Relicense as dual Apache-2.0 + MIT
[rust-lightning] / lightning-net-tokio / src / lib.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! A socket handling library for those running in Tokio environments who wish to use
11 //! rust-lightning with native TcpStreams.
12 //!
13 //! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
14 //! TcpStream and a reference to a PeerManager and the rest is handled", except for the
15 //! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
16 //!
17 //! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
18 //! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
19 //!
20 //! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
21 //! their individual docs for more. All three take a
22 //! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
23 //! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
24 //! The call site should, thus, look something like this:
25 //! ```
26 //! use tokio::sync::mpsc;
27 //! use tokio::net::TcpStream;
28 //! use bitcoin::secp256k1::key::PublicKey;
29 //! use lightning::util::events::EventsProvider;
30 //! use std::net::SocketAddr;
31 //! use std::sync::Arc;
32 //!
33 //! // Define concrete types for our high-level objects:
34 //! type TxBroadcaster = dyn lightning::chain::chaininterface::BroadcasterInterface;
35 //! type FeeEstimator = dyn lightning::chain::chaininterface::FeeEstimator;
36 //! type Logger = dyn lightning::util::logger::Logger;
37 //! type ChainWatchInterface = dyn lightning::chain::chaininterface::ChainWatchInterface;
38 //! type ChannelMonitor = lightning::ln::channelmonitor::SimpleManyChannelMonitor<lightning::chain::transaction::OutPoint, lightning::chain::keysinterface::InMemoryChannelKeys, Arc<TxBroadcaster>, Arc<FeeEstimator>, Arc<Logger>, Arc<ChainWatchInterface>>;
39 //! type ChannelManager = lightning::ln::channelmanager::SimpleArcChannelManager<ChannelMonitor, TxBroadcaster, FeeEstimator, Logger>;
40 //! type PeerManager = lightning::ln::peer_handler::SimpleArcPeerManager<lightning_net_tokio::SocketDescriptor, ChannelMonitor, TxBroadcaster, FeeEstimator, ChainWatchInterface, Logger>;
41 //!
42 //! // Connect to node with pubkey their_node_id at addr:
43 //! async fn connect_to_node(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
44 //!     let (sender, mut receiver) = mpsc::channel(2);
45 //!     lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
46 //!     loop {
47 //!         receiver.recv().await;
48 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
49 //!             // Handle the event!
50 //!         }
51 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
52 //!             // Handle the event!
53 //!         }
54 //!     }
55 //! }
56 //!
57 //! // Begin reading from a newly accepted socket and talk to the peer:
58 //! async fn accept_socket(peer_manager: PeerManager, channel_monitor: Arc<ChannelMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
59 //!     let (sender, mut receiver) = mpsc::channel(2);
60 //!     lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
61 //!     loop {
62 //!         receiver.recv().await;
63 //!         for _event in channel_manager.get_and_clear_pending_events().drain(..) {
64 //!             // Handle the event!
65 //!         }
66 //!         for _event in channel_monitor.get_and_clear_pending_events().drain(..) {
67 //!             // Handle the event!
68 //!         }
69 //!     }
70 //! }
71 //! ```
72
73 use bitcoin::secp256k1::key::PublicKey;
74
75 use tokio::net::TcpStream;
76 use tokio::{io, time};
77 use tokio::sync::mpsc;
78 use tokio::io::{AsyncReadExt, AsyncWrite, AsyncWriteExt};
79
80 use lightning::ln::peer_handler;
81 use lightning::ln::peer_handler::SocketDescriptor as LnSocketTrait;
82 use lightning::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler};
83 use lightning::util::logger::Logger;
84
85 use std::{task, thread};
86 use std::net::SocketAddr;
87 use std::sync::{Arc, Mutex, MutexGuard};
88 use std::sync::atomic::{AtomicU64, Ordering};
89 use std::time::Duration;
90 use std::hash::Hash;
91
92 static ID_COUNTER: AtomicU64 = AtomicU64::new(0);
93
94 /// Connection contains all our internal state for a connection - we hold a reference to the
95 /// Connection object (in an Arc<Mutex<>>) in each SocketDescriptor we create as well as in the
96 /// read future (which is returned by schedule_read).
97 struct Connection {
98         writer: Option<io::WriteHalf<TcpStream>>,
99         event_notify: mpsc::Sender<()>,
100         // Because our PeerManager is templated by user-provided types, and we can't (as far as I can
101         // tell) have a const RawWakerVTable built out of templated functions, we need some indirection
102         // between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
103         // This provides that indirection, with a Sender which gets handed to the PeerManager Arc on
104         // the schedule_read stack.
105         //
106         // An alternative (likely more effecient) approach would involve creating a RawWakerVTable at
107         // runtime with functions templated by the Arc<PeerManager> type, calling
108         // write_buffer_space_avail directly from tokio's write wake, however doing so would require
109         // more unsafe voodo than I really feel like writing.
110         write_avail: mpsc::Sender<()>,
111         // When we are told by rust-lightning to pause read (because we have writes backing up), we do
112         // so by setting read_paused. At that point, the read task will stop reading bytes from the
113         // socket. To wake it up (without otherwise changing its state, we can push a value into this
114         // Sender.
115         read_waker: mpsc::Sender<()>,
116         // When we are told by rust-lightning to disconnect, we can't return to rust-lightning until we
117         // are sure we won't call any more read/write PeerManager functions with the same connection.
118         // This is set to true if we're in such a condition (with disconnect checked before with the
119         // top-level mutex held) and false when we can return.
120         block_disconnect_socket: bool,
121         read_paused: bool,
122         rl_requested_disconnect: bool,
123         id: u64,
124 }
125 impl Connection {
126         fn event_trigger(us: &mut MutexGuard<Self>) {
127                 match us.event_notify.try_send(()) {
128                         Ok(_) => {},
129                         Err(mpsc::error::TrySendError::Full(_)) => {
130                                 // Ignore full errors as we just need the user to poll after this point, so if they
131                                 // haven't received the last send yet, it doesn't matter.
132                         },
133                         _ => panic!()
134                 }
135         }
136         async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
137                         CMH: ChannelMessageHandler + 'static,
138                         RMH: RoutingMessageHandler + 'static,
139                         L: Logger + 'static + ?Sized {
140                 let peer_manager_ref = peer_manager.clone();
141                 // 8KB is nice and big but also should never cause any issues with stack overflowing.
142                 let mut buf = [0; 8192];
143
144                 let mut our_descriptor = SocketDescriptor::new(us.clone());
145                 // An enum describing why we did/are disconnecting:
146                 enum Disconnect {
147                         // Rust-Lightning told us to disconnect, either by returning an Err or by calling
148                         // SocketDescriptor::disconnect_socket.
149                         // In this case, we do not call peer_manager.socket_disconnected() as Rust-Lightning
150                         // already knows we're disconnected.
151                         CloseConnection,
152                         // The connection was disconnected for some other reason, ie because the socket was
153                         // closed.
154                         // In this case, we do need to call peer_manager.socket_disconnected() to inform
155                         // Rust-Lightning that the socket is gone.
156                         PeerDisconnected
157                 };
158                 let disconnect_type = loop {
159                         macro_rules! shutdown_socket {
160                                 ($err: expr, $need_disconnect: expr) => { {
161                                         println!("Disconnecting peer due to {}!", $err);
162                                         break $need_disconnect;
163                                 } }
164                         }
165
166                         macro_rules! prepare_read_write_call {
167                                 () => { {
168                                         let mut us_lock = us.lock().unwrap();
169                                         if us_lock.rl_requested_disconnect {
170                                                 shutdown_socket!("disconnect_socket() call from RL", Disconnect::CloseConnection);
171                                         }
172                                         us_lock.block_disconnect_socket = true;
173                                 } }
174                         }
175
176                         let read_paused = us.lock().unwrap().read_paused;
177                         tokio::select! {
178                                 v = write_avail_receiver.recv() => {
179                                         assert!(v.is_some()); // We can't have dropped the sending end, its in the us Arc!
180                                         prepare_read_write_call!();
181                                         if let Err(e) = peer_manager.write_buffer_space_avail(&mut our_descriptor) {
182                                                 shutdown_socket!(e, Disconnect::CloseConnection);
183                                         }
184                                         us.lock().unwrap().block_disconnect_socket = false;
185                                 },
186                                 _ = read_wake_receiver.recv() => {},
187                                 read = reader.read(&mut buf), if !read_paused => match read {
188                                         Ok(0) => shutdown_socket!("Connection closed", Disconnect::PeerDisconnected),
189                                         Ok(len) => {
190                                                 prepare_read_write_call!();
191                                                 let read_res = peer_manager.read_event(&mut our_descriptor, &buf[0..len]);
192                                                 let mut us_lock = us.lock().unwrap();
193                                                 match read_res {
194                                                         Ok(pause_read) => {
195                                                                 if pause_read {
196                                                                         us_lock.read_paused = true;
197                                                                 }
198                                                                 Self::event_trigger(&mut us_lock);
199                                                         },
200                                                         Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
201                                                 }
202                                                 us_lock.block_disconnect_socket = false;
203                                         },
204                                         Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
205                                 },
206                         }
207                 };
208                 let writer_option = us.lock().unwrap().writer.take();
209                 if let Some(mut writer) = writer_option {
210                         // If the socket is already closed, shutdown() will fail, so just ignore it.
211                         let _ = writer.shutdown().await;
212                 }
213                 if let Disconnect::PeerDisconnected = disconnect_type {
214                         peer_manager_ref.socket_disconnected(&our_descriptor);
215                         Self::event_trigger(&mut us.lock().unwrap());
216                 }
217         }
218
219         fn new(event_notify: mpsc::Sender<()>, stream: TcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
220                 // We only ever need a channel of depth 1 here: if we returned a non-full write to the
221                 // PeerManager, we will eventually get notified that there is room in the socket to write
222                 // new bytes, which will generate an event. That event will be popped off the queue before
223                 // we call write_buffer_space_avail, ensuring that we have room to push a new () if, during
224                 // the write_buffer_space_avail() call, send_data() returns a non-full write.
225                 let (write_avail, write_receiver) = mpsc::channel(1);
226                 // Similarly here - our only goal is to make sure the reader wakes up at some point after
227                 // we shove a value into the channel which comes after we've reset the read_paused bool to
228                 // false.
229                 let (read_waker, read_receiver) = mpsc::channel(1);
230                 let (reader, writer) = io::split(stream);
231
232                 (reader, write_receiver, read_receiver,
233                 Arc::new(Mutex::new(Self {
234                         writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
235                         block_disconnect_socket: false, rl_requested_disconnect: false,
236                         id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
237                 })))
238         }
239 }
240
241 /// Process incoming messages and feed outgoing messages on the provided socket generated by
242 /// accepting an incoming connection.
243 ///
244 /// The returned future will complete when the peer is disconnected and associated handling
245 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
246 /// not need to poll the provided future in order to make progress.
247 ///
248 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
249 pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: TcpStream) -> impl std::future::Future<Output=()> where
250                 CMH: ChannelMessageHandler + 'static,
251                 RMH: RoutingMessageHandler + 'static,
252                 L: Logger + 'static + ?Sized {
253         let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
254         #[cfg(debug_assertions)]
255         let last_us = Arc::clone(&us);
256
257         let handle_opt = if let Ok(_) = peer_manager.new_inbound_connection(SocketDescriptor::new(us.clone())) {
258                 Some(tokio::spawn(Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver)))
259         } else {
260                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
261                 // requirements.
262                 None
263         };
264
265         async move {
266                 if let Some(handle) = handle_opt {
267                         if let Err(e) = handle.await {
268                                 assert!(e.is_cancelled());
269                         } else {
270                                 // This is certainly not guaranteed to always be true - the read loop may exit
271                                 // while there are still pending write wakers that need to be woken up after the
272                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
273                                 // keep too many wakers around, this makes sense. The race should be rare (we do
274                                 // some work after shutdown()) and an error would be a major memory leak.
275                                 #[cfg(debug_assertions)]
276                                 assert!(Arc::try_unwrap(last_us).is_ok());
277                         }
278                 }
279         }
280 }
281
282 /// Process incoming messages and feed outgoing messages on the provided socket generated by
283 /// making an outbound connection which is expected to be accepted by a peer with the given
284 /// public key. The relevant processing is set to run free (via tokio::spawn).
285 ///
286 /// The returned future will complete when the peer is disconnected and associated handling
287 /// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
288 /// not need to poll the provided future in order to make progress.
289 ///
290 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
291 pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: TcpStream) -> impl std::future::Future<Output=()> where
292                 CMH: ChannelMessageHandler + 'static,
293                 RMH: RoutingMessageHandler + 'static,
294                 L: Logger + 'static + ?Sized {
295         let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
296         #[cfg(debug_assertions)]
297         let last_us = Arc::clone(&us);
298
299         let handle_opt = if let Ok(initial_send) = peer_manager.new_outbound_connection(their_node_id, SocketDescriptor::new(us.clone())) {
300                 Some(tokio::spawn(async move {
301                         // We should essentially always have enough room in a TCP socket buffer to send the
302                         // initial 10s of bytes. However, tokio running in single-threaded mode will always
303                         // fail writes and wake us back up later to write. Thus, we handle a single
304                         // std::task::Poll::Pending but still expect to write the full set of bytes at once
305                         // and use a relatively tight timeout.
306                         if let Ok(Ok(())) = tokio::time::timeout(Duration::from_millis(100), async {
307                                 loop {
308                                         match SocketDescriptor::new(us.clone()).send_data(&initial_send, true) {
309                                                 v if v == initial_send.len() => break Ok(()),
310                                                 0 => {
311                                                         write_receiver.recv().await;
312                                                         // In theory we could check for if we've been instructed to disconnect
313                                                         // the peer here, but its OK to just skip it - we'll check for it in
314                                                         // schedule_read prior to any relevant calls into RL.
315                                                 },
316                                                 _ => {
317                                                         eprintln!("Failed to write first full message to socket!");
318                                                         peer_manager.socket_disconnected(&SocketDescriptor::new(Arc::clone(&us)));
319                                                         break Err(());
320                                                 }
321                                         }
322                                 }
323                         }).await {
324                                 Connection::schedule_read(peer_manager, us, reader, read_receiver, write_receiver).await;
325                         }
326                 }))
327         } else {
328                 // Note that we will skip socket_disconnected here, in accordance with the PeerManager
329                 // requirements.
330                 None
331         };
332
333         async move {
334                 if let Some(handle) = handle_opt {
335                         if let Err(e) = handle.await {
336                                 assert!(e.is_cancelled());
337                         } else {
338                                 // This is certainly not guaranteed to always be true - the read loop may exit
339                                 // while there are still pending write wakers that need to be woken up after the
340                                 // socket shutdown(). Still, as a check during testing, to make sure tokio doesn't
341                                 // keep too many wakers around, this makes sense. The race should be rare (we do
342                                 // some work after shutdown()) and an error would be a major memory leak.
343                                 #[cfg(debug_assertions)]
344                                 assert!(Arc::try_unwrap(last_us).is_ok());
345                         }
346                 }
347         }
348 }
349
350 /// Process incoming messages and feed outgoing messages on a new connection made to the given
351 /// socket address which is expected to be accepted by a peer with the given public key (by
352 /// scheduling futures with tokio::spawn).
353 ///
354 /// Shorthand for TcpStream::connect(addr) with a timeout followed by setup_outbound().
355 ///
356 /// Returns a future (as the fn is async) which needs to be polled to complete the connection and
357 /// connection setup. That future then returns a future which will complete when the peer is
358 /// disconnected and associated handling futures are freed, though, because all processing in said
359 /// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
360 /// make progress.
361 ///
362 /// See the module-level documentation for how to handle the event_notify mpsc::Sender.
363 pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
364                 CMH: ChannelMessageHandler + 'static,
365                 RMH: RoutingMessageHandler + 'static,
366                 L: Logger + 'static + ?Sized {
367         if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), TcpStream::connect(&addr)).await {
368                 Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
369         } else { None }
370 }
371
372 const SOCK_WAKER_VTABLE: task::RawWakerVTable =
373         task::RawWakerVTable::new(clone_socket_waker, wake_socket_waker, wake_socket_waker_by_ref, drop_socket_waker);
374
375 fn clone_socket_waker(orig_ptr: *const ()) -> task::RawWaker {
376         write_avail_to_waker(orig_ptr as *const mpsc::Sender<()>)
377 }
378 // When waking, an error should be fine. Most likely we got two send_datas in a row, both of which
379 // failed to fully write, but we only need to call write_buffer_space_avail() once. Otherwise, the
380 // sending thread may have already gone away due to a socket close, in which case there's nothing
381 // to wake up anyway.
382 fn wake_socket_waker(orig_ptr: *const ()) {
383         let sender = unsafe { &mut *(orig_ptr as *mut mpsc::Sender<()>) };
384         let _ = sender.try_send(());
385         drop_socket_waker(orig_ptr);
386 }
387 fn wake_socket_waker_by_ref(orig_ptr: *const ()) {
388         let sender_ptr = orig_ptr as *const mpsc::Sender<()>;
389         let mut sender = unsafe { (*sender_ptr).clone() };
390         let _ = sender.try_send(());
391 }
392 fn drop_socket_waker(orig_ptr: *const ()) {
393         let _orig_box = unsafe { Box::from_raw(orig_ptr as *mut mpsc::Sender<()>) };
394         // _orig_box is now dropped
395 }
396 fn write_avail_to_waker(sender: *const mpsc::Sender<()>) -> task::RawWaker {
397         let new_box = Box::leak(Box::new(unsafe { (*sender).clone() }));
398         let new_ptr = new_box as *const mpsc::Sender<()>;
399         task::RawWaker::new(new_ptr as *const (), &SOCK_WAKER_VTABLE)
400 }
401
402 /// The SocketDescriptor used to refer to sockets by a PeerHandler. This is pub only as it is a
403 /// type in the template of PeerHandler.
404 pub struct SocketDescriptor {
405         conn: Arc<Mutex<Connection>>,
406         id: u64,
407 }
408 impl SocketDescriptor {
409         fn new(conn: Arc<Mutex<Connection>>) -> Self {
410                 let id = conn.lock().unwrap().id;
411                 Self { conn, id }
412         }
413 }
414 impl peer_handler::SocketDescriptor for SocketDescriptor {
415         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize {
416                 // To send data, we take a lock on our Connection to access the WriteHalf of the TcpStream,
417                 // writing to it if there's room in the kernel buffer, or otherwise create a new Waker with
418                 // a SocketDescriptor in it which can wake up the write_avail Sender, waking up the
419                 // processing future which will call write_buffer_space_avail and we'll end up back here.
420                 let mut us = self.conn.lock().unwrap();
421                 if us.writer.is_none() {
422                         // The writer gets take()n when it is time to shut down, so just fast-return 0 here.
423                         return 0;
424                 }
425
426                 if resume_read && us.read_paused {
427                         // The schedule_read future may go to lock up but end up getting woken up by there
428                         // being more room in the write buffer, dropping the other end of this Sender
429                         // before we get here, so we ignore any failures to wake it up.
430                         us.read_paused = false;
431                         let _ = us.read_waker.try_send(());
432                 }
433                 if data.is_empty() { return 0; }
434                 let waker = unsafe { task::Waker::from_raw(write_avail_to_waker(&us.write_avail)) };
435                 let mut ctx = task::Context::from_waker(&waker);
436                 let mut written_len = 0;
437                 loop {
438                         match std::pin::Pin::new(us.writer.as_mut().unwrap()).poll_write(&mut ctx, &data[written_len..]) {
439                                 task::Poll::Ready(Ok(res)) => {
440                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
441                                         // know how to handle it if it does (cause it should be a Poll::Pending
442                                         // instead):
443                                         assert_ne!(res, 0);
444                                         written_len += res;
445                                         if written_len == data.len() { return written_len; }
446                                 },
447                                 task::Poll::Ready(Err(e)) => {
448                                         // The tokio docs *seem* to indicate this can't happen, and I certainly don't
449                                         // know how to handle it if it does (cause it should be a Poll::Pending
450                                         // instead):
451                                         assert_ne!(e.kind(), io::ErrorKind::WouldBlock);
452                                         // Probably we've already been closed, just return what we have and let the
453                                         // read thread handle closing logic.
454                                         return written_len;
455                                 },
456                                 task::Poll::Pending => {
457                                         // We're queued up for a write event now, but we need to make sure we also
458                                         // pause read given we're now waiting on the remote end to ACK (and in
459                                         // accordance with the send_data() docs).
460                                         us.read_paused = true;
461                                         return written_len;
462                                 },
463                         }
464                 }
465         }
466
467         fn disconnect_socket(&mut self) {
468                 {
469                         let mut us = self.conn.lock().unwrap();
470                         us.rl_requested_disconnect = true;
471                         us.read_paused = true;
472                         // Wake up the sending thread, assuming it is still alive
473                         let _ = us.write_avail.try_send(());
474                         // Happy-path return:
475                         if !us.block_disconnect_socket { return; }
476                 }
477                 while self.conn.lock().unwrap().block_disconnect_socket {
478                         thread::yield_now();
479                 }
480         }
481 }
482 impl Clone for SocketDescriptor {
483         fn clone(&self) -> Self {
484                 Self {
485                         conn: Arc::clone(&self.conn),
486                         id: self.id,
487                 }
488         }
489 }
490 impl Eq for SocketDescriptor {}
491 impl PartialEq for SocketDescriptor {
492         fn eq(&self, o: &Self) -> bool {
493                 self.id == o.id
494         }
495 }
496 impl Hash for SocketDescriptor {
497         fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
498                 self.id.hash(state);
499         }
500 }
501
502 #[cfg(test)]
503 mod tests {
504         use lightning::ln::features::*;
505         use lightning::ln::msgs::*;
506         use lightning::ln::peer_handler::{MessageHandler, PeerManager};
507         use lightning::util::events::*;
508         use bitcoin::secp256k1::{Secp256k1, SecretKey, PublicKey};
509
510         use tokio::sync::mpsc;
511
512         use std::mem;
513         use std::sync::{Arc, Mutex};
514         use std::time::Duration;
515
516         pub struct TestLogger();
517         impl lightning::util::logger::Logger for TestLogger {
518                 fn log(&self, record: &lightning::util::logger::Record) {
519                         println!("{:<5} [{} : {}, {}] {}", record.level.to_string(), record.module_path, record.file, record.line, record.args);
520                 }
521         }
522
523         struct MsgHandler{
524                 expected_pubkey: PublicKey,
525                 pubkey_connected: mpsc::Sender<()>,
526                 pubkey_disconnected: mpsc::Sender<()>,
527                 msg_events: Mutex<Vec<MessageSendEvent>>,
528         }
529         impl RoutingMessageHandler for MsgHandler {
530                 fn handle_node_announcement(&self, _msg: &NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
531                 fn handle_channel_announcement(&self, _msg: &ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
532                 fn handle_channel_update(&self, _msg: &ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
533                 fn handle_htlc_fail_channel_update(&self, _update: &HTLCFailChannelUpdate) { }
534                 fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> { Vec::new() }
535                 fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec<NodeAnnouncement> { Vec::new() }
536                 fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool { false }
537         }
538         impl ChannelMessageHandler for MsgHandler {
539                 fn handle_open_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &OpenChannel) {}
540                 fn handle_accept_channel(&self, _their_node_id: &PublicKey, _their_features: InitFeatures, _msg: &AcceptChannel) {}
541                 fn handle_funding_created(&self, _their_node_id: &PublicKey, _msg: &FundingCreated) {}
542                 fn handle_funding_signed(&self, _their_node_id: &PublicKey, _msg: &FundingSigned) {}
543                 fn handle_funding_locked(&self, _their_node_id: &PublicKey, _msg: &FundingLocked) {}
544                 fn handle_shutdown(&self, _their_node_id: &PublicKey, _msg: &Shutdown) {}
545                 fn handle_closing_signed(&self, _their_node_id: &PublicKey, _msg: &ClosingSigned) {}
546                 fn handle_update_add_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateAddHTLC) {}
547                 fn handle_update_fulfill_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFulfillHTLC) {}
548                 fn handle_update_fail_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailHTLC) {}
549                 fn handle_update_fail_malformed_htlc(&self, _their_node_id: &PublicKey, _msg: &UpdateFailMalformedHTLC) {}
550                 fn handle_commitment_signed(&self, _their_node_id: &PublicKey, _msg: &CommitmentSigned) {}
551                 fn handle_revoke_and_ack(&self, _their_node_id: &PublicKey, _msg: &RevokeAndACK) {}
552                 fn handle_update_fee(&self, _their_node_id: &PublicKey, _msg: &UpdateFee) {}
553                 fn handle_announcement_signatures(&self, _their_node_id: &PublicKey, _msg: &AnnouncementSignatures) {}
554                 fn peer_disconnected(&self, their_node_id: &PublicKey, _no_connection_possible: bool) {
555                         if *their_node_id == self.expected_pubkey {
556                                 self.pubkey_disconnected.clone().try_send(()).unwrap();
557                         }
558                 }
559                 fn peer_connected(&self, their_node_id: &PublicKey, _msg: &Init) {
560                         if *their_node_id == self.expected_pubkey {
561                                 self.pubkey_connected.clone().try_send(()).unwrap();
562                         }
563                 }
564                 fn handle_channel_reestablish(&self, _their_node_id: &PublicKey, _msg: &ChannelReestablish) {}
565                 fn handle_error(&self, _their_node_id: &PublicKey, _msg: &ErrorMessage) {}
566         }
567         impl MessageSendEventsProvider for MsgHandler {
568                 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
569                         let mut ret = Vec::new();
570                         mem::swap(&mut *self.msg_events.lock().unwrap(), &mut ret);
571                         ret
572                 }
573         }
574
575         async fn do_basic_connection_test() {
576                 let secp_ctx = Secp256k1::new();
577                 let a_key = SecretKey::from_slice(&[1; 32]).unwrap();
578                 let b_key = SecretKey::from_slice(&[1; 32]).unwrap();
579                 let a_pub = PublicKey::from_secret_key(&secp_ctx, &a_key);
580                 let b_pub = PublicKey::from_secret_key(&secp_ctx, &b_key);
581
582                 let (a_connected_sender, mut a_connected) = mpsc::channel(1);
583                 let (a_disconnected_sender, mut a_disconnected) = mpsc::channel(1);
584                 let a_handler = Arc::new(MsgHandler {
585                         expected_pubkey: b_pub,
586                         pubkey_connected: a_connected_sender,
587                         pubkey_disconnected: a_disconnected_sender,
588                         msg_events: Mutex::new(Vec::new()),
589                 });
590                 let a_manager = Arc::new(PeerManager::new(MessageHandler {
591                         chan_handler: Arc::clone(&a_handler),
592                         route_handler: Arc::clone(&a_handler),
593                 }, a_key.clone(), &[1; 32], Arc::new(TestLogger())));
594
595                 let (b_connected_sender, mut b_connected) = mpsc::channel(1);
596                 let (b_disconnected_sender, mut b_disconnected) = mpsc::channel(1);
597                 let b_handler = Arc::new(MsgHandler {
598                         expected_pubkey: a_pub,
599                         pubkey_connected: b_connected_sender,
600                         pubkey_disconnected: b_disconnected_sender,
601                         msg_events: Mutex::new(Vec::new()),
602                 });
603                 let b_manager = Arc::new(PeerManager::new(MessageHandler {
604                         chan_handler: Arc::clone(&b_handler),
605                         route_handler: Arc::clone(&b_handler),
606                 }, b_key.clone(), &[2; 32], Arc::new(TestLogger())));
607
608                 // We bind on localhost, hoping the environment is properly configured with a local
609                 // address. This may not always be the case in containers and the like, so if this test is
610                 // failing for you check that you have a loopback interface and it is configured with
611                 // 127.0.0.1.
612                 let (conn_a, conn_b) = if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9735") {
613                         (std::net::TcpStream::connect("127.0.0.1:9735").unwrap(), listener.accept().unwrap().0)
614                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:9999") {
615                         (std::net::TcpStream::connect("127.0.0.1:9999").unwrap(), listener.accept().unwrap().0)
616                 } else if let Ok(listener) = std::net::TcpListener::bind("127.0.0.1:46926") {
617                         (std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
618                 } else { panic!("Failed to bind to v4 localhost on common ports"); };
619
620                 let (sender, _receiver) = mpsc::channel(2);
621                 let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, tokio::net::TcpStream::from_std(conn_a).unwrap());
622                 let fut_b = super::setup_inbound(b_manager, sender, tokio::net::TcpStream::from_std(conn_b).unwrap());
623
624                 tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
625                 tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();
626
627                 a_handler.msg_events.lock().unwrap().push(MessageSendEvent::HandleError {
628                         node_id: b_pub, action: ErrorAction::DisconnectPeer { msg: None }
629                 });
630                 assert!(a_disconnected.try_recv().is_err());
631                 assert!(b_disconnected.try_recv().is_err());
632
633                 a_manager.process_events();
634                 tokio::time::timeout(Duration::from_secs(10), a_disconnected.recv()).await.unwrap();
635                 tokio::time::timeout(Duration::from_secs(1), b_disconnected.recv()).await.unwrap();
636
637                 fut_a.await;
638                 fut_b.await;
639         }
640
641         #[tokio::test(threaded_scheduler)]
642         async fn basic_threaded_connection_test() {
643                 do_basic_connection_test().await;
644         }
645         #[tokio::test]
646         async fn basic_unthreaded_connection_test() {
647                 do_basic_connection_test().await;
648         }
649 }