use tokio::{io, time};
78 use tokio::sync::mpsc;
79 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
80
81 use lightning::ln::peer_handler;
82 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
83 use lightning::ln::peer_handler::CustomMessageHandler;
84 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, NetAddress};
85 use lightning::util::logger::Logger;
86
87 use std::ops::Deref;
88 use std::task;
89 use std::net::SocketAddr;
90 use std::net::TcpStream as StdTcpStream;
91 use std::sync::{Arc, Mutex};
92 use std::sync::atomic::{AtomicU64, Ordering};
93 use std::time::Duration;
94 use std::hash::Hash;
95
96 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
97
98 /// Connection contains all our internal state for a connection - we hold a reference to the
99 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
100 /// read future (which is returned by schedule_read).
101 struct Connection {
102         writer: Option<io::WriteHalf<TcpStream>>,
103         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
104         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
105         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
106         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
107         // the schedule_read stack.
108         //
109         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
110         // runtime with functions templated by the Arc<PeerManager> type, calling
111         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
112         // more unsafe voodo than I really feel like writing.
113         write_avail: mpsc::Sender<()>,
114         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
115         // so by setting read_paused. At that point, the read task will stop reading bytes from the
116         // socket. To wake it up (without otherwise changing its state, we can push a value into this
117         // Sender.
118         read_waker: mpsc::Sender<()>,
119         read_paused: bool,
120         rl_requested_disconnect: bool,
121         id: u64,
122 }
123 impl Connection {
124         async fn poll_event_process<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, mut event_receiver: mpsc::Receiver<()>) where
125                         CMH: Deref + 'static + Send + Sync,
126                         RMH: Deref + 'static + Send + Sync,
127                         L: Deref + 'static + Send + Sync,
128                         UMH: Deref + 'static + Send + Sync,
129                         CMH::Target: ChannelMessageHandler + Send + Sync,
130                         RMH::Target: RoutingMessageHandler + Send + Sync,
131                         L::Target: Logger + Send + Sync,
132                         UMH::Target: CustomMessageHandler + Send + Sync,
133     {
134                 loop {
135                         if event_receiver.recv().await.is_none() {
136                                 return;
137                         }
138                         peer_manager.process_events();
139                 }
140         }
141
142         async fn schedule_read<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
143                         CMH: Deref + 'static + Send + Sync,
144                         RMH: Deref + 'static + Send + Sync,
145                         L: Deref + 'static + Send + Sync,
146                         UMH: Deref + 'static + Send + Sync,
147                         CMH::Target: ChannelMessageHandler + 'static + Send + Sync,
148                         RMH::Target: RoutingMessageHandler + 'static + Send + Sync,
149                         L::Target: Logger + 'static + Send + Sync,
150                         UMH::Target: CustomMessageHandler + 'static + Send + Sync,
151         {
152                 // Create a waker to wake up poll_event_process, above
153                 let (event_waker, event_receiver) = mpsc::channel(1);
154                 tokio::spawn(Self::poll_event_process(Arc::clone(&peer_manager), event_receiver));
155
156                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
157                 let mut buf = [0; 8192];
158
159                 let mut our_descriptor = SocketDescriptor::new(us.clone());
160                 // An enum describing why we did/are disconnecting:
161                 enum Disconnect {
162                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
163                         // SocketDescriptor::disconnect_socket.
164                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
165                         // already knows we're disconnected.
166                         CloseConnection,
167                         // The connection was disconnected for some other reason, ie because the socket was
168                         // closed.
169                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
170                         // Rust-Lightning that the socket is gone.
171                         PeerDisconnected
172                 }
173                 let disconnect_type = loop {
174                         let read_paused = {
175                                 let us_lock = us.lock().unwrap();
176                                 if us_lock.rl_requested_disconnect {
177                                         break Disconnect::CloseConnection;
178                                 }
179                                 us_lock.read_paused
180                         };
181                         tokio::select! {
182                                 v = write_avail_receiver.recv() => {
183                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
184                                         if let Err(_) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
185                                                 break Disconnect::CloseConnection;
186                                         }
187                                 },
188                                 _ = read_wake_receiver.recv() => {},
189                                 read = reader.read(&mut buf), if !read_paused => match read {
190                                         Ok(0) => break Disconnect::PeerDisconnected,
191                                         Ok(len) => {
192                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
193                                                 let mut us_lock = us.lock().unwrap();
194                                                 match read_res {
195                                                         Ok(pause_read) => {
196                                                                 if pause_read {
197                                                                         us_lock.read_paused = true;
198                                                                 }
199                                                         },
200                                                         Err(_) => break Disconnect::CloseConnection,
201                                                 }
202                                         },
203                                         Err(_) => break Disconnect::PeerDisconnected,
204                                 },
205                         }
206                         let _ = event_waker.try_send(());
207
208                         // At this point we've processed a message or two, and reset the ping timer for this
209                         // peer, at least in the "are we still receiving messages" context, if we don't give up
210                         // our timeslice to another task we may just spin on this peer, starving other peers
211                         // and eventually disconnecting them for ping timeouts. Instead, we explicitly yield
212                         // here.
213                         tokio::task::yield_now().await;
214                 };
215                 let writer_option = us.lock().unwrap().writer.take();
216                 if let Some(mut writer) = writer_option {
217                         // If the socket is already closed, shutdown() will fail, so just ignore it.
218                         let _ = writer.shutdown().await;
219                 }
220                 if let Disconnect::PeerDisconnected = disconnect_type {
221                         peer_manager.socket_disconnected(&our_descriptor);
222                         peer_manager.process_events();
223                 }
224         }
225
226         fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
227                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
228                 // PeerManager, we will eventually get notified that there is room in the socket to write
229                 // new bytes, which will generate an event. That event will be popped off the queue before
230                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
231                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
232                 let (write_avail, write_receiver) = mpsc::channel(1);
233                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
234                 // we shove a value into the channel which comes after we've reset the read_paused bool to
235                 // false.
236                 let (read_waker, read_receiver) = mpsc::channel(1);
237                 stream.set_nonblocking(true).unwrap();
238                 let (reader, writer) = io::split(TcpStream::from_std(stream).unwrap());
239
240                 (reader, write_receiver, read_receiver,
241                 Arc::new(Mutex::new(Self {
242                         writer: Some(writer), write_avail, read_waker, read_paused: false,
243                         rl_requested_disconnect: false,
244                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
245                 })))
246         }
247 }
248
249 fn get_addr_from_stream(stream: &StdTcpStream) -> Option<NetAddress> {
250         match stream.peer_addr() {
251                 Ok(SocketAddr::V4(sockaddr)) => Some(NetAddress::IPv4 {
252                         addr: sockaddr.ip().octets(),
253                         port: sockaddr.port(),
254                 }),
255                 Ok(SocketAddr::V6(sockaddr)) => Some(NetAddress::IPv6 {
256                         addr: sockaddr.ip().octets(),
257                         port: sockaddr.port(),
258                 }),
259                 Err(_) => None,
260         }
261 }
262
263 /// Process incoming messages and feed outgoing messages on the provided socket generated by
264 /// accepting an incoming connection.
265 ///
266 /// The returned future will complete when the peer is disconnected and associated handling
267 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
268 /// not need to poll the provided future in order to make progress.
269 pub fn setup_inbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
270                 CMH: Deref + 'static + Send + Sync,
271                 RMH: Deref + 'static + Send + Sync,
272                 L: Deref + 'static + Send + Sync,
273                 UMH: Deref + 'static + Send + Sync,
274                 CMH::Target: ChannelMessageHandler + Send + Sync,
275                 RMH::Target: RoutingMessageHandler + Send + Sync,
276                 L::Target: Logger + Send + Sync,
277                 UMH::Target: CustomMessageHandler + Send + Sync,
278 {
279         let remote_addr = get_addr_from_stream(&stream);
280         let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
281         #[cfg(debug_assertions)]
282         let last_us = Arc::clone(&us);
283
284         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone()), remote_addr) {
285                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
286         } else {
287                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
288                 // requirements.
289                 None
290         };
291
292         async move {
293                 if let Some(handle) = handle_opt {
294                         if let Err(e) = handle.await {
295                                 assert!(e.is_cancelled());
296                         } else {
297                                 // This is certainly not guaranteed to always be true - the read loop may exit
298                                 // while there are still pending write wakers that need to be woken up after the
299                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
300                                 // keep too many wakers around, this makes sense. The race should be rare (we do
301                                 // some work after shutdown()) and an error would be a major memory leak.
302                                 #[cfg(debug_assertions)]
303                                 assert!(Arc::try_unwrap(last_us).is_ok());
304                         }
305                 }
306         }
307 }
308
309 /// Process incoming messages and feed outgoing messages on the provided socket generated by
310 /// making an outbound connection which is expected to be accepted by a peer with the given
311 /// public key. The relevant processing is set to run free (via tokio::spawn).
312 ///
313 /// The returned future will complete when the peer is disconnected and associated handling
314 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
315 /// not need to poll the provided future in order to make progress.
316 pub fn setup_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
317                 CMH: Deref + 'static + Send + Sync,
318                 RMH: Deref + 'static + Send + Sync,
319                 L: Deref + 'static + Send + Sync,
320                 UMH: Deref + 'static + Send + Sync,
321                 CMH::Target: ChannelMessageHandler + Send + Sync,
322                 RMH::Target: RoutingMessageHandler + Send + Sync,
323                 L::Target: Logger + Send + Sync,
324                 UMH::Target: CustomMessageHandler + Send + Sync,
325 {
326         let remote_addr = get_addr_from_stream(&stream);
327         let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
328         #[cfg(debug_assertions)]
329         let last_us = Arc::clone(&us);
330         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone()), remote_addr) {
331                 Some(tokio::spawn(async move {
332                         // We should essentially always have enough room in a TCP socket buffer to send the
333                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
334                         // fail writes and wake us back up later to write. Thus, we handle a single
335                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
336                         // and use a relatively tight timeout.
337                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
338                                 loop {
339                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
340                                                 v if v == initial_send.len() => break Ok(()),
341                                                 0 => {
342                                                         write_receiver.recv().await;
343                                                         // In theory we could check for if we've been instructed to disconnect
344                                                         // the peer here, but its OK to just skip it - we'll check for it in
345                                                         // schedule_read prior to any relevant calls into RL.
346                                                 },
347                                                 _ => {
348                                                         eprintln!("Failed to write first full message to socket!");
349                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
350                                                         break Err(());
351                                                 }
352                                         }
353                                 }
354                         }).await {
355                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
356                         }
357                 }))
358         } else {
359                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
360                 // requirements.
361                 None
362         };
363
364         async move {
365                 if let Some(handle) = handle_opt {
366                         if let Err(e) = handle.await {
367                                 assert!(e.is_cancelled());
368                         } else {
369                                 // This is certainly not guaranteed to always be true - the read loop may exit
370                                 // while there are still pending write wakers that need to be woken up after the
371                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
372                                 // keep too many wakers around, this makes sense. The race should be rare (we do
373                                 // some work after shutdown()) and an error would be a major memory leak.
374                                 #[cfg(debug_assertions)]
375                                 assert!(Arc::try_unwrap(last_us).is_ok());
376                         }
377                 }
378         }
379 }
380
381 /// Process incoming messages and feed outgoing messages on a new connection made to the given
382 /// socket address which is expected to be accepted by a peer with the given public key (by
383 /// scheduling futures with tokio::spawn).
384 ///
385 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
386 ///
387 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
388 /// connection setup. That future then returns a future which will complete when the peer is
389 /// disconnected and associated handling futures are freed, though, because all processing in said
390 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
391 /// make progress.
392 pub async fn connect_outbound<CMH, RMH, L, UMH>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, CMH, RMH, L, UMH>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
393                 CMH: Deref + 'static + Send + Sync,
394                 RMH: Deref + 'static + Send + Sync,
395                 L: Deref + 'static + Send + Sync,
396                 UMH: Deref + 'static + Send + Sync,
397                 CMH::Target: ChannelMessageHandler + Send + Sync,
398                 RMH::Target: RoutingMessageHandler + Send + Sync,
399                 L::Target: Logger + Send + Sync,
400                 UMH::Target: CustomMessageHandler + Send + Sync,
401 {
402         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
403                 Some(setup_outbound(peer_manager, their_node_id, stream))
404         } else { None }
405 }
406
407 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
408         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
409
410 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
411         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
412 }
413 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
414 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
415 // sending thread may have already gone away due to a socket close, in which case there's nothing
416 // to wake up anyway.
417 fn wake_socket_waker(orig_ptr: *const ()) {
418         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
419         let _ = sender.try_send(());
420         drop_socket_waker(orig_ptr);
421 }
422 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
423         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
424         let sender = unsafe { (*sender_ptr).clone() };
425         let _ = sender.try_send(());
426 }
427 fn drop_socket_waker(orig_ptr: *const ()) {
428         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
429         // _orig_box is now dropped
430 }
431 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
432         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
433         let new_ptr = new_box as *const mpsc::Sender<()>;
434         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
435 }
436
437 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
438 /// type in the template of PeerHandler.
439 pub struct SocketDescriptor {
440         conn: Arc<Mutex<Connection>>,
441         id: u64,
442 }
443 impl SocketDescriptor {
444         fn new(conn: Arc<Mutex<Connection>>) -> Self {
445                 let id = conn.lock().unwrap().id;
446                 Self { conn, id }
447         }
448 }
449 impl peer_handler::SocketDescriptor for SocketDescriptor {
450         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
451                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
452                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
453                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
454                 // processing future which will call write_buffer_space_avail and we'll end up back here.
455                 let mut us = self.conn.lock().unwrap();
456                 if us.writer.is_none() {
457                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
458                         return 0;
459                 }
460
461                 if resume_read && us.read_paused {
462                         // The schedule_read future may go to lock up but end up getting woken up by there
463                         // being more room in the write buffer, dropping the other end of this Sender
464                         // before we get here, so we ignore any failures to wake it up.
465                         us.read_paused = false;
466                         let _ = us.read_waker.try_send(());
467                 }
468                 if data.is_empty() { return 0; }
469                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
470                 let mut ctx = task::Context::from_waker(&waker);
471                 let mut written_len = 0;
472                 loop {
473                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
474                                 task::Poll::Ready(Ok(res)) => {
475                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
476                                         // know how to handle it if it does (cause it should be a Poll::Pending
477                                         // instead):
478                                         assert_ne!(res, 0);
479                                         written_len += res;
480                                         if written_len == data.len() { return written_len; }
481                                 },
482                                 task::Poll::Ready(Err(e)) => {
483                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
484                                         // know how to handle it if it does (cause it should be a Poll::Pending
485                                         // instead):
486                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
487                                         // Probably we've already been closed, just return what we have and let the
488                                         // read thread handle closing logic.
489                                         return written_len;
490                                 },
491                                 task::Poll::Pending => {
492                                         // We're queued up for a write event now, but we need to make sure we also
493                                         // pause read given we're now waiting on the remote end to ACK (and in
494                                         // accordance with the send_data() docs).
495                                         us.read_paused = true;
496                                         // Further, to avoid any current pending read causing a `read_event` call, wake
497                                         // up the read_waker and restart its loop.
498                                         let _ = us.read_waker.try_send(());
499                                         return written_len;
500                                 },
501                         }
502                 }
503         }
504
505         fn disconnect_socket(&mut self) {
506                 let mut us = self.conn.lock().unwrap();
507                 us.rl_requested_disconnect = true;
508                 // Wake up the sending thread, assuming it is still alive
509                 let _ = us.write_avail.try_send(());
510         }
511 }
512 impl Clone for SocketDescriptor {
513         fn clone(&self) -> Self {
514                 Self {
515                         conn: Arc::clone(&self.conn),
516                         id: self.id,
517                 }
518         }
519 }
520 impl Eq for SocketDescriptor {}
521 impl PartialEq for SocketDescriptor {
522         fn eq(&self, o: &Self) -> bool {
523                 self.id == o.id
524         }
525 }
526 impl Hash for SocketDescriptor {
527         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
528                 self.id.hash(state);
529         }
530 }
531
532 #[cfg(test)]
533 mod tests {
534         use lightning::ln::features::*;
535         use lightning::ln::msgs::*;
536         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
537         use lightning::util::events::*;
538         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
539
540         use tokio::sync::mpsc;
541
542         use std::mem;
543         use std::sync::atomic::{AtomicBool, Ordering};
544         use std::sync::{Arc, Mutex};
545         use std::time::Duration;
546
547         pub struct TestLogger();
548         impl lightning::util::logger::Logger for TestLogger {
549                 fn log(&self, record: &lightning::util::logger::Record) {
550                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
551                 }
552         }
553
554         struct MsgHandler{
555                 expected_pubkey: PublicKey,
556                 pubkey_connected: mpsc::Sender<()>,
557                 pubkey_disconnected: mpsc::Sender<()>,
558                 disconnected_flag: AtomicBool,
559                 msg_events: Mutex<Vec<MessageSendEvent>>,
560         }
561         impl RoutingMessageHandler for MsgHandler {
562                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
563                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
564                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
565                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
566                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
567                 fn peer_connected(&self, _their_node_id: &PublicKey, _init_msg: &Init) { }
568                 fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
569                 fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
570                 fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
571                 fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
572         }
573         impl ChannelMessageHandler for MsgHandler {
574                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
575                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
576                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
577                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
578                 fn handle_channel_ready(&self, _their_node_id: &PublicKey, _msg: &ChannelReady) {}
579                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _their_features: &InitFeatures, _msg: &Shutdown) {}
580                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
581                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
582                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
583                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
584                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
585                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
586                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
587                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
588                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
589                 fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &ChannelUpdate) {}
590                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
591                         if *their_node_id == self.expected_pubkey {
592                                 self.disconnected_flag.store(true, Ordering::SeqCst);
593                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
594                         }
595                 }
596                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
597                         if *their_node_id == self.expected_pubkey {
598                                 self.pubkey_connected.clone().try_send(()).unwrap();
599                         }
600                 }
601                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
602                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
603         }
604         impl MessageSendEventsProvider for MsgHandler {
605                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
606                         let mut ret = Vec::new();
607                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
608                         ret
609                 }
610         }
611
612         fn make_tcp_connection() -> (std::net::TcpStream, std::net::TcpStream) {
613                 if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
614                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
615                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:19735") {
616                         (std::net::TcpStream::connect("127.0.0.1:19735").unwrap(), listener.accept().unwrap().0)
617                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9997") {
618                         (std::net::TcpStream::connect("127.0.0.1:9997").unwrap(), listener.accept().unwrap().0)
619                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9998") {
620                         (std::net::TcpStream::connect("127.0.0.1:9998").unwrap(), listener.accept().unwrap().0)
621                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
622                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
623                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
624                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
625                 } else { panic!("Failed to bind to v4 localhost on common ports"); }
626         }
627
628         async fn do_basic_connection_test() {
629                 let secp_ctx = Secp256k1::new();
630                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
631                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
632                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
633                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
634
635                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
636                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
637                 let a_handler = Arc::new(MsgHandler {
638                         expected_pubkey: b_pub,
639                         pubkey_connected: a_connected_sender,
640                         pubkey_disconnected: a_disconnected_sender,
641                         disconnected_flag: AtomicBool::new(false),
642                         msg_events: Mutex::new(Vec::new()),
643                 });
644                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
645                         chan_handler: Arc::clone(&a_handler),
646                         route_handler: Arc::clone(&a_handler),
647                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
648
649                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
650                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
651                 let b_handler = Arc::new(MsgHandler {
652                         expected_pubkey: a_pub,
653                         pubkey_connected: b_connected_sender,
654                         pubkey_disconnected: b_disconnected_sender,
655                         disconnected_flag: AtomicBool::new(false),
656                         msg_events: Mutex::new(Vec::new()),
657                 });
658                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
659                         chan_handler: Arc::clone(&b_handler),
660                         route_handler: Arc::clone(&b_handler),
661                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
662
663                 // We bind on localhost, hoping the environment is properly configured with a local
664                 // address. This may not always be the case in containers and the like, so if this test is
665                 // failing for you check that you have a loopback interface and it is configured with
666                 // 127.0.0.1.
667                 let (conn_a, conn_b) = make_tcp_connection();
668
669                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
670                 let fut_b = super::setup_inbound(b_manager, conn_b);
671
672                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
673                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
674
675                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
676                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
677                 });
678                 assert!(!a_handler.disconnected_flag.load(Ordering::SeqCst));
679                 assert!(!b_handler.disconnected_flag.load(Ordering::SeqCst));
680
681                 a_manager.process_events();
682                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
683                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
684                 assert!(a_handler.disconnected_flag.load(Ordering::SeqCst));
685                 assert!(b_handler.disconnected_flag.load(Ordering::SeqCst));
686
687                 fut_a.await;
688                 fut_b.await;
689         }
690
691         #[tokio::test(flavor = "multi_thread")]
692         async fn basic_threaded_connection_test() {
693                 do_basic_connection_test().await;
694         }
695
696         #[tokio::test]
697         async fn basic_unthreaded_connection_test() {
698                 do_basic_connection_test().await;
699         }
700
701         async fn race_disconnect_accept() {
702                 // Previously, if we handed an already-disconnected socket to `setup_inbound` we'd panic.
703                 // This attempts to find other similar races by opening connections and shutting them down
704                 // while connecting. Sadly in testing this did *not* reproduce the previous issue.
705                 let secp_ctx = Secp256k1::new();
706                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
707                 let b_key = SecretKey::from_slice(&[2; 32]).unwrap();
708                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
709
710                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
711                         chan_handler: Arc::new(lightning::ln::peer_handler::ErroringMessageHandler::new()),
712                         route_handler: Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{}),
713                 }, a_key, &[1; 32], Arc::new(TestLogger()), Arc::new(lightning::ln::peer_handler::IgnoringMessageHandler{})));
714
715                 // Make two connections, one for an inbound and one for an outbound connection
716                 let conn_a = {
717                         let (conn_a, _) = make_tcp_connection();
718                         conn_a
719                 };
720                 let conn_b = {
721                         let (_, conn_b) = make_tcp_connection();
722                         conn_b
723                 };
724
725                 // Call connection setup inside new tokio tasks.
726                 let manager_reference = Arc::clone(&a_manager);
727                 tokio::spawn(async move {
728                         super::setup_inbound(manager_reference, conn_a).await
729                 });
730                 tokio::spawn(async move {
731                         super::setup_outbound(a_manager, b_pub, conn_b).await
732                 });
733         }
734
735         #[tokio::test(flavor = "multi_thread")]
736         async fn threaded_race_disconnect_accept() {
737                 race_disconnect_accept().await;
738         }
739
740         #[tokio::test]
741         async fn unthreaded_race_disconnect_accept() {
742                 race_disconnect_accept().await;
743         }
744 }